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Continuous wearable sensor data in high resolution contain physiological and behavioral information that can be utilized to
predict human health and wellbeing, establishing the foundation for developing early warning systems to eventually improve
human health and wellbeing. We propose a deep neural network framework, the Locally Connected Long Short-Term Memory
Denoising AutoEncoder (LC-LSTM-DAE), to automatically extract features from passively collected raw sensor data and
perform personalized prediction of self-reported mood, health, and stress scores with high precision. We enabled personalized
learning of features by finetuning the general representation model with participant-specific data. The framework was
evaluated using wearable sensor data and wellbeing labels collected from college students (total 6391 days from N=239).
Sensor data include skin temperature, skin conductance, and acceleration; wellbeing labels include self-reported mood, health
and stress scored 0 — 100. Compared to the prediction performance based on hand-crafted features, the proposed framework
achieved higher precision with a smaller number of features. We also provide statistical interpretation and visual explanation
to the automatically learned features and the prediction models. Our results show the possibility of predicting self-reported
mood, health, and stress accurately using an interpretable deep learning framework, ultimately for developing real-time
health and wellbeing monitoring and intervention systems that can benefit various populations.
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1 INTRODUCTION

Many physical and mental disorders manifest in various physiological and behavioral presentations before a diag-
nosis. For example, when patients with major depressive disorder first seek treatment, the presenting complaints
can often be a recession of energy and happiness [64]. For Alzheimer’s Disease, a physical decline in sleep and
movement is observable to varying degrees in its earliest stages, prior to the presence of significant functional
decline [62]. Such kinds of recession could have usually persisted for years before the patient eventually notice
and go to the doctor, causing the optimal timing of treatment to be missed [45]. If daily health and wellbeing
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could be measured using ubiquitous sensors and assessed for early manifestation in an understandable way,
clinicians would be able to provide early warnings and prevent severe disorders.

In recent years, the vigorous rise of both hardware and algorithms has opened up many opportunities to address
this need. The industrial and commercial development of wearable sensors has enabled non-intrusive, ubiquitous,
inexpensive, and continuous high-resolution data collection [7]. Moreover, deep machine learning methods
such as convolutional neural networks (CNN) and recurrent neural networks (RNN) have shown outstanding
performance on computer vision and natural language processing (NLP) tasks [84, 96]. Consequently, recent
studies have striven to transfer the methods, principles, and experience of deep learning to the relatively green
fields of health sensing. For example, machine learning models have been developed to predict mood, stress,
and health based on hand-crafted features computed from survey, weather, wearable, and mobile phone data
[39, 39, 41, 50, 52, 57, 59, 60, 63, 76, 80, 85, 87, 87, 88, 91, 97-99, 106, 108, 109].

Nonetheless, engineering features from raw data requires domain expertise and human efforts. Later, selecting
features for best fit can be time-consuming as well. To overcome these defects, many studies promoted deep
learning to automatically learn features from raw data [4, 15, 28, 29, 44, 58, 66, 69]. However, a major drawback
lies in the lack of clear explanation of those features and predictions. Until there is a way to accurately interpret
the features learned and the predictions made, deep learning would hardly earn the trust of patients, clinicians,
or other potential beneficiaries. Although some mechanisms exist to visualize the critical features or steps with
slightly more intuitions (e.g., saliency maps and attention mechanism) [86, 107], it is still very difficult to associate
those deep outcomes with a standardized and human-understandable description, especially for sequential sensor
data within the health and wellbeing context.

In this paper, we propose an interpretable two-stage deep learning framework consisting of i) a recurrent
autoencoder that learns to extract physiological and behavioral features from raw skin conductance (SC), skin
temperature (ST) and acceleration (AC) data, and ii) a regression model that can predict personalized mood,
health, and stress scores for any user based on her automatic features and subjective profile of personality and
gender. We contribute novelty in the following three aspects,

(1) Automatic learning of time-series representation from wearable sensors. We introduce a hierarchi-
cal recurrent autoencoder to automatically learn efficient temporal features from wearable sensors. It can be
finetuned using data of individual participants to incorporate personalized information and improve feature
quality in general.

(2) Adaptive personalized prediction of mood, health, and stress. We leverage individual-based and
cluster-based personalization strategies to predict wellbeing scores with higher precision than a generalized
model. The cluster-based model is eligible to accommodate unseen users with high precision.

(3) Interpretation of deeply learned features and predictions. We provide interpretation on multiple
levels. We leverage attention layers to visualize low-level time-step saliency, analyze correlations between auto-
learned features and hand-crafted features for high-level explanations, and also discuss individual and clustered
differences in coefficients of the prediction model.

Apparently, reliability, generalizability, and interpretability must be secured for any practical health and
wellbeing prediction systems. We conclude that our method is reliable by showing that our auto-learned features
outperform hand-crafted features in forecasting self-reported mood, health, and stress on a continuous scale.
Secondly, we verify the generalizability of our framework by its reasonably good performance on predicting mood,
health, and stress for new users using an adaptive personalization strategy. In addition, as a first attempt in the
field of ubiquitous computing, we provide statistical interpretation and visual explanation of the learned features
and personalized prediction models. Finally, we address computation, privacy, and potentials in implementing
this framework as a real-time ubiquitous system.
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2 RELATED WORK
2.1 Wellbeing Prediction Through Passive Sensing

Wellbeing refers to aspects of emotions, mood, and mental, and physical health [21]. Specifically, mood, health, and
stress are three commonly studied wellbeing labels, and many studies demonstrated successful approaches to either
detect or predict these labels using unobtrusively collected sensor data [39, 41, 50, 52, 57, 59, 60, 63, 76, 80, 85, 87,
88, 91, 97-99, 106, 108, 109]. For example, Zenonos et al. [108] presented HealthyOffice, a mobile application that
can predict mood at work every two hours using past acceleration, temperature, and other wearable physiological
data. More recently, Morshed et al. [63] focused on the early prediction of mood instabilities using activity,
location, and audio data that were passively collected or computed from smartphones and wearables. Other
researchers have targeted to infer various health conditions, such as Schizophrenia symptoms [97] and fatigue
[88]. In [87], self-rated sick/healthy states were predicted by wrist-worn sensor and smartphone. Behavioral
and physiological features (e.g., phone call duration, features related to the amplitude, shape, and rate of skin
conductance responses) were computed and used to train a personalized machine learning model reaching 82.2%
binary forecast accuracy. Additionally, passive sensor data could contain predictive information of stress [30, 35].
It has been shown that stress could be assessed by skin conductance [33], skin temperature [103], and acceleration
[24]. Sano et al. [80] detected stress using a wrist-worn sensor of skin conductance and acceleration, as well as
features of phone usage (e.g., calls, messages, screen on/off status). Closely related to our work, [106] predicted
high/mid/low mood, stress and health labels for next day using 172 daily features such as number of steps,
accelerometer weighted skin temperature, median skin conductance amplitude; the authors explored multiple
machine learning algorithms, among which the highest accuracy was reported at 74%.

In general, predicting or forecasting wellbeing is typically more difficult than detecting or recognizing wellbeing,
as Taylor et al. pointed out in [87], because of the latency. Since our ultimate goal is to aid in early intervention, to
forecast fine-grained wellbeing status is what we should target at. More importantly, the aforementioned related
studies entirely relied on hand-crafted features. While feature engineering can filter noise, reduce dimensionality,
and combat overfitting, it requires domain expertise, usually subjective and suboptimal. As a result of convenient
math formulas, crafted features may not adequately characterize the complicated patterns related to the outcome
variables. We attempt to overcome these defects of hand-crafted features by leveraging data-driven deep learning
methods to form feature extraction as an automatic learning process.

2.2 Deep Learning: Prediction, Representation, And Interpretation

In contrast to crafting features with fixed rules, autoencoders (AE), a type of artificial neural networks (ANN)
trained for accurate reconstruction, may be leveraged to learn more complicated features from a large amount
of raw data [47]. An ANN is based on layers of nodes and connections, which mimics the learning process
of biological neurons or brains [70]. Depending on the architecture and dynamics, the basic concept of ANN
can embody in many variations (e.g. multi-layer perceptron (MLP), CNN, RNN) for a wide range of real-world
solutions including activity, emotion, and other wellbeing-related predictions [34, 68, 90]. Generally speaking,
MLP is the “vanilla” form of ANN, commonly used on relatively simple datasets; CNN and RNN encompass more
specificities, respectively in visual and sequential data [84, 96].

A single-layer AE with linear activation is equivalent to principal component analysis (PCA) which is essentially
alinear transformation [15]. In most AE practice, however, non-linear activation functions are inserted to introduce
non-linearities. Also, fully connected layers, convolutional layers, and recurrent layers can be stacked to make it
capable of modelling complex functions. Consequently, the power comes with a cost such that PCA is faster and
computationally cheaper than AE. Due to the high number of parameters, the good performance of AE relies on
sufficient training data, appropriate regularization, and careful design [8].
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Many studies have been carried out to explore the feasibility of distributing raw sensory data in AE so that
wellbeing-related features can be automatically learned through back propagation in either unsupervised or
supervised manner [29, 31]. For example, Mehrotra et al. [58] used an autoencoder to transform GPS mobility
(displacement, change in displacement, and significant place) to features which performed better than hand-crafted
features on predicting binary depressive states. Similarly, in essence, [66] integrated CNN and long short-term
memory (LSTM) networks for human activity recognition based on 500 ms data segmentation from accelerometers
and gyroscopes, and [44] also applied CNN-LSTM to recognize emotional levels using 45-minute recordings from
smart-phones and wearables. On various tasks, these very recent studies have proven the performance advantage
of avoiding manual feature engineering, revealing rising interest and promising potentials in tackling ubiquitous
health and wellbeing prediction with deep learning principles and approaches.

An often attacked drawback of deep feature learning lies in the poor interpretability of its outcomes. Previously,
efforts such as localization and visualization were made to investigate the black-box of image-recognizing CNNs
[65, 105]. For sequential data, attention mechanisms can determine time-step saliency in RNN models, such as
in image captioning [102] and steering angle prediction for self-driving cars [46]. Raghu et al. [72] proposed
a singular vector canonical correlation analysis to probe interpretations of deep learning representation and
dynamics. However, sensor signals are, by nature, less human-readable than image or text data. Even if we have
generated accurate saliency heatmaps, it is still very difficult to find a standardized and intuitive way to explain to
patients or doctors what those important features mean. Our study also recognized this challenge and provides a
preliminary solution — we not only train deep representation and prediction models, but also associate the resulted
features and predicting behaviors with interpretations using deep visualization and statistical approaches.

2.3 Personalization In Feature Extraction And Prediction

Exploiting individual differences in human physiology, behavior, and profile can positively boost one-size-fits-all
models’ performance. Multiple studies have confirmed an increase from 55% — 84% to 61% — 88% in binary
classification accuracy by introducing personalized models to mood recognition [9, 92, 106, 108]. Unfortunately,
personalization is often understudied with automatically extracted features due to the lack of labeled data in
research or the lack of prior knowledge of incoming samples in practice [20, 25]. To overcome these defects,
clustered multi-task personalization based on personal profile criteria can be an alternative with a compromise
on prediction accuracy [113]. Utilizing knowledge of personality types, Ciocarlan et al. [18] assessed intentional
engagement and explored persuasive message and activity interventions to improve wellbeing and prevent mental
health problems. Closely related to our work, Taylor et al. [87] leveraged multi-task learning to forecast emotional
wellbeing using features extracted from sensor, phone, and survey data with 78-82% classification accuracy.

However, none of existing works to our knowledge has investigated individual differences in feature extraction
or representation learning. Even in personalization-focused studies, only the mapping from features to labels
was ever personalized, yet from raw data to features was a unified process for all individuals. Motivated by
the performance improvement brought by personalizing prediction models, we expect that personalizing the
representation model may result in higher feature quality as well. Thus, in addition to a general representation
model trained on all users’ training data, we finetuned it to each individual to verify any further improvement
of reconstruction accuracy or even prediction precision.

3 METHODS
3.1 Data Collection

Wearable and mobile technologies have assisted researchers to unobtrusively collect and monitor multiple body
signals that can reveal one’s internal state [82]. In this study, with the purpose of forecasting mood, health, and
stress, we specifically focused on skin conductance (SC), skin temperature (ST) and acceleration (AC) signals
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for the following reasons. SC is related with human physiological arousal, controlled by the sympathetic nervous
system [10], and thus it can be an index of stress response [17]. ST can be reflective of many health problems
(e.g. fever and heat exhaustion) [13, 73] and biological process (e.g. circadian rhythm and sleep) [48]. AC directly
monitors human movement and sleep patterns, thus suitable for measuring energy and physical activities from
which mental status could be inferred [59]. Another reason that we selected these three sensor modalities was
to promote the idea of passive sensing. Also, these wearable physiology modalities could contain less privacy
sensitive information than mobile phones, and thus it is a good point to start with. Our experiments, detailed in
Section 4, showed that SC, ST, and AC data could produce robust and predictive measurements of future wellbeing.

The data were collected in the wild, using sensors worn on a wristband as one might wear a watch. The
participants were 255 college students in New England. Data collection ran from 2013 to 2017, approximately
from 30 days to 90 days from each student, in total 9189 days. We also collected daily wellbeing labels as the
ground truth. Survey emails were sent to participants at 5 pm every day, asking for self-rated scores of mood
(sad-happy), health (sick-healthy), and stress (stressed-calm) on a continuous slide bar scaled 0 — 100. Low scores
indicated negative feelings and high scores were positive. The gender and Big Five Personality information were
also available via standardized pre-study surveys [43]. Table 1 summaries our data, ground truth, and profile.
The distribution of self-reported mood, health, and stress labels are biased to varied patterns and degrees, as
displayed in Figure 1.

Table 1. Overview of the dataset 300 Mood (sagd-happy)

Category Source Type

Skin conductance (SC) ] Health (sick-healthy)
Skin temperature (ST) Wrist sensor Data (8 Hz)
Acceleration (AC)

300 Stress (stressed-calm)
Mood (sad-happy)
Health (sick-healthy) Daily survey Ground truth (0 - 100) 150
Stress (stressed-calm) 0= 75 50 75 160

Self-report scores
Gender Pre-study survey Personal profile

Big Five Personality Fig. 1. Self-reported mood (sad-happy), health

(sick-healthy), and stress (stressed-calm) scores.

The sensors sampled SC, ST, and AC data at a unified frequency of 8 Hz. Those data were preprocessed to
remove artifacts and environmental noise. SC data were filtered using a 32nd FIR filter with a cutoff frequency
at 0.4 Hz [14, 81]. A wavelet filter was adopted to remove artifacts from ST data [67], using Symlets 4 Scaling
function and adaptive threshold by Stein’s Unbiased Risk Estimate [111]. For the AC data, we computed the root
sum squared to get acceleration magnitude. To test for multiple resolutions, we downsampled the data from 8 Hz
to 4, 2, and 1 Hz via first order spline interpolation with Gaussian anti-aliasing [95].

We had missing data for various reasons (e.g., participant drop-out, sensor outage, survey incompletion, etc.).
Given a participant and day, if the sensory missing rate was lower than 25%, the missing sensor data would be
imputed with the corresponding channel means. Otherwise, or with survey responses missing, that day would be
discarded from that participant’s record. After data cleaning, 6391 days from 239 participants were valid. Finally,
we applied intra-channel normalization to each participant and each day, where the daily SC, ST, and AC data
were respectively normalized to range 0 — 1 in order to reduce bias and enhance robustness.
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3.2 Feature Extraction

3.2.1 Baseline Feature Crafting. We computed 136 hand-crafted features from 24-hour SC, ST, and AC data
according to previous work [87, 106]. For instance, SC data were characterized by the sum of area under the
curve (AUC), median amplitude, count of peaks, etc.; ST features included min, max, and median values; AC
features integrated step count, stillness percentage and mean movement step time. In addition, the impact of
movement and temperature on physiology was considered as weighted SC features. These crafted features served
to 1) produce the benchmark performance of personalization wellbeing prediction, and 2) provide vocabularies
for interpreting automatically learned features.

3.2.2  Deep Feature Learning. Overview of Framework Architecture. We propose Locally Connected Long Short-
Term Memory Denoising AutoEncoder (LC-LSTM-DAE) as the deep representation learning framework that
learns and extracts physiological and behavioral features from raw wearable sensor data. We composed locally
connected layers and LSTM layers with a denoising autoencoder to form a multi-modal deep representation
learning model. In order for higher interpretability of auto-features, we decided not to mix the multi-modal data
while the representation model was learning features. We trained independent representation models for each
channel and concatenated single-channel features to form the final feature vectors. Twenty-four-hour sequences
of SC, ST, or AC data were sent to the model as inputs, divided into eight 3-hour frames to address the temporal
characteristics of sensor data. In each time frame, we adopted the same static MLP structures. Outputs of eight time
frames were later joined sequentially by an LSTM encoder, and the final hidden state of the bottleneck layer was
extracted as the learned features. It was then added Gaussian noise and copied to the input of the symmetric LSTM
decoder, unrolled to the former dimensions, and then decompressed to the input dimensions via a stack of linear
layers symmetric to the static encoder (Figure 2). Each component will be detailed in the following paragraphs.

Staticlocal — g wi e Staticlocal L’
Ln d encoder Tied weights decoder n
dy YLy Recurrent  Recurrent Ly
d d, L;;  encoder decoder  L’j4
0 d, ds —d;

e
=

aussian Noise

Learned features

Original input data in 8 3-hour frames
ejep ndino pojonsuoddy

Fig. 2. Schematics of LC-LSTM-DAE for automatic feature extraction from raw sensor data.

Locally Connected Layers. For each separate time frame, 3-hour single-channel raw data in 8 Hz (3 hr X 60 min
%X 60 sec X 8 Hz = 86400 input nodes) would already cost over a billion trainable parameters for a plain neural
network, which could lead to overfitting or difficulty to converge. To avoid overparameterization, we adapted
hierarchical local connections as Equation 1 describes.

al = o( Z wheal ™! + b)) (1)

keF!
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where in layer [, aj. denotes the j-th node; Fll is the index set of nodes belonging to time frame i; w, and b, are
corresponding trainable parameters (weight and bias). The Rectifier Linear Unit (ReLU) is used as the activation
function o(-).

For each channel, LC-LSTM-DAE starts with a locally connected layer which is densely time-separated. In the
first layer, we divide the 24-hour raw data input into 1440 1-minute non-overlapping windows, each containing
dp locally connected nodes. Parameters within each 1-minute window in Layer Lj; are updated independently
and do not interact with other windows. Within each window, the local input is projected into a d;-dimensional
space, resulting in a total of 1440d; nodes at the input of L;,. Terminologically, we say that the first local layer L;;
has “one-minute temporal windows”. Starting at Lj,, we broaden the temporal windows to 3 hours (8 windows
perday: 0 -3 am,3 - 6am,6 - 9am,9 - 12 pm, 12 - 3 pm, 3 - 6 pm, 6 — 9 pm, 9 pm - 12 am). Dimensionality
reduction from 1440d; —{Lj2}—> 8d, —{L;3}— 8ds is completed in multiple layers with ReLU activation stacked
sequentially. The final dimensionality of the learned features is 8ds.

Static Autoencoder. Autoencoders are essentially unsupervised neural networks, originally developed to learn
efficient data representation, typically for anomaly detection [77], smart imputation [71] and nonlinear dimen-
sionality reduction [94]. Starting with the original data at the input, the autoencoder encodes it to a lower
dimensional feature space, followed by a reconstructing decoder that tries to generate a signal from the reduced
representation. The autoencoder is trained in mini-batches through multiple iterations such that the generated
signal should be as close as possible to its original input.

Architecturally, the simplest form of an autoencoder is a feed-forward, non-recurrent multilayer perceptron
whose output layer has the same number of nodes as the input layer. The objective function is defined as
some distance between the output and the input. Encoding is preserved at the bottleneck layer. To improve the
robustness and richness of the condensed information, various techniques exist beyond the basic encoder-decoder
architecture. For instance, variational autoencoder (VAE) and denoising autoencoder (DAE) are most common
in practice. VAE draws representation from distribution, so the extracted features will have randomness. To
ensure reproducibility, we adopt DAE by adding Gaussian noise ~ N(0, 0.1) to the representations, followed by a
decoder forming a symmetric architecture as the encoder.

Besides, autoencoders with tied weights have important advantages including i) less parameters to learn, ii)
more geometrically adequate coding, and iii) tied wights can act similarly as regularization. Equation 2 gives the
form of a single-layer tied weight autoencoder,

fo(x) = oa(by + W, 01(by + W,,,.x)), where W, = W,,. (2)

In Equation 2, by and b, respectively denote the bias terms of encoder and decoder; o7 and o, are activation
functions; W, is the trainable weights of encoder, while Wy, is the decoder weights which are not trainable
and derived from W, as its transpose. With linear activation functions as o7 and o3, it would be equivalent
to the principle component analysis (PCA). Our proposed model is a stacked version with multiple non-linear
activated layers connected sequentially. The objective function is based on mean square error (MSE) and L2-norm
regularization, shown as follows,

0 = argmin, ﬁ [ i( Fole®) = )2 4 2 Z 9]?] . (3)
i=1 j=1

where 6 denotes the to-be-optimized autoencoder parameters, and fy(-) is the encoding-decoding transformation;
input raw data x is of length m; A is a constant coefficient that introduces the L2-norm regularizer.
Recurrent Autoencoder. Recurrent neural network and its variants have been proved a success in multiple

human related applications including sleep classification, activity recognition and mental stress level prediction
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[32, 79, 93]. When incorporated in autoencoders, recurrent networks can summarise information from sequential
data, which agrees with the nature of continuously collected sensor data. Therefore, we inserted a 2-layer LSTM
as the core encoder-decoder component in LC-LSTM-DAE, fed on 3-hour intermediate static features at each
time step. Its form can be simplified as follows,

Encoder: hy = f(Uht—1 + W ftatic(xt))
Decoder: h; = fy(Uh;_1))
where h; is the hidden state at time step ¢; W is the input-hidden weight matrix and U is the recurrent weight

matrix. fg, fy, and fiatic abstract other internal transforms (gates mechanism, activation functions, stacked layers,
etc.) in LSTM encoder, LSTM decoder and static encoder.

4)

3.3 Wellbeing Prediction

3.3.1 Generalized Model -- One-Size-Fits-All LSTM With Recurrent Batch Normalization. Long short-term memory
(LSTM) is a recurrent ANN that is well-suited for processing time series where there can be lags of unknown
duration between critical moments. A growing number of studies have successfully achieved and promoted
prediction of emotion, stress, and other wellbeing labels with LSTM-based approaches using speech, accelerometer,
and other modalities [3, 93, 106].

We built a 2-layer stacked LSTM followed by a single dense layer fed on multi-day auto-learned features,
one day per time step. Dropout rate was set at 0.3 in all LSTM layers and 0.5 in the dense layer. Sequence-wise
batch normalization was also applied, as suggested for a speech recognition problem where Amodei et al. [5]
demonstrated that sequence-wise batch normalization in RNNs substantially improved both final generalization
error and the speed of convergence. The insertion form is given in Equation 5,

w'n; ™ — E[W'R ]

K =oln +p+URL|. (5)

Var[Wlhi_l] +e€

where E[-] and Var[-] are the empirical mean and variance over a single time-step (¢ — 1) of a minibatch. The
learnable parameters 7 and f respectively scale and shift each hidden unit in layer /. The small positive constant
€ is included for numerical stability. The sequential dependence between time-steps prevents averaging over all
time-steps.

3.3.2  Personalized Models -- Multi-Task Linear Regularized Models. Multi-tasking learning (MTL) algorithm
can optimize multiple different yet related tasks together [11] by sharing some information across tasks in the
learning process. The final generalization effect of MTL is usually superior to that of one-size-fits-all learning (no
task-specific information) and single-task learning (no shared information) [53].

One fundamental decision to make for MTL is the definition of tasks. Intuitively, one would desire intra-task
data to be similar while inter-task data different, exactly like our study participants who shared similarities yet
also exhibited differences. They were recruited on campus and many of them took same classes or knew each
other, thus they might share commonalities in sleep, exercise, curriculum, and activity patterns. In this paper, we
compared between MTL predictions with individual participant as tasks and with clusters of participants as tasks.

Alternatively, the individual-as-task MTL can be viewed as a special case of the clusters-as-task MTL. To create
participant clusters, K-prototypes clustering was applied to their profile surveys (gender and Big Five Personality).
K-prototypes was firstly proposed in [37] for clustering datasets with mixed numeric and categorical values.
The number of clusters was determined at the highest mean Silhouette score of all samples [75]. The best value
of Silhouette coefficient is 1 and the worst value is -1. A negative value generally indicates that the sample is
assigned to a wrong cluster.
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Linear models are interpretable and widely-used in solving regression problems. We adopt £ ; regularized
MTL linear regression model whose objective function is as follows,
n
0 = axgmin 3 167X = Yill + A2.1101l.s + Aell01 (©)
i=1
where X; represents the input matrix of the i-th task, and Y; is the label of samples belonging to that task; 6 is
the weight matrix. A, controls the {,-norm penalty; A, ; controls the £, ;-norm penalty.

3.4 Interpretation

To provide actionable and effective interventions, which is critical to make this system real-world beneficial, we
emphasize the interpretability of our system. That said, we need to not only develop algorithms that can provide
good wellbeing forecast but also design mechanisms to deliver human understandable interpretation to those
features and forecast. Good interpretation of results can convince patients and doctors to benefit from our solution.

In this study, we provided interpretation at multiple levels. First, we employed attention mechanisms in
multi-day prediction models to give insights to the rise or decay of sensing data impact on the users’ wellbeing
states. In addition, we analyzed a correlation between the learned features and the crafted features to broaden
our understanding of the former. Additionally, we performed K-means clustering to the MTL weights to reveal
the relationship between individual differences and prediction performance.

3.4.1 Attention Mechanism. Bahdanau et al. [6] proposed the attention mech- Label @
anism to allow a recurrent decoder to attend to different parts of a long input [
sequence at each step. Ever since, attention has been applied in many NLP prob-
lems vastly beyond encoding-decoding models. In many-to-one classification or
regression models, the idea is to take the importance of every time-step from the
inputs into consideration, as shown in Figure 3 [101]. The softmax-normalized
attention weights quantify the importance scores of a sequence.

Dense Layer + Softmax |
7Y

3.4.2 Correlation Analysis. Correlation analysis is used to evaluate the strength
of a relationship between two variables under certain assumptions [27]. In this
study, Pearson correlation was used as a preliminary probe of the “physical L R N |
meaning" of the auto-learned features. By correlating them with predefined Tnputs 16 K e
hand-crafted features, we desired to establish if there existed significant corre- Fig. 3. lllustration of attention
lations between learned and crafted features of wearable sensor signals. Exam- mechanism in many-to-one LSTM
ining the top-5 learned-crafted correlations, we might be able to translate what network, where h; denotes the

the representation model had learned into human understandable language. ~ hidden state at time-step #; « is the
attention weight; u and v are the
3.4.3 MTL Weight Analysis. In the personalized prediction, to identify the importance vector and the context

critical features, we looked for features that i) contributed the most in a task  vector.

or ii) resulted in diverse weight coefficients across different tasks. The first

target can be simply achieved by searching all task-specific weights and identifying the highest contributing
features. For the second target, in particular, we clustered the weight vectors of all 239 individual-based tasks
using K-means and Silhouette score evaluation, similar to the principle described in 3.3.2.

4 EXPERIMENT

Our goal is to use deep learning methods to automatically learn and extract efficient physiological and behavioral
features from high-resolution wearable sensor data. Furthermore, we show by fitting a wellbeing prediction
model that the auto-learned features can be used to predict multiple wellbeing labels on a continuous scale from 0
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- 100 with high precision. The evaluation metrics are reconstructive mean square error (MSE) for representation
models and mean absolute error (MAE) for prediction models.

Analysis of variance (ANOVA) [38] test was used in testing differences among more than two groups of data.
Following ANOVA, Tukey HSD test [1] was used for testing the difference between each pair of two groups
across the whole data set. Paired t-test was used for comparing the performance between the models using
different features sets (e.g., crafted features, static auto features, temporal auto features, etc.).

The experiments were conducted on a Ubuntu 18.04.1 LTS Linux machine. Models were trained with dual
NVIDIA GeForce RTX 2080 Ti GPUs. Representation models and LSTM prediction models were implemented
using the deep learning platform PyTorch 1.0. Linear MTL prediction models were adapted from the MALSAR
toolbox [114].

4.1 Representation Learning

Training a deep learning model is usually time-consuming and computationally expensive. In the meantime,
many deep learning methods in health applications are limited by the training set size. Multiple recent studies
[2, 16, 56] supported “less is more" — reducing training set size could be harmless to the trained model; doing it
smartly could even give the model better generalization ability and robustness. Coming to our study, we were
also interested in the minimum acceptable size of training set for time/energy saving purpose.

The representation learning model was optimized via the Adam algorithm, with the learning rate being 0.003
and trained for 100 epochs. f; and B, were set 0.9 and 0.999 respectively, and the weight decay was 1e7°.

Cross validation was conducted in 4 folds with the train/validation/test ratio as 60%/20%/20%. Section 4.1.5
details two split schemes differentiated by user dependency. In brief, under user-dependent settings, the training
set contains data from all users; i.e. after training completes, the model is guaranteed that no unseen users would
be presented as a test sample. On the contrary, the user-independent case requires the model to handle both seen
and unseen users at the test stage.

A prior work [51] showed that the dimensionality of auto-learned features did not have as a significant impact
on the final prediction performance as input resolution or hyper-parameter configuration. Therefore, an empirical
final dimensionality of 48 was chosen for this study.

4.1.1 Input Resolution. We compared the reconstruction loss (MSE) using 8, 4, 2, and 1 Hz raw sensor data input
to the representation learning model. Lower-resolution data were downsampled from the original 8 Hz using
first-order spline interpolation. Gaussian smoothing was performed to avoid aliasing artifacts.

4.1.2  Amount Of Training Data. We probed into the impact of training data amount on the reconstruction loss
for LC-LSTM-DAE by randomly selecting different sized subsets for training. The baseline amount was set to be
60% of the entire dataset, for approximately 3900 days in total, or 18 days per participant. In addition, we fixed
validation and test sets and tested 2/3 (40% of the entire dataset size), 1/3 (20%), and 1/6 (10%) sized training sets.

4.1.3 Dynamic Vs Static Architecture. We investigated the effect of temporal information incorporated by the
LSTM encoder-decoder in the representation model by comparing validation losses with or without LSTM layers
wrapping over the bottleneck layer. Without the LSTM encoder-decoder, the final features would simply be the
concatenation of the output at L;3 (Figure 2).

4.1.4  Personalized Representation Learning. Another experiment was carried out where we introduced individual
differences to the learning of temporal features. More specifically, this preliminary experiment concentrated
on the LC-LSTM-DAE model under the user-dependent assumption. The trained general LC-LSTM-DAE was
finetuned using each participant’s data for a maximum 100 epochs. When finetuning for a participant, if a new
lowest MSE was not reached for more than 30 epochs, the finetuning for this participant would automatically
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terminate. All other learning parameters were kept the same as they had been when the general LC-LSTM-DAE
model was trained. We hope that this experiment, as a first attempt to personalize the mapping from raw data to
features, would address the potentials of low-level data personalization.

4.1.5 Data Preparation For User-Dependent And User-Independent Experiments. Two schemes were designed to
split 60% train, 20% validation, and 20% test data for user-dependent and user-independent experiments.

In the user-dependent setting, the training set should contain data from every user to ensure that any users in
validation and test sets have data also in the training set. While shuffling data, the unique user-date identifier
was kept in track to construct cohorts for MTL. Also, we designed the split to accommodate for 4-fold cross
validation. In specific, we iterated over all users; for each user, we got all of her days in the dataset, shuffled those
days, evenly split into 5 sub-lists, randomly chose and left out one as the test set, and then the rest 4 sub-lists
would act as the validation set in turn.

The user-independent experiment was designed to simulate the scenario that we would face when promoting
this system to larger-scale tests and real-world usage. Validation and test sets were composed of users that were
not in the training set. Although it would be more challenging for the model to learn and generalize under such
setting, constructing training sets was actually much simpler - just by taking all users and performing a random
split; each user should always take all of her days to one of the train, validation or test set.

4.2 Wellbeing Prediction

When regularizing the MTL wellbeing prediction model using auto-learned features, tuning the penalty coefficients
can be critical. Otherwise, it could cause the loss of dimension because the number of features has become
relatively small. The constants A; and A, ; were determined via grid search as 0.15 and 0.1.

4.2.1 Auto-Learned Vs Hand-Crafted Features. We further compared two sets of wellbeing prediction performance.
One was using a set of 48 auto features learned and extracted by our deep representation model, and the other
was based on 136 crafted features that provided benchmark results.

4.2.2  Number Of Previous Days. Previous studies [39, 106] showed that using hand-crafted features, exposing to
longer past could sufficiently improve the mood and health classification performance. In this study, although the
input to prediction models has been changed to auto-learned features and the problem domain was set to regression,
we would still expect the gist to hold true. By incorporating more information from the past, the performance
should be improved. To validate this hypothesis, we tested 1 and 7 days of features for wellbeing prediction.

4.2.3  Personalization. Depending on the user-dependency policy used in producing the auto-learned features as
described in Section 4.1.5, the personalization approach for wellbeing prediction should be adapted accordingly.
Either individual-based or cluster-based strategy was applied. In terms of the cluster-based strategy, we applied
K-prototypes to cluster mixed user profile data in order to enable inference for unseen users. We adopted Silhou-
ette score to find the optimal number of user groups. In the user-independent case, the clusters were obtained on
a training set of 147 users. The Silhouette scores were then derived by assigning all 239 users’ data to the trained
clusters. We examined the mean values of the scores from 10 random trials, and higher scores were desirable.

5 RESULTS
5.1 High Vs Low Input Resolution For Learning Auto-Features

Figure 4 shows, during the training of the representation model, the validation MSE vs trained epochs with
different input data modalities and resolutions. Because different sensors performed differently, we display them in
separate plots. Overall, it can be observed that the highest resolution of 8 Hz always produced the lowest MSE for
all sensors. More specifically, SC was not very sensitive to resolutions greater than or equal to 2 Hz; ST did not seem
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to be sensitive to resolution at all levels, in that the drop in training curves was almost identical; AC concluded
at a roughly logarithmic decrease with resolution degradation in the representation learning performance.
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Fig. 4. Reconstruction loss on validation set with different input data resolution for each channel.

5.2 Amount Of Training Data For Learning Auto-Features

Figure 5 displays four user-dependent validation curves of reconstruction loss with different amount of training
data for the representation model. It obviously shows that adequate and diverse training data can help the model
converge faster. Nonetheless, with a limited amount of training data, the unsupervised model could still eventually
converge to a stable state such that the original data could be reconstructed equally well from the learned features,
given enough times of mini-batch iterations. These curves were all channels combined, because three channels
behaved very similarly. Therefore, we can safely set the focus on the comparison of the training set size itself.

5.3 Temporal Vs Static Autoencoder Architecture

Figure 6 compares the curves of reconstruction loss on the user-dependent validation set with different AE
architectures as described in Section 4.1.3. It emphasizes the advantage of the temporal component — the LSTM
encoder-decoder wrapper — in LC-LSTM-DAE. Although both models started off similarly, without the temporal
component, the static AE could not reach a local optimum as far as the temporal AE. Here we again combined
channel-wise losses because all channels shared a consistent tendency.
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Fig. 5. Reconstruction loss vs training-set size. Fig. 6. Reconstruction loss vs AE architecture.

5.4 Personalization In User-Dependent Representation Learning

Figure 7 shows the histogram of changes in participant-specific MSE by finetuning the general LC-LSTM-DAE to
each individual. Given a participant, a negative change in MSE indicates a drop in reconstruction errors and is
thus desirable; otherwise, we would recognize the personalization as failed for this participant. In this experiment,
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we observed that the personalization was favorable for a majority of 76% participants. In terms of the failure
cases, possible reasons may include overfitting, simpler underlying structure of data or the limited amount of
finetuning samples.
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Fig. 7. Histogram of user-specific MSE changes introduced by finetuning the general representation model to each individual
participant (—: benefited; + worse-off). 76% participants actually saw a reduction in reconstruction loss, i.e. an increase in
feature quality.

5.5 Auto-Learned Vs Hand-Crafted Features: Prediction Performance Comparison

To demonstrate that LC-LSTM-DAE can learn efficient features to predict multiple wellbeing labels, in Table 2
we compared its performance with benchmark results derived from prior works on the same topic [51, 106].
The prediction model was individual-as-task MTL, under the user-dependent settings. The comparison results
include i) crafted vs static vs temporal features, ii) 1-day vs 7-day temporal features, and iii) non-personalized
vs personalized temporal features.

To begin with, we found that for any labels in Table 2, the temporal features always demonstrated significantly
higher precision than the static features and crafted features (p < 0.05). Then, with regard to temporal features,
7-day concatenation significantly outperformed 1-day features in predicting mood and health (p < 0.05), but not
in stress. Interestingly, personalizing the mapping from raw sensor data to features did not seem to accomplish
much improvement in wellbeing prediction. Based on the LC-LSTM-DAE, only 1-day prediction of mood was
significantly improved by adopting personalized features, suggesting that instant feelings of happiness/sadness
could be a highly personalized process from physiology to self-perception.

Table 2. Wellbeing prediction mean absolute errors (MAE) using individual-as-task MTL on different feature sets (Mean+S.D.).

Crafted Auto Features
Label | Features | Static (LC-DAE) [ Temporal (LC-LSTM-DAE)
1-day 7-day
(PRS™) - - - + - +
Mood 16.4+0.3 14.6+0.3 14.3+0.2 | 14.0£0.3 | 14.1+0.2 | 14.0+0.2
Health | 15.8+0.3 14.3+0.5 12.6+0.3 | 12.7£04 | 12.4+0.3 | 12.5+0.2
Stress 16.7+0.3 15.7+0.3 15.0+0.3 | 15.0£0.6 | 15.0+0.3 | 15.0+0.7

* PRS denotes whether or not the corresponding features were personalized.
-: Non-personalized features (same extraction rule for all participants);
+: Personalized features (different extraction rules across participants).

5.6 Generalized Multi-Day LSTM Wellbeing Models

Figure 8 compares the one-size-fits-all LSTM wellbeing prediction performance using multi-day static and temporal
features. Significance indicators are denoted beside wellbeing labels to indicate whether ANOVA test rejects null
hypothesis on the difference between the corresponding static and temporal feature performance. Over all labels
and features, 7-day prediction was significantly more precise than 1-day prediction. Nevertheless, we found that
temporal features showed a significant advantage over static features only on mood and stress using 7-day data.
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Figure 9 shows the distribution of attention weights (sum to one) given to each time-step in a 7-day prediction
model. Obviously, the prediction model believed that features from the nearest day was the most influential on
future wellbeing, and the saliency gradually decreased as we moved away from the current time point. This could
indicate that people’s current state of wellbeing is likely to be affected by things that occurred several days ago.
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Fig. 8. Generalized wellbeing models’ prediction perfor- Fig. 9. Attention weights distribution on time steps in
mance using multi-day static and temporal features. Inner LSTM prediction model using 7-day temporal features.

bars are 7-day results, and outer bars are 1-day results.

5.7 Clustering Based On Profile

Figure 10 illustrates that following an initial drop around the # of groups=2-12, the Silhouette scores constantly
increased with #groups and reached the highest 0.60 at the # of groups=147, when each user in the training set
became a unique cluster centroid. In this case, a new user would be assigned as to “be like” one of the existing
users to whom she has the closest gender and personality profile.
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Fig. 10. Silhouette score vs number of user groups.

5.8 User Dependent Vs Independent Policies

Figure 11 shows an overall tendency of decreasing MAE with the increasing number of user groups, under both
user-dependent and independent settings. The best performance of user-dependent MTL prediction was superior
to the best of user-independent MTL models, which was expected because i) in the autoencoder, failure to see all
users’ distribution of raw sensor data might create some implicit difficulty for the generalization of auto features;
ii) more importantly, being able to see all users beforehand became a big advantage in the explicitly personalized
MTL prediction model.
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Fig. 11. Wellbeing prediction MAE vs number of user groups.

In the user-dependent case (Figure 11a), the prediction performance steadily grew as the number of user groups
grew. Eventually, the best performance was reached with 239 groups (equal to the number of users in the training
set), which made cluster-based personalization equivalent to individual-based personalization, given that no new
users would be introduced to the trained model. With this setting, the prediction MAE values for mood, health,
and stress were respectively 14.1+0.2, 12.4+0.3, and 15.0+0.3.

In the user-independent case (Figure 11b), with # of groups=147 (equal to the number of users in the training
set), the prediction performance reached its peak. In other words, the best MTL strategy appeared to be the
following, i) keep individual-based tasks in the training set; ii) for a new user, find her closest existing user and
“pretend” that they are the same person; iii) then the trained MTL weights can naturally be applied to the unseen
test user. This scheme was the same as what we derived from Section 5.7. The lowest achieved prediction MAE
values were 14.5+0.4 for mood, 14.4+0.4 for health, and 15.7+0.5 for stress.

5.9 Interpretation Of Features And Predictions

5.9.1 Correlation Analysis. We computed the correlation matrix between the corresponding modalities of auto-
learned features and hand-crafted features. The significance-filtered (p < 2.3x107>, the adjusted p-values [36])
correlation heatmap for daily features is shown in Figure 12. Generally speaking, from what we can observe, the
temporal representation model seemed to have paid more attention to evening physiology (17H+:SC, 17H+:ST)
as well as night-time activities (0-3H:AC, 17H+:AC).
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Fig. 12. Correlation matrix between auto-learned features (AF-) and hand-crafted features (CF-) pairs. The dimensionality
corresponding to each modality/type of features were annotated in parenthesis. Annotated on the color bar is the adjusted
significance threshold of +£0.05 (p< 2.3x107°). The auto SC, ST and AC features were independently learned from the
corresponding modalities and were not personalized.

In Table 3, we identify the best interpreted auto features, one for each channel, defined by the highest total
correlations given by crafted features. Correspondingly, we list the names of top-5 crafted features with the
highest absolute correlations. In general, physiological features (SC, ST) were more interpretable than activity
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features (AC). This could be caused by the fact that we had a smaller corpus (i.e. less crafted features) for activities
than physiology.

Table 3. Most interpreted auto features for each sensor modality, as well as the top-5 highest correlated crafted features
with associated correlation coefficients (p< 2.3x107°).

Auto Crafted Features

Features top-1 top-2 top-3 top-4 top-5

AF-SC#6 17H+: unnormalized mean| 17H+: normalized s.d. | 17H+: count of peaks [17H+: 30-min median peaks| 17H+: area under curve (AUC)
-0.30 -0.30 -0.29 -0.28 -0.28

AF-ST#5 17H+: median while still |17H+: raw value median|10H-17H: raw value min 17H+: raw value s.d. 3H-10H: raw value min
-0.31 -0.30 0.18 -0.15 0.11

AF-ACHS 17H+: stillness percent 17H+: step count OH-3H: stillness percent OH-3H: step count 17H+: mean movement step time
0.16 -0.13 0.13 -0.12 0.08

5.9.2  Weight Analysis. According to Table 3, health was the best predicted wellbeing label. Thus, we present
weight analysis based on the health-predicting individual-as-task MTL model. To discover inter-personal
similarities and differences, we quantified the MTL weight patterns by clustering the coefficients and looking for
significant inter-cluster differences. The clustering achieved the highest Silhouette score of 0.59 at 2 clusters of
125 and 114 participants respectively. Then we computed intra-cluster mean values and tested for the significant
difference via ANOVA. We found that 27 out of 48 auto features (#SC=12, #ST=7, #AC=8) were significantly
different (p<0.05) between two clusters. We also found that SC produced the dominant inter-cluster differences,
not only in terms of the number but also with regard to the significant gaps. The top-5 biggest gaps in two
clusters’ mean coefficients were all produced by SC features, namely AF-SC#12, #4, and #14, ranging from 11.6 to
3.72. For the ST and AC features, the most different-between-clusters features were AF-ST#8 and SF-AC#4 with
the gaps being 0.58 and 0.92 respectively. Moreover, we confirmed that AF-SC#12 was a critical feature, because it
was not only significantly different between two clusters but also opposite in sign. It could indicate that different
people could react in different directions toward this feature. Such features are particularly of our interest because
eventually, we would have to carefully consider controversial interventions regarding the modifiable behaviors
related to such features, as it may lead to not only weak but even opposite responses.

Interestingly, we found that AF-SC#12 had significant correlations only with 10H-17H: SC unnormalized
median (-0.06) and 10H-17H: SC median peaks in 30 min (-0.06) — the feature that was critical to personalization
was not among the best-interpreted auto-features. A possible explanation could be that the representation model
has learned beyond human knowledge. However, we cannot yet claim that AF-SC#12 was a strong predictor of
health. We can only safely state that it was a highly individual-dependent feature, thus likely to be critical to
personalized prediction and intervention.

To take one step further, we inspected the differences on an individual level. In Figure 13, we visualize the
weight coefficient vectors of three example participants P1, P2, and P3. We intentionally chose them with
health-prediction performance distributed at the 1%, 20%, and 40% percentiles (1.4+0.5, 5.8+1.6, and 9.1+1.3).
By comparing task-specific weights of varied performance, we could get some insights into how the prediction
of health was delivered in different individuals. For instance, it can be observed that the best-performing P1
had more stable weights among three modalities compared to P2 and P3. Some AC features of P2 seemed to
be emphasized while AF-AC#5 noticeably stood out as it contributed strongly in the negative direction. The
highlight in P3 was AF-SC#12 being negative with a large magnitude. The three participants showed a similar
trend in treating ST features, although the ST coefficients of P3 were constantly lower than the others.

We checked the interpretations of these features given by the crafted ones, and we found that AF-SC#4 could be
best interpreted as being negatively correlated with 17H+: SC 30-min median peaks (-0.23) whereas AF-SC#14 had
a strong positive correlation with 17H+: SC normalized median (0.28). Besides, AF-ST#8 was weakly correlated
with 17H+: ST raw value median (-0.06), while SF-AC#4 mostly correlated with 0H-3H: AC stillness percent (-0.13).
AF-ACH#5, the feature in which P3 found interest, was moderately correlated with 17H+: AC stillness percent (0.16).
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Fig. 13. Task-specific weights vectors for 3 example participants (P1, P2 and P3) whose prediction performance were 1.4+0.5,
5.8+1.6 and 9.1+1.3, respectively within the 1%, 20% and 40% percentiles.

6 DISCUSSION

As part of our analysis, we found that our proposed recurrent autoencoder framework LC-LSTM-DAE could
efficiently learn temporal features from high-resolution sensor data, and those features were reliable estimators
for forecasting one’s subjective wellbeing. We highlight three major observations: i) temporal autoencoders
can learn features that are more informative than static autoencoders; ii) subjective wellbeing can be forecast
using auto features learned from passive sensing data in personalized manners; and iii) automatically learned
physiology (ST and SC) features were more interpretable than behavioral (AC) features, as we found more
significant correlations in the former with crafted features. In this section, we compare our results with prior
work and outline the implications of our results for researchers in ubiquitous computing community who are
interested in promoting human wellbeing with deep learning solutions.

6.1 From Features To Wellbeing Labels

For the representation model, we tested different configurations. First, we observed from Section 5.1 that different
modalities responded differently to changes in input dimension or resolution. We further observed that modal
sensitivity to the resolution had a positive correlation with its dominant frequency. In our case, although the
sampling rate was unified, the nature of collected sensor data and different denoising process could introduce
varied frequencies (AC > SC > ST). The observation that higher resolution led to lower reconstruction loss provided
evidence that LC-LSTM-DAE was able to learn features efficiently from high-resolution data. In practice, we need
to balance between learning performance and computational cost, as both can be increased by higher resolution.

In general, features that can achieve lower reconstruction loss are desirable. However, does lower reconstruction
loss necessarily lead to higher prediction accuracy? Based on our observations, this statement does not always
hold true. For example, we showed in Figure 6 that compared to static features, temporal features produced lower
reconstruction loss during representation learning, but in Figure 8 we did not observe significant improvement
using one-size-fits-all LSTM model to predict mood, health or stress. Similarly, when Jaques et al. [41] used
autoencoders to fill in missing values of multimodal features, they found that although the autoencoder loss had
been reduced, the prediction rate using the imputed features for binary mood classification was not improved.
The authors hypothesized that this was because their data were already rather clean (only 30% training samples
contained missing values), and thus their imputation did not show observable effects to prediction. Nevertheless,
with personalized prediction models, we demonstrated a definite increase of performance in all three labels where
the highest MAE reduction occurred to health by a factor of 13.5%. We also observed that personalizing temporal
auto features caused a reduction in the reconstruction loss yet did not improve health and stress prediction.
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Similar to Jaques’s hypothesis, we hypothesize that this is because our temporal representation model has
already captured useful information that can be utilized in the personalization prediction, thus introducing more
personalized information to features did not cause an equivalent improvement in prediction results. Therefore, it
is likely that the individual difference in subjectively reported scores was dominant over inter-personal differences
in passively collected physiological and activity data, thus making personalization the key to transmitting the
advantage from features to prediction. More convincingly, the importance of personalization has been proven by
the evident gap in performance between one-size-fits-all and MTL prediction approaches.

Numerous studies addressed the same assertion about personalization on a variety of topics including
accelerometer-based gesture recognition [54], emotion recognition based on physiological signals [112], etc.
Our proposed LC-LSTM-DAE is an unsupervised learning framework that does not require labels to learn low-
dimension features. Reducing dimensionality can enhance model generalizability, thus lowering the barrier on
the minimal requirement of training set size. We also showed that LC-LSTM-DAE can generalize with smaller
partial training sets as well as the full set (Figure 5).

To enable the prediction of unseen participants, we relaxed the personalization strategy using personal profile
clustering. It resulted in comparable performance (Mood: 14.5+0.4, health: 14.4+0.4, stress: 15.7+0.5) with the
strict individual-as-task personalization (Mood: 14.1+0.2 , health: 12.4+0.3 , stress: 15.0+0.3), in comparison to
the one-size-fits-all (Mood: 18.1+0.3, health: 19.3+0.8, stress: 19.9+0.5) scheme. Compared to prior work [42]
predicting mood, health, and stress using multimodal features with mean MAE of, respectively, 13.0, 14.1 and 12.9,
our reported precision was slightly lower, which was well expected because [42] used features from much more
comprehensive modalities including sensors, phone usage, calls/sms, location, weather, and survey, whereas we
only used sensor data.

Although the generalized model did not perform as well as personalized models, there were some tactics that
could improve the quality of generalized wellbeing learning from auto features. For example, time-step batch
normalization, according to Cooijmans et al. [19], improved their results of using several recurrent architectures
on a text prediction dataset. Additionally, Laurent et al. [49] showed that, for a speech recognition task, recurrent
batch normalization could speed up convergence but not improve generalization performance. In our case,
applying time-step batch normalization did not significantly reduce average MAE, but it refined the distribution
of predicted scores and their correlations with true scores.

In terms of personal profile clustering, although the overall tendency of Silhouette score and prediction
performance matched with each other, higher Silhouette scores (or good clustering of personality and gender)
may not always guarantee performance improvement in predicting wellbeing. This could intuitively explain why
we observed some fluctuation in both user-dependent and, especially, user-independent cases.

6.2 Interpretation: Understanding Auto Features And Models

Based on observations that the learned features significantly improved wellbeing prediction performance, we
have good reason to believe that our proposed representation learning model has successfully learned to extract
efficient features from raw sensory data. Hence, it raises a natural question — what are those features? To answer
this question, we provide an in-depth discussion on the interpretation analysis as follows.

First, we revisit Figure 12 to address the importance of captured information where we count for occurrences
of crafted features that provided top-5 correlation coefficients for each auto feature. The more frequent a crafted
feature appears strongly correlated with one or more auto features, it would be recognized as being paid special
attention by the deep representation model, thus more important than not-so-frequently occurring features.
Then and more importantly, by identifying the most important hand-crafted features, we can get a view of what
particular kinds of things that the representation model might be looking for.
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Our insights of important features were consistent with prior studies that also paid attention to recognizing
the contribution of features to wellbeing prediction. Sano et al. [82] selected features to predict self-perceived
stress levels via 10-fold cross validation. Specifically, mean, maximum, and median amplitude of SC as well as
minimum ST from late morning to evening were the most selected physiological features. We also found that
mean SC, median SC, and minimum ST were among the top-5 most frequent strong-correlation providers, but
our focal time was before midnight (17H+). Another study [40] focused on predicting happiness from multimodal
data ranked the importance of features by information gain, where the authors found that mean, AUC, and S.D.
of SC during sleep time could be good indicators of students’ happiness. Since our representation model learned
deep features in an unsupervised manner whereas the aforementioned [82] and [40] specified the target while
selecting features, we may observe discrepancy in those results such as the focal time. For example, we also
found that information related with the number of SC peaks was well incorporated by our representation model,
whereas other studies did not report it as an important predictor for any label.

In the meantime, we exploited attention mechanisms to help understand the temporal saliency of auto features.
We inserted an attention layer into the generalized LSTM wellbeing prediction model, and it could be clearly
observed that attention was paid more to days that were coming closer to the wellbeing report time. The finding
was intuitive, and it also aligned well with previous studies such as [106]. This indicates that people’s current
state of wellbeing is likely to be affected by things that occurred several days ago, but the impact would gradually
fade away with an accelerated rate.

6.3 Computation, Privacy, And Ethics In Ubiquitous Health Systems

In this study, the mapping from features to predictions could be linearly characterized in a personalized manner,
which was computational friendly. Indeed, the representation learning part was time-consuming and energy-
heavy. In fact, on a Linux machine with Intel I7-9700k CPU and NVIDIA RTX 2080 Ti GPU, it took more than four
hours to train an LC-LSTM-DAE from scratch and over two hours to finetune it to individuals. Nonetheless, the
good news was that after the representation model finished training with raw data, it only took 2.3 milliseconds
to extract daily features. Moreover, the representation model can be compressed to cost less memory and fewer
operations. This is possible because deep learning models are usually sparse and redundant [55]. For example, See
et al. [83] proposed magnitude-based weight pruning, reduced the LSTM translation model’s size by 90%, yet still
kept the performance untouched with re-training. Whereas, Wang et al. [100] pointed out that pruning nodes
or connections was limited to undetermined changes in computational paths, and so they proposed efficient
implementations of LSTM using structured compression manners that could achieve up to 18.8X and 33.5X
gains in speed and energy efficiency. Using similar techniques, Zhang et al. [110] successfully ported a hybrid
CNN-LSTM model, which usually ran on multiple GPUs, on an FPGA to recognize video content in real-time. To
sum up, existing technologies support that we could compress and distribute our pre-trained representation and
prediction models on wearable devices such as a smartwatch. As the sensor data stream in, computation and
inference can take place locally in real-time, avoiding data exchange and any risk that it may bring about.

Therefore, making the algorithms more energy efficient not only saves time and battery but also acts as a good
way to protect user privacy in mobile health apps [26]. User privacy has been an everlasting concern for any
health monitoring application. When it comes to mental health with ubiquitous sensors, privacy and security are
even more sensitive due to disagreements among researchers and lack of guidelines [61]. Especially with the
rapid growth of interdisciplinary collaboration to leverage deep learning in affective computing, human subject
data are usually shared on cloud among multiple parties, bringing up challenges for regulating sensitive data
acquisition, management, and usage [115].

Throughout our study, we endeavored to secure participants’ privacy from the following aspects. First, this
study was conducted strictly under participants’ consent. They were free to quit the study at any time. In fact,
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several students chose to drop out, with one particularly stating the reason as being concerned about data privacy
[78]. Second, all data have been de-identified and stored on our lab server, under information protection measures
and policies of the university. Although the LC-LSTM-DAE utilized raw sensitive data and ran on a server, the
data were anonymous and encrypted. Above all else, the most privacy-concerning stage, namely the inference of
one’s wellbeing by linear MTL, can be ported on a smartwatch without effort. Edge computing keeps sensitive
data local, thus it can minimize the risk of being exposed to cyber attacks and misuse [74]. Other to-be-considered
options to preserve privacy on distributed systems include decentralized computing [23], differential privacy
[22], federated computing [89], etc.

6.4 Limitations And Future Work

Our wellbeing prediction based on physiological and behavioral sensors has some limitations. First, how to
handle or impute missing data remains an important challenge. We used very simple imputer which merely filled
the missing points with mean. With intelligent imputation methods such as Generative Adversarial Nets [104],
we might be able to learn more informative features. Although in this paper, we extracted features from three
channels of sensor data separately, we will consider combining the multimodal sensor data at early stage and
extracting hybrid features in our future work.

Second, some data were not fully utilized due to the absence of self-reported labels. This has been a very
common issue in big data and deep learning — the acquisition of ground truth can be labor-heavy, expensive, and
sometimes inaccurate. In this study, we simply abandoned unlabeled data, but in the future, we might consider
increasing data utilization by semi-supervised learning approaches.

Third, the personalized learning of features needs further investigation. We proved it useful for majority users
in terms of learning more robust features, but the bonus was not adequately prompted to prediction. Analysis of
the difference between personalized and non-personalized features are in our next steps.

Additionally, one could argue that wearable sensor data might not contain every piece of useful information
that relates with future wellbeing. For example, social interactions have been proved to be impactful on mental
health [12], but a physiology or motion sensor by itself apparently cannot capture that information as sufficiently
as smartphone logs of calls, messages and app usage. Also, if we want to design interventions, the features need
to be related with understandable and modifiable behaviors. Unfortunately, most of the time, physiology is not
consciously controllable. As a complementary choice, mobile phones can also provide insights into features related
with modifiable behaviors such as phone usage, social connections, mobility patterns, and others. With adequate
knowledge of causal effects from those features to wellbeing states, accordingly designing recommendations or
interventions would be possible. However, we did not include either phone data or causality studies in this paper.
Future work can complement sensor data with phone data to learn more comprehensive and powerful features
that can be used to train better models of predicting and understanding health or other labels of concern.

Aware of the context-dependent nature of the reported results and our data that came from college students
in a NE university, we do not claim reproducible results using the same procedure and principles with another
dataset. However, we plan to investigate transfer learning techniques to produce consistent results for other
populations, such as non student populations, patients with mental disorders, and other communities in need.

7 CONCLUSION

In this study, we investigated the possibility of automatically learning efficient features from high-resolution time
series data passively collected by physiological and behavioral wrist-worn sensors. Our aim was to develop human
wellbeing forecast technology that can support personalized long-term health-monitoring and early-warning
systems. We collected the dataset (skin conductance, skin temperature, and accelerometer data) and demonstrated
that the recurrent LC-LSTM-DAE network can extract better features than feature crafting or static autoencoders.
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The results obtained in experiments show that temporal features can be reconstructed to the original raw data
dimension with lower reconstruction loss than static features; multi-task models trained on temporal features can
predict mood, health, and stress scores with much smaller errors than on crafted features. Another contribution of
this paper is the attempt of interpreting deep features and prediction behaviors using correlation analysis, weight
visualization, and attention mechanisms. We also provided evidence on the important role that personalization
played in predicting subjective targets. We additionally investigated a relaxed personalization strategy that could
adapt to unseen users based on some knowledge of their personal profile. The results suggest that although
unseen users negatively affect wellbeing prediction, generalization can still be achieved without a critical loss in
performance. Finally, we discussed computation, privacy, and ethics. Further studies are recommended to realize
the promising potentials of implementing this framework as a real-time ubiquitous system.
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