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Abstract— Predicting mood, health, and stress can sound
an early alarm against mental illness. Multi-modal data from
wearable sensors provide rigorous and rich insights into
one’s internal states. Recently, deep learning-based features
on continuous high-resolution sensor data have outperformed
statistical features in several ubiquitous and affective computing
applications including sleep detection and depression diagnosis.
Motivated by this, we investigate multi-modal data fusion
strategies featuring deep representation learning of skin
conductance, skin temperature, and acceleration data to
predict self-reported mood, health, and stress scores (0 – 100)
of college students (N = 239). Our cross-validated results from
the early fusion framework exhibit a significantly higher (p <
0.05) prediction precision over the late fusion for unseen users.
Therefore, our findings call attention to the benefits of fusing
physiological data modalities at a low level and corroborate
the predictive efficacy of the deeply learned features.

Clinical relevance— This establishes that with automatically
extracted features from multiple sensor modalities, choosing the
proper scheme of fusion can reduce the errors of predicting new
users’ future wellbeing by as much as 13.2%.

I. INTRODUCTION
Subjective wellbeing, the feeling of life experience be-

ing positive and satisfied (e.g. happy, healthy, calm, etc.),
correlates with physiological and psychological function-
ing [1, 2]. Therefore, its accurate prediction grounds the
successful development of early intervention systems for
wellbeing enhancement. Meanwhile, ubiquitous technologies
have assisted users and researchers to collect continuous
biobehavioral signals unobtrusively. These signals and deep
multi-modal learning enabled high performance in wellbeing
prediction [3, 4].

Multi-modal learning aims to improve learning perfor-
mance by leveraging different sources of data to deliver com-
plementary and comprehensive information. Intrinsically, the
combination of multiple modalities can result in richer in-
formation than unimodal data. Depending on the conducting
point, multi-modal fusion can be categorized into late fusion
and early fusion. While late fusion usually concatenates
features that are independently extracted from each modality,
early fusion extracts joint features directly from the merged
raw or preprocessed data [5]. Both have demonstrated suc-
cess across multi-modal learning problems including multi-
scale image and speech emotion recognition [6, 7] and
multi-modal depression detection [8]. On the other hand,
they are facing certain challenges such as how to combine
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heterogeneous data with different levels of noise [9].
Meaningful and effective data representation is crucial

to multi-modal learning problems. Recently, a shift has
occurred from manually crafting features to automatically
learning features from raw data. Yang et al. [10] used a
mixture of predefined and learned extractors to compute
features of multi-modal text, video, and audio data for
depression level measurement. Numerous studies have
proved the advantage of distributing raw sensory data in
artificial neural networks to learn features through back
propagation for predicting activities, depressive states,
emotions, etc. [11, 12]. In this paper, we highlight the fully
automatic learning and extraction of sensor features using
autoencoder-based representation learning.

To choose the prevailing multi-modal fusion scheme for
predicting mood, health, and stress, we compare the early and
late fusion schemes based on deep representation learning.
We test the predictive efficacy of the fused features using
personalized regression models. We also provide an entry
point to interpreting the fused deep features and explaining
their predictions. This paper contributes as a first attempt
to study the physical interpretation of the early versus late
fusion of automatically learned wearable sensor features for
predicting future wellbeing in a personalized manner.

II. METHODS
A. Dataset

Wearable sensor data including skin conductance (SC),
skin temperature (ST), and acceleration (AC) were collected
from 255 college students in New England in the SNAP-
SHOT study [13] from 2013 to 2017 for approximately 30
days to 3.5 months. SC is related with physiological arousal
and sympathetic nervous activity [14]; ST has been used to
measure emotion and comfort [15]; AC can reveal movement
and activity-related wellbeing such as energy expenditure
[16]. These data were passively collected using a wrist-worn
device with a unified sampling rate of 8 Hz. To remove
artifacts and environmental noise, SC data were filtered using
a 32nd FIR filter with a cutoff frequency at 0.4 Hz [17], and
a wavelet filter was adopted to the ST data with Symlets 4
scaling and adaptive threshold [18, 19]. The magnitude of
AC was taken across three axes. Evening wellbeing scores
were collected via email surveys every day at 5 pm. The self-
assessed scores of mood (sad-happy), health (sick-healthy),
and stress (stressed-calm) were reported on a continuous
100-point slider. Gender and Big Five Personality were also
collected via standardized pre-study surveys [20].

The dataset had missing data for various reasons (e.g.,
sensor outage, survey incompletion, etc.). Missing sensor
data were imputed with each participant’s correspondent
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Fig. 1: Schematics of the locally connected temporal denoising
autoencoder for automatic feature learning of raw sensor data,
where multiple layers (L/L′{1,2,3}) are stacked to propagate data
through different sized hidden nodes (d/d′{1,2,3}).

channel-wise mean values of the day. Days without survey
responses or with more than 25% sensor data missing were
discarded. After filtering and cleaning, 6391 days from
239 participants remained valid. For each participant, daily
sensor data were normalized to range 0 – 1 to reduce bias.

B. Representation Learning
We composed the locally connected multilayer perceptron

(LC-MLP) layers and the long short-term memory (LSTM)
layers with a denoising autoencoder to form a deep represen-
tation learning framework. The loosely connected design of
the first few layers preserves local information and prevents
overparameterization. Temporal information in the features
is enhanced by the recurrent encoding-decoding component.

Twenty-four-hour sequences of sensor data were firstly
divided into eight 3-hour input frames to address their
sequential characteristics. In each input frame, we adapted
the LC-MLP as the static structure. Outputs of eight frames
were later joined by a many-to-one LSTM encoder, and
the final hidden state of the bottleneck layer was extracted
as the learned representation. With additive Gaussian noise
∼ N (0, 0.1), this representation vector was then copied
to the input of a symmetric LSTM one-to-many decoder,
unrolled, and then decompressed to the input dimensions
via a stack of LC-MLP symmetric to the static encoder with
tied weights (Figure 1).

C. Modality Fusion
In multi-modal machine learning problems, when and

how to merge modalities remained an application-dependent
choice. In this paper, we compared two modality fusion
schemes (Figure 2). We empirically chose 48 as the final
feature dimensionality for both schemes.

1) Late fusion: As Figure 2a shows, SC, ST, and AC
channels are propagated as completely separate data streams
in the autoencoder. The computational paths are equivalent
to training three independent representation models, one
for each channel. Consequently, SC, ST, and AC unimodal
features are distinguishable in the late fusion features.

2) Early fusion: As Figure 2b shows, SC, ST, and AC data
are concatenated before being sent to the autoencoder. Each
locally connected unit transforms data from all three channels
through hidden layers into fused features. As a result, the
early features are a mixture of multi-modal characteristics.
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Fig. 2: Illustration of multi-modal data fusion schemes.

D. Personalized Wellbeing Prediction
1) Multi-task learning (MTL): To predict next evening’s

wellbeing scores from current day’s sensor data, we applied
the `2,1-norm regularized multi-task least squares regression
model [21] given by Equation 1,

θ̂ = argmin
θ

n∑
i=1

||θTi Xi − Yi||22 + λ2,1||θ||2,1 + λ2||θ||22 (1)

where Xi represents the input matrix to the i-th task, and Yi
is the corresponding score. θi is the linear model parameters
of each single task. λ2 controls the `2-norm penalty; λ2,1
controls the `2,1-norm penalty. This model has been used for
wellbeing prediction in [22], and it resulted in higher pre-
cision and interpretability than multi-task neural networks.

2) Personalization in MTL: One fundamental decision to
make for MTL is the definition of tasks. We found that the
strictly personalized models (i.e. MTL with individual partic-
ipants as tasks) outperformed the non-personalized models.
However, the strict MTL models have to be trained with at
least one data point from any to-be-tested participants, which
is not applicable to real-world solutions where new users are
constantly joining. Thus, we relaxed the definition of a task
to be a group of one or more participants. The grouping
was based on their gender and personality. K-prototypes
clustering [23] and Silhouette score [24] were used to create
and search for the optimal number of groups. In summary, the
first strategy is also called user-dependent personalization,
and the second is user-independent personalization.

III. EXPERIMENTS
Our task is to predict wellbeing scores for next evening

(day t + 1, 5pm) using automatically learned features of
current day’s SC, ST, and AC data (day t, 0 am - day
t + 1 0am). This study aims to investigate the effect of
multi-modal fusion on the performance of representation
learning and wellbeing score prediction. Cross validation
was adapted for the following experiments with a split ratio
of 60%, 20%, 20% respectively for train, validation, and
test. The representation framework was implemented using
the deep learning platform PyTorch 1.0, and the prediction
models were adapted from the MALSAR toolbox [25].
A. Experiment Organization

1) Representation learning: Within the representation
learning framework, we compared the late and early fusion
approaches based on the reconstruction loss between the



original input data and the reconstructed output data. The
losses were computed on the validation set at the end of
each training epoch.

2) Personalized wellbeing prediction (user-dependent): Us-
ing the automatically learned features, we proceeded to com-
pare the outcomes of different modality fusion schemes with
regard to the personalized wellbeing prediction. Individual
participants were treated as unique tasks in MTL prediction
models. We compared all combinations of three modalities
(SC, ST, AC, SC+ST, SC+AC, ST+AC, SC+ST+AC).

3) Personalized wellbeing prediction (user-independent):
We committed an exhaustive search for the number of
groups from 2 to 147. Silhouette score constantly increased
as we had more groups, reaching the highest value of 0.60
at k = 147, equal to the number of unique participants in
the training set. In the case of predicting an unseen user’s
wellbeing, we firstly applied the same clustering algorithm
to his or her gender and personality, locating him or her at
one group with the closest distance. Then, we adopted the
trained weights of this group for the target user’s sensor
features and made predictions accordingly.
B. Evaluation Metrics

We used the Mean Squared Errors (MSE) to evaluate
the representation learning performance and Mean Absolute
Errors (MAE) to evaluate the performance of wellbeing pre-
diction models. Smaller errors indicate higher performance.
C. Statistical Test

Analysis of Variance (ANOVA) [26] was used to test for
significant differences among two or more groups of results,
followed by a Tukey HSD test [27] to find group(s) of results
that were significantly different from the others.
D. Analysis of the learned features and prediction models

To understand the sources of difference between prediction
behaviors based on the late features and the early features, we
endeavored to identify, analyze, and interpret the most con-
tributing late and early features in the personalized models.

To find the critical features, we looked for features that
resulted in diverse weight coefficients across different tasks.
We clustered the weight vectors of 239 individual-based tasks
using K-means and Silhouette score evaluation, similar to the
principle described in II-D.2. Taking the health model for
instance, we found that two clusters resulted in the highest
Silhouette scores, namely 0.59 for the late fusion weight
coefficients and 0.58 for the early. For each feature, if its
weight coefficients had statistically different distributions
in the two clusters, and if opposite signs were observed
in cluster means, it would be considered as critical to
personalization, or a critical feature.

To interpret the critical features, we manually defined 34
crafted features of the raw sensor data [22]. They were com-
puted from four non-overlapping time frames, namely 0-3H,
3-10H, 10-17H, and 17H+, resulting in 136 crafted features
daily. Pearson correlation was then computed between the
learned features and the crafted features. By ranking the
statistically significant correlations, we could depict some
intuition of the learned features and prediction behaviors.

IV. RESULTS
We compared the reconstruction MSE loss via late and

early fusion of modalities during the representation learning
process. Despite a similar trend, the early fusion always
produced lower reconstruction loss than the late fusion. The
early fusion loss was eventually reduced from 0.40 (S.D. =
4.4×10−3) to 0.034 (2.1×10−3), while the late fusion loss
concluded at 0.059 (6.3×10−3).

Moving forward to predicting wellbeing score, a
coincident pattern was observed. The early fusion features
always resulted in statistically equivalent or significantly
lower errors compared to corresponding late fusion features,
as Figure 3 shows. Using trimodal data, when switching
from late to early fusion features, the averages of prediction
MAE on unseen participants dropped by 4.8%, 6.1%, and
2.4%, landing at 15.8 (S.D. = 0.4), 15.4 (0.3), and 16.5 (0.2),
respectively for predicting mood, health, and stress (p<0.05).

Overall, the early fusion of trimodal data resulted in the
extraction of more robust and predictive deep sensor features.
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Fig. 3: Performance of wellbeing prediction using user-dependent
and user-independent personalizing MTL on different fusion
schemes and modality combinations. For the fused modalities, the
inner bars denote early fusion; the outer bars denote late fusion.

We conducted the feature and prediction analysis to our
best performing trimodal health model (user-dependent),
as described in Section III-D. Four early fusion features
were found critical to personalization, whereas only one late
fusion feature was critical. This observation indicated that
early features might contain more crucial and personalized
information than late features.

By summarizing the top correlations between critical auto
features and hand-crafted features in Table I, we found that
the critical early features had stronger correlations with ST
and SC medians around evening. The top three correlations
with the critical late feature were found in AC stillness
percentage and step counts before and after mid-night, where
step count 0-3H could be related to sleep and step count
17H+ could indicate physical activities.

V. DISCUSSION
We observed that the early and late fusion features always

showed different predictive power of future mood and health.
Based on our observation, we hypothesize that early fusion
outperformed late fusion in personalized tasks because it
resulted in more sufficient capture of critical features. As
another potential explanation, with early fusion, features can



TABLE I: Top-3 highest correlations between critical fusion features and hand-crafted features. All displayed correlation coefficients
had p-value < 7.3×10−5 as the adjusted significance threshold. (* E.F. = critical early fusion feature; L.F. = critical late fusion feature.)
E.F.*-1 E.F.-2 E.F.-3 E.F.-4 L.F.*-1
0.31 17H+: ST median (stillness) 0.35 17H+: ST median 0.22 17H+: SC z-score median 0.31 17H+: ST median (stillness) 0.11 17H+: AC stillness percent
0.31 17H+: ST median 0.35 17H+: ST median (stillness) 0.21 17H+: ST median (stillness) 0.30 17H+: ST median -0.10 0-3H: AC step count
0.16 17H+: SC z-score median -0.16 10-17H: ST minimum 0.20 17H+: ST median -0.16 10-17H: ST minimum -0.10 17H+: AC step count

be smoother and more coherent than with the late fusion.
According to [28] where the authors remarked a similar
advantage of early over late modality fusion in image-based
affect recognition, the reason could be that early fusion
benefited from minor low-level architectural elements which
were crucial to performance through deep propagation.

Furthermore, we anticipate that human health or other
wellbeing is easier to infer with greater personalized concen-
tration on physiological (ST and SC) information 24 hours
prior. Our early fusion framework emphasized features about
ST medians and lower-extremities, supporting current re-
search (e.g. [29, 30]) that wrist ST can indicate thermal com-
fort which is closely related to perceived health. Additionally,
low SC levels are associated with several health issues
including chronic fatigue [31] and pain [32]. Prior work has
also revealed strong links from social interaction to happiness
[33], suggesting that exploiting phone and other ubiquitous
data is very likely to boost our model’s performance.

This study is open to further improvement. Our results
were solely based on a college student dataset. Re-validation
on other datasets is needed, including healthy and in-
treatment populations. We will study deep feature learning
from other types of data such as phone usage, location,
and weather logs. Our explanation of the learned features
was also limited, because autoencoders could capture other
predictive information beyond our current vocabulary.

VI. CONCLUSIONS
We studied the multi-modal fusion of wearable sensor

data in the context of learning features that can forecast
college students’ subjective mood, health, and stress. Early
fusion can promote the unsupervised learning of sensor
features. Without prior knowledge of any target students,
the lowest prediction MAE was reached at 15.4 (S.D.=0.3)
in predicting their health using the early fused SC+ST+AC
features. There was a 6.1% improvement compared to the
late fused SC+ST+AC features and a 13.2% improvement to
the unimodal features.
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[12] F. Ordóñez and D. Roggen. “Deep convolutional and lstm recurrent
neural networks for multimodal wearable activity recognition”. In:
Sensors 16.1 (2016), p. 115.

[13] A. Sano et al. “Identifying objective physiological markers and
modifiable behaviors for self-reported stress and mental health status
using wearable sensors and mobile phones: Observational study”. In:
Journal of medical Internet research 20.6 (2018), e210.

[14] W. Boucsein. Electrodermal activity. Springer Science & Business
Media, 2012.

[15] D. Wang et al. “Observations of upper-extremity skin temperature
and corresponding overall-body thermal sensations and comfort”. In:
Building and Environment 42.12 (2007), pp. 3933–3943.

[16] A. K. Chowdhury et al. “Deep learning for energy expenditure
prediction in pre-school children”. In: (2018).

[17] A. Sano et al. “Quantitative analysis of wrist electrodermal activity
during sleep”. In: International Journal of Psychophysiology 94.3
(2014), pp. 382–389.

[18] K Palanisamy et al. “Multiple physiological signal-based human
stress identification using non-linear classifiers”. In: Elektronika ir
elektrotechnika 19.7 (2013), pp. 80–85.

[19] X.-P. Zhang and M. D. Desai. “Adaptive denoising based on SURE
risk”. In: IEEE signal processing letters 5.10 (1998), pp. 265–267.

[20] O. P. John and S. Srivastava. “The Big-five Trait Taxonomy: History,
Measurement, and Theoretical Perspectives”. In: 1999.

[21] R. Caruana. “Multitask Learning”. In: Machine Learning 28.1 (1997),
pp. 41–75. ISSN: 1573-0565. DOI: 10.1023/A:1007379606734.

[22] H. Yu et al. “Personalized Wellbeing Prediction using Behavioral,
Physiological and Weather Data”. In: 2019 IEEE EMBS International
Conference on Biomedical & Health Informatics (BHI) (IEEE BHI
2019). Chicago, USA, May 2019.

[23] Z. Huang. “Extensions to the k-means algorithm for clustering large
data sets with categorical values”. In: Data mining and knowledge
discovery 2.3 (1998), pp. 283–304.

[24] P. J. Rousseeuw. “Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis”. In: Journal of computational and
applied mathematics 20 (1987), pp. 53–65.

[25] J. Zhou et al. “MALSAR: Multi-task learning via structural regular-
ization”. In: Arizona State University (2011).

[26] G. R. Iversen et al. Analysis of variance. 1. Sage, 1987.
[27] H. Abdi and L. J. Williams. “Tukey’s honestly significant difference

(HSD) test”. In: Encyclopedia of Research Design. Thousand Oaks,
CA: Sage (2010), pp. 1–5.

[28] H. Gunes and M. Piccardi. “Affect recognition from face and body:
early fusion vs. late fusion”. In: 2005 IEEE international conference
on systems, man and cybernetics. Vol. 4. IEEE. 2005, pp. 3437–3443.

[29] J. L. Stoops. “A possible connection between thermal comfort and
health”. In: (2004).

[30] S. Y. Sim et al. “Estimation of thermal sensation based on wrist skin
temperatures”. In: Sensors 16.4 (2016), p. 420.

[31] H. Pazderka-Robinson et al. “Electrodermal dissociation of chronic
fatigue and depression: evidence for distinct physiological mecha-
nisms”. In: International Journal of psychophysiology 53.3 (2004),
pp. 171–182.
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