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managers. Benefit-cost trends indicate significant overlaps in habitat and safety goals,

encouraging flexible stakeholder collaborations and cost-sharing strategies.

Introduction

There is a growing recognition of the need for infrastructure development practices that
promote sustainability, global prosperity, human well-being, and healthy matural systems (United
Nations 2015; Thacker et al. 2019). To achieve this goal, we need to develop an integrated
framework for assessing trade-offs and synergies among social, ecological, economic, and
technical goals (Grabowski et al. 2017; Markolf et al. 2018). Fornexample,Palmer et a/ (2015)
identify the benefits of sustainable river infrastructure design for addressing ever growing social
and environmental water management goals, including floed risk mitigation and freshwater
habitat connectivity. It can be challenging to develop coordinated frameworks that address these
water goals because they require interdisciplinary, syStems-based knowledge of river
infrastructure decisions and their dynamic, multifaceted effects within watersheds (Poff ez al.
2016; Neeson et al. 2018; Roy et al. 2018; Song etal. 2019). One promising strategy for
evaluating coordinated frameworks is.to_focus on data-rich, regional-scale model systems in
which potential trade-offs and synergies among these needs can be examined (Sun and Scanlon
2019).

Here we assess the potential benefits of coordinating river infrastructure decisions
informed by stakeholder engagement, big data analytics, and scenario analysis using multi-
objective optimization methods. Dams and road culverts are particularly common river
infrastructure featuresiin developed watersheds, providing different societal benefits but with
potential ecological impactsy(Neeson ef al 2018). Dams harness river flow to produce
hydropower and water storage. Though many dams contribute to social and economic well-being
(Hunter 1979), even small.dams obstruct the natural flow of rivers and fish migration. This
adversely impacts freshwater and marine ecosystems in ways that also diminish cultural,
sustenance;and economic benefits to local communities (Limburg and Waldman 2009; Hall et
al. 2012;Fox etal. 2017; Lange et al. 2019). Dam removal has therefore proven to be an
ecologically effective, large-scale component of river restoration (Gosnell and Kelly 2010;

Oppetmancet al. 2011).
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z 61 Culverts are prevalent features that often co-occur with dams, particularly in upstream
5 62  tributaries. Unlike dams, culverts are designed to safely pass surface water downstream, under
? 63  road networks, to prevent flooding and bank erosion. While some dams can persist in a

g 64  landscape for centuries, culverts typically have an operational lifespan of fifty years.or less and
:(1) 65 may be more susceptible to washout failure during extreme flooding (FHWA:2012). Culverts
12 66  that are poorly placed, constructed, or undersized for local hydrologic conditions (Figure 1a)
:i 67  may underperform and limit freshwater connectivity, particularly if the culvert hangs above

:2 68  stream grade (Jackson 2003; Poplar-Jeffers et al. 2009; Thorne et al. 2014). However, a serious
17 69  societal issue with underperforming culverts is road traffic safetysand compromised access to
12 70  critical services (e.g., hospitals, schools) caused by flooding and structural failure (Perrin and
;? 71 Dwivedi 2006). Current federal and state policies may mitigate these impacts by requiring

;g 72 replication of natural flow conditions through culverts, removing artificial flow barriers by

;g 73 upsizing culvert diameter, maintaining local stream grade, and embedding circular culverts

26 74  (FHWA 2012). However, there is a backlog0f underperforming culverts yet to be replaced by
75  these policies (Perrin and Dwivedi 2006).

28

gg 76 Transportation safety managers. (IT'SMs such as state Departments of Transportation)

31 77  generally assign culvert replacement projects on public roads based on needs for road safety

gg 78  improvements that maintain aceess to critical services and minimize traffic incidents. Culvert

g;‘ 79  failure disrupts transportation networks and negatively impacts a region’s abilities to meet time-
36 80  sensitive needs for trade, commeree, and social services (Espinet ef al. 2016). The additional

2573 81  benefits for river restoration/are acknowledged by TSMs and are used to guide necessary

23 82  permitting processes (FHWA 2012) but are not used as priority selection criteria for replacement

H 83  projects. The total number of culverts replaced each year by TSMs depends on budget size

43 84  within a jurisdiction. To alesser extent, freshwater conservation managers (FCMs such as

jg 85  environmental agencies,.and non-governmental organizations) supply funding for specific culvert
j? 86  replacements that prioritize habitat connectivity restoration.

48 87 Restoring habitat connectivity is a proven approach to facilitate the migration of sea-run
gg 88  fish. Damremoyal and culvert replacement practices are often central to freshwater conservation
g; 89 initiatives. Previous modeling work indicates that coordinating these decisions across watershed
g i 90 scalesiprovides greater resource efficiency than individual decisions (O’Hanley and Tomberlin

55 91 12005; Neeson et al. 2015; Roy et al. 2018; Martin 2019), with a growing number of examples in
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practice (Gosnell and Kelly 2010; Opperman et al. 2011; Chesapeake Executive Council 2014).
Further, such coordinated approaches may also encourage broader investment in sustainability
solutions to infrastructure planning through policy change in general (Endo etal. 2018). But
despite the synergistic safety and ecological benefits that culvert replacements provide (Figure
1b), coordination of these replacements with dam removal is still uncommongor poorly reported,
due to potentially contrasting management practices governed by differentiauthorities. Standard
collaborative methodologies between TSMs, FCMs, or other potential stakeholders are
noteworthy exceptions to the norm (Poff e al. 2003; Januchowski-Hartley.et al. 2013; Owen and
Apse 2014; Neeson ef al. 2018; Rees et al. 2018; Linke et al. 2019). Furthert, too few policy
incentives exist that encourage watershed-scale decisions, posing further logistical challenges
(Owen and Apse 2014). Another challenge is in collectinggwvalidating, and aggregating large,
diverse datasets necessary to explore the benefits of coordinated decisions (Roy ef al. 2018).
Here we analyze how river restoration efforts'¢an be more cost-effective when dam and
culvert management decisions are coordinatéd over watershed scales and when TSMs and FCMs
together account for feasible safety/ecology cost-sharing synergies. Combining culvert
improvements with dam removal may,help align,and streamline funding and planning practices
by FCMs and TSMs. Merging theory provided by Neeson ef a/ (2018) and Roy et al (2018) we
use a series of benefit-cost curves to explore the potential for reconnecting historic habitat based
on hypothetical dam and culvert decision scenarios. We then use benefit-cost and multicriteria
trade-off analyses to identify potential cost-sharing opportunities based on watershed-scale
decision coordination. Further, we address the scale-dependency of benefit-cost trends and
mitigation of potentialequity ehallenges associated with heterogeneous resource distribution.
We explore developmerit of these strategies using a model system in Maine, USA and
develop general observations for other regions and systems-based applications with similarly
diverse physiographic and.social-ecological conditions. Infrastructure density varies significantly
in Maine, ranging from one dam or culvert every 0.4 stream km in the south to one every 6.5
stream kmin the north (Figure 1c,d). Local dam removals suggest ample potential for further
improving habitat connectivity in this region. For example, dam removals and modifications in
the Penobscot and Kennebec Rivers (Crane 2009; Opperman et al. 2011) led to population
increases.int diadromous species of river herring (i.e. alewife (4losa pseudoharengus) and

blueback herring (4. aestivalis)) from a few thousand to several million (Hall ez al. 2012;
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z 123 MDMR 2019). However, this region exhibits a dominant spatial trend where culverts are often

5 124 15 times more abundant than dams but located in upstream tributaries (Figure 1b, 2), limiting the
6

7 125  true extent of habitat connectivity gained by downriver dam removal. The diverse conditions in
g 126  northeastern USA are generally applicable to other geographies with similar social=ecological

10 127  contexts and limited resources, from historically overdeveloped landscapes to-new infrastructure

12 128  projects in developing countries (Thacker et al. 2019).

13

12 129

12 130 Methods

17 131 We sought to optimize coordinated dam and culvert decisions by modeling responses of
18

19 132 three criteria: functional habitat area for river herring (measured as connected habitat in km?),

51 133 road safety (years of remaining service life), and project cost(SUSD2016). River herring

22 134 populations are often a reliable indicator of freshwater and maring’ecosystem resilience due to
24 135 their sensitivity to habitat connectivity (Limburg and®Waldman 2009). A multi-objective genetic
26 136  algorithm is used to identify the set of efficient decision scenarios for each analysis (Deb et al.
137 2002). We account for changes in criterion values based on decisions to keep or remove dams
29 138  and replace culverts, but do not consider dynamic responses to these decisions (Song et al.

31 139 2019). See supplemental for detailed explanations of all numerical methods and data.

33 140 We estimate functional habitat area for returning river herring as the product of habitat
141  area and degree of accessibility compounded for downstream dams/culverts (Roy et al. 2018):
36 142  Habitat = ZiEndC[hi Hjendci(pj)]; where n,. is the set of all dams/culverts, indexed by i; ng; is the set
38 143  ofall dams/culverts downstream and including i, indexed by j; h; is the amount of habitat segmented
144 above dam/culvert i; and pis the product of upstream and downstream passage probability through

41 145  downriver dam/culvert j. Ourimodel assumes that all dam removals and culvert replacements

43 146  completely reconnect habitat up to the next upstream dams, culverts, and/or natural barriers. We
45 147  report functional habitat aréa in km? and measure improvement as a percentage relative to

148  current functional habitat. We base habitat calculations on expert accounts of historic river

48 149  herring spawning and rearing habitat (Houston et al. 2007). For dams we use information on the
50 150 type of fish passage design and empirical estimates of passage for upstream and downstream

5o 151  migfation (Noonan et al. 2012). For culverts, we first determine if it is passable based on field
152 surveysgindicating if the culvert hangs above stream grade (Figure 1a) (Martin 2019). For

55 153 passable barriers, we estimate probability of passage by modeling spawning season flow velocity
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through the length of each culvert barrel and calculating the percentile of river herring with
swimming capacities exceeding flow conditions (Haro et al. 2004).

We estimate road safety as the operational lifespan for each culvert, weighted by the
priority level of the overlying road. We do not include dams in our assessment of road safety.
The mean weighted operational lifespan (WOL) is calculated using all culvetts in the analysis.
Our analysis limits WOL by one of two possible reasons. First, failure may occur due to poor
structural condition of the culvert. Second, stream discharge may frequently exceed the
maximum discharge capacity for the culvert, leading to overtopping events that flood roads and
heighten the potential for road washout/failure. We estimated WOL using the equation WOL =
foriority * min(p Flood pstruct); where fyriority 18 Toad priority, based on average daily traffic
and access to critical Services; Priooq 18 the annual recurrence interval of an overtopping flood

event; and pggqce 1S the predicted remaining operational lifespanof the culvert based on
structural condition surveys (Perrin and Dwivedi 2006). Road priority and structural condition
are reported by Maine Department of Transportation. The recurrence of overtopping events is
based on relating peak flow regressions to the maximum discharge capacity of the culvert,
calculated assuming submerged inlet flowseontrol (FHWA 2012). This approach uses available
data on culvert dimensions to estimate a common, conservative mode of flow through submerged
culverts. Though numerous othet.factors influence flow conditions, this simple approach
supports our focus on general watershed-scale trends. We take the minimum of these values to
provide a conservative WOL estimate. We refer to high-risk culverts as those with WOL <5
years and are likely to be replaced by TSMs. Our model assumes that each culvert replacement is
adequately designed to r€store operational lifespan to fifty years under current flood recurrence
trends. Though these statistical approaches tend to overestimate flows (Rees et al. 2018) with
standard error potentially reaching 48% (Hodgkins 1999; Lombard and Hodgkins 2015), our
objective is to demonstrate the efficacy of our benefit-cost approach using available data, with
future opportunities to incorporate robust physical studies.

We calculate costs for replacing culverts based on the required diameter, length, road
type, and additional material and construction costs (NEEFC 2011a). New public road culverts
are designed with a diameter 1.2 times local bankfull width at stream grade (FHWA 2012).

Private of municipal culverts have relaxed requirements. We estimate dam removal cost using
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z 184  the Blachly and Uchida (2018) linear regression model. However, we recognize these
5 185 infrastructure costs may be highly variable in practice.

6

7 186

8

9 187

10 188  Results

12 189 Coordinated ecosystem and infrastructure decisions

14 190 We show results of coordinated ecosystem and infrastructure decisions in Figure 3a.
1 2 191  Despite significant restoration efforts in New England (Opperman et al. 2011), accessible river

17192  herring habitat is still less than one-sixth of total historic area (S0). Under a hypothetical scenario
19 193  in which all underperforming culverts are replaced to eliminate passage barriers, habitat

51 194 connectivity increases by 39% relative to current conditionsy(S1). Reémoving all dams while

22 195  leaving culverts in their current condition increases confiectivity by 364% (S2). Combining all
24 196 dam removals and culvert upgrades increases conneetivity by 594% (S3). These results suggest
26 197  that, though dam removal effectively restores habitat connectivity, ignoring culvert replacements
198 in this process reduces net benefit by approximately one third of all historic habitat. However,

29 199  coordinating all dam removal and culyert replacement projects nearly doubles cost. Under a

31 200 more conservative $10M budget scenarioycoordinating dam and culvert decisions would

33 201  increase connectivity to 147% (S4), or 33 percentage points greater than decisions restricted to
202  dam removal (S5). Increasing this.-budget to $100M increases connectivity to 421% (S6), or 96
36 203  percentage points above decisions.restricted to dam removal (S7). In addition to fewer habitat

38 204  benefits, dam-limited management.decisions provide no benefit for road safety, with no potential
205  collaborative opportunities with TSMs.

41 206 Decisions that coordinate dam removal and culvert replacement provide synergistic

43 207  ecosystem, safety, and cost benefits, as shown in Figure 3b. Our analysis indicates that

45 208  ecosystem and safety improvements are linearly and positively related (Pearson correlation of
209  0.763), while matrginal improvements diminish as cost increases. Cost contours are convex, and
48 210 each apexépresents a relatively even balance between habitat and safety at different budget

50 211  amounts. For example, a $100M even-balance decision (S8) would increase connectivity by

5o 212 267% and improve mean WOL by 124% relative to current conditions, because of 30 dam

>3 213 removals.and replacement of 1,252 high-risk culverts (2,484 total culverts).
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There are multiple decision scenarios that shift away from the even-balance trend and
may be advantageous depending on the degree of preference between ecosystem and safety. goals
(Figure 3b). We return to our scenarios that optimize habitat connectivity andicost minimization
but lack safety prioritization. Under our $100M budget scenario (S6) this again restores 421%
habitat connectivity but only improves mean WOL by 26%, facilitated by 68'dam removals and
replacement of 294 high-risk culverts (593 total culverts). In contrast, safety-limited
prioritization with the same budget (S9) improves mean WOL by 141% while habitat restoration
is limited to 11%, covering 0 dam removals and 1,494 high-risk culvert replacements (2,918 total
culverts).

There are many additional scenarios providing trade-offs between these single-priority
examples with gradients between habitat, safety, and cost,Fer our $100M scenarios, the upper
limb of this curve has an average gradient of 7 km? habitat per 1 year of mean WOL
improvement. The average opportunity cost increases along the lower limb of this curve to 115
km? habitat per year of mean WOL improvement. Bqual-preference scenarios occur at the
threshold between these gradients. As these curvesibecome more convex at higher cost levels,
equal-preference management scenarios begin to,provide greater cumulative benefit, or greater
combined improvements in safety and habitat, over single-priority scenarios. However, single-
preference management decisions invariably provide greater individual improvement for the
criteria of interest. Further, the true value of these trade-offs depends primarily on how they are

interpreted by decision-makers.

Multiscale benefit-cost

Much like coordinating dam and culvert decisions for greater net benefits, increasing the
spatial scale of decision-making to include a larger number of dams and culverts may also
significantly improve the net benefits of the project (Neeson ef al. 2015; Roy et al. 2018). We
explore the impact of decision scale on cost-benefit, focusing specifically on habitat connectivity
restoration; by comparing the efficiency of decisions across four spatial scales (Figure 4a-c): our
entire study region, watersheds delineated by Hydrologic Unit Code (HUC) 6, sub-watersheds
delineated by HUCS, and subregions divided by municipalities. We assume for this experiment

that all.funds are evenly distributed across each subregion. For example, a $100M budget
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z 244  distributed evenly across 4 sub-watersheds provides $25M for each, while 375 municipalities
5 245  would each receive $0.27M.

6

7 246 We first explore scale-dependent efficiency by comparing regional versus HUC6

g 247  watershed marginal cost curves (Figure 4d). Short, steep HUC6 trends indicate thatwhen

10 248  decisions are intentionally separated by smaller boundaries, there are fewer opportunities to

12 249  maximize habitat access at lower cost and therefore lower efficiency versusiregional

14 250  coordination. For example, if decision makers were to focus all habitat access restoration efforts
251  in the Penobscot, the cost would reach $200M, whereas a regionally coordinated decision for the
17 252  same restored connectivity (i.e., ~50% habitat relative to current:eonditions) is estimated to cost
19 253  less than $30M. This gap in efficiency grows larger for efforts.focusedon even smaller

51 254 watersheds, such as in the Kennebec and coastal watersheds(Figure4d).

22 755 Efficiency scales proportionately with the spatial'scale of decisions (Figure 4¢). For

24 256  different cost levels, we calculated the cumulative increase in habitat access at each scale.

26 257  Regional scale provides the greatest increasg'in habitat at all cost levels, while decisions

258  separated by municipalities are substantially less cost-effective. This disparity is most apparent at
29 259  the lowest cost levels. For example, given a $5M budget, regional coordination could lead to

31 260 11.9% improvement in habitat access relative to the historic level, while municipal-scale

33 261  coordination provides approximately two orders of magnitude less with ~0.1% improvement.
262  Decisions coordinated at the HUC6 seale provide the second-largest improvement with a 2.3%
36 263  gain relative to current conditions: This efficiency gap diminishes as budget levels increase due
38 264  to funding of larger-scale deCisions, that intersect and eventually connect more of the

265  independently managed sub-areas«For example, decisions coordinated at the HUC6 scale come
41 266  within 5 percentage points of regionally coordinated decisions given a $50M budget, and

43 267  decisions coordinated at the HUCS scale come within 7 percentage points of regionally

45 268  coordinated decisions given a $600M budget.

46

47 269

48 270  Discussion

49

50 271 Our approach provides a basis for understanding the broader impacts of river
51

5o 272 infrastructure decisions and potential synergies and trade-offs among habitat connectivity
>3 273 restoration] road safety based on culvert failure susceptibility, and the monetary cost of

55 274 “decisions. Model results demonstrate the potential value of an integrated approach to balancing
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the social, ecological, economic, and technical trade-offs involved in sustainable infrastructure
development (Grabowski et al. 2017). Here we discuss specific details for river infrastructure
decisions, including benefit-cost trends for coordinated decisions, scale-dependent cost
efficiency and potential stakeholder equity challenges, and opportunities for cost-sharing
between decisionmakers with varied objectives.

Though available data indicate that dams generally have a far greatér impact’on river
herring migration, culverts are often prevalent upstream features that may substantially reduce
potential habitat connectivity benefits of dam removal. Other diadrgmous.species with stronger
preference for headwater habitat, such as American eel, are expeeted to.be.€ven more responsive
to coordinated dam and culvert decisions. Coordination provides substantial benefits for the
resilience of diadromous species and larger freshwater/marine ecosystems (Jackson 2003; Ames
and Lichter 2013; Dias ef al. 2019). Other important bigphysical, ecosystem/species, and socio-
economic criteria could be incorporated and expandediin future studies using similar frameworks
(Roy et al. 2018).

In addition to improved cost-effectiveness, we identify overlapping benefits between
ecosystem, safety, and cost criteria that.align with the priorities of FCMs and TSMs. These
benefits may be useful for encouraging synergistic cost-share strategies that avoid redundant
efforts (Neeson ef al. 2018). For.example, FCMS may negotiate cost-share strategies with TSMs
to help fund replacement of culverts that are of critical habitat and safety concern. Our
coordinated habitat strategy includes management scenarios that recommend replacement of
several high-risk culverts (WOL<5,years) eligible for replacement based on TSM safety priority.
In other words, cost-sharing ¢ontributions by TSMs may encourage external funding
contributions that would otherwise be covered entirely by FCMs (Figure 5). Cost-sharing
fractions vary for budgets below $30M, stabilize at 11%, then generally increase following a
linear trend. This trendshifts to a relatively shallow linear trend at ~$180M and reaches a
maximum cost-share eligibility of 31% for a $615M budget. In general, the degree of synergism
between FECMs and TSMs steadily increases as a function of the amount of funds being spent,
excluding. dam removal. These trends indicate that cost-sharing could account for nearly one
third of habitat connectivity restoration budgets due to the prevalence of underperforming

culvetts. Unexpended funds gained from TSM/FCM cost-sharing could be reinvested toward
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z 305  other projects ineligible for cost-sharing, such as dam removal. Additionally, FCMs could plan
5 306  opportunistic and affordable projects around pre-existing TSM culvert replacements.

? 307 Though we demonstrate that watershed-scale management practices are more efficient
g 308 than municipal-scale management practices, greater efficiency can come at the expense of

10 309 equity, or the even distribution of benefits and costs (Roy et al. 2018). In general, efficiency

12 310 increases at greater scales based on the heterogeneous allocation of resources to local projects

14 311  providing the greatest total net benefits. However, such an approach can'ereate potentially

312  inequitable spatial distribution of benefits and costs (Paetzold et al.[2010;.Pascual ef al. 2010).
17 313  Furthermore, this strategy may not necessarily overlap with localstakeholder preferences for

19 314  how their streams and rivers should be managed (McDermottes al. 2013), including equity in the
51 315 distribution of other social values and decision criteria that:the mostefficient option provides

22 316  (Chan et al. 2007). A more equitable approach may be t&'compare these efficient, watershed-

24 317  scale decisions with more feasible decisions organizediby groups concerned with smaller-scale
26 318  issues or who wish to consider other objectives beyond maximizing the amount of habitat

319  restoration (Gilvear et al. 2013).

29 320 Introducing policy mechanisms.to facilitate equitable distribution of impacts, such as

31 321 financially compensating residents in arcas with limited restoration potential, can also enhance
33 322 public acceptability of a given restoration project (Daigneault ez al. 2017). Regardless, selecting
323  projects based on efficiency is typically objective while incorporating equity into the decision

36 324 framework is more subjective so long as decision criteria represent public participation (sensu

38 325  Sarewitz 2010). One compromise may be to build public approval of regional management plans

326 by limiting their use to,guide selection and funding of municipal-scale infrastructure

40

2; 327  improvement projects.

43 328 A further challenge is management decisions that involve other far-reaching trade-offs
jg 329  impacting entire social=ecological systems. For example, dam removal may influence additional
j? 330 criteria from hydropower production (Lange et al. 2018; Roy et al. 2018) to property values

48 331  (Lewis etal»2008) and their relations to potential stakeholder groups often guides management
50 332  decisions (Stanley and Doyle 2003; Fox et al. 2016). Roy et al. (2018) identified potential

5o 333 deciSion scenarios with equally balanced preferences similar to Scenario S8 (Figure 3b) but also
>3 334 indicated.that the cumulative benefits decrease with an increasing number of decision criteria.

55 335 Therefore, accounting for all costs and benefits of these decisions may lead to different or
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subdued outcomes. There are also multiple alternatives to dam removal that may be more
broadly acceptable for decision makers, such as construction of fish passage facilities{(Song ef
al. 2019) or operating dams to provide suitable environmental flows (Poff and Olden 2017).

Future climate-related flooding is projected to increase in northeastern USAw(Howarth et
al. 2019) with implications for the pre-existing safety, economic, and ecosystem challenges
explored here (Schweikert ef al. 2014). Extreme flooding events can damage culvetts and dams
with significant in situ and downstream safety, economic, and ecological implications. Larger,
more frequent floods put more culverts at greater failure risk, requiring mere resources to
maintain, improve, or remove damaged infrastructure (NEEFC 2011b). Larger fluctuations in
stream discharge, flow velocity, and water depth may also reduce suitable diadromous fish
habitat for spawning and rearing and make passage more difficult (Haro et al. 2004). Reduction
in annual snowpack and seasonal shifts in peak spring discharge may advance the timing and
intervals of adult and juvenile migrations (Dhakal etal,2015)."We suggest that the watershed-
coordinated management approach exploredthere may improve infrastructure and ecosystem
resilience and reduce the negative impacts of theseclimate-related implications. However,
further analysis is necessary to assess how these benefit-cost trends will respond to climate
change.

Incorporating diverse decision criteria into multi-objective optimization approaches may
be crucial for informing decision makers of broadscale social-ecological impacts of future
infrastructure decisions. The methods presented in this paper can be replicated at a range of
geographical and geopolitical seales, thereby helping facilitate decision-making from local to
national scales. More eomprehensive trade-off assessments may help identify proactive
opportunities for high benefit-cost infrastructure development, where they can be reconciled in
contemporary environmental management policy (Owen and Apse 2014; Roy ef al. 2018). We
focus here on river infrastracture decisions but encourage others to adapt an approach for
exploring and cofinecting other related multi-objective optimization challenges emerging in
sustainable’conservation (Markolf ef al. 2018; Linke et al. 2019), sustainable urban development
and roadway design (Gosse and Clarens 2013; Thorne et al. 2014), resource management
practices (Cavender-Bares et al. 2015), and many other sustainability issues facing societies

aroundsthe'world (Clark et al. 2016). Such challenges require interdisciplinary collaboration



Page 13 of 25

oNOYTULT D WN =

366
367
368
369
370
371
372
373
374
375
376
377
378

AUTHOR SUBMITTED MANUSCRIPT - ERL-108730.R1

among researchers and close partnerships with stakeholders to better understand their position

within a larger system and the potential trade-offs of different decision scenarios.
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Figure 2: Relative abundance of culverts and dams categorized by Strahler stream order; culverts
are most common on lower order streams, generally upstream ofidams that/are distributed more
broadly. Though stream order scaling may vary between natural and utbanized stream corridors,

culverts remain a dominant headwater feature.
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Figure 3: (a) Cost-benefit curves for river herring functional habitat, efficiency is greatest when
coordinating infrastructure decisions. Scenario SO represents current conditions; all other
scenarios are hypothetical as described in the text. (b) Plot of three-dimensional trade-offs
between habitat (y-axis), safety (x-axis), and cost (color contours), developed from 17,765
unique management scenarios (see supplemental). Diminishing marginal returns indicated by
cost contour spacing. Scenario SO represents current conditions; all other scenarios are

hypothetical as described in the text. Black dots indicate path of habitat prioritization by
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coordinated dam removal and culvert replacement from Figure 2b. Green dots indicate N
safety prioritization by culvert replacements.
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Figure 4: Efficiency gains met by.increasing t
scales: (a) regional, HUC®6, (b)
PPFs modeled for HUC6 watersh cated by colored map versus regional-scale

coordination (black line). Colofs denote Penobscot (blue), Kennebec (green), eastern coastal

(purple), and western tal atersheds. (e) cost versus % increase in habitat access across
scales indicates substantial it-cost advantages for regional planning at the lowest cost
levels.
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Figure 5: Percentage of management cost eligible for cost-sharing for different budget levels,
assuming TSMs will fund replacement of culverts with WOL <5 years. Each point represents a
particular combination of dam removals and culvert replacements. Eligibility for management
decisions below $50M are scattered, ranging from 0-100% (results below 35% displayed only).
Above $50M, trend is generally linear (red), slope breaksiat ~$180M (green), and apexes above

31% cost-share at ~$625M.



