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Abstract. We propose a new dynamical model, inspired by optimal transport theory and Fisher
information, for finite player discrete strategy games. For a potential game, the model is a gradient
flow, known as Fokker—Planck equations (FPEs), in a probability simplex set equipped with an
optimal transport metric. Based on FPEs, we introduce the best-reply Markov processes, which
model players’ myopia, greed, and uncertainty when making decisions. The stationary measure of
the dynamics provides each pure Nash equilibrium a probability by which it is ranked. We extend
the proposed dynamical model to rank/select equilibria for nonpotential games as well.
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1. Introduction. Game theory plays vital roles in economics, biology, social
network, etc. [15, 21, 17, 18]. Tt involves models of conflict and cooperation between
rational decision makers. Each player in a game optimizes his/her own objective
function. Nash equilibrium (NE) describes a status that no player is willing to change
his/her strategy unilaterally. A fundamental question in game theory is that if there
are multiple pure NEs, how can one select /rank them? This problem has been studied
previously using various approaches. For example, in [10, 11], NEs were selected
by refining the concept of equilibrium, such as payoff dominance or risk dominance
principle. Another class of approaches uses learning dynamics by assuming that the
players have bounded knowledge and they need to “learn” from what occurred in
previous stages of the game and then respond to other players’ strategies. In these
settings, irrationalities of individual players are often considered. Such examples
include fictitious play, no-regret dynamics, replicator dynamics, logit dynamics, and
best-response dynamics [2, 12].

For continuous strategy games, equilibrium selection can be done in a rather
natural way by stochastic differential equations (SDEs) and optimal transport the-
ory. Individual players can be modeled to make decisions according to a stochastic
process, such as the best-reply process [7], in which players change their pure strate-
gies locally and simultaneously in a continuous fashion according to the direction that
minimizes their own cost function most rapidly. A player’s irrationality is modeled
by the Brownian motion with a parameter representing the irrationality level. The
time evolution of the probability density of the best-reply process is characterized by
a Fokker—Planck equation, which is the learning dynamics of the game. For potential
games in which all players have the same cost function named potential, this learning
dynamics is the gradient flow of the free energy in the probability space equipped with
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Wasserstein metric [1, 20]. Here the free energy refers to the average of the potential
plus negative of the Shannon-Boltzmann entropy, representing the irrationalities or
risks taken by the players. This understanding relates the game learning dynamics
with statistical physics [19]. If players become purely rational, by vanishing the pa-
rameter in front of the Brownian motion, NEs are stationary points of the players’
best-reply process. Thus the invariant measure associated with best-reply dynamics
naturally introduces an order of NEs. This ranking method shares many similarities
with the Conley-Markov matrix described in [5].

Motivated by the learning dynamics and continuous strategy best-reply processes,
we propose a new learning dynamical model for finite player discrete strategy games.
Our model is based on the discrete optimal transport theory developed recently [4,
6, 13, 8, 14]. Taking an N-player potential game as an example, if ¢: S — R is the
potential, and S = S; x --- x Sy is the strategy set, where S; is the finite discrete
strategy set of player i, we use the following Fokker—Planck equations (FPE) on the
strategy set S to define the dynamics in the probability simplex,

dp(;t’ 2 Z p(t,y) [¢(’U) — ¢(x) + B(log p(t,y) — log p(t, x))} N

(1.1) yeN ()
= X o) o) — oy) + Bllog plt. x) — log p(t.w)]

yeN (z)

where 8 > 0 is a positive constant representing the irrationality level, p(¢,x) is the
probability at time ¢ with strategy € S, []+ = max{-,0}, and y € N(z) if y can be
achieved by players changing their strategies from z.

The density function p(¢, x) enjoys many appealing mathematical properties. For
a potential game, it can be regarded as a gradient flow that converges to the minimizer
of the free energy. It can be shown that the convergence is exponentially fast and the
convergence rate can be accurately characterized by relative Fisher information [20],
a key concept in statistical physics [9]. Also, the dissipation of the free energy along
this learning dynamics exactly equals the relative Fisher information.

Treating FPE (1.1) as the Kolmogorov forward equation, we obtain its corre-
sponding Markov jump process on the strategy set S, which is the best-reply dynam-
ics. Details of its construction are given in section 3.4. The best-reply dynamics is
used to model the players’ decision-making process. It captures the players’ behaviors,
such as myopia, greed, and risk-taking. In addition, it is shown that the asymptotic
distribution of the FPE (1.1) has support on pure NEs. Therefore our model can be
naturally employed to select NEs, roughly speaking, by comparing the value of the
limit probability distribution at each NE.

The paper is organized in the following order. In section 2, we give a brief intro-
duction to best-reply dynamics and optimal transport theory in continuous spaces. In
section 3, we describe the mathematical properties of optimal transport and best-reply
dynamics derived for discrete strategy games, including the extension to nonpotential
games. The connection of our model and statistical physics is discussed in section 4.
In section 5, we illustrate equilibrium selections via the proposed dynamics for some
well-known games.

2. Equilibrium selection in continuous strategy game. In this section,
we briefly review best-reply dynamics and its connection with FPEs and optimal
transport theory in continuous strategy games.
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2.1. Best-reply dynamics. Consider a game consisting of N players i €
{1,...,N}. Each player i chooses a strategy x; from a Borel strategy set S;, e.g.,
S; = R™. Denote S = S; x --- x Sy. Let x be the vector of all players’ decision
variables:

x=(x1,...,2n) = (x5,2_;) €S foranyi=1,..., N,

where we use the notation

T ={T1,. ., Ti 1, Tit1,- -, TN}

Each player i has cost function u; : S — R, where u;(x) is a globally Lipchitz con-
tinuous function with respect to . The objective of each player i is to minimize the
cost function

1?61]%% ui(x) = ui(wi, x_5).

A strategy profile z* = (z7,..., 2% ) is an NE if no player is willing to change his or
her current strategy unilaterally:

ui(xf,x* ;) <wu(xg,z*,;) foranyz; € S;,i=1,...,N.

It is natural to consider stochastic processes to describe players’ decision-making
processes in a game. For each player 7, instead of finding x; satisfying NE directly, he
or she plays the game according to a stochastic process X;(t), t € [0, +00). Here ¢ is an
artificial time variable, at which player 7 selects his or her decision based on the current
strategies of all other players X;(¢),j € {1,...,N}. It is important to note that all
players make their decisions simultaneously and without knowing others’ decisions.
Each player selects a strategy that decreases his or her own cost most rapidly. To
model the uncertainties of decision making, an N-dimensional independent Brownian
motion is added:

(21) dXz == 7inui(X¢,X_i)dt + QBdB;I,

where 3 > 0 controls the magnitude of the noise. SDE (2.1), X (¢) = (X;(t))X,, is
called the best-reply process. Observe that if an NE exists, it is also an equilibrium
distribution for X (¢) in (2.1) with g = 0. It is known that the transition density
function p(t, z) of the stochastic process X (t) satisfies the FPE

3/3(;1; ) -V (p(t,x) (Vzlui(zz,z_z))il) + BAp(t, ).

In the case that the game is a potential game, i.e. there exists a C' potential
function ¢ : RN — R, such that V, u;(z;,7_;) = V,,é(z), the best-reply process
(2.1) becomes

dX = —Vo(X)dt + /28dB,

which is a perturbed gradient flow, whose density function satisfies

op(t,x
(2.2 ALL) _ - (plt, ) V0(@) + Bn(t, ).
The stationary distribution of (2.2) is the Gibbs measure given by
1 x x
pr(x) = —e_¢§3>7 where K = / e 5 da.
K s

It’s easily seen that the Gibbs measure introduces an order of NEs in terms of the
potential ¢(x). In other words, given two NEs, the one with the larger density value
will be considered more stable. One can extend this ranking to general games by
studying the stationary solution of the FPE; see details in [5].
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2.2. Optimal transport. Equation (2.2) is closely related to optimal transport.
It has a gradient flow interpretation in the geometry of probability space, equipped
with optimal transport metric, also named L?-Wasserstein metric.

Consider the set of smooth and strictly positive densities

PL(S) = {p € C*(8): p(z) >0, /Sp(gc)dac = 1} .
DEFINITION 2.1 (L2?-Wasserstein metric tensor). Denote
T,P+(S) = {p € C(95): /p(x)d:z: = O} .
The L%-Wasserstein metric gZV: T,P+(S) x T,P+(S) = R is defined by

gV (pr. pn) = /S (51@). (=2,) (e ) o

Here py1, p2 € T,P4(S), (-,-) is the metric on S, and A" T,P(S) = T,Py(S) is
the inverse of the elliptical operator

A, = div(pV-).

Here (P4(S),¢") is a Riemannian manifold named the density manifold. In
particular, the Riemannian gradient of a functional F(p) is

grady F(p) = ((=8,)7) " 6F(p) = ~ A0 F(p) = ~div(pVoF(p))

where F: P, (S) — R and § is the L? first-variation operator.
We next demonstrate that the FPE (2.2) is a gradient flow of an informational
functional, known as the free energy, in (P, (S),g"). Consider

(2.3) F(p) = [ olwptorts +5 [ plo)log pleis
then dF(p) = ¢(x) + (log p(x) + 1) and
grady F(p) = (~A;1)T0F(p) = =V - (pV (6 + Blogp+ §)) = =V - (pV9) — B,

where we use the fact Vlogp = %Vp. Thus the gradient flow dipr = —grady, F(pt)
forms exactly (2.2).

This derivation reveals that the best-reply dynamics used in modeling finite player
continuous strategy games has the FPE (2.2) as its transition equation, which is also
the gradient flow in the probability space with L?-Wasserstein metric. The objective
of this paper is to propose the best-reply dynamics for discrete strategy games. Our
approach is to build the L2-Wasserstein metric tensor on the probability simplex on
the discrete strategy set, and study its gradient flow as the FPE. We then establish a
Markov jump process associated with the FPE and use it as the best-reply dynamics.
This approach also allows us to build dynamics for nonpotential games, and further
gives a natural order for NEs.
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3. Game dynamics and optimal transport. In this section, we introduce
the time evolution of the probability density function of the best-reply process for
discrete strategy games.

3.1. Wasserstein geometry in a norm form game. We first review some
notations in game theory [15]. Consider a game with N players. Each player i €
{1,..., N} chooses a strategy x; in a discrete strategy set S; = {1,..., M;}, where M;
is an integer. Denote the joint strategy set S = S1 X -+ x Sy. Similarly to continuous
games, each player i has a cost function u; : S — R,

wi(x) = wi(zi, x_;).

If there are only two players (N = 2), it is customary to write the cost function in
a bimatrix form (A, BT) with A = (u1(i, ), xmns BT = (u2(4,7)) s, < ar,, Where
(i,7) € S1 x Sy. This form of representation is called the normal form.

Ezample 1 (prisoner’s dilemma [16]). Two members of a criminal gang are ar-
rested and imprisoned. Each prisoner is given the opportunity either to defect the
other by testifying that the other committed the crime, or to cooperate with the other
by remaining silent. Their cost matrix is given by

player 2 C  player 2 D
player 1 C (1, 1) (3,0)
player 1 D (0, 3) (2, 2)

In this case, the strategy set is S = {C, D}, where C represents “cooperate” and D
represents “defect.” The cost function can be represented as (A4, BT), where

(1 3 r (10
=03 -3

In this example, it is easy to verify that (D, D) is the NE of the game.

For a given finite player game, we construct a corresponding strategy graph as
follows. For each strategy set S;, construct a graph G; = (S;, E;). Two strategies x
and y are connected if player i can switch strategy from x to y. If the player is free to
switch between any two strategies, it makes G; a complete graph. Let G = (S, F) =
G10---0OGy be the Cartesian product of all the strategy graphs. In other words,
S=8x--xSyand x = (x1,...,xx5) € Sand y = (y1,...,yn) € S are connected
if their components are different at only one index and these different components
are connected in their component graph, see Figure 1. For any = (z1,...,zy) € S,
denote its neighborhood

N(z) ={y € S: edge(z,y) € E},
and directional neighborhood
M(‘I) = {(xlv s Ti—1, Y, i1y - - a':l:N): y e Siv edge(xi,y) € E’L}

fori=1,...,N. Here N;(z) entails that each player selects his or her strategy with
other players’ strategies fixed. Notice that
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@

Fic. 1. An ezample of the prisoner-dilemma game in Example 1. Here S1 = So = {C, D}.

We now introduce an optimal transport distance on the probability space of the
strategy graph. The probability space (i.e., a simplex) on all strategies is given by

P(S) = {(P(x))zes e R Zp(a:) =1, p(x)>0, foranyze S} ,

zeS

where p(x) is the probability at each vertex z, and |S] is total number of strategies.
Denote the interior of P(S) by P,(S).
Given any function ®: S — R on strategy set S, define V&: S x S — R as

®(x) — @(y) if (z,y) € B,
0 otherwise.

Vo(r,y) = {

Let m: S x S — R be an antisymmetric flux function such that m(x,y) = —m(y, x).
The divergence of m, denoted as div(m) € RISl is defined by

div(m)(z) == Y m(x,y).
yeN (z)
For the purpose of defining our distance function, we will use a particular flux function
m(z,y) = pVe :=0(z,y,p)Ve(z,y),
where g(z,y, p) represents the discrete probability (weight) on edge(z,y) and satisfies

3.1 Oz,y,p) =0(y,z,p), min{p(x),p(y)} <0(z,y,p) < max{p(z), p(y)}.
A particular choice of 0(x,y, p) will be given shortly in the next subsection.
We can now define

(V0,78), = 5 37 (2(r) ~ 2(u)0(z,y,0),

(z,y)EE

which induces the following distance on P,(5).
DEFINITION 3.1. Given two discrete probability functions p¥, p' € P,(S), define
the optimal transport metric function W: P,(S) x P,(S) — R:

1
W, = int { [ (V0,5) a5 4 aiv(p7®) =0, p(0) = . p(1) = p'}.
0
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The Wasserstein metric induces a Riemannian metric tensor in the interior of the
probability simplex. Consider the tangent space at a point p € P,(5):

T,Ps(S) = {(U(x))mes eR™: Z o(x) = 0} .

We next identify a potential vector ® € R™ with a tangent vector o € P,(5).

LEMMA 3.2. For given o € T,P,(S), there exists a unique function ®, up to a
constant shift, such that
o= —div(pVP).

Proof. We prove the result by rewriting the operator —div(pV) into a matrix
form. Denote
L(p) = DTO(p)D € R™",

where D € RIFIX™ ig the discrete gradient operator

1 ifi=k, i>j,
D jyeprev =4 -1 ifj=k, i>j,
0 otherwise,

—DT € R™ Il is the discrete divergence operator, and ©(p) € RIFI*IFl is a weight
matrix
0(z,y,p) if (z,y) = (2'.y) € E,

(—) - z' ! —
(P) @ w)ep 2 v)eE {0 otherwise.

Using this matrix notation, we prove that —div(pV®) = L(p)® = o has a unique
solution for ® up to a constant shrift.
If p € P,(9), all diagonal entries of the weight matrix ©(p) are nonzero. Consider

1

L =5 D (2(x) = B()*0(z.y,p) =0.
(z,y)EE
Since p; > 0 for any i € V and the strategy graph is connected, ®; = --- = ®,, is the

only solution of the above equation. Thus 0 must be the simple eigenvalue of L(p)
with eigenvector (1,...,1)T. Since Ker(L(p)) = {(1,...,1)T},

R" /ker(L(p)) = Ran(L(p)) = T,P,(G).

Thus there exists a unique solution of ® up to a constant shift. ]

Based on Lemma 3.2, we write

Lip)=T . T,
Amax(L(p))

where 0 < Agee(L(p)) < -+ < Amax(L(p)) are eigenvalues of L(p) arranged in ascend-
ing order, and 7' is its corresponding eigenvector matrix. We denote the pseudoinverse
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of L(p) by

71
1
AmaxL(p)

Here the matrix L(p)~! endows an inner product on 7,P,(G).

DEFINITION 3.3. For any two tangent vectors o*,0% € T,P,(S), define the inner
product g}V : T,Po(S) x T,Po(S) = R by

g, (0,6) =0 L(p)~'d = ®"L(p)®,

where o = L(p)® and 5 = L(p)®.

Under this inner product, we can formulate the Wasserstein metric in Defini-
tion 3.1 as a geometric action function

(3.2) W (p°,p')* = ot {/O pTL(p)~" pdt: p(0) = p°, p(1) = pl} :

where C is the set of all continuously differentiable curves in P,(S). Thus (P,(S5), g")
is a finite dimensional Riemannian manifold [13]. It enables us to define the gradient

flow in P,(9).

3.2. FPEs for potential games. We first derive the FPE for discrete potential
games. Here a potential game means that, there ezists a potential function ¢ : S — R,
such that

o(x) — oly) = ui(x) —u;(y) for any x,y € S; andi=1,...,N.

As in the continuous case (2.3), our objective functional in P(S) is the discrete free
energy

Y d@)p(x) + 8 pla)log ple),

zes zes

where the first term is average of potential and the second one is the linear entropy
modeling risk taking.

Using this objective functional, we construct the metric W with an upwind type
0(x,y, p) satisfying (3.1):

p(x) if ¢(z) + Blogp(z) >
0(z,y,p) = 1 p(y) if ¢(z) + Blog p(x) <
AL if () + Blog p(x)

(y) + Blogp(y),
(y) + Blogp(y),
d(y) + Blog p(y).

© S

We remark that the so-called upwind scheme is a common numerical method used
to compute solutions of conservation laws [3]. It uses either forward or backward
finite differences depending on the characteristic lines. In other words, it always
uses information coming from the characteristic direction, also known as the upwind
direction.

THEOREM 3.4 (gradient flow). Given a potential game with strategy graph G =
(S, E), potential ¢(x), and constant 8 > 0, we have the following:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/19/20 to 143.215.38.35. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

150 SHUI-NEE CHOW, WUCHEN LI, JUN LU, AND HAOMIN ZHOU

(i) The gradient flow of

= d(@)p(x) + 8 plx)log p(x

zes zes

on the metric space (P,(S), W) is the FPE

d

W)~ 5™ i) o) — 900 + 5l1om 0) ~log plt, )]
(3.3) vEN®)

= > plt.) [9lx) — 6ly) + Bllog plt, x) ~ log p(t,y) |
yEN (@) !
(ii) For B> 0, Gibbs measure

(3.4) pr(x) = %6_ Mﬁz), where K = Z 6_%,

zeS

is the unique stationary measure of ODE (3.3).
(iii) For any given initial condition p° € Po(S), there exists a unique solution
p(t) : [0,00) = Po(S) to (3.3).

The proof follows [4, 6], so is omitted here.

3.3. FPE for discrete strategy games. For general games, as in the contin-
uous case, the FPE can’t be interpreted as gradient flows for some functional. To
establish FPEs in a discrete setting, we observe that if the underlying graph is a
Cartesian grid partition, (3.3) is the numerical discretization of the continuous FPE
using an upwind scheme. This motivates us to define the following FPE.

DEFINITION 3.5. For a general game with strateqy graph G = (S, E) with cost
functionals u;(x) fori € 1,...,N, define its FPE to be

o) Z >° [wily) — wila) + Bllog p(t.y) ~ log plt, )] _p(t.y)

i=1 yeN;(x)

-2 Y [usle) —wily) + Bllog plt. ) ~ log plt. )] p(t.).

i=1 yeN;(z)

(3.5)

Notice that UY ; N;(x) = N(x). So when the general game is a potential game,
the above FPE coincides with (3.3). Our main result for general games is the following
theorem.

THEOREM 3.6 (general flow). Given an N-player game with strategy graph G =
(S, E), cost functional u;, i = 1,...,N, and a constant > 0, we then have the
following:
(i) For all B > 0 and any initial condition p(0) € P,(S), there exists a unique
solution

p(t) = [0,00) = Po(5)
of (3.5).
(ii) Given any initial condition py(t), denote p°(t) as the solutions of (3.5) with
varying $’s. Then for any fized time T € (0,+00), the following convergence
is uniform in time:

lim p%(t) = p°(t), € [0.7].
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(iii) Assume there are k distinct pure NEs x',... 2% € S. Let p*(z) be a measure
such that
support of p*(z) C {zt, ..., 2"},
then p*(x) is a stationary solution of (3.5) with § = 0.

Proof. (i) This is a slight modification of the results in [3]. (ii) Let’s denote ODE
(3.5) for 8 > 0 as a matrix form

dp”(t)
o = Q(p, )’ (1).
We observe that if 8 = 0, Q(p,8) = Q is a constant matrix. By a similar reason
proving Theorem 3.4, we know that for any initial condition p°, there exists a compact
set B(p%) C P,o(S), such that p?(t) € B(p") for any 3. Hence there exists a constant
M > 0, such that

1Q(p. 8) = Q)" ()] < M3,
where || - || is the 2-norm. In other words, the difference between the ODE (3.5)’s
solution at § >0 and g =0 is

d(p”(t) — p°(t))

B avB _ 0
o Q(p”, B)p” —Qp

=Q(” — ")+ (Q(p”. B) — Q)p".

Hence

dllp?(t) — (1)

o < 1R (1) = ) + 1R, 8) = Q)°

<Qllp” = p°ll + BM.
By Gronwall’s inequality, for t € [0, 7], we have
1676 = (D] < BMEIT,

which finishes the proof.
We now prove (iii). Denote & = {x!,..., 2"}, then support of p*(x) C £ implies

0 ifegé
3.6 “(z) = ’
(3:6) p(z) {zo ifzcé.

Since z € £ is an NE, u;(y) > u;(xz) when y € N;(x) for any i = 1,...,d. For x € &,
we substitute p*(z) into the right-hand side of (3.5), which forms

N N
Z Z [ui(y) — wi(@)]+p"(y) — Z Z [wi(z) — ui(y)l+p* ()

i=1 yeN;(z) i=1 yeNi(z)
N
=3 > [wily) —wi(2)]p*(y) = 0
i=1 yeN;(z)
=0,

where the last equality is from the following facts in two cases. (i) If y € £, p*(y) =0
from (3.6). (ii) if y € &, u;(y) > ui(x), then u;(y) —w;(z) = 0. Similarly, we can show
the case when x & £. 0
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3.4. Best reply Markov process. For the continuous strategy games, the FPE
can be regarded as the evolution of the density function of best-reply dynamics. In
this subsection, we introduce a similar notion to the discrete strategy games. More
precisely, we define Markov jumping processes among discrete strategy sets.

We start with an N-player potential game with strategy graph G = (S, FE) and
potential ¢. Consider the following time homogenous Markov process X (¢) on the set
S whose transition probability is

Pr(X(t+h)=y: X(t) =x)

[6(2) = 6(w)] -+ oh) if y € N (@),
= (1= Cyenio) [#@) — 6(w)] htoh) ify=a,
0 otherwise,

where limy,_,o 0(:) = 0. Denote p(t,z) = Pr(X(t) = ), the transition probability
function. Then the time evolution of p(t, ) is given by forward Kolmogorov equation

= > e -o@)] o) - X [¢@) - ow)] o).

yeN (z) yeN (z)

(3.7)

Equation (3.7) can be seen as the discrete version of the FPE (2.2) with ¢ = 0 and
the Markov process X (t) is the discrete version of the pure gradient flows (2.1) with
e = 0. To introduce white noise into the Markov process, by comparing (3.7) and
(3.3), one can see that if we replace the potential ¢ with the noisy cost functional

¢(z) = ¢(x) + Blogp(x), x €S,

we will arrive exactly at FPE (3.3). In other words, we define our gradient Markov
process Xg(t) € S to be

Pr(Xs(t + h) = y: Xs(t) = 2)
[6(2) = (w)]  h+oh) if y € N (),

= (1= Tyeno) [#@) = 6(w)] h+olh) ify=a,
0 otherwise.

Remark 3.7. Equation (2.2) in a continuous strategy game can also be rewritten
as

apgt, 7 _g. (p(t, ) (Vp(z) + BV log p(t, ))).

Its Lagrange formulation is the the nonlinear ODE in the sense of Mckean type:

(3.8) dX = —V(¢(X) + Blog p(t, X)) dt.

Notice that process X and its density function are coupled. The term log p corresponds
to the Brownian motion in the best-reply SDE. The formulation of (3.8) gives the
justification of our definition of noise cost (payoff ) and motivates the definition of the
jump process in discrete strategy games.
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Mimicking the connections among (2.1), (3.8), and (2.2), we can extend the for-
mulations to the nonpotential games. Namely, with the noise cost functional

() = ui(x) + Blog p(x),
the best-reply Markov process Xg(t) for a nonpotential game is

Pr(Xs(t+h) =y: Xg(t) =)

o) S [ulw) — wa(@)] b+ o(h) ify € ().
=1 T S [) — w(@)] h+o(h) ity =,
0 otherwise.

The time evolution p(t) = (p(t, x))zes of Markov process X3(t) is exactly FPE (3.5).

The process Xg(t) describes players’ behaviors with the following features. The
Markovian property of Xz(t) reflects players’ myopia when making decisions. In other
words, players make their decisions based solely on the most recent information. The
noisy cost functional reflects players’ irrational behaviors (This may be because the
player is a risk-taker). The decision making is local in our model, meaning players
only need local information, including the cost and relative popularity log ’; Ei;g
neighboring strategy, to make the next selection. It is easily seen that players select
the next strategy to decrease their collective cost functionals with largest probabil-
ity. This is to say players are greedy during the decision-making process. It’s also
worth mentioning that the decision process depends on the distribution p, which can
be interpreted as the collective behavior of infinitely many copies of players playing
simultaneously or the game being played by the player repeatedly for infinitely many
times. In other words, the proposed model assumes that each player has additional
information that stems from repeatedly playing the exact same game.

for its

3.5. NEs selection. If FPEs possess stationary distributions (equilibria) for the
dynamics, we can rank different equilibria by comparing their probabilities.

For potential games, the stationary distribution is the Gibbs measure, which
provides the same ranking as that given by simply comparing potentials. Denote
zb, ..., 2% € S as distinct NEs. A natural order is as follows:

(3.10) et <o =<2k it pr(at) < oo < pf(ah).

Here, © < y is to say that the strategy y is better(more stable) than strategy .
The above definition is equivalent to looking at ¢(zt) > --- > ¢(aF), since p*(z) =

#(x)
%eiT. In other words, the smaller potential corresponds to the larger probability,

and is thus more stable.

For nonpotential games, although there are no potentials, the stationary solution
of FPE, p*(t), if it exists, still provides a way of ranking equilibria. We call it the
transport order of NEs.

DEFINITION 3.8 (transport order of NEs). Assume p*(x) = limg_,¢ lim;_ o p(t, )
exists, where p(t, ) is a solution of (3.5) with any initial measure p° € P,(S). We
define the order of NE by

(3.11) ot <o =ab if pr(at) <--- < p ().
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For potential games, p*(z) is always well defined, since it gives the support of a
global minimizer, while in nonpotential games, the existence of p*(x) is still an open
problem. In our numerical experiments, we choose a suitably small 3, and compute
the solution of the FPE at a large enough time 7. Then we treat p(T,z) as the
stationary solution, i.e. p(T,z) ~ p*(z), and use it to rank the order of NEs. In all
numerical examples we tested, the numerical results indicate that the p(¢, x) becomes
invariant when 7' is large enough.

Compared to the risk and payoff dominance, the proposed approach takes the
graph structure into consideration, which impacts the order of NEs. In section 5, we
give several examples to illustrate this selection method.

4. Entropy dissipation. In this section, we illustrate the connection between
our Markov process and statistical physics, named the discrete H theory. We will
mainly focus on potential games. We borrow two “discrete” physical functionals to

S(z)
measure the closeness between two discrete measures, p and p*>(z) = %e_ 5. One
is the discrete relative entropy (H),

H(plp™) = p(x)log p()

= p>=(x)

The other is the discrete relative Fisher information (I),

Z(plp™) = > (log 2D og p(y))) p().
+

(5 g)eE P> (y

The H theory states that the relative entropy decreases along a player’s decision
process. The following theorem can be viewed as the discrete H theorem for finite
player games.

THEOREM 4.1 (discrete H theorem). Suppose p(t) is the transition probability of
Xp(t) in potential games. Then the relative entropy decreases,

LH (1)) < 0.

And the dissipation of relative entropy is 5 times relative Fisher information,

(4.1) SH(0)5) = ~5T(p(1) ).

Proof. Since Z(p|p™) > 0 and equality is achieved if and only if p = p>

(2)
only need to prove (4.1). Substituting p*°(z) = %e_T into the relative entropy, we
observe

p(m)
H(plp™) =D plx B ()

€S
=Y plx)logp(z) = Y p(x)log p™(x)
€S €S
=> plx)logp(x 5ZP (z) +1og K Y p(x)
z€S zeS zeS
(ﬂZp )log p(x Z >+logK
zeS z€S
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From the explicit formulation of FPE (3.3), we have

d d
2 e(0)]p>) = %% {6;/)(757 z)log p(t, x) + ;p(t z)(t, m)}
=3 3 (6la)+ Blogstt.o) — oly) - Blog plt.n)) _plt,2)
(z,y)eEE
1 p(t, x) p(t.y)\
=—=-5 (1og — = —log — ) p(t, )
B (m%:e s\ () p>(y) /) 4
=—B-Z(p(t)[p>) <0,
which finishes the proof. ]

Besides the discrete H theorem, there is a deep connection between FPE (3.3)
and statistical physics from the mathematical viewpoint. This connection is known
as entropy dissipation, i.e., the relative entropy decreases to zero exponentially. We
show similar results for the proposed model.

THEOREM 4.2 (entropy dissipation). Given a potential game with 3 > 0, p° €
Po(S), there exists a constant C = C (B, p°,G) > 0 such that

(4.2) H(p(1)|p™) < e H(p%|p™).
The proof of Theorem 4.2 is presented in [6].

5. Examples. We give several examples to illustrate the dynamical model and
present the related order of NEs. For comparison purposes, we first recall the ranking
results obtained by risk dominance and payoff (cost) dominance, two existing ranking
strategies, on the prisoner’s dilemma presented in section 3.

Payoff dominance: Strategy pair (C,C) payoff dominates (D, D) if u;(C,C) <
u1(D, D), uz(C,C) < uy(D, D), and at least one of the two is a strict inequality.

Risk dominance: Strategy pair (C, C') risk dominates (D, D) if the product of the
deviation losses is highest for (D, D), i.e., us(C, D) —u2(C,C) > uy (D, C)—ui (D, D).

Ezample 2 (Example 1 continued). Consider a two-player prisoner dilemma (A, BT)

game with cost matrix
1 3
im0,

Here the strategy set is S = {(C,C), (C, D), (D,C), (D, D)}. This particular game is
a potential game with

¢(x) = —(ur(x) + uz(x)), where z € S.
The strategy graph is G = KoOKos.
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Fia. 3. The invariant measure p* for an asymmetric game.
To simplify notations, we denote the transition probability function as

p(t) = (pcc(t), pen(t), poc(t), poo(t)”,

which satisfies FPE (3.5). By numerically solving (3.5) for p* = limg_,o lim;_, o, p(?),
we find a unique invariant measure p* for any initial condition p(0), which is demon-
strated in Figure 2. Indeed, we know that p* is a Gibbs measure and (D, D) is the
unique NE. In this case, our method coincides with the payoff (cost) dominance.

Ezample 3. Consider an asymmetric game (A, BT), i.e., A # B. This means
players’ costs depend on their own identity. Let A = (1 %) and B = (4 3). This game
is not a potential game. Again the strategy graph is G = KoOKs.

By solving (3.5) for p* = limg_,olim;_, o p(t), we obtain a unique p* for any initial
condition p(0), which is shown in Figure 3. As we can see, p* only supports at (C, C)
and (D, D), both of which are NEs of the game. Moreover, pf is larger than p¥, ),
which implies that (C,C) is more “stable” than (D, D). This is intuitive because
player 2 is more willing to change his/her status from (C, D) to (C,C) than player 1
to move the status (D, C) to (D, D), since player 2’s cost changes more rapidly than
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Fia. 4. The invariant measure p* for rock-scissors-paper.

the one of player 1: us(C, D) —uz(C,C) =2 >1=uy(D,C)—uy (D, D). In this case,
our method coincides with the risk dominance.

Ezample 4. Consider a rock-scissors-paper game (A, BT) with the strategy sets
S1 = So = {r,s,p} and the cost matrix

A=B=|1 0 -1

The strategy graph is G = K30OK3:

C—®

Again, we obtain a unique invariant p* for any initial condition p(0) in Figure 4.
From the figure, we find that the invariant measure p* is a uniform measure. We
conclude that, although each player chooses his/her own strategy depending on others,
at the final time, they will arrive at a state that players select strategies uniformly
and independently.

Ezample 5. We consider the same rock-scissors-paper game with constraints, in
order to illustrate the effect of the structure of the strategy graph on stationary joint
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O—O

F1G. 5. Player 1°s strategy graph.

tn (ms) (P (sn)  (ss) (sp) (N (PsS) (PP

Fic. 6. The invariant measure p* for rock-scissors-paper with constraints.

probability p*. Here the constraint is that player 1 is not allowed to play scissors
following rock and vice versa. There is no restriction on player 2. The corresponding
strategy graph S is in Figure 5 while the strategy graph S, is a complete graph. We
consider S10S55 for FPE (3.5) and solve for the invariant measure p*. From Figure
6, we observe several properties that accord with modeling intuitions. First, player 1
is at disadvantage to player 2, since the chance of player 1 winning is less than that
of player 2,

Plrs) T Py T Pls,p) = 0-2228 < 0.4329 = (i 1y + P p) + Plp,s)-

Second, we see that players 1 and 2’s probabilities are not independent, meaning
that they make decisions depending on each others’ choices. Third, from player 1’s
perspective, by assuming player 2 selected strategies uniformly, player 1 would choose
paper more frequently than rock and scissors due to the constraint. Thus in turn
by taking advantage of this information, player 2 would have selected paper (0 cost)
or scissors (—1 cost). This is reflected by Figure 6 that the top three states with
highest probabilities are (r,p), (s, s) and (p,p). In this case, the risk or payoff (cost)
dominance does not take the strategy graph information into consideration. While
our approach is still able to consider all information and provide a detailed ranking
for each situations.

6. Conclusion. We summarize all features of the proposed dynamic framework:
First, the model incorporates players’ myopia, uncertainty, and greed when making
decisions. Second, the model works for both potential and nonpotential games. For
potential games, the ranking of NE given by the limit distribution coincides with the
ranking given by the potential; For nonpotential games, this ranking relates to the
Morse decomposition and Conley—Markov matrix proposed in [5]. Last, but not least,
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the proposed FPE converges to Gibbs measure for potential games. The convergence
is exponentially fast, where the rate is controlled by the relation between discrete
entropy and Fisher information [6, 9].

[13]
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