

ACCEPTED MANUSCRIPT • OPEN ACCESS

Coordinated river infrastructure decisions improve net social-ecological benefits

To cite this article before publication: Samuel G. Roy *et al* 2020 *Environ. Res. Lett.* in press <https://doi.org/10.1088/1748-9326/abad58>

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2020 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence <https://creativecommons.org/licenses/by/3.0>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the [article online](#) for updates and enhancements.

1
2
3 1 *This draft manuscript is distributed solely for purposes of scientific peer review. Its content is*
4 2 *deliberative and predecisional, so it must not be disclosed or released by reviewers. Because the*
5 3 *manuscript has not yet been approved for publication by the U.S. Geological Survey (USGS), it*
6 4 *does not represent any official USGS finding or policy.*

10 5
11 6 **Coordinated river infrastructure decisions improve net social-ecological benefits**

12 7 Samuel G. Roy^{1,2}, Adam Daigneault³, Joseph Zydlewski^{4,5}, Allison Truhlar⁶, Sean Smith^{1,2},
13 8 Shaleen Jain⁷, David Hart¹

14 9 1. Senator George J. Mitchell Center for Sustainability Solutions, University of Maine, Orono,
15 10 ME

16 11 2. School of Earth and Climate Sciences, University of Maine, Orono, ME

17 12 3. School of Forest Resources, University of Maine, Orono, ME

18 13 4. U.S. Geological Survey Maine Cooperative Fish and Wildlife Research Unit, Orono, ME

19 14 5. Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono,
20 15 ME

21 16 6. Department of Biological and Environmental Engineering, Cornell, Ithaca, NY

22 17 7. School of Civil and Environmental Engineering, University of Maine, Orono, ME

23 18

24 19 **Abstract**

25 20 We explore the social, ecological, economic, and technical dimensions of sustainable river
26 21 infrastructure development and the potential benefits of coordinating decisions such as dam
27 22 removal and stream crossing improvement. Dam removal is common practice for restoring river
28 23 habitat connectivity and ecosystem health. However, stream crossings such as culverts are often
29 24 15 times more abundant than dams and may pose similar ecological impacts. Using multi-
30 25 objective optimization for a model system of 6,100 dams and culverts in Maine, USA, we
31 26 demonstrate substantial benefit-cost improvements provided by coordinating habitat connectivity
32 27 decisions. Benefit-cost efficiency improves by two orders of magnitude when coordinating more
33 28 decisions across wider areas, but this approach may cause inequitable resource distribution.
34 29 Culvert upgrades improve roadway safety and habitat connectivity, creating cost-effective
35 30 opportunities for coordinating and cost-sharing projects between conservationists and safety

36

37

38

39

40

1
2
3 31 managers. Benefit-cost trends indicate significant overlaps in habitat and safety goals,
4 32 encouraging flexible stakeholder collaborations and cost-sharing strategies.
5
6 33
7
8 34 **Introduction**
9
10 35 There is a growing recognition of the need for infrastructure development practices that
11 36 promote sustainability, global prosperity, human well-being, and healthy natural systems (United
12 37 Nations 2015; Thacker *et al.* 2019). To achieve this goal, we need to develop an integrated
13 38 framework for assessing trade-offs and synergies among social, ecological, economic, and
14 39 technical goals (Grabowski *et al.* 2017; Markolf *et al.* 2018). For example, Palmer *et al* (2015)
15 40 identify the benefits of sustainable river infrastructure design for addressing ever growing social
16 41 and environmental water management goals, including flood risk mitigation and freshwater
17 42 habitat connectivity. It can be challenging to develop coordinated frameworks that address these
18 43 water goals because they require interdisciplinary, systems-based knowledge of river
19 44 infrastructure decisions and their dynamic, multifaceted effects within watersheds (Poff *et al.*
20 45 2016; Neeson *et al.* 2018; Roy *et al.* 2018; Song *et al.* 2019). One promising strategy for
21 46 evaluating coordinated frameworks is to focus on data-rich, regional-scale model systems in
22 47 which potential trade-offs and synergies among these needs can be examined (Sun and Scanlon
23 48 2019).
24
25 49 Here we assess the potential benefits of coordinating river infrastructure decisions
30 50 informed by stakeholder engagement, big data analytics, and scenario analysis using multi-
31 51 objective optimization methods. Dams and road culverts are particularly common river
32 52 infrastructure features in developed watersheds, providing different societal benefits but with
33 53 potential ecological impacts (Neeson *et al* 2018). Dams harness river flow to produce
34 54 hydropower and water storage. Though many dams contribute to social and economic well-being
35 55 (Hunter 1979), even small dams obstruct the natural flow of rivers and fish migration. This
36 56 adversely impacts freshwater and marine ecosystems in ways that also diminish cultural,
37 57 sustenance, and economic benefits to local communities (Limburg and Waldman 2009; Hall *et*
38 58 *al.* 2012; Fox *et al.* 2017; Lange *et al.* 2019). Dam removal has therefore proven to be an
39 59 ecologically effective, large-scale component of river restoration (Gosnell and Kelly 2010;
40 60 Opperman *et al.* 2011).
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Culverts are prevalent features that often co-occur with dams, particularly in upstream
4 tributaries. Unlike dams, culverts are designed to safely pass surface water downstream, under
5 road networks, to prevent flooding and bank erosion. While some dams can persist in a
6 landscape for centuries, culverts typically have an operational lifespan of fifty years or less and
7 may be more susceptible to washout failure during extreme flooding (FHWA 2012). Culverts
8 that are poorly placed, constructed, or undersized for local hydrologic conditions (Figure 1a)
9 may underperform and limit freshwater connectivity, particularly if the culvert hangs above
10 stream grade (Jackson 2003; Poplar-Jeffers *et al.* 2009; Thorne *et al.* 2014). However, a serious
11 societal issue with underperforming culverts is road traffic safety and compromised access to
12 critical services (e.g., hospitals, schools) caused by flooding and structural failure (Perrin and
13 Dwivedi 2006). Current federal and state policies may mitigate these impacts by requiring
14 replication of natural flow conditions through culverts, removing artificial flow barriers by
15 upsizing culvert diameter, maintaining local stream grade, and embedding circular culverts
16 (FHWA 2012). However, there is a backlog of underperforming culverts yet to be replaced by
17 these policies (Perrin and Dwivedi 2006).

18
19 Transportation safety managers (TSMs such as state Departments of Transportation)
20 generally assign culvert replacement projects on public roads based on needs for road safety
21 improvements that maintain access to critical services and minimize traffic incidents. Culvert
22 failure disrupts transportation networks and negatively impacts a region's abilities to meet time-
23 sensitive needs for trade, commerce, and social services (Espinet *et al.* 2016). The additional
24 benefits for river restoration are acknowledged by TSMs and are used to guide necessary
25 permitting processes (FHWA 2012) but are not used as priority selection criteria for replacement
26 projects. The total number of culverts replaced each year by TSMs depends on budget size
27 within a jurisdiction. To a lesser extent, freshwater conservation managers (FCMs such as
28 environmental agencies and non-governmental organizations) supply funding for specific culvert
29 replacements that prioritize habitat connectivity restoration.

30
31 Restoring habitat connectivity is a proven approach to facilitate the migration of sea-run
32 fish. Dam removal and culvert replacement practices are often central to freshwater conservation
33 initiatives. Previous modeling work indicates that coordinating these decisions across watershed
34 scales provides greater resource efficiency than individual decisions (O'Hanley and Tomberlin
35 2005; Neeson *et al.* 2015; Roy *et al.* 2018; Martin 2019), with a growing number of examples in
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 practice (Gosnell and Kelly 2010; Opperman *et al.* 2011; Chesapeake Executive Council 2014).
4
5 Further, such coordinated approaches may also encourage broader investment in sustainability
6
7 solutions to infrastructure planning through policy change in general (Endo *et al.* 2018). But
8
9 despite the synergistic safety and ecological benefits that culvert replacements provide (Figure
10
11 1b), coordination of these replacements with dam removal is still uncommon, or poorly reported,
12
13 due to potentially contrasting management practices governed by different authorities. Standard
14
15 collaborative methodologies between TSMs, FCMs, or other potential stakeholders are
16
17 noteworthy exceptions to the norm (Poff *et al.* 2003; Januchowski-Hartley *et al.* 2013; Owen and
18
19 Apse 2014; Neeson *et al.* 2018; Rees *et al.* 2018; Linke *et al.* 2019). Further, too few policy
20
21 incentives exist that encourage watershed-scale decisions, posing further logistical challenges
22
23 (Owen and Apse 2014). Another challenge is in collecting, validating, and aggregating large,
24
25 diverse datasets necessary to explore the benefits of coordinated decisions (Roy *et al.* 2018).
26
27
28

29 Here we analyze how river restoration efforts can be more cost-effective when dam and
30
31 culvert management decisions are coordinated over watershed scales and when TSMs and FCMs
32
33 together account for feasible safety/ecology cost-sharing synergies. Combining culvert
34
35 improvements with dam removal may help align and streamline funding and planning practices
36
37 by FCMs and TSMs. Merging theory provided by Neeson *et al* (2018) and Roy *et al* (2018) we
38
39 use a series of benefit-cost curves to explore the potential for reconnecting historic habitat based
40
41 on hypothetical dam and culvert decision scenarios. We then use benefit-cost and multicriteria
42
43 trade-off analyses to identify potential cost-sharing opportunities based on watershed-scale
44
45 decision coordination. Further, we address the scale-dependency of benefit-cost trends and
46
47 mitigation of potential equity challenges associated with heterogeneous resource distribution.
48
49

50 We explore development of these strategies using a model system in Maine, USA and
51
52 develop general observations for other regions and systems-based applications with similarly
53
54 diverse physiographic and social-ecological conditions. Infrastructure density varies significantly
55
56 in Maine, ranging from one dam or culvert every 0.4 stream km in the south to one every 6.5
57
58 stream km in the north (Figure 1c,d). Local dam removals suggest ample potential for further
59
60 improving habitat connectivity in this region. For example, dam removals and modifications in
the Penobscot and Kennebec Rivers (Crane 2009; Opperman *et al.* 2011) led to population
increases in diadromous species of river herring (i.e. alewife (*Alosa pseudoharengus*) and
blueback herring (*A. aestivalis*)) from a few thousand to several million (Hall *et al.* 2012;

1
2
3 123 MDMR 2019). However, this region exhibits a dominant spatial trend where culverts are often
4 124 15 times more abundant than dams but located in upstream tributaries (Figure 1b, 2), limiting the
5 125 true extent of habitat connectivity gained by downriver dam removal. The diverse conditions in
6 126 northeastern USA are generally applicable to other geographies with similar social-ecological
7 127 contexts and limited resources, from historically overdeveloped landscapes to new infrastructure
8 128 projects in developing countries (Thacker *et al.* 2019).
9
10
11
12
13
14
15
16

130 Methods

17 We sought to optimize coordinated dam and culvert decisions by modeling responses of
18 three criteria: functional habitat area for river herring (measured as connected habitat in km²),
19 road safety (years of remaining service life), and project cost (USD 2016). River herring
20 populations are often a reliable indicator of freshwater and marine ecosystem resilience due to
21 their sensitivity to habitat connectivity (Limburg and Waldman 2009). A multi-objective genetic
22 algorithm is used to identify the set of efficient decision scenarios for each analysis (Deb *et al.*
23 2002). We account for changes in criterion values based on decisions to keep or remove dams
24 and replace culverts, but do not consider dynamic responses to these decisions (Song *et al.*
25 2019). See supplemental for detailed explanations of all numerical methods and data.
26
27
28
29
30
31
32

33 We estimate functional habitat area for returning river herring as the product of habitat
34 area and degree of accessibility compounded for downstream dams/culverts (Roy *et al.* 2018):
35
36
$$Habitat = \sum_{i \in n_{dc}} [h_i \prod_{j \in n_{dc_i}} (p_j)]$$
; where n_{dc} is the set of all dams/culverts, indexed by i ; n_{dc_i} is the set
37 of all dams/culverts downstream and including i , indexed by j ; h_i is the amount of habitat segmented
38 above dam/culvert i ; and p_j is the product of upstream and downstream passage probability through
39 downriver dam/culvert j . Our model assumes that all dam removals and culvert replacements
40 completely reconnect habitat up to the next upstream dams, culverts, and/or natural barriers. We
41 report functional habitat area in km² and measure improvement as a percentage relative to
42 current functional habitat. We base habitat calculations on expert accounts of historic river
43 herring spawning and rearing habitat (Houston *et al.* 2007). For dams we use information on the
44 type of fish passage design and empirical estimates of passage for upstream and downstream
45 migration (Noonan *et al.* 2012). For culverts, we first determine if it is passable based on field
46 surveys, indicating if the culvert hangs above stream grade (Figure 1a) (Martin 2019). For
47 passable barriers, we estimate probability of passage by modeling spawning season flow velocity
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 154 through the length of each culvert barrel and calculating the percentile of river herring with
4 swimming capacities exceeding flow conditions (Haro *et al.* 2004).
5
6

7 156 We estimate road safety as the operational lifespan for each culvert, weighted by the
8 priority level of the overlying road. We do not include dams in our assessment of road safety.
9 158 The mean weighted operational lifespan (WOL) is calculated using all culverts in the analysis.
10 159 Our analysis limits WOL by one of two possible reasons. First, failure may occur due to poor
11 160 structural condition of the culvert. Second, stream discharge may frequently exceed the
12 161 maximum discharge capacity for the culvert, leading to overtopping events that flood roads and
13 162 heighten the potential for road washout/failure. We estimated WOL using the equation $WOL =$
14 163 $f_{priority} * \min(p_{flood}, p_{struct})$; where $f_{priority}$ is road priority, based on average daily traffic
15 164 and access to critical services; p_{flood} is the annual recurrence interval of an overtopping flood
16 165 event; and p_{struct} is the predicted remaining operational lifespan of the culvert based on
17 166 structural condition surveys (Perrin and Dwivedi 2006). Road priority and structural condition
18 167 are reported by Maine Department of Transportation. The recurrence of overtopping events is
19 168 based on relating peak flow regressions to the maximum discharge capacity of the culvert,
20 169 calculated assuming submerged inlet flow control (FHWA 2012). This approach uses available
21 170 data on culvert dimensions to estimate a common, conservative mode of flow through submerged
22 171 culverts. Though numerous other factors influence flow conditions, this simple approach
23 172 supports our focus on general watershed-scale trends. We take the minimum of these values to
24 173 provide a conservative WOL estimate. We refer to high-risk culverts as those with $WOL \leq 5$
25 174 years and are likely to be replaced by TSMs. Our model assumes that each culvert replacement is
26 175 adequately designed to restore operational lifespan to fifty years under current flood recurrence
27 176 trends. Though these statistical approaches tend to overestimate flows (Rees *et al.* 2018) with
28 177 standard error potentially reaching 48% (Hodgkins 1999; Lombard and Hodgkins 2015), our
29 178 objective is to demonstrate the efficacy of our benefit-cost approach using available data, with
30 179 future opportunities to incorporate robust physical studies.

31 180 We calculate costs for replacing culverts based on the required diameter, length, road
32 181 type, and additional material and construction costs (NEEFC 2011a). New public road culverts
33 182 are designed with a diameter 1.2 times local bankfull width at stream grade (FHWA 2012).
34 183 Private or municipal culverts have relaxed requirements. We estimate dam removal cost using
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 184 the Blachly and Uchida (2018) linear regression model. However, we recognize these
4 infrastructure costs may be highly variable in practice.
5
6
7
8
9
10 186
11 187
12 188 **Results**
13 189 **Coordinated ecosystem and infrastructure decisions**

14 190 We show results of coordinated ecosystem and infrastructure decisions in Figure 3a.

15 191 Despite significant restoration efforts in New England (Opperman *et al.* 2011), accessible river
16 herring habitat is still less than one-sixth of total historic area (S0). Under a hypothetical scenario
17 in which all underperforming culverts are replaced to eliminate passage barriers, habitat
18 connectivity increases by 39% relative to current conditions (S1). Removing all dams while
19 leaving culverts in their current condition increases connectivity by 364% (S2). Combining all
20 dam removals and culvert upgrades increases connectivity by 594% (S3). These results suggest
21 that, though dam removal effectively restores habitat connectivity, ignoring culvert replacements
22 in this process reduces net benefit by approximately one third of all historic habitat. However,
23 coordinating all dam removal and culvert replacement projects nearly doubles cost. Under a
24 more conservative \$10M budget scenario, coordinating dam and culvert decisions would
25 increase connectivity to 147% (S4), or 33 percentage points greater than decisions restricted to
26 dam removal (S5). Increasing this budget to \$100M increases connectivity to 421% (S6), or 96
27 percentage points above decisions restricted to dam removal (S7). In addition to fewer habitat
28 benefits, dam-limited management decisions provide no benefit for road safety, with no potential
29 collaborative opportunities with TSMs.
30
31 205

32 206 Decisions that coordinate dam removal and culvert replacement provide synergistic
33 ecosystem, safety, and cost benefits, as shown in Figure 3b. Our analysis indicates that
34 ecosystem and safety improvements are linearly and positively related (Pearson correlation of
35 0.763), while marginal improvements diminish as cost increases. Cost contours are convex, and
36 each apex represents a relatively even balance between habitat and safety at different budget
37 amounts. For example, a \$100M even-balance decision (S8) would increase connectivity by
38 267% and improve mean WOL by 124% relative to current conditions, because of 30 dam
39 removals and replacement of 1,252 high-risk culverts (2,484 total culverts).
40
41 213
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 214 There are multiple decision scenarios that shift away from the even-balance trend and
4 may be advantageous depending on the degree of preference between ecosystem and safety goals
5 (Figure 3b). We return to our scenarios that optimize habitat connectivity and cost minimization
6 but lack safety prioritization. Under our \$100M budget scenario (S6) this again restores 421%
7 habitat connectivity but only improves mean WOL by 26%, facilitated by 68 dam removals and
8 replacement of 294 high-risk culverts (593 total culverts). In contrast, safety-limited
9 prioritization with the same budget (S9) improves mean WOL by 141% while habitat restoration
10 is limited to 11%, covering 0 dam removals and 1,494 high-risk culvert replacements (2,918 total
11 culverts).
12
13 223 There are many additional scenarios providing trade-offs between these single-priority
14 examples with gradients between habitat, safety, and cost. For our \$100M scenarios, the upper
15 limb of this curve has an average gradient of 7 km² habitat per 1 year of mean WOL
16 improvement. The average opportunity cost increases along the lower limb of this curve to 115
17 km² habitat per year of mean WOL improvement. Equal-preference scenarios occur at the
18 threshold between these gradients. As these curves become more convex at higher cost levels,
19 equal-preference management scenarios begin to provide greater cumulative benefit, or greater
20 combined improvements in safety and habitat, over single-priority scenarios. However, single-
21 preference management decisions invariably provide greater individual improvement for the
22 criteria of interest. Further, the true value of these trade-offs depends primarily on how they are
23 interpreted by decision-makers.
24
25 235 **Multiscale benefit-cost**
26
27 236 Much like coordinating dam and culvert decisions for greater net benefits, increasing the
28 spatial scale of decision-making to include a larger number of dams and culverts may also
29 significantly improve the net benefits of the project (Neeson *et al.* 2015; Roy *et al.* 2018). We
30 explore the impact of decision scale on cost-benefit, focusing specifically on habitat connectivity
31 restoration, by comparing the efficiency of decisions across four spatial scales (Figure 4a-c): our
32 entire study region, watersheds delineated by Hydrologic Unit Code (HUC) 6, sub-watersheds
33 delineated by HUC8, and subregions divided by municipalities. We assume for this experiment
34 that all funds are evenly distributed across each subregion. For example, a \$100M budget
35
36 243
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 244 distributed evenly across 4 sub-watersheds provides \$25M for each, while 375 municipalities
4 would each receive \$0.27M.
5
6

7 246 We first explore scale-dependent efficiency by comparing regional versus HUC6
8 watershed marginal cost curves (Figure 4d). Short, steep HUC6 trends indicate that when
9 decisions are intentionally separated by smaller boundaries, there are fewer opportunities to
10 maximize habitat access at lower cost and therefore lower efficiency versus regional
11 coordination. For example, if decision makers were to focus all habitat access restoration efforts
12 in the Penobscot, the cost would reach \$200M, whereas a regionally coordinated decision for the
13 same restored connectivity (i.e., ~50% habitat relative to current conditions) is estimated to cost
14 less than \$30M. This gap in efficiency grows larger for efforts focused on even smaller
15 watersheds, such as in the Kennebec and coastal watersheds (Figure 4d).
16
17

18 255 Efficiency scales proportionately with the spatial scale of decisions (Figure 4e). For
19 different cost levels, we calculated the cumulative increase in habitat access at each scale.
20 256 Regional scale provides the greatest increase in habitat at all cost levels, while decisions
21 separated by municipalities are substantially less cost-effective. This disparity is most apparent at
22 the lowest cost levels. For example, given a \$5M budget, regional coordination could lead to
23 11.9% improvement in habitat access relative to the historic level, while municipal-scale
24 coordination provides approximately two orders of magnitude less with ~0.1% improvement.
25 257 Decisions coordinated at the HUC6 scale provide the second-largest improvement with a 2.3%
26 gain relative to current conditions. This efficiency gap diminishes as budget levels increase due
27 to funding of larger-scale decisions that intersect and eventually connect more of the
28 independently managed sub-areas. For example, decisions coordinated at the HUC6 scale come
29 within 5 percentage points of regionally coordinated decisions given a \$50M budget, and
30 decisions coordinated at the HUC8 scale come within 7 percentage points of regionally
31 coordinated decisions given a \$600M budget.
32
33

34 269
35
36 270 **Discussion**
37
38

39 271 Our approach provides a basis for understanding the broader impacts of river
40 infrastructure decisions and potential synergies and trade-offs among habitat connectivity
41 restoration, road safety based on culvert failure susceptibility, and the monetary cost of
42 decisions. Model results demonstrate the potential value of an integrated approach to balancing
43
44

1
2
3 275 the social, ecological, economic, and technical trade-offs involved in sustainable infrastructure
4 development (Grabowski *et al.* 2017). Here we discuss specific details for river infrastructure
5 decisions, including benefit-cost trends for coordinated decisions, scale-dependent cost
6 efficiency and potential stakeholder equity challenges, and opportunities for cost-sharing
7 between decisionmakers with varied objectives.
8
9

10 280 Though available data indicate that dams generally have a far greater impact on river
11 herring migration, culverts are often prevalent upstream features that may substantially reduce
12 potential habitat connectivity benefits of dam removal. Other diadromous species with stronger
13 preference for headwater habitat, such as American eel, are expected to be even more responsive
14 to coordinated dam and culvert decisions. Coordination provides substantial benefits for the
15 resilience of diadromous species and larger freshwater/marine ecosystems (Jackson 2003; Ames
16 and Lichter 2013; Dias *et al.* 2019). Other important biophysical, ecosystem/species, and socio-
17 economic criteria could be incorporated and expanded in future studies using similar frameworks
18 (Roy *et al.* 2018).
19
20

21 289 In addition to improved cost-effectiveness, we identify overlapping benefits between
22 ecosystem, safety, and cost criteria that align with the priorities of FCMs and TSMs. These
23 benefits may be useful for encouraging synergistic cost-share strategies that avoid redundant
24 efforts (Neeson *et al.* 2018). For example, FCMs may negotiate cost-share strategies with TSMs
25 to help fund replacement of culverts that are of critical habitat and safety concern. Our
26 coordinated habitat strategy includes management scenarios that recommend replacement of
27 several high-risk culverts ($WOL \leq 5$ years) eligible for replacement based on TSM safety priority.
28
29 In other words, cost-sharing contributions by TSMs may encourage external funding
30 contributions that would otherwise be covered entirely by FCMs (Figure 5). Cost-sharing
31 fractions vary for budgets below \$30M, stabilize at 11%, then generally increase following a
32 linear trend. This trend shifts to a relatively shallow linear trend at $\sim \$180M$ and reaches a
33 maximum cost-share eligibility of 31% for a \$615M budget. In general, the degree of synergism
34 between FCMs and TSMs steadily increases as a function of the amount of funds being spent,
35 excluding dam removal. These trends indicate that cost-sharing could account for nearly one
36 third of habitat connectivity restoration budgets due to the prevalence of underperforming
37 culverts. Unexpended funds gained from TSM/FCM cost-sharing could be reinvested toward
38
39

1
2
3 305 other projects ineligible for cost-sharing, such as dam removal. Additionally, FCMs could plan
4 306 opportunistic and affordable projects around pre-existing TSM culvert replacements.
5
6

7 307 Though we demonstrate that watershed-scale management practices are more efficient
8 308 than municipal-scale management practices, greater efficiency can come at the expense of
9 309 equity, or the even distribution of benefits and costs (Roy *et al.* 2018). In general, efficiency
10 310 increases at greater scales based on the heterogeneous allocation of resources to local projects
11 311 providing the greatest total net benefits. However, such an approach can create potentially
12 312 inequitable spatial distribution of benefits and costs (Paetzold *et al.* 2010; Pascual *et al.* 2010).
13 313 Furthermore, this strategy may not necessarily overlap with local stakeholder preferences for
14 314 how their streams and rivers should be managed (McDermott *et al.* 2013), including equity in the
15 315 distribution of other social values and decision criteria that the most efficient option provides
16 316 (Chan *et al.* 2007). A more equitable approach may be to compare these efficient, watershed-
17 317 scale decisions with more feasible decisions organized by groups concerned with smaller-scale
18 318 issues or who wish to consider other objectives beyond maximizing the amount of habitat
19 319 restoration (Gilvear *et al.* 2013).
20
21

22 320 Introducing policy mechanisms to facilitate equitable distribution of impacts, such as
23 321 financially compensating residents in areas with limited restoration potential, can also enhance
24 322 public acceptability of a given restoration project (Daigneault *et al.* 2017). Regardless, selecting
25 323 projects based on efficiency is typically objective while incorporating equity into the decision
26 324 framework is more subjective so long as decision criteria represent public participation (*sensu*
27 325 Sarewitz 2010). One compromise may be to build public approval of regional management plans
28 326 by limiting their use to guide selection and funding of municipal-scale infrastructure
29 327 improvement projects.
30
31

32 328 A further challenge is management decisions that involve other far-reaching trade-offs
33 329 impacting entire social-ecological systems. For example, dam removal may influence additional
34 330 criteria from hydropower production (Lange *et al.* 2018; Roy *et al.* 2018) to property values
35 331 (Lewis *et al.* 2008) and their relations to potential stakeholder groups often guides management
36 332 decisions (Stanley and Doyle 2003; Fox *et al.* 2016). Roy *et al.* (2018) identified potential
37 333 decision scenarios with equally balanced preferences similar to Scenario S8 (Figure 3b) but also
38 334 indicated that the cumulative benefits decrease with an increasing number of decision criteria.
39 335 Therefore, accounting for all costs and benefits of these decisions may lead to different or
40
41

1
2
3 336 subdued outcomes. There are also multiple alternatives to dam removal that may be more
4 broadly acceptable for decision makers, such as construction of fish passage facilities (Song *et*
5 *al.* 2019) or operating dams to provide suitable environmental flows (Poff and Olden 2017).
6
7 339 Future climate-related flooding is projected to increase in northeastern USA (Howarth *et*
8 *al.* 2019) with implications for the pre-existing safety, economic, and ecosystem challenges
9 explored here (Schweikert *et al.* 2014). Extreme flooding events can damage culverts and dams
10 with significant *in situ* and downstream safety, economic, and ecological implications. Larger,
11 more frequent floods put more culverts at greater failure risk, requiring more resources to
12 maintain, improve, or remove damaged infrastructure (NEEFC 2011b). Larger fluctuations in
13 stream discharge, flow velocity, and water depth may also reduce suitable diadromous fish
14 habitat for spawning and rearing and make passage more difficult (Haro *et al.* 2004). Reduction
15 in annual snowpack and seasonal shifts in peak spring discharge may advance the timing and
16 intervals of adult and juvenile migrations (Dhakal *et al.* 2015). We suggest that the watershed-
17 coordinated management approach explored here may improve infrastructure and ecosystem
18 resilience and reduce the negative impacts of these climate-related implications. However,
19 further analysis is necessary to assess how these benefit-cost trends will respond to climate
20 change.
21
22 353 Incorporating diverse decision criteria into multi-objective optimization approaches may
23 be crucial for informing decision makers of broadscale social-ecological impacts of future
24 infrastructure decisions. The methods presented in this paper can be replicated at a range of
25 geographical and geopolitical scales, thereby helping facilitate decision-making from local to
26 national scales. More comprehensive trade-off assessments may help identify proactive
27 opportunities for high benefit-cost infrastructure development, where they can be reconciled in
28 contemporary environmental management policy (Owen and Apse 2014; Roy *et al.* 2018). We
29 focus here on river infrastructure decisions but encourage others to adapt an approach for
30 exploring and connecting other related multi-objective optimization challenges emerging in
31 sustainable conservation (Markolf *et al.* 2018; Linke *et al.* 2019), sustainable urban development
32 and roadway design (Gosse and Clarens 2013; Thorne *et al.* 2014), resource management
33 practices (Cavender-Bares *et al.* 2015), and many other sustainability issues facing societies
34 around the world (Clark *et al.* 2016). Such challenges require interdisciplinary collaboration
35
36 365
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 366 among researchers and close partnerships with stakeholders to better understand their position
4 367 within a larger system and the potential trade-offs of different decision scenarios.
5
6 368
7
8 369 **Acknowledgements** We thank B. Matthews, C. Hebson, J. Gates, E. Martin, and J. Royte for
9 their constructive comments and provision of public data. We thank two anonymous reviewers
10 for constructive comments. Experiments were simulated with the UMaine Advanced Computing
11 Group High Performance Cluster. Support for this project is provided by the National Science
12 Foundation's Research Infrastructure Improvement NSF #IIA-1539071. The U.S. Geological
13 Survey Maine Cooperative Fish and Wildlife Research Unit provided logistical support. We
14 acknowledge the support and collaboration of the Department of the Interior, U.S. Geological
15 Survey and the Senator George J. Mitchell Center at the University of Maine, under Grant No.
16 373
17 374
18 375
19 376
20 377
21 378
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

369 **Acknowledgements** We thank B. Matthews, C. Hebson, J. Gates, E. Martin, and J. Royte for
370 their constructive comments and provision of public data. We thank two anonymous reviewers
371 for constructive comments. Experiments were simulated with the UMaine Advanced Computing
372 Group High Performance Cluster. Support for this project is provided by the National Science
373 Foundation's Research Infrastructure Improvement NSF #IIA-1539071. The U.S. Geological
374 Survey Maine Cooperative Fish and Wildlife Research Unit provided logistical support. We
375 acknowledge the support and collaboration of the Department of the Interior, U.S. Geological
376 Survey and the Senator George J. Mitchell Center at the University of Maine, under Grant No.
377 5407766. Any use of trade, firm, or product names is for descriptive purposes only and does not
378 imply endorsement by the U.S. Government.

379 **References**

380 Ames EP and Lichter J. 2013. Gadids and Alewives: Structure within complexity in the Gulf of Maine.

381 *Fisheries Research* **141**: 70–8.

382 Blachly B and Uchida E. 2018. Estimating the marginal cost of dam removal. *Environmental and Natural*

383 *Resource Economics Working Papers* **2**.

384 Cavender-Bares J, Polasky S, King E, and Balvanera P. 2015. A sustainability framework for assessing

385 trade-offs in ecosystem services. *Ecology and Society* **20**: 17.

386 Chan KMA, Pringle RM, Ranganathan J, *et al.* 2007. When agendas collide: Human welfare and

387 biological conservation. *Conservation Biology* **21**: 59–68.

388 Chesapeake Executive Council. 2014. Chesapeake Bay Watershed Agreement. Chesapeake Bay Program.

389 Clark WC, Kerkhoff L van, Lebel L, and Gallopin GC. 2016. Crafting usable knowledge for sustainable

390 development. *Proceedings of the National Academy of Sciences* **113**: 4570–8.

391 Crane J. 2009. “Setting the river free”: The removal of the Edwards dam and the restoration of the

392 Kennebec River. *Water History* **1**: 131–48.

393 Daigneault A, Greenhalgh S, and Samarasinghe O. 2017. Equitably slicing the pie: Water policy and

394 allocation. *Ecological Economics* **131**: 449–59.

395 Deb K, Pratap A, Agarwal S, and Meyarivan T. 2002. A fast and elitist multiobjective genetic algorithm:

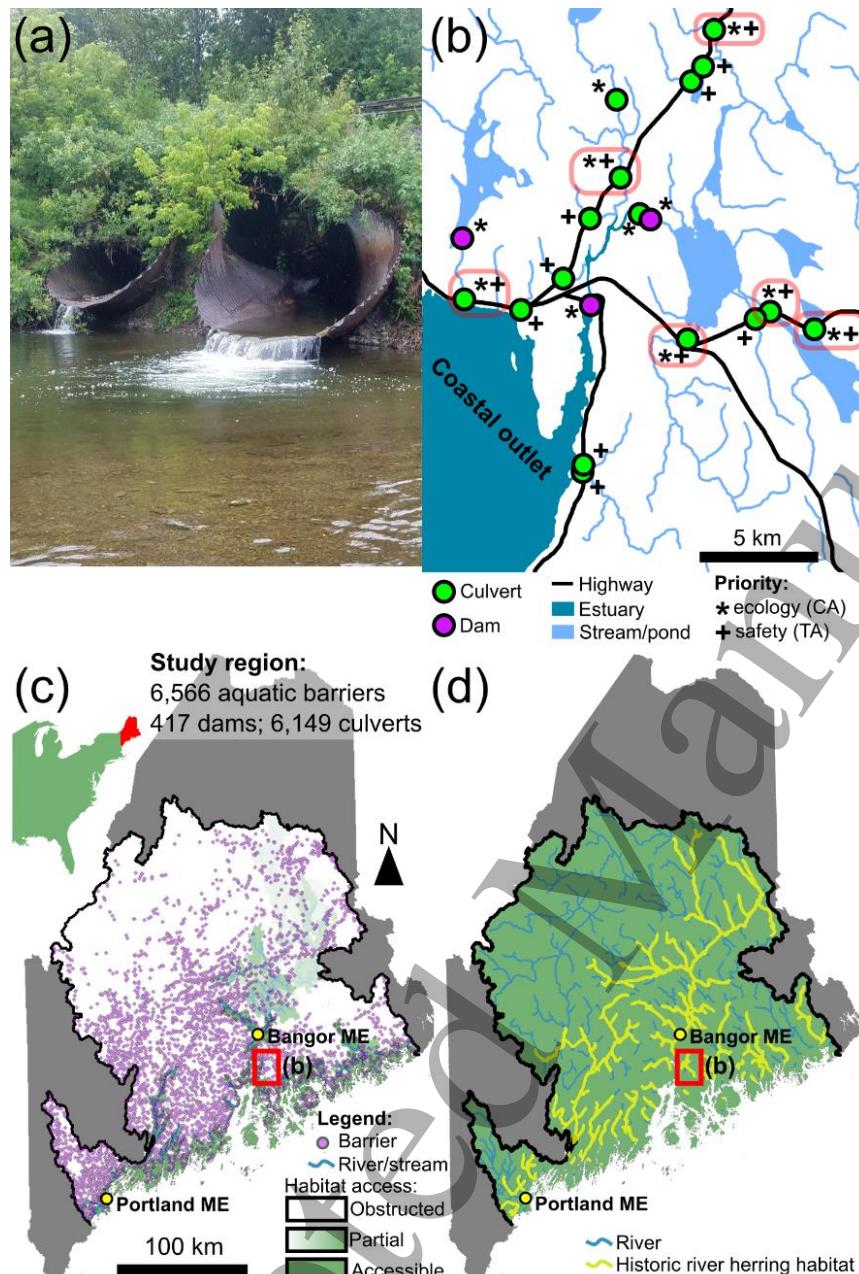
396 NSGA-II. *IEEE Transactions on Evolutionary Computation* **6**: 182–97.

397 Dhakal N, Jain S, Gray A, *et al.* 2015. Nonstationarity in seasonality of extreme precipitation: A

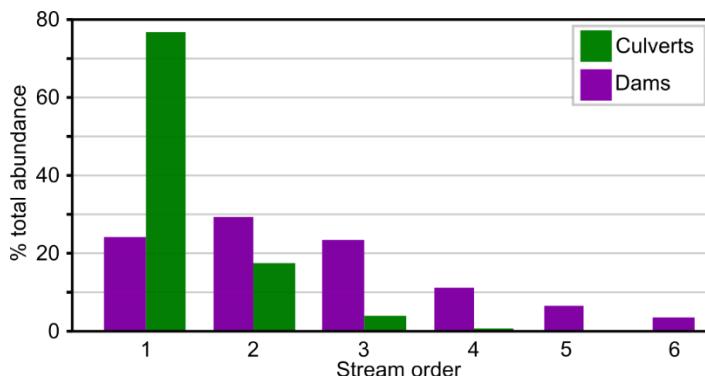
398 nonparametric circular statistical approach and its application. *Water Resources Research* **51**:

399 4499–515.

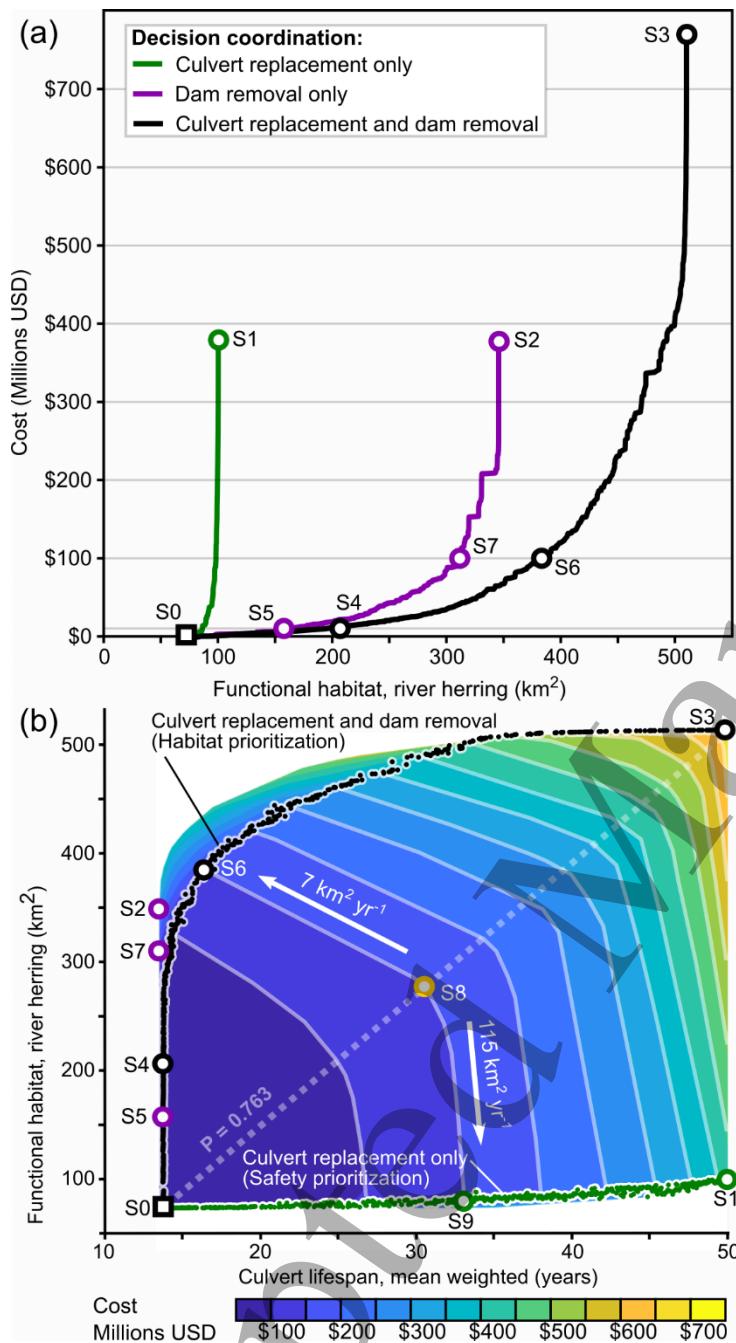
1
2
3 400 Dias BS, Frisk MG, and Jordaan A. 2019. Opening the tap: Increased riverine connectivity strengthens
4 401 marine food web pathways. *Plos One* **14**: e0217008.
5
6
7 402 Endo T, Kakinuma K, Yoshikawa S, and Kanae S. 2018. Are water markets globally applicable? *Environ*
8 403 *Res Lett* **13**: 034032.
9
10
11 404 Espinet X, Schweikert A, Heever N van den, and Chinowsky P. 2016. Planning resilient roads for the
12 405 future environment and climate change: Quantifying the vulnerability of the primary transport
13 406 infrastructure system in Mexico. *Transport Policy* **50**: 78–86.
14
15
16
17
18 407 FHWA. 2012. Hydraulic design of highway culverts.
19
20
21
22
23
24 408 Fox CA, Magilligan FJ, and Sneddon CS. 2016. “You kill the dam, you are killing a part of me”: Dam
25 409 removal and the environmental politics of river restoration. *Geoforum* **70**: 93–104.
26
27
28
29 410 Fox CA, Reo NJ, Turner DA, *et al.* 2017. “The river is us; the river is in our veins”: re-defining river
30 411 restoration in three Indigenous communities. *Sustainability Science* **12**: 521–33.
31
32
33
34 412 Gilvear DJ, Spray CJ, and Casas-Mulet R. 2013. River rehabilitation for the delivery of multiple
35 413 ecosystem services at the river network scale. *Journal of Environmental Management* **126**: 30–
36 414 43.
37
38
39
40
41
42 415 Gosnell H and Kelly EC. 2010. Peace on the River? Social-Ecological Restoration and Large Dam
43 416 Removal in the Klamath Basin, USA. *Water Alternatives* **3**: 361–83.
44
45
46
47 417 Gosse CA and Clarens AF. 2013. Quantifying the total cost of infrastructure to enable environmentally
48 418 preferable decisions: the case of urban roadway design. *Environ Res Lett* **8**: 015028.
49
50
51
52 419 Grabowski ZJ, Matsler AM, Thiel C, *et al.* 2017. Infrastructures as Socio-Eco-Technical Systems: Five
53 420 Considerations for Interdisciplinary Dialogue. *J Infrastruct Syst* **23**: 02517002.
54
55
56
57
58
59
60


1
2
3 421 Hall CJ, Jordaan A, and Frisk MG. 2012. Centuries of Anadromous Forage Fish Loss: Consequences for
4 422 Ecosystem Connectivity and Productivity. *BioScience* **62**: 723–31.
5
6 423 Haro A, Castro-Santos T, Noreika J, and Odeh M. 2004. Swimming performance of upstream migrant
7 424 fishes in open-channel flow: a new approach to predicting passage through velocity barriers.
8 425 *Canadian Journal of Fisheries and Aquatic Sciences* **61**: 1590–601.
9
10 426 Hodgkins G. 1999. Estimating the Magnitude of Peak Flows for Streams in Maine for Selected
11 427 Recurrence Intervals. U.S. Geological Survey Water Resources Investigations Report 99-4008.
12 428 Augusta, Maine.
13
14 429 Houston B, Lary S, Chadbourne K, and Charry B. 2007. Geographic distribution of diadromous fish in
15 430 Maine. Falmouth, ME: U.S. Fish & Wildlife Service, Gulf of Maine Coastal Program.
16
17 431 Howarth ME, Thorncroft CD, and Bosart LF. 2019. Changes in Extreme Precipitation in the Northeast
18 432 United States: 1979–2014. *Journal of Hydrometeorology* **20**: 673–89.
19
20 433 Hunter LC. 1979. A History of Industrial Power in the United States, Volume 1: Waterpower in the
21 434 Century of the Steam Engine. Charlottesville VA: University Press of Virginia Charlottesville.
22
23 435 Jackson SD. 2003. Ecological considerations in the design of river and stream crossings. In: Irwin CL,
24 436 Garrett P, McDermott KP (Eds). Proceedings of the International Conference on Ecology and
25 437 Transportation. Raleigh, NC: Center for Transportation and the Environment, North Carolina
26 438 State University.
27
28 439 Januchowski-Hartley SR, McIntyre PB, Diebel M, *et al.* 2013. Restoring aquatic ecosystem connectivity
29 440 requires expanding inventories of both dams and road crossings. *Frontiers in Ecology and the
30 441 Environment* **11**: 211–7.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

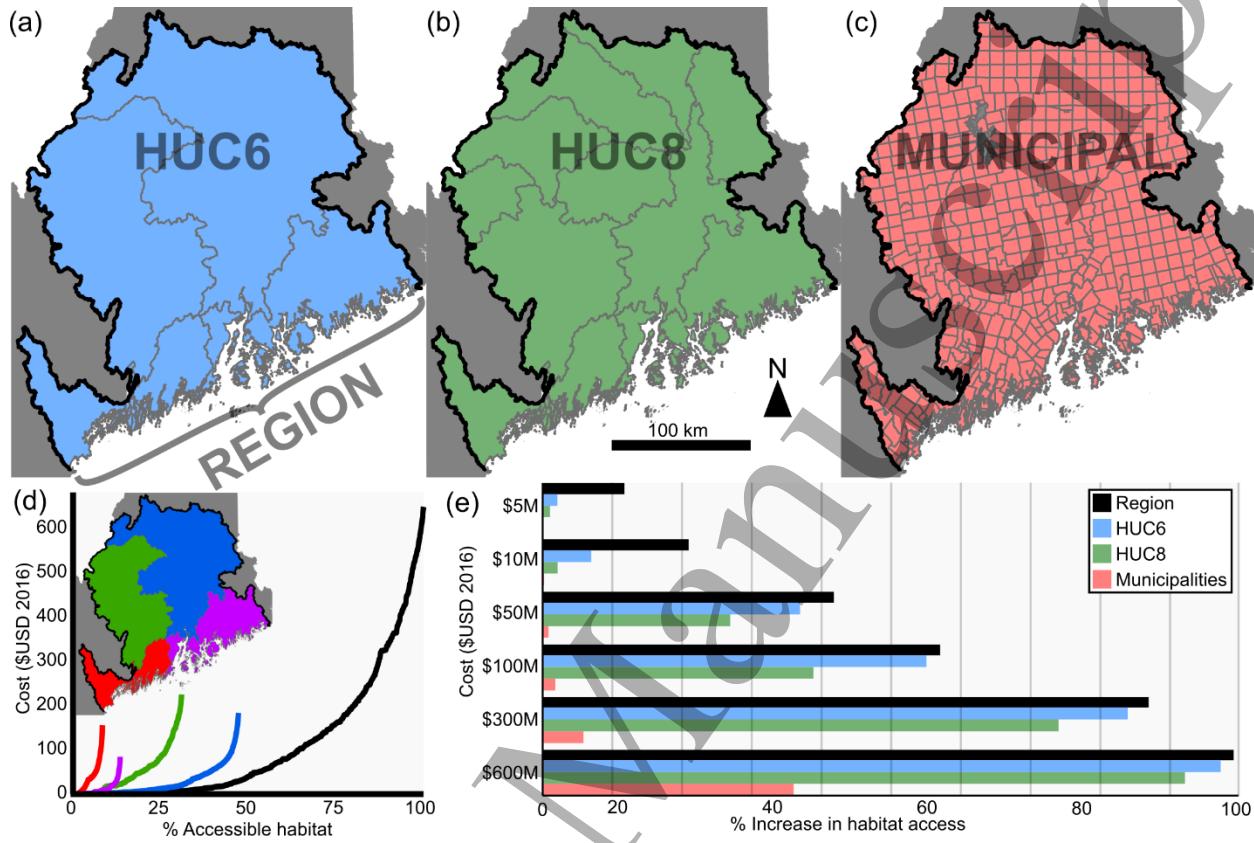
1
2
3 442 Lange K, Meier P, Trautwein C, *et al.* 2018. Basin-scale effects of small hydropower on biodiversity
4 dynamics. *Front Ecol Environ* **16**: 397–404.
5
6 444 Lange K, Wehrli B, Åberg U, *et al.* 2019. Small hydropower goes unchecked. *Frontiers in Ecology and*
7
8 445 *the Environment* **17**: 256–8.
9
10 446 Lewis LY, Bohlen C, and Wilson S. 2008. Dams, Dam removal, and river restoration: A hedonic property
11 value analysis. *Contemporary Economic Policy* **26**: 175–86.
12
13 448 Limburg KE and Waldman JR. 2009. Dramatic Declines in North Atlantic Diadromous Fishes.
14
15 449 *BioScience* **59**: 955–65.
16
17 450 Linke S, Hermoso V, and Januchowski-Hartley S. 2019. Toward process-based conservation
18 prioritizations for freshwater ecosystems. *Aquatic Conservation: Marine and Freshwater*
19
20 452 *Ecosystems*.
21
22
23 453 Lombard P and Hodgkins G. 2015. Peak Flow Regression Equations for Small , Ungaged Streams in
24 Maine : Comparing Map-Based to Field-Based Variables Scientific Investigations Report 2015 –
25
26 455 5049.
27
28
29 456 Markolf SA, Chester MV, Eisenberg DA, *et al.* 2018. Interdependent Infrastructure as Linked Social,
30 Ecological, and Technological Systems (SETSSs) to Address Lock-in and Enhance Resilience.
31
32 458 *Earth's Future* **6**: 1638–59.
33
34
35 459 Martin EH. 2019. Assessing and Prioritizing Barriers to Aquatic Connectivity in the Eastern United
36 States. *Journal of the American Water Resources Association* **55**: 401–12.
37
38
39 461 McDermott M, Mahanty S, and Schreckenberg K. 2013. Examining equity: A multidimensional
40 framework for assessing equity in payments for ecosystem services. *Environmental Science and*
41
42 463 *Policy* **33**: 416–27.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


1
2
3 464 MDMR. 2019. Historical trap counts. Augusta, ME.
4
5
6 465 NEEFC. 2011a. A Financial Impact Assessment of LD 1725 : Stream Crossings. *Economics and Finance*
7
8 466 5.
9
10
11 467 NEEFC. 2011b. A Financial Impact Assessment of LD 1725 : Stream Crossings. *Economics and Finance*
12
13 468 5.
14
15
16 469 Neeson TM, Ferris MC, Diebel MW, *et al.* 2015. Enhancing ecosystem restoration efficiency through
17 spatial and temporal coordination. *Proceedings of the National Academy of Sciences* **112**: 6236–
18
20
21 471 41.
22
23
24 472 Neeson TM, Moody AT, O'Hanley JR, *et al.* 2018. Aging infrastructure creates opportunities for cost-
25
26 473 efficient restoration of aquatic ecosystem connectivity. *Ecological Applications* **28**: 1494–502.
27
28
29 474 Noonan MJ, Grant JWA, and Jackson CD. 2012. A quantitative assessment of fish passage efficiency.
30
31 475 *Fish and Fisheries* **13**: 450–64.
32
33
34 476 O'Hanley JR and Tomberlin D. 2005. Optimizing the removal of small fish passage barriers.
35
36 477 *Environmental Modeling and Assessment* **10**: 85–98.
37
38
39 478 Opperman JJ, Royte J, Banks J, *et al.* 2011. The Penobscot River, Maine, USA: A basin-scale approach to
40
41 balancing power generation and ecosystem restoration. *Ecology and Society* **16**: 04.
42
43
44 480 Owen D and Apse C. 2014. Trading Dams. *UC Davis Law Review, Forthcoming*: 1043–109.
45
46
47
48 481 Paetzold A, Warren PH, and Maltby LL. 2010. A framework for assessing ecological quality based on
49
50 ecosystem services. *Ecological Complexity* **7**: 273–81.
51
52
53 483 Palmer MA, Liu J, Matthews JH, *et al.* 2015. Manage water in a green way. *Science* **349**: 584–5.
54
55
56
57
58
59
60

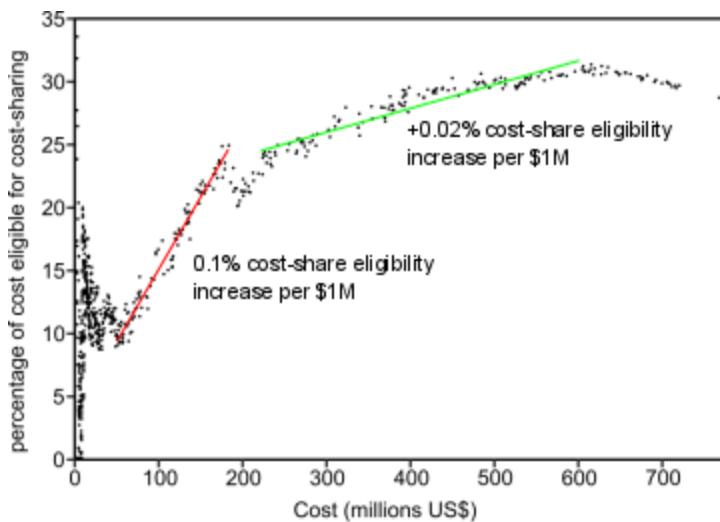
1
2
3 484 Pascual U, Muradian R, Rodríguez LC, and Duraiappah A. 2010. Exploring the links between equity and
4 efficiency in payments for environmental services: A conceptual approach. *Ecological Economics*
5 485 69: 1237–44.
6
7 486
8
9
10 487 Perrin J and Dwivedi R. 2006. Need for Culvert Asset Management. *Transportation Research Record*
11 488 1957: 8–15.
12
13
14
15 489 Poff N, Allan J, Palmer M, *et al.* 2003. River flows and water wars: emerging science for environmental
16 decision making. *Frontiers in Ecology and the Environment* 1: 298–306.
17
18
19
20 491 Poff NL, Brown CM, Grantham TE, *et al.* 2016. Sustainable water management under future uncertainty
21 with eco-engineering decision scaling. *Nature Clim Change* 6: 25–34.
22
23
24
25
26 493 Poff NLR and Olden JD. 2017. Can dams be designed for sustainability? *Science* 358: 1252–3.
27
28
29
30 494 Poplar-Jeffers IO, Petty JT, Anderson JT, *et al.* 2009. Culvert replacement and stream habitat restoration:
31 Implications from Brook trout management in an Appalachian Watershed, U.S.A. *Restoration
32 Ecology* 17: 404–13.
33
34
35
36
37 497 Rees PLS, Jackson, S.D., Mabee, S.B., and McArthur, K.M. 2018. A Proposed Method for Assessing the
38 Vulnerability of Road-Stream Crossings to Climate Change: Deerfield River Watershed Pilot.
39
40
41 499 University of Massachusetts, Amherst, MA.
42
43
44
45 500 Roy SG, Uchida E, Souza SP de, *et al.* 2018. A multiscale approach to balance trade-offs among dam
46 infrastructure, river restoration, and cost. *Proceedings of the National Academy of Sciences* 115:
47 501 12069–74.
48
49
50
51 503 Sarewitz D. 2010. Not by experts alone: more and earlier public involvement is required to steer powerful
52 new technologies wisely, says Daniel Sarewitz. *Nature* 466: 688.
53
54
55
56
57
58
59
60


1
2
3 505 Schweikert A, Chinowsky P, Kwiatkowski K, and Espinet X. 2014. The infrastructure planning support
4 system: Analyzing the impact of climate change on road infrastructure and development.
5 506
6 507 *Transport Policy* **35**: 146–53.
7
8 508 Song C, Omalley A, Roy SG, *et al.* 2019. Managing dams for energy and fish tradeoffs: What does a win-
9 win solution take? *Science of the Total Environment* **669**: 833–43.
10
11 510 Stanley EH and Doyle MW. 2003. Trading off: The Ecological Effects of Dam Removal. *Frontiers in*
12
13 511 *Ecology and the Environment* **1**: 15.
14
15 512 Sun AY and Scanlon BR. 2019. How can Big Data and machine learning benefit environment and water
16 management: a survey of methods, applications, and future directions. *Environ Res Lett* **14**:
17
18 513 073001.
19
20 514
21 515 Thacker S, Adshead D, Fay M, *et al.* 2019. Infrastructure for sustainable development. *Nat Sustain* **2**:
22
23 516 324–31.
24
25 517 Thorne JH, Huber PR, O'Donoghue E, and Santos MJ. 2014. The use of regional advance mitigation
26 planning (RAMP) to integrate transportation infrastructure impacts with sustainability; a
27 perspective from the USA. *Environ Res Lett* **9**: 065001.
28
29 518
30 519
31 520 United Nations. 2015. Transforming Our World: The 2030 Agenda for Sustainable Development (Tech.
32
33 521 Rep. A/RES/70/1). United Nations General Assembly.
34
35 522
36 523 **Figure captions:**
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

524
525 Figure 1: (a) underperforming culverts block migration and pose safety risks (photo credit: Sean
526 Smith). (b) Closeup of coastal streams (center coordinates: 44.58, -68.78); dams tend to occur
527 downstream or at pond outlets, culverts are more abundant and occur along tributaries,
528 occasionally blocking historic habitat. Culverts located on priority highways are more likely to
529 be replaced by TSMs (+), while culverts with abundant upstream habitat are more likely to be
530 replaced by FCMs (*), and there are instances where both priorities overlap (red ovals). Culverts
531 with low ecology/safety priority are hidden. (c) Current barriers and habitat connectivity in study
532 region. (d) River herring habitat extent.



1
2
3
4
5
533
534 Figure 2: Relative abundance of culverts and dams categorized by Strahler stream order; culverts
535 are most common on lower order streams, generally upstream of dams that are distributed more
536 broadly. Though stream order scaling may vary between natural and urbanized stream corridors,
537 culverts remain a dominant headwater feature.



538
539 Figure 3: (a) Cost-benefit curves for river herring functional habitat, efficiency is greatest when
540 coordinating infrastructure decisions. Scenario S0 represents current conditions; all other
541 scenarios are hypothetical as described in the text. (b) Plot of three-dimensional trade-offs
542 between habitat (y-axis), safety (x-axis), and cost (color contours), developed from 17,765
543 unique management scenarios (see supplemental). Diminishing marginal returns indicated by
544 cost contour spacing. Scenario S0 represents current conditions; all other scenarios are
545 hypothetical as described in the text. Black dots indicate path of habitat prioritization by

546 coordinated dam removal and culvert replacement from Figure 2b. Green dots indicate path of
 547 safety prioritization by culvert replacements.

548 Figure 4: Efficiency gains met by increasing the scale of coordinated barrier decisions. Decision
 549 scales: (a) regional, HUC6, (b) HUC8, (c) municipalities. (d) Comparison of cost versus habitat
 550 PPFs modeled for HUC6 watersheds indicated by colored map versus regional-scale
 551 coordination (black line). Colors denote Penobscot (blue), Kennebec (green), eastern coastal
 552 (purple), and western coastal (red) watersheds. (e) cost versus % increase in habitat access across
 553 scales indicates substantial benefit-cost advantages for regional planning at the lowest cost
 554 levels.

556

557 Figure 5: Percentage of management cost eligible for cost-sharing for different budget levels,
558 assuming TSMs will fund replacement of culverts with WOL \leq 5 years. Each point represents a
559 particular combination of dam removals and culvert replacements. Eligibility for management
560 decisions below \$50M are scattered, ranging from 0-100% (results below 35% displayed only).
561 Above \$50M, trend is generally linear (red), slope breaks at \sim \$180M (green), and apexes above
562 31% cost-share at \sim \$625M.

563