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We report systematic theoretical studies of the inverse Faraday effect in materials with massless Dirac
fermions, both in two dimensions such as graphene and surface states in topological insulators, and in three
dimensions such as Dirac and Weyl semimetals. Both semiclassical and quantum theories are presented, with
dissipation and finite-size effects included. We find that the magnitude of the effect can be much stronger in
Dirac materials as compared to conventional semiconductors. Analytic expressions for the optically induced
magnetization in the low-temperature limit are obtained. Strong inverse Faraday effect in Dirac materials can be

used for the optical control of magnetization, all-optical modulation, and optical isolation.
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I. INTRODUCTION

Inverse Faraday effect (IFE) is a fascinating nonlinear opti-
cal phenomenon. Its key feature is generation of a permanent
magnetization in a medium as a result of interaction with
circularly polarized radiation [1]. The effect was predicted by
Pitaevskii [2], and the name IFE was coined in [3-5]. IFE was
studied extensively in plasmas, metals, and semiconductors
[6-13]. More recent studies explored the use of IFE for
ultrafast modulation of magnetization with femtosecond laser
pulses [14-23] .

There has been a lot of recent interest in the optical prop-
erties of two- and three-dimensional (2D and 3D) materials
with Dirac and Weyl fermions, including the nonlinear optical
[24-38] and magneto-optical [39-44] response of graphene
and Dirac/Weyl semimetals. Strong light-matter coupling in
these systems makes them promising for IFE studies. In
[24,45] the generation of edge photocurrent in graphene was
studied theoretically and in experiments. We show below that
generation of edge photocurrent is related to IFE.

In the Introduction we discuss general features of IFE
based on the Pitaevskii formula (1) obtained from thermo-
dynamic considerations. Section II develops a quasiclassical
theory of IFE in graphene based on the kinetic equation. The
quantum-mechanical derivation of IFE in graphene including
interband transitions is given in Sec. III. Both Secs. II and IIT
neglect dissipation. In Sec. IV we calculate the magnetization
of graphene by directly summing over the magnetic moments
of individual electrons (in quasiclassical approximation), in-
stead of using the Pitaevskii formula. That is why we can
include dissipation in this treatment. Section V takes into
account finite-size effects and calculates edge photocurrent.
Section VI develops the kinetic-equation theory for the IFE
in Weyl semimetals. In Appendix A we evaluate the effect of
the depolarization field on the IFE in a finite sample, whereas
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Appendix B studies saturation of IFE in strong fields.
Throughout the paper, we include only the electric-dipole in-
teraction with the electric field of the electromagnetic waves,
ignoring a much smaller contribution of electron spins.

In a transparent nonmagnetic medium, i.e., in the medium
with magnetic permeability u = 1, the magnetization excited
by a monochromatic field can be determined from thermody-
namic considerations. The resulting expression is [1]

881-j EjEN?k
=Y U 1
m XJ: oH 167 M

where the optical field is given by E = Re(Ee~"), i, j are
Cartesian indices, &;; is a Hermitian tensor of the dielectric
permittivity, H is the vector of a constant magnetic field. Here,
the Gaussian units are assumed. In the absence of an external
magnetic field, the derivative in Eq. (1) should be calculated
in the limit limg__,¢ (%). If the medium is isotropic at H —
0 the induced magnetic moment will be orthogonal to the
plane containing the electric field vector E (see Fig. 1). The
magnitude of magnetization is determined by the difference
between the intensities of right- and left-circularly polarized
components of the optical field. It is obviously zero for a
linearly polarized field.

It is remarkable that Eq. (1) remains valid for media
with frequency dispersion: there is no need to add frequency
derivatives %’ to Eq. (1) whereas such derivatives are present
in the expression for an averaged energy of the optical field
in a dispersive medium [1,2]. The limit of zero dissipation
is more subtle. As we show in Sec. IV in the quasiclassical
approximation, Eq. (1) cannot be obtained by taking the
real part of the complex dielectric function of the dissipative
medium.

©2020 American Physical Society
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FIG. 1. A sketch of inverse Faraday effect: an incident circularly
polarized light induces magnetization in a sample.

Equation (1) underscores another unique feature of the IFE.
It is well known that any optical response that is quadratic in
powers of the field can be calculated within a standard per-
turbative approach from the second-order (with respect to the
field) perturbation of the density matrix. For a photoinduced
magnetic moment in a system with discrete energy spectrum,
such an approach was developed, e.g., in [46]. At the same
time, Eq. (1) shows that it is possible to calculate photoin-
duced magnetization from the /inear dielectric response of the
medium.

It follows from Eq. (1) that IFE exists only in the media
that become gyrotropic in an external constant magnetic field.
Examples of the systems that do not become gyrotropic in an
external magnetic field include an electron-positron plasma
and magnetized vacuum [47]. Condensed matter systems with
complete electron-hole symmetry are also not gyrotropic in
an external magnetic field. One obvious example is a material
with electronic band structure in the form of isotropic Dirac
cones, when the Fermi level crosses the Dirac points, such
as graphene or certain types of Dirac/Weyl semimetals [44].
Of course, this also implies low enough photon frequencies
that probe only the range of electron energies close to the
Dirac point. The selection rules for such systems allow one
to group all electric-dipole allowed optical transitions into
symmetric pairs n - —(n+ 1) and n+ 1 — —n with the
same transition frequency but opposite direction of rotation of
a circularly polarized optical field [44,48,49]. Gyrotropy, and
therefore the IFE, will appear in these materials only when the
Fermi level is shifted with respect to the Dirac/Weyl point; see
Fig. 2. Moreover, as we argue below, the IFE is strongest in
the limit of small frequencies and large Fermi energies, when
resonant interband transitions are Pauli-blocked minimizing
absorption and the main contribution to IFE comes from
intraband transitions in the vicinity of the Fermi level.

Since the model leading to Eq. (1) does not include dis-
sipation, for condensed matter systems it can give only a
qualitative description. Nevertheless, it provides a useful limit
based on general thermodynamic relations. In Sec. IV we
compare it with a specific model that does take dissipation
into account.

II. QUASICLASSICAL THEORY OF IFE IN GRAPHENE

For a 2D system such as graphene, it is convenient to
use the electric susceptibility tensor instead of the dielectric
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FIG. 2. Landau levels and optical transitions in graphene. The
highest Landau level below the Fermi energy is denoted as ny. Dotted
arrows indicate a pair of transitions with contributions to the induced
magnetic moment that cancel each other. Only the transitions shown
with solid arrows (one interband and one intraband) contribute to
inverse Faraday effect at low temperature.

permittivity in Eq. (1), namely, x;; = % and integrate this

4
equation over the layer thickness. In this gase, Eq. (1) becomes
dxij EE;
“2 0 4 @
aH 4

Now the tensor x;; is a 2D surface susceptibility tensor which
has the dimension of length; i, j = x, y are coordinates in the
graphene plane. The vector m in Eq. (2) has a meaning of a
magnetic moment of a unit area (see Fig. 1). We will use a
standard low-energy effective Hamiltonian for electrons near
the Dirac point [50]:

Hy = vep - 8, 3

where 6 = Xo6y + Y08y, P = XoPx + Yoy, 6,y are Pauli ma-
trices, Py, are Cartesian components of the momentum oper-
ator, Xo, Yo are unit vectors of coordinate axes, vg is the Fermi
velocity. In this model, the degeneracy factor g = 4 (two spin
states and two valleys). The corresponding electron energies
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are
W(p) = svpp, 4)

where p = v p? + p%; index s = %1 corresponds to the con-
duction and valence band, respectively.

The analysis below is applicable also to 2D surface states
in 3D topological insulators such as Bi,Ses. Their low-energy
Hamiltonian is related to that of graphene by a unitary
transformation, and the resulting linear and nonlinear optical
responses are both very similar, after rescaling the values of
the Fermi velocity and degeneracy (see, e.g., [29,31,42]).

Since in this model the IFE appears only when the Fermi
energy is shifted from the Dirac point, we consider doped
graphene and assume that the Fermi level is in the conduction
band for definiteness. In the limit of small enough frequencies,
low temperatures, and large Fermi energies (so that the con-
tribution of interband transitions can be neglected) the quasi-
classical theory is adequate. (This is the most interesting limit
anyway: the results for a classical plasma, metals, and semi-
conductors [6—13] indicate that the photogenerated magnetic
moment grows with decreasing frequency as «xw—>.) Indeed,
it was shown in [31] that under rather weak restrictions on
the nonuniformity of the electromagnetic field in the plane
of graphene both linear and quadratic intraband susceptibil-
ities derived within the quantum-mechanical density matrix
formalism coincide with the results obtained from the kinetic
equation based on the quasiclassical equations of motion for
carriers. The nonuniformity restriction is L > pip’ where L is
the spatial scale of the nonuniformity of the field and p is the
Fermi momentum related to the Fermi energy by Wy = vppr.
The contribution of interband transitions will be small when
electrons are degenerate and

This is confirmed by fully quantum treatment in Sec. III.
Under a more restrictive condition L > ”;F one can
calculate the response neglecting spatial nonuniformity of
the optical field [31]. We will use the kinetic equation
which corresponds to the quasiclassical equations of motion
[27,28,35,40,41]. To calculate the derivative in Eq. (2) it is
enough to know the dependence of the tensor elements x;; on
the external constant magnetic field in linear approximation
with respect to H. Here, the magnetic field is orthogonal to
the monolayer: H = zoH,. The kinetic equation has the form

af 1/ oW of
a—e{E(f)+|:z<ﬁp>PXHi|}'%—Q(f)- (6)

Here, Q( f) is the relaxation operator, the electric field vector
E is in the graphene plane, —e is electron charge. We do not
specify any particular electron dispersion W (p) in Eq. (6) in
order to compare the results for linear and quadratic dispersion
(see also [13]).

Consider Eq. (6) when O(f) = 0. We need to calculate
the linear response to the uniform high-frequency field E, , =
Re(E, ye™"). We will seek the solution to Eq. (6) in the form
f=Re[8f (0, pe ™1+ fr(p), where p,=pcos, p,=
p sinf, |§f| < fr. Linearization of Eq. (6) gives

OW eH, 38 f 3 fr

—iwdf + —e(E, cos@—i—E sm@)— =0.
ap

p8p c 00

This equation has an exact solution

e o fr oW eH, .
5f = ST Eliw cosO—T—sme
w? — (55, %5) 9P pop ¢
. oW eH,
+E, (zw sm9+—e—cose>i| 7
pop ¢

The surface current is determined by

4 oW
e = —egRe(e”‘” / — cos 98fd2p),
ap
. oW
Jy = —egRe(e_"”’ / oy sin 68fd2p>.
p

Substituting Eq. (7) in these equations and keeping only the
terms linear with respect to the magnetic field we obtain the
following expressions for the elements of the conductivity
tensor oj;:

gme? /°° oW d fr
0

Oy =0y =0 = —I -

egnH, [ 29
# fF dp. (8)
w*c J 8p ap

Using Egs. (2) and (8), and the relationship between the

complex conductivity and complex susceptibility x;; = —~,
we arrive at

3 00
“”:—ﬁ/ Wy« ReGEES), O
o =-S5 | (ap) SLdpx ReGEE). O

where the superscript (0) indicates the transparent medium
approximation used to derive the Pitaevskii equation (1).

Since the effect is strongest when the electrons are strongly
degenerate, we consider a zero-temperature 2D Fermi distri-
bution as an unperturbed electron distribution

Oxy = —Oyx = —

fr(p) = =—=Opr — p). (10)

1
(2mh)?
where ®(x) is the Heaviside step function. In this case, the
integrals are easily calculated to give

ge Pr (8W>
2 a )
47'L'h ap P=pPF

SH, (W \?
— ge—2<—) . (11)
drch”w?\ 0p / ,_),

In particular, for graphene with linear dispersion (g =

4, %—V]‘: = vy ) the last of Egs. (11) yields

Uxx = ()'yy =0 =

Oxy = —Oyy

3.2
(intra) __ € vpH;
o Xy =7 5 (12)
7 ch” w?
Here, we added the label (intra) to emphasize the fact that the
quasiclassical calculation gives only the intraband conductiv-
ity. For the magnetic moment we obtain

3 2

oW 5 7

m® = L2<_> x Re(E,EY).  (13)
8wchw? \ 0p / ,_,,

It follows from Eq. (13) that if the electron dispersion is
quadratic, the magnetization is proportional to the surface
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electron density np = 42)22 and inversely proportional to the
square of their effective mass. For a linear dispersion near the
Dirac point as in Eq. (4) and degenerate electron distribution
of Eq. (10) the magnetization does not depend on the Fermi
momentum pr, i.e., it does not depend on the carrier density.
One can write the result in the same form for both cases by
introducing an effective mass for electrons at the Fermi level
in graphene: mey = p—l‘:. One has to keep in mind that the
limit of small pr — 0 is not allowed as it would violate not
only the criterion of negligible contribution from interband
transitions, but also the applicability of the method of small
perturbations that we used when solving the kinetic equation.
The latter condition has the form pr > “€, where E, = |E|,

as follows from the solution for the strong field nonlinear

problem solved in Appendix B.

III. QUANTUM THEORY OF THE IFE IN GRAPHENE

The magnetic moment generated as a result of IFE is deter-
mined by the magnetic field dependence of the off-diagonal
element of the conductivity tensor. To find this dependence
within full quantum theory we use the Kubo-Greenwood
formula [51]

(alJx| B)(BJyler)
Oxy = 0}x—lth<Eﬂ_ )h(a}+ )—(E,f;—E)

(14)

where |o) are basis 2D surface states normalized by unit area
L, x L, =1, E, and f, are the energy and population of state

J

(jx)nm = _eUFilm‘_‘nH—lCnCIn[Sgn(n)‘s('nl -

Uy)am = —evpi™ =" C,C,[sgn(m)s(|n| —

la), Jx,y = —evg6, , are Cartesian components of the current
density operator [50], g = 4 is the degeneracy factor, t is the
relaxation time.

To determine the distribution function of carriers in a
magnetic field oriented along the z axis, we extend the mo-
mentum operator in the Hamiltonian (3) in a standard way
[52l:p =D —xo #y The resulting electron eigenstates are
[49]

_ Gy sgn(n)i" = @y,
lo) = |n, k) = \/_Ee ' ( by ) (15)

b o Hy (525) N, __(x—kl2> 6
" g )

where H,(£) is the Hermite polynomial, /. = \/e’z}; is the
magnetic length, n =0, &1, £2, ... are principal numbers
of the Landau levels, Cy =1, C,z0 = Lz The eigenenergy
E, depends only on the Landau level number E, = E, =
sgn(n)fiw.+/|n], where . = @ is the cyclotron frequency.

Introducing the notations |&) = |n,k) and |B) = |m, k')
and using Egs. (15) and (16) we obtain the matrix elements
of the components of the current density operator:

(el Jr.y|B) = —evr(alGry|B) = (jxy)mmSurs  (17)

where

Im| — 1) — sgn(m)é(|n| — |m| 4 D], (18)

Im| 4 1) + sgn(n)é(|n| — [m| — 1)]. 19)

The § functions in Egs. (18) and (19) determine the selection rules.
Performing the summation over k in Eq. (14) (see [52]) and using Eqgs. (18) and (19), we arrive at the expression which

contains the summation over the Landau level numbers:

Im| = 1) = (n| —|m|+ 1)

2h S — fn 8(In| — -
Oy = _ﬁezvg Z(Cnc,,,)2 : , (20)

Em - En

where 1 > f, > 0; the degeneracy of a given Landau level per
unit area is ﬂ including both spin and valley degeneracy.

In the case of a complete electron-hole symmetry, i.e.,
Jo= 2, Sfas0 =0, fuco =1, from Eq. (20) we obtain o, =0
for any H, (see also [44]). Now, consider an n-doped system.
Let the number ny correspond to the highest occupied Landau
level just below the Fermi energy, i.e., Wr > fiw. /nr. Since
we need the limit of small magnetic fields, we assume that
Wr > hw,, which can be written as

Prle > . (21)
This means that np > 1.

A. Contribution of intraband transitions

In this case we set n,m >0 in Eq. (20). Consider a
narrow vicinity of the Fermi energy where |n — ngp| < np and

(

|En. — Wr| < Wp. In the limit of large n the distance between
neighboring Landau levels is

1 hw,
AE = Eyppy — By = hooWn+ 1 — /)~ =% (22)
2 N203
or
v
AE = . 23
A (23)
Note that introducing the effective mass meg = p ~ we obtain

a standard relation AE = feH

Taking into account that for1 — fn 70 only in the
near vicinity of the Fermi energy, from Eq. (20) we can
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get
i h 1 1 1
(intra) __ 2.2
[of = — e Vp—— . — _ : — ), 24
xy 212 FAE|:h(a)+£)—AE ﬁ(w+%)+AE:|§(f+l Jn) 24)
where Zn>0 (fnJrl - fn) == fooo df = —1. The result is
3.2
(intra) _ 12 e vaH : .
v i eH.v, :
7Tﬁc(w-’_?) _(CPFF)

The last expression coincides with the semiclassical result derived from the kinetic equation (6) for o) =

when T — oo and H, — 0 we obtain Eq. (12).

f . In particular,

B. Contribution of interband transitions

In this case, the numbers n and m in Eq. (20) have different signs. Taking this into account, we can write the sum in Eq. (20)

as
o tinter) _ —he? vF Z —fm Sn+m+1)—-56(n+m—1) Z —fu Sn+m—1)—8n+m+1) '
YT i |, E T IES T+ £) = (| + En) meME|+E @ + L)+ (Ey + |Enl)
(26)
Since in an n-doped degenerate system f,.,, = 0, fu<,, = 1, Eq. (26) yields
4 he’v? 1 1
(inter) __ __ F
O = 2R (’;2) B, 1h+|E| [0+ 1) — E_,_ 1+\E,l| Zn; E_,1+1+|E\ [(0+ 1) — E_,L+1h+|E”|]

1
Z ‘E—n+] |+En i

|E7n+l|+E
ng+1 (,() + 1:) +

1
Z 1E_n 11+Ex 1\+E [+ %) n E£|+E]> 27

np+1

Since the energy spectrum is symmetric, |E_,| = E},, we can regroup the terms on the right-hand side of Eq. (27) as

(..)=-

T n np+2

It is easy to see that the sums on the right-hand side of the
last equation cancel each other, leaving only the first term
which is the contribution of the transition —np = nr + 1

(see Fig. 2). Taking into account that W 2? when
the inequality Eq. (21) is satisfied, we obtain
(inter) __ 1 63 vIZ‘"H 28
T T s IVEEIAYE (28)
(@+2)" = (5)

Note that the expressions for the optical conductivity of
graphene in a magnetic field were obtained in [53] where the
direct Faraday effect was investigated.

In the absence of dissipation, the magnitude of the mag-
netic moment is determined by Eq. (2), which gives

1 P U(intra) + U(iynter) o
— (o 57 Re(iE,E").
OH,
T—00,H,—0

(29)

o _
< 2w

Using Eqgs. (25) and (28) we finally arrive at

3.0 ()2 o2
o _ €VF (T) _ 2w o
© T dmee? (M) SReGEED).  (30)

2 o0
eSS o S

2 > 2
(IEfm |+E, )2 + Z i |E_n_1|-+En
h

in2 2"
et (@ +7) = (5572)

(

The frequency dependence of the magnetization is shown
in Fig. 3. The incident light intensity was assumed to be
10 kW/cmz, which is much less than the saturation inten-
sity, so that the contribution of photoexcited carriers can be

R

O ™

m,?(107'°G-cm)

_12

0 100 200 300 400 500
w (meV)
FIG. 3. Frequency dependence of the magnetization in Eq. (30)

induced by a circularly polarized optical field of intensity
10 kW /cm?. The Fermi energy Wy = 0.2 eV.
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neglected. The magnitude of magnetization increases with
decreasing frequency as 1/w? when fiw < W and the effect
is dominated by intraband transitions. The magnetization
changes sign twice: at fiw = v2Wr and fiw = 2Wp. There
is also a resonance at the interband transition edge fiw =
2Wr where the magnitude of magnetization diverges. The
divergence is an artifact of the dissipationless approximation
which was used to relate magnetization to the off-diagonal
susceptibility elements in Eq. (2). Obviously, relaxation pro-
cesses cannot be neglected near resonance. Therefore, the
validity of Eq. (30) in the resonance region is limited by
o —2Wg /R| > rmter, where Tjr 1S the interband relaxation
time. It is interesting that taking relaxation processes into
account in the calculation of magnetization is not equivalent
to using the complex susceptibility in Eq. (2) and taking the
real part of the resulting expression. We will illustrate it in the
next section within quasiclassical derivation.

As is clear from Fig. 3 and Egs. (25), (28), and (30), when
Eq. (5) is satisfied the interband transitions give only a small
contribution to the IFE. In the analysis of the IFE in dissipative
systems below, we will therefore neglect interband transitions.

IV. IFE IN A DISSIPATIVE SYSTEM: A QUASICLASSICAL
THEORY

Here, we calculate the photogenerated magnetic moment
per unit area without any assumptions of a dissipationless
system. Therefore, we cannot use the Pitaevskii formula (1).
Instead, we sum over magnetic moments of individual elec-
trons undergoing induced motion in the optical field. First,
we introduce surface polarization P and relate it with the
surface current j in a standard way P = j. Next, we repre-
sent polarization as P = —enpgR, where the vector R has a
meaning of an average displacement of carriers and ng is the
surface density of a degenerate 2D electron gas. The magnetic
moment per unit area is m = —np X 5 (R x R), where the
angular brackets mean averaging over the optical period %’
This expression is convenient to write as

m = zom, = —

3 (P xJ). (3D
cenp

Substituting
j =Re(o (w)Ee "), P=Re<io(w)1?:e"w’> (32)
w

into Eq. (31), we obtain

2
m, = 7@l pe GE,E"), (33)
2cewny

where o = oy, = 0y,; see Eq. (8). For a classical plasma,
Eq. (33) was derived in [7].

To connect with the dissipationless limit in Eq. (2) we note
that the elements of the conductivity tensor given by Eqgs. (11)

in a dissipationless system for any electron dispersion are
related as

1 i|o_|2 — (l aaxy (aXxy . (34)
ecng @ w H; [y o 0H; Jy_0

FIG. 4. A sketch of an edge photocurrent in a finite-size sample
generated by an incident circularly polarized beam.

Substituting this into Eq. (33), we obtain the expression for
magnetization which coincides with the phenomenological
formula of Eq. (2).

Therefore, an approach based on Egs. (31) and (32), which
uses the conductivity o (@) calculated within a suitable micro-
scopic model, leads to a correct result. Note that this approach
is not based on dissipationless approximation. An advantage
of an approach based on Eq. (31) is that there is no need
to calculate the dielectric susceptibility tensor in the limit of
a linear dependence on the external magnetic field H. It is
enough to calculate linear conductivity without an external
magnetic field. In order to include dissipation, we use Eq. (6),
assuming H = 0 from the very beginning and adopting the
simplest approximation for the relaxation operator: Q(f) =
fr=] where 7 is the relaxanon time. This is equivalent to the

substltutlon w—> o+ ; in the dissipationless formula for the
conductivity. Then, Eq. (33) gives

w?

me= ) G
where m§0) is the magnetization of a dissipationless system
[see Eq. (13)]. One can see that Eq. (35) is not equivalent to
using the complex susceptibility in Eq. (2) and taking the real
part of the resulting expression.

At low frequencies, the finite size of a sample starts af-
fecting the result; see Appendix A. The expression for the
magnetic moment which is valid beyond the linearized theory
is derived in Appendix B.

V. MAGNETIZATION CURRENT AND FINITE-SIZE
EFFECTS

The magnetization current density generated in a 2Dasys—
tem as a result of IFE is given by j = c(xo2% 3 — Yo )
This equation yields a simple expression for the photocurrent
around the boundary of a light beam or along the edge of an

illuminated sample:
I =c[ny x zo]m;, (36)

where ng is a unit vector in the monolayer plane which is
directed outside from the illuminated area perpendicularly to
the boundary (see Fig. 4).

In a dissipative system, a simple expression (36)
may be used with certain reservations. For example, the
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magnetization current far from the sample edges can be
affected by the viscosity of an electron fluid [54] whereas
edge photocurrent can be affected by interaction of carriers
with a sample boundary. (These effects can be responsible
for various ways of detecting a constant current along the
edge that are not related to IFE.) In fact, Eq. (36) corresponds
to a mirror reflection of carriers from the boundary. Indeed,
consider the edge x =0 of a graphene sample, assuming
that graphene extends to x > 0. The field component E, =
Re(E.e'") excites oscillations of carrier density in a bound-
ary layer near the edge: én(x) = Re(87i(x)e™™"). Oscillations
of an uncompensated charge 6p = —edn should obey the
continuity equation, which gives

ia)e/oo Sii(x)dx = o (w)Ey, 37
0

where the conductivity o (w) corresponds to the region where
there is no uncompensated charge. Although the integration
here should be formally extended to x — oo, in practice it is
localized within a certain boundary layer much smaller than
the sample dimensions.

The field component E, = Re(E e~ion) gives rise to the
oscillations of carrier Veloc1ty along the edge. We can prove
that for the elastic reflection of electrons from the boundary
the average (hydrodynamic) velocity of electrons along the
boundary (along y) is conserved up to cubic terms with respect
to the field amplitude. Indeed, let us write the particle momen-
tum as p = P + p(¢), where P is its value averaged over time
and p = eRe(z_lEe_""’ ) is an oscillating component. The
velocity v =vp ﬁ in the linear approximation with respect
P(P-p)

to the field E is given by V ~ vp (IP\ ), which gives

PP
B ~ P? ~ PP,
Uy = vr | Py — Px 7 |- (38)

y 3 3
er)t )

If the particle distribution is symmetric with respect to P,, the

ensemble-averaged velocity obtained from Eq. (38) is

(P?)

— (39)
(P2 +PP)*

(v) =V, = vr

For elastic reflection, the momentum components P, and
Py are conserved separately whereas the magnitude of P?
changes upon reflection. If P,; and Py, are the values before
and after the reflection, then Py, = —[Py; + 2P, (¢t*)], where
t* is the moment when the particle hits the edge. If the phases
wt* are uniformly distributed, this effect contributes with the
terms of the order of |EX|2, which leads to corrections cubic
with respect to the field amplitude in Eq. (39). Neglecting
these terms and also any effects of viscosity in the transition
layer we obtain V, = Re(\7ye”""’ ), where \7y = const. The
result is

o(w)E,

—enr

V, = Vy(00) = (40)

Now, we can calculate the constant (time-averaged) nonlinear
edge photocurrent as

e .
I, = —ERe/ Vyéit* (x)dx. 41
0

Substituting here Egs. (37) and (40) yields

I, = —Re—|o(0)PE,E?. 42)
(0]

2eng
This result is exactly the same as the substitution of Eq. (33)
into Eq. (36).

In the case of a very strong dissipation, when carriers are
thermalized near the edge, one calculates the edge current
using the approach described in [24]. This method relates
the perturbation of carrier density with the perturbation of
the chemical potential in the Fermi distribution. Applying
this approach to a 2D system with linear electron dispersion
gives the result which differs from Eq. (42) by a factor of %,
whereas in a 3D with linear dispersion system the difference
is a factor of % In materials with a constant effective mass,
the result is the same as Eq. (42). Note that in graphene and
in typical semiconductors the thermalization time for carriers
in a given band is longer than their scattering time by at least
one order of magnitude; see, e.g., [33] and references therein.
For a model with diffuse scattering at the boundary [45],
the expression in Eq. (42) gives only an order-of-magnitude
estimate.

VI. IFE IN WEYL SEMIMETALS

We consider the simplest model of a Dirac or Weyl type
I semimetal (hereafter WSM) valid only at low enough
frequencies in the near vicinity of a Weyl point, which is
basically a 3D generalization of Egs. (3) and (4), in which
p is a 3D momentum operator, & = XoGy + Y08, + Zo4; is a
3D vector of Pauli matrices, (Xo, Yo, Zo) are unit vectors along
the coordinate axes, and

W(p) = svp,/pz + Py + P2 (43)

Here, the number of Weyl nodes only adds to the degeneracy
of electron states and the optical anisotropy and gyrotropy
effects related to the finite separation of Weyl nodes [55]
are neglected. The volume conductivity can be derived from
a single-band kinetic equation if the radiation frequency w,
Fermi energy vrpp, and the distance b between Weyl nodes
in k space are related by [55]

ho K vppr K hupb.

For an unperturbed Fermi distribution in the conduction band,

1
0 , 44
fr(p) = @y (pr —p) (44)

the conductivity has a Drude-type form [55]

2

o=i—r 2 (45)
o+ PFr

where np = 6gp2’h3 is a volume density of electrons corre-

sponding to the Fermi distribution (44); the degeneracy g takes
into account the contribution of all Weyl nodes, including
those with opposite chiralities.

First consider the collisionless limit. We can again
use Eq. (6), taking O(f) =0 and E L H || z,. For a 3D
system, the solution to Eq. (6) can be sought as f =
Re[8f(0, ¢, ple™ 1+ fr(p), where p,=p cosd sing,
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py =psinf sing, p, =pcos¢;|8f| < fr.  Linearizing
Eq. (6) and taking into account electron dispersion Eq. (43)
gives

H, 36§
—iw 5f+v—Fe——f—e(E cosf +E sm@)sm¢£
p c 09 ap
=0. (46)

Equation (46) has the following solution:

H,
ﬁsm<j>|: x(za) cosf — or &% sin@)
ap p

o

0f = ————
eH.\2
W — (%)
~ . . UpeHZ
+E,| iw sinf + ——cos b | |.
) » c

The corresponding current density is

c

(47)

e = —egvae<eiw’ f sin ¢ cos 96fd3p>,

Jy = —eguFRe<e—"w’ / sing sin 08 f d3p). (48)

From Egs. (47) and (48) one can obtain the components of the
conductivity tensor, keeping only the terms linear with respect
to the magnetic field:

drie*gup [
Oxx = Oyy =0 = S—a)/ 2frpdp,
0
_ _ dredgH v2 [ J 49
Oyy = —Oyx = W A frdp. (49)

This gives the desired components of the dielectric permittiv-
ity tensor &;; = §;; + 4w —* m" , and finally the magnetic moment
calculated using Eq. (1):

1 aeimtra) o
m® = —Re ! E,
8 J0H, o

2redgH
_ 2o & ”F/ frdp x ReGE,E*),  (50)
w

3

where the superscript (0) is again to indicate an approximation
of a transparent medium.

For a degenerate electron distribution in the zero-
temperature limit (44) we have

Oy = Oy =0 = e ‘ipFUF
6h 72w’
e3gHzpF U12v
T T e v
and
m® — MRe(iﬁ E*) (52)
¢ 1272w e

As in the case of a 2D material, these components of the
conductivity tensor coincide with those obtained for particles
with a constant mass meg, if we express them through a

particle density nr and introduce the effective mass as meg =
Pr
vp ©

Itis also easy to find out that Egs. (49) satisfy the equations
similar to those for 2D systems in Eq. (34):

r i , i 00,y 1 [0eyy
—lof = -2 = — 2 . (53)
ecnp w woH, )y o 4m\0H. /)y

When scattering and dissipation are taken into account, one
can repeat the same derivation steps as above for a 2D system
and arrive at the expression for the photogenerated magnetic
moment in the form of Eq. (33), in which one should sub-
stitute the volume conductivity Eq. (45) and volume carrier
density ng.

VII. DISCUSSION

In order to compare the magnitude of the IFE in Dirac
materials with that in conventional semiconductors, we note
that for materials with conventional quadratic dispersion of
carriers the induced magnetic moment per free carrier scales
inversely proportional to their effective mass squared. As
we already pointed out, the same dependence exists inWboth

Pr _ Wr

2D and 3D Dirac materials if we denote meg = = as

an effective mass. Assuming vr =~ ¢/300, the ratio of the
effective to free-electron mass is 2 ~ 2 x 10~ ‘HKF For
example, when Wy = 50 meV, the effective mass is 0. 01my,
which is one order of magnitude lower than in a typical
semiconductor with a band gap of the order of 1 eV. Therefore,
at low frequencies hiw < W, the IFE in Dirac materials can
be stronger than in conventional semiconductors by a couple
of orders of magnitude.

Let us estimate the magnetization obtained in the exper-
iment [45], where the excitation of edge photocurrent in
graphene was investigated. They used an NH;3 laser with 10
kW power and minimum frequency of 1.1 THz. For a I-mm
radius of a laser focus and Fermi energy of 0.2-0.3 eV the
condition pp > % is satisfied. Using the current dissipation
time t ~ 100 fs (which corresponds to wt ~ 1), the magnetic
moment of an illuminated spot is about ~10~7 G cm?, and
the photoinduced average magnetic moment per free carrier
particle is of the order of 100 Bohr magnetons.

If the optical pumping creates the magnetic moment of
100 Bohr magnetons per carrier, the magnetic moment per
unit area of graphene scales as 4wm, ~ 1073( 160 V) G cm.

Similarly, the magnetic moment per unit volume in an illu-
minated volume of a Weyl semimetal sample scales roughly

asdmm; ~ 2.2¢(15, meV) G, where g is degeneracy including
the total number of Weyl nodes.

One possible application for the IFE is to provide all-
optical modulation of the polarization of the probe light
transmitted through (or reflected from) an area of the optical
excitation. For example, a probe light passing along the z axis
through the area of optically induced magnetization m,_ experi-
ences direct Faraday effect. The magnitude of the polarization
rotation x can be calculated using textbook Faraday effect
formulas in which an external magnetic field B, is replaced
by 47 m,, where m; is an optically induced magnetic moment
per unit volume:

L
X(L):f adz, (54)
0
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where

o= (no — ny) (55)
2c
and npyx are refractive indices of normal electromagnetic
modes, i.e., ordinary and extraordinary modes. In the simplest
case of a dielectric tensor with €, = &,, the normal modes are
circularly polarized and

ngx = Exx & lenl, (56)

where & = ¢,y =1+ 4mio/w. For small magnetic fields
&xy & B, so Egs. (55) and (56) give
1)

) 08y
U L) op.
2¢./€xx 2¢,/€xx 0B, B.—0

Note that for the material with no intrinsic magnetic order
and for linear dependence of the off-diagonal component of
the dielectric tensor on the magnetic field, we can replace
the magnetic field H, with the magnetic induction B, in all
expressions in this paper. Then, taking into account that

1 (de,
me = o ( ”) E%,
s aBz B.—0

2
w 1 0&yy 2
U= EI", (58)
4c /1 +4mio [w \ 0B;

(57)

|exy| ~

we obtain

B.—0
where
_ .EguEpE
6R’ 2w’
Dexy 4w | oy, _ 2%guipr
3_Bz B,—0 T o 3_Bz B.—0 T 3Rrwic’

For a specific example, consider an incident optical pump
with the electric field of magnitude 10 kV/cm at frequency
w/2mw = 1 THz. For the Fermi energy of 100 meV in a WSM
sample, the Faraday rotation parameter o ~ 6.6¢*/ rad/cm,
which is already interesting for applications. The modulation
magnitude could be further enhanced by integration of a Dirac
material with a suitable plasmonic structure which supports
highly localized plasmon modes. For example, in [56] a strong
enhancement of Faraday rotation was predicted for a graphene
sheet encapsulated in a 2D metallic grating.

VIII. CONCLUSIONS

In conclusion, we investigated the inverse Faraday effect
in materials with massless Dirac fermions, both in two di-
mensions such as graphene and surface states in topological
insulators, and in three dimensions such as Dirac and Weyl
semimetals. Both semiclassical and quantum theories were
presented. The dissipation, finite size, and strong field effects
were analyzed in the quasiclassical approximation. We found
that the magnitude of the IFE can be significantly enhanced in
Dirac materials as compared to conventional semiconductors.
This makes Dirac materials promising for the optical control
of magnetization, all-optical modulation, and optical isolation
in compact optoelectronic devices.
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APPENDIX A: FINITE SAMPLE EFFECTS AND THE
DEPOLARIZATION FIELD

Consider a sample shaped as a thin disk of radius R in the
(x,y) plane and introduce polar coordinates r and ¢ on the
disk. Consider a circularly polarized optical field incident on
a disk, with electric field vector components

E, = Epcos (wt), E, = —Eysin(wt), (A1)

where w > 0 corresponds to the clockwise rotation of the
vector E and @ < O to the counterclockwise rotation. The
rotating field excites a rotating current in the disk:

Jx = jocos(wt + @), j, = —josin(wt + ¢), (A2)

where the phase shift ¢ is determined by dissipative processes
in the sample. The current given by Eqs. (A2) corresponds to
the rotating electric polarization:

P. = Pysin (ot + ¢), P, = Pycos(wt + @), (A3)

where Py = j;”, ie, P = ju R = Jy-

The current excitation by a time-dependent external field
in a finite sample leads to an uncompensated time-dependent
charge at a certain distance / from the disk edge. The mag-
nitude of the charge depends on the specific mechanism of
interaction of carriers with a boundary. Strictly speaking,
both the current and the electric polarization are described by
Egs. (A2) and (A3) only at a certain distance p > [ from the
disk edge. Since we do not want to get into the details of the
carrier-boundary interaction, we will assume that the width
of the boundary layer is much smaller than the disk radius:
I <R.

Let us denote an uncompensated charge per unit length
along the disk edge as §p(z, ¢). It can be expressed as 6p =
P., where P, is the normal component of the polarization
vector: P, = P,cos ¢ + P,sing. The edge charge leads to
generation of the depolarization field E, [1]. For a uniform
external field given by Eq. (A1), we can use the solution of a
corresponding electrostatic problem in [1]. If we approximate
a thin disk with an ellipsoid of rotation with semiminor axis
a < R, we get

7.[2

E, = 2RP,
where P is a 2D density of the dipole moment. Taking into
account the effect of the depolarization field and Egs. (Al)—
(A3), we obtain

2 o

72’

LT
O'|:E()—l D E—
1+10m

2ij0€i¢} = joe™?, joe™ = Eo
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FIG. 5. F(Z2,
ent wt.

t) as a function of the parameter Zf‘; at differ-

in graphene at wavelength 2R (see, e.g., [57]). In the limit
R — 00, Eq. (A4) gives the result for an infinite medium.

APPENDIX B: IFE IN GRAPHENE BEYOND SMALL
PERTURBATION

Here, we consider an incident radiation of an arbitrarily
strong intensity and go beyond the linear approximation. Let
us again assume a circularly polarized field given by Eq. (A1).
The kinetic equation (6) with H = 0 and relaxation operator

o(f) = @ takes the form
af(ali’ D eEo COS(CUf)@ + eE sin(wt)@
Px py
T

Its solution in quadratures can be found by the method of
characteristics. At times ¢ 3> t for any initial conditions the
solution approaches

1 [ ' eE
oL ;) L 0, . . ’
f=e r—f dzerfF[px—i-—(sma)t—sma)t ), Py
T Jo w

eE() ,
+ —(coswt —coswt') |. (B2)
w

After cumbersome but fairly straightforward derivation, the
surface current density j = —egvr [ % f d?p can be found:
Je = —enpVi(t), j, = —enpV,(t). (B3)

Here, the functions V; ,(¢) are given by

i
where o is a 2D conductivity of the layer including relaxation Vi) = —F o ezd>< Eo a)‘EZ)
processes. Using Eq. (31) for the magnetic moment, we arrive 1—e ok Jo wpF
at the expression which generalizes Eq. (35): x {[1 — cos(wrz)] sin(wt) + sin(wrz) cos(wt)}dz,
4
w
m, = m® : (Ad) (B4)
(0? = a)g) + w?t 2 .
where m”) is the magnitude of the magnetic moment gen- v ()= — & [ e—zq)(@ wfz)
. . . . . . y 21 ’
erated by a circularly polarized field without including dis- 1 —e¢ T Jo WPpF
sipation and depolarization effects, w, = ”g;”;’””, where x {[1 — cos(wtz)] cos(wt) + sin(wtz) sin(wt )}dz,
% = vp. The resonant frequency w, in Eq. (A4) coincides BS5)
up to a numerical factor with the frequency of 2D plasmons where
E 2¢eE, sin’
cp(e_O,mz) ( ) )/ “ da. (B6)
wpF TwpF \/1 +4( KEU 2 gin 2 (=) +4|% sin (%) | cos
It follows from (B3)—(B6) that the surface current density vector can be presented in the form of Eq. (A2), in which
. ( eEy >
Jjo = evpnpF | —, o1 |,
WpF
21 2
ek _am "l [ZE eEy
F , T | = (1 —e \w\f) e td| —, wtz |[1 — cos(wtz)]dz
WpF 0 WpF
. N 172
ot ek .
+ {/ et CD(— a)tz) sm(a)rz)dz} B7)
0 WpF

The value of the phase shift ¢ does not matter in this case.
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eE()

Figure 5 shows the dependence F(

wpr’
% at different wt. There is an obvious saturation

effect at ﬁ > 1. The current defined by Eqs. (A2) and (B7)
corresponds to the surface polarization given by Eq. (A3).

Using the expression (31) for the magnetization, we arrive at

2
engpv ek
m;, = —LEP = wt).
2cw wpF

ot) on the pa-

rameter

(B8)

EE(]
w

d)( eE() ) ~ eE() F( eEQ ) ~ eEO
— otz )| = —, — 0T | — .
WPpF WpF wpF PrVT 2 + 0?

For weak fields, when « 1, we have the limit

Ip this case, Eq. (B8) is reduced to Eq. (35) for Ey =—i E,

E. = Ey. The expression in Eq. (B8) allows one to estimate
the magnitude of the IFE for strong fields, when % > 1.
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