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Abstract

We establish kinetic Hamiltonian flows in density space embedded with the L%-Wasserstein metric ten-
sor. We derive the Euler-Lagrange equation in density space, which introduces the associated Hamiltonian
flows. We demonstrate that many classical equations, such as Vlasov equation, Schrodinger equation and
Schridinger bridge problem, can be rewritten as the formalism of Hamiltonian flows in density space.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, optimal transport theory provides essential tools for partial differential equa-
tions [12,13]. It introduces a type of distance functions in the space of probability densities,
which evolve differential structures in the underlying sample space. A particular distance func-
tion, named L2-Wasserstein distance, exhibits the metric tensor structure. The density space
with this metric forms an infinite-dimensional Riemannian manifold, named density manifold
[4]. Many well-known density equations are gradient flows in density manifold [11]. A famous
example is a Fokker-Planck equation with gradient drift vector field. It mathematically demon-
strates an intuition: The density of gradient flow in sample space is gradient flow in density
manifold.

Despite various successful studies of gradient flows, the other essential flows in density mani-
fold, Hamiltonian flows, are not completely clear. See a detailed discussion on page 253 of [12].
It is because that a typical kinetic Hamiltonian flow in manifold (including density manifold)
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relies on the associated Christoffel symbol [5]. This paper takes a natural first step in this direc-
tion. Following key ideas in [2,5,7], we establish the formalism of Hamiltonian flows for density
manifold in Theorem 1. It directly follows from the variational principle in tangent bundles of
density manifold. In other words, we propose to study the following second order equation:

1 8
Ot pr — (ABM AL 3o + EA'O' (VAL atﬂt)z) =V. (Prvgf(,or)),
r

where p(t, x) := p; is the density function, 3, is the second time derivative, A, =V - (pV)
is an elliptic operator, and F (p) is a given energy functional. Here the coefficient of quadratic
formulation for dp; is the Christoffel symbol in density manifold. Given various energies, we
will show that the above equation is the other formulation of many classical equations, including
Vlasov equation, Schrodinger equation and Schrodinger bridge problem.

In literature, the study of Hamiltonian flows in density manifold follows Nelson’s stochastic
mechanics [1,7-10]. See related work in [3]. Along with this framework, Lafferty introduces
the Riemannian manifold structure of density space. See [4] or section 3 of [10]. Nowadays this
metric tensor is named L2-Wasserstein metric, known in optimal transport communities [11-13].
In classical approaches, the Hamiltonian flow in density space is induced by the vector field in
sample space. It relies on the cotangent bundle (dual coordinates) of density manifold, which
is often named Otto calculus [13]. In contrast to their work, our approach considers the other
direction. We use the vector field in density space to describe the one in sample space. This
approach applies the tangent bundle of density manifold [5]. From this angle, we introduce the
Lagrangian formalism of density manifold.

The plan of paper is as follows. In section 2, we review the formulation of Hamiltonian flows
with associated Christoffel symbol on Riemannian manifolds. In section 3, we derive the ones in
density manifold. Several examples are demonstrated in section 4.

2. Hamiltonian flows on Riemannian manifolds

In this section, we briefly review classical Hamiltonian flows on a finite dimensional Rieman-
nian manifold. It provides us the intuition to derive the ones in density space.

Let (M, g) be a smooth, compact, d-dimensional Riemannian manifold without boundaries.
Here g is the metric tensor of M. Given a smooth potential function F: M — R, a classical
Hamiltonian flow in (M, g) refers to the following second order differential equation

X +T(x,x) =—gradf (x), 1)

d
where x = (xi){_, is a local coordinate in M, = &0, 1, ) = (X0, jea T (005 ) _ .

F:'Fj (x) is the Christoffel symbol, which is the coefficient of the quadratic termof x, f: M — R
is a given potential function, and grad is the Riemannian gradient operator.

We next illustrate equation (1) by using Hamilton’s variational principle. We will explain
what is the Lagrangian formalism of equation (1), what is its explicit formulation and why does
it relate to Hamilton’s equations. The Lagrangian is the function L defined by

1
L(x,%) = EiTg(x)i — f(x).
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In above, L represents the kinetic energy minus the potential energy f. Here the metric tensor
g(x) e R4*4 ig introduced in kinetic energy. Consider a variational problem in (M, g) by

T
I(x(t)) = 11{11)' { f L(x,x)dt: x(0)=xg, x(T) :xr}.
x(f
0

A path is critical for L in case I (x(t)) is stationary for variations. It satisfies the Euler-Lagrange
equation

d d d

——L(x,%)=—L(x,x). 2

27 Zn LG 0 = ——Lx, %) 2
In fact, the trajectory of Hamiltonian flow is a critical path. In other words, equation (1) can

be derived by expressing (2) explicitly. Substituting %L(x, x) = g(x)x into (2),

d 1
E(g(x)i) = g(x)X + (dxgij(x)X)1<i, j<dX = Eirdxg(x)i —dyx f(x).

By multiplying g(x)~! on both sides and collecting all the quadratic terms of % in above equation,
then

=—g(x) d f ().

.o . 1 "
%4200 7" (@ gij (D151 jsak — 5 dyg (%) _

2
Comparing the above equation with (1), the explicit formulation of geometric formulas are de-

rived:

1
PG, %) = g0 (e gij @151 jak — 557 d8 ()5

n
2 k=1

and

gradf = g(x)"'d, f (x),

where d is the differential operator.

Moreover, there is a Hamiltonian structure for each critical path. In other words, equation (1)
forms a first order ODE system, which is with the Hamiltonian vector field (a symplectic matrix
times the differential of Hamiltonian). Consider the Legendre transformation

p=g)x.

Here, (x, x) refers to the primal coordinates in the tangent bundle while (x, p) represents the
dual coordinates in the cotangent bundle. The flow in primal coordinates can be recast as the first
order ODE in dual coordinates. In other words,

¢ 0 I
(;)z(_ﬂ O)dx,pH(x,p),
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where (_O]I ]é) is named the symplectic matrix, d is the differential operator and H is the

Hamiltonian function
_ l T -1 _ ]- =T .
H(x,p)= 7P gx) pt+flx)= 7% glx)x + f(x).

We note that H is the summation of kinetic energy and potential energy. Based on above known
facts, we introduce Hamiltonian flows in density manifold.

3. Hamiltonian flows on density manifold

In this section, we derive the Hamiltonian flow in density space with respect to the
L>-Wasserstein metric tensor.

3.1. L2-Wasserstein metric tensor

We first review some facts. Consider the space of positive smooth density functions supported
on M.

Pr(M) = {pdvoly: pc C®(M), p>0, fpdvolM =1}.
M

Denote the tangent space at p € P, (M) by

T, Py(M)={o € C®¥(M): fordvolM =0}.
M

The L%-Wasserstein metric tensor is defined as follows. Denote the space of potential func-
tions on M by F(M). Consider the quotient space

F(M)/R ={[@]| ® € C*(M)},

where [@] = {® + ¢ | ¢ € R} are functions defined up to addition of constants.
The identification map is defined by

V: F(M)/R = T,Pr (M), Vg=—V-(pV®).

Since M is a manifold without boundary, it is clear that [, u Yodvoly = 0. The property of
elliptical operator

Ap=V-(pV)

shows that Vg : F(M)/R — T,Py(M) is a well defined map, linear, and one to one. In other
words, F(M)/R = T: Py (M), where T‘;" P, (M) is the smooth cotangent space of P (M).

The identification induces the following inner product on 7,P,(M). We first present this
metric tensor in a dual formulation [6].
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Definition 1 (Inner product in dual coordinates). The inner product gw : T,Py+(M) x
T,P+ (M) — R takes any two tangent vectors o1 = Vg, and 02 = Vg, € T,PL(M) to

gw(o‘],o‘g):fo’lcbgdvolM:fo‘zq:’]dvolM :f(VqD],V(Dg)pdVOIM.
M M M

Define (—&p)"r : T,P4 (M) — T, P4 (M) the pseudo inverse operator of (—A ). One simply
checks the fact that

(A (A=A, = (—Ap)T.

Thus

f(vqi’],v(pg)pdvolM :fcbl(—Ap)ngdvolM
M M

= f Vo, (—A) (=A,)(—A,) Va,dvoly
M

:fa,(—Ap)’fagdvolM.
M

Based on above understandings, we next present the metric tensor in primal coordinates.

Definition 2 (Inner product in primal coordinates). Given o1, 02 € T,’P, (M), the inner product
gw () : T,PL(M) x T, P, (M) — R is defined by

gw(o1,02) = f o1 (—Ap)*dgdvolM.
M

Following [4], (P+(M), gw) is named density manifold. The variational problem from inner
product gives a minimization of geometry energy functional in P (M).

1
Ey=_iof | f f 0101 (—p) Buprdvolyds = po=p°, p1=p'
prePL(M) -

1
= inf [[f(v‘br,v‘br)ﬂrd\’f)lﬂd’df 9o+ V- (o V) =0, po=p°, pi 201}-
PP+ (M) S i

The energy function equals the squared of geodesic distance, known as L?-Wasserstein distance.
In this case, the inverse Laplacian operator (—Ap)"r introduces the Legendre transformation in
density manifold

D, = (_Ap;)*ahof'



1210 S.-N. Chow et al. / J. Differential Equations 268 (2020) 1205-1219

As in previous section, (o, d;p;) represents the primal coordinates in tangent bundle while
(p¢, ®;) refers the dual coordinates in cotangent bundle.

We note that the L?-Wasserstein metric has many other equivalent formulations, including
optimal mapping formulation, named Monge problem, and the statical formulation, called Kan-
torovich problem. For more details see [12]. In this paper, we focus on its induced metric tensor
in primal coordinates.

3.2. Wasserstein Hamiltonian flows

We next present the Hamiltonian flows in density manifold. We shall introduce the following
second order partial differential equation

Ot pr + Tw (3¢ o1, 0: pr) = —grady F (pr), 3)

where I'w is the Christopher symbol, representing the quadratic function of 9; p;, and grady, is
the Riemannian gradient operator in (P4 (M), gw). The above equation has been derived by a
geometric approach in [5]. In this paper, we would like to proceed with the other derivation based
on Hamilton’s variational principle.

Let : PL(M) — R be a smooth potential energy. The Lagrangian in density manifold is
given by

1
L(ps,8:pr) = ng(arﬂt, 9rpr) — F(pr).

In above formula, £ represents the kinetic energy minus potential energy in density manifold.
It can be viewed as the “expectation” of Lagrangian in M based on current probability density.
Here the path x(¢) in M is represented by the corresponding density path p;.

Consider the variational problem

I(p;)zigf[fﬁ(pf,amt)dr: po=p"°. prsz]- 4
A density path is critical for £ in case I (p;) is stationary for variations. We next derive Hamilto-
nian flows by finding critical paths of (4).

Theorem 1 (Hamiltonian flow in primal coordinates). The Euler-Lagrange equation of varia-
tional problem (4) satisfies

53 O pr) = —ﬂ(Pr, 3 p) +C(1), (3)
Ot

where 35 s W is the L2 first variation w.r.t. p;, 9;p; respectively, and C(t) is a spatially-

constant funcaon More explicitly, the Euler-Lagrange equation can be rewritten as

1 )
Ot or — (Aa,prAir B pr + EApr(VAL 3:9:)2) =V. (P:VJF(P:))- (6)
'
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Remark 1. By comparing (6) with (3), we note that

1
Tw @upr, up1) = —(Bap, AL, 3001 + 580, (VAT 0p0)?).

while
)
grady F(p) =—V - (Prvg}—(,or))-
t

Proof. Denote a smooth perturbation function h; = h(t, -), such that _f ar hedvoly = 0 for all
t €[0,T] and h(0,-) = h(T,-) = 0. Denote p; = p(t,-) = p; + €h;, and consider the Taylor
expansion of I(pf) w.r.t. €,

d
I(pf) =1(pr) +€£1(,0f)|e=0 +o(€).

Notice that

1(p;) :fﬂ(p; + €hy, 8¢ pr + €0;hy)dt

L(ps, 0:pr) - 0:h )dVUlMdf

T
8
Zfﬂ(:or,arpr)df'l'éff(—f(,or,arﬂr) che +
5 o i 801 53: Pt

+ o(€).

It is clear that %I(pf)k:g = 0 implies

T
f f —L(ps,
0

Perform integration by parts w.r.t. f in above formula and notice 4(0, x) = h(T, x) = 0. Then

[ f —L(pr, 0:01) — 3:
5 Ot

0

dpy) - d¢he)dvolydt = 0.

~

Bp,))h dvolydt = 0.

Since | 1 hedvoly = 0, then the equation (5) holds up to a spatially-constant function shrift.
We next derive (6) by expressing (5) explicitly. In other words, notice 3‘3??5 =(—A pr)faf Pt
then (5) forms

é 1
% ((-An)"8p) = $-(3 f 81 (= A p) 3 prdvoly — F(py)) + C(1).



1212 S.-N. Chow et al. / J. Differential Equations 268 (2020) 1205-1219

Towards the above equation, we shall show that its L.H.S. satisfies

3 ((—Ap)T80t) = (—Ap) T8 pe — (= Ap) (= Aa,p) (—Ap) 811, (7

while the R.H.S. satisfies

8

1 1 5
24 At B I P
5'0:(2&[3:0:( Ap) 3 prdvolyr — F(py)) = 2(VAA8,,0,) 5'0‘}(,0‘), (8)

Combining (7) and (8), multiplying A,, on both sides and collecting all quadratic term of 9, oy,
we prove the result.
We next prove (7) and (8) by the following claim.

Claim. For any o € T, P (M), then
(8(=8p)1)o = (=20  (~Bap) (Ao

Proof of Claim. Given ¢ € [0, T'], denote p = p; € P, (M). Since (—AP)T is semi-positive, we
construct a positive self-adjoint operator g(p): C®(M) — C°(M) to compute its derivative.
Define

g f=(—8,)"(F - f fdvoly) + f fdvoly, for f € C®(M).
M M
‘We shall simply check that the inverse operator of g(p) satisfies
20 £ = (8p)f + [ fdvolu
M

Notice

20 g0 f ==8,)((=8,)"7 = [ savolu) + [ favolur) + [ favolu
M M M
:f—ffdvolM—l—(—ApffdvolM)—I—ffdvolM
M M M
:f—ffdvolM—l—ffdvolM:f.
M M

Since g(p) is a linear operator, then

0=3f =8(g(0) 'g(p) f)
=320 'e(p) f +2(0) B8 (p0) f-
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Thus 3:g(p) f = —g(P)dg(p) ' g(p) f. If f =0 € T,Py(M), ie. [y, odvoly =0, then
g(p)o =(—Ap)fo. Thus

org(pr)o =— 8(9:)318(!9:)_18(9:)6
=—g(p)0 (—Ap)g(pr)o
= — (=Ap) (A3 (—Ap) 0,

where the last equality is true since A, =V - (p;V) is linear w.r.t. p;. O
We demonstrate (7). From the claim,
81 (=) 3up1) =) 81100 + (81~ )i
=(—8p) e — (=) (= 25,5)(=A,) 91y

We show (8). Consider a perturbation function h € C*® (M), then

d
2 f 8101 (= Aoy st B prdvolag oo
M

8o (— (AL L) (=AW (=D ppen)’) 3k prdvolyrle=o

3o (— (ALY (—AR(—Ap)T) 3 prdvoly

=L =l =L

(AL, 30 (AR (A}, 3 p)dvoly = f (A},3:p)V - (WV A, 3 pr)dvoly
M

=— f (VA!, 8 p)*hdvoly,
M

where the first equality is shown by the claim. From the definition of L? first variation, (8) is
proved. O

Secondly, we demonstrate that Euler-Lagrange (6) can be recast into Hamilton’s equations.
Proposition 1 (Hamiltonian flow in dual coordinates). Consider
_ t
D, = ( - Ap,) 00y,

then equation (6) can be formulated as the first order system of (p;, ©;),

Orpr +V- (0 VP) =0
3P + 5(VO)* = — - F(pr),
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where ®; is up to a spatially-constant function shrift. In other words,

3 )
o por = E'H(Pn D), 9P = —EIH(P:, D),

where the Hamiltonian is given by

1
H(p, Br) = f E(V‘Dr)zﬂtd’»’ﬂlﬁf + F(pr)-
M

Proof. We directly check the result. Since ®; = (—A JE,,)JFBHO,, then the continuity equation
holds, i.e. 3,0 + Ap,®; = 801 + V - (0 V®;) = 0. We only need to show that ®; up to a
spatially-constant function shrift satisfies the Hamilton-Jacobi equation. We rewrite (6) by

1 é
0=3,3pr) = Doy py A Bupr = 585 (VAL 31p) = Ay =—F (p1)
Pt
1 5 8
=—0(ApDP;) + Ap,p P — EAp, (V)" — A, gf(,or)
1
1 , 8
== 8 (4 + 5 (V@0 + - F ().

Based on the property of elliptical operator (—A,,), ®; up to a spatially-constant function shrift
satisfies the Hamilton-Jacobi equation. O

In the last, we demonstrate a natural mathematical connection between Hamiltonian flows in
(P+(M), gw) and (M, g). We shall show that the density transition equation of a second order
ODE (1) satisfies a second order PDE (6). For illustration, let (M, g) be a d dimensional torus
(T4, 1).

Proposition 2 (Hamiltonian flow as density transition equation). Let (X;)o<i<T be a smooth
diffeomorphism in T4 with Xo = Id, Xo = V® for some smooth function ®(x). Suppose X;
satisfies

d2

8
—5 X =—Vx, 5=———F(p). ©)

XS0, X0

Given the initial density p P+(']l"d), pr = X#u, ie. p; equals X; push-forward p. Then the
density path p; = p(t, -) is a solution of (6).

Proof. Denote %X, (x) =v(t, X;(x)), (9) can be rewritten as

£X,(x) = v(t, X, (x))
0 X () = =V, 55 F (00
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On one hand, by differentiating %X t(x) =v(t, X;(x)), we obtain for any x,

d
—Vy, mf(ﬂt) ZEUU, Xt (x))

d
=dv(t, Xy (x)) + Vo, X (x)) - = Xy (x)
=0;v(t, X;(x)) + Vo(t, X, (x)) - v(#, X, (x)).

Thus

div(t,x)+Vu(t,x)-v(t,x)=—V F(p). (10)

Sp(t, x)

On the other hand, we demonstrate that p, = X, #u solves the continuity equation
O p(t,x)+ V- (pt,x)v(t,x)) =0. (11)
We shall show that for any test function ¢ € C* (']I'd ),
d
= [vwetnix== [ V- oo e ndx = [Tven - vempe s
Td Td T4

By the definition of push-forward p; = X #u, we have

fv’f(x),o(f,x)dxZf%i’f(X:(x))u(x)dx-
T4 T¢

Then

d d d
af'#(x)ﬂ(f,x)dx zzfu’f(Xf(x)),u(x)dxz f ZW(X:(x))ﬂ(x)dx
Td Td Td
d
:f (VY (Xi(x)) - EX:(x))Ju(x)dx
Td

= f (VU (X (x)) - v(t, X (x))) (x)dx
Td

:f (Vu'f(x) . U(t,x))p(r,x)dx,
Td

where the last equality is from the definition of push-forward, i.e. p; = X #u. Thus (p(t, x),
v(t, x)) solves the system of (10) and (11).

We next demonstrate that the system of (10), (11) can be written into a single equation (6).
We first construct a function ®(¢, x) such that v(f, x) = V®(¢, x), ®(0,x) = ®(x). We check
that equation (10) is equivalent to
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1 , 8
V(B;dir + E(V‘I’r) + S—-F(Pr)) =0.
Pt
In other words,
3@ I(VCD )? 5 F(p)=C(t)
; Pr + 5 t)+ a Pt) = s

for some constant function C(t). From (11), ®; = (—Ap,)fafp,. Substituting it into the above,
we have

1 )
U(Ap) ) + 5 (VD) 0007) + -Fp) = Ca0).
t
From the equality (7), we derive
t t t L oAt po2e
(—Ap) O pr + Ap,AB‘;,O: Ap,arpf + E(VAP,E}:P:) + Q-F(ﬂr) =C(@).
T

Applying operator (—A ,,) on both sides of the above equation, we prove that p, satisfies equation
(6). O

4. Examples

In this section, we demonstrate that many well-known equations related to densities can be
recast in the formalism of Hamiltonian flows in density manifold.

Example 1 (Linear Vlasov equation). Given a potential V € C®(T ). Consider a linear Vlasov
equation

af(t,x,v) 4

Y vV f(t,x,v) —VV(x) -V, f(t,x,v)=0.

It represents the evolution of density f(¢,x,v) on ']I'f X ]Rﬁ for particles moving with a force
based on a potential. In other words, f(f, x, v) is the transition density of (X;, v;) satisfying

;_tXt =
Lo =—VV(X)).

On the other hand, the first order ODE system can be rewritten as the second order ODE

X, =-VvV(X,).

From Proposition 2, the density of X; on Tﬁ, i.e. p(t,x)= f]Rd f(t, x, v)dv, satisfies the transi-
tion equation

1
Bt s — (Aa,p, AL B0+ 585 (VAL afpf)z) =V (pVV ().
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It is a Hamiltonian flow (3) in density manifold w.r.t. the linear potential energy
Flp)= f V(x)p(x)dx.
T4

Example 2 (Nonlinear Vlasov equation). Given an interaction potential W € C®( T9). Consider
a nonlinear Vlasov equation

PExD) .V, f(t,x,0) — VW(x, p) - Vy f(t,x,0) =0
W(x,p) = fpa W(lx — yDp(t, y)dy, p(t,x) = [ga f(t,x,v)dv.

The above equation represents that particles evolve with a force based on an interaction potential
W, which is created by all of particles. In this case, f(f, x, v) is the density equation of (X;, v;)
satisfying

%Xf = U
Ly =—VV(X:) - VW(Xy, pr),

where p; is the density function of X;. Similar as the first example, the density of X; satisfies the
transition equation

1 -
0ups = (Bap Ay 0001 + 58, (VAL p)?) =V - (0 VW Gx. 1)),
It is a Hamiltonian flow in density manifold w.r.t. the interaction potential energy
1
Fp)= 2 W(lx —yDp(x)p(y)dxdy.
T4 T4

Example 3 (Schrédinger equation). Given a potential V e C®(T9). Consider a linear
Schrodinger equation

i0,W(t,x) = —%Alp(t,x) + V(x)W(t, x).

Here W is the complex wave function of the quantum system. The complex wave equation can
be related to the density function by “Madelung” (Bohm) transform

ll!(f, I) = p(t, x)e—fd'-'(f,x)'

Here p(t,x) is a density function on ']l"f and ®(t, x) is a potential function. Then (p(t, x),
@(t, x)) satisfies the following pair of equations

l 3o+ V- (0 V®)=0

3 ®; + 3(VO)? = —V(x) — g5= Jra(Viog o) prdx.
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Here de (Vlog ,cv)2 pdx represents a functional in density manifold, named Fisher information.
From Proposition 1, the density p(¢, x) satisfies

1 14
s~ (Baup A 2ubr + 580 (VALEP) =V - (0T (V@) + g [ iogpooidn).
t
d

It is a Hamiltonian flow (3) in density manifold w.r.t. the linear potential energy plus the Fisher
information

1
Fp) = f V(x)p(x)dx+E[(Vlogp(x))zp(x)dx.
T4 Td

Similar formulation is also true for nonlinear Schrodinger equations.

Example 4 (Schridinger bridge problem). Consider a Schridinger system [3]

1
—= Anj.

1
3 = —A N 3 * —
t 1t ) Mt t 1 5

Here n, n*: T¢ — R are real value functions. The complex wave equation can be related to the
density function by “Hopf-Cole” transformation

n=Jpe?, n*=JpeS"

Here p(t, x) is a density function on ']I'f and ®(¢,x) is a potential function. Then (p(¢, x),
@(t, x)) satisfies the following pair of equations

Orpr + V- (0 VD) =
3P + 5(VO) = g1 de(V log p;)? prdx.

Here de (Vlog 0)pdx represents a functional in density manifold, named Fisher information.
From Proposition 1, the density p(¢, x) satisfies

1
1upr — (Dapr A 0001 + 5 8n (VAL 80)?) ==V - (o1 (—— f (V1og pr)?prdx)).

It is a Hamiltonian flow (3) in density manifold w.r.t. negative Fisher information

1
Fio)=—3 [ (Vg peord.
Td



S.-N. Chow et al. / J. Differential Equations 268 (2020) 1205-1219 1219

5. Discussions

To summarize, we demonstrate the Euler-Lagrange equations, and associated Hamiltonian
flows in density manifold with Lagrangian formalism. We show that the Hamiltonian flows in
density space are probability transition equations of classical Hamiltonian ODESs. It mathemati-
cally demonstrates the intuition: The density of Hamiltonian flow in sample space is Hamiltonian
flow in density manifold.

Acknowledgment
The authors thank Prof. Chongchun Zeng for many stimulating discussions.

References

[1] E.A. Carlen, Conservative diffusions, Commun. Math. Phys. 94 (3) (1984) 293-315.
[2] S.-N. Chow, W. Li, H. Zhou, A discrete Schrodinger equation via optimal transport on graphs, J. Funct. Anal. 276 (8)
(2019) 2440-2469.
[3] G. Conforti, M. Pavon, Extremal flows on Wasserstein space, arXiv:1712.02257 [math-ph], 2017.
[4] J.D. Lafferty, The density manifold and configuration space quantization, Trans. Am. Math. Soc. 305 (2) (1988)
699-741.
[5] W. Li, Geometry of probability simplex via optimal transport, arXiv:1803.06360 [math.DG], 2018.
[6] J. Lott, Some geometric calculations on Wasserstein space, Commun. Math. Phys. 277 (2) (2008) 423—437.
[7] E. Nelson, Derivation of the Schridinger equation from Newtonian mechanics, Phys. Rev. 150 (4) (1966)
1079-1085.
[8] E. Nelson, The free Markoff field, J. Funct. Anal. 12 (2) (1973) 211-227.
[9] E. Nelson, Quantum Fluctuations, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1985.
[10] E. Nelson, Field theory and the future of stochastic mechanics, in: S. Albeverio, G. Casati, D. Merlini (Eds.),
Stochastic Processes in Classical and Quantum Systems, vol. 262, Springer Berlin Heidelberg, Berlin, Heidelberg,
1986, pp. 438-469.
[11] E Otto, The geometry of dissipative evolution equations: the porous medium equation, Commun. Partial Differ.
Equ. 26 (1-2) (2001) 101-174.
[12] C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical
Society, Providence, RI, 2003.
[13] C. Villani, Optimal Transport: Old and New, Grundlehren der mathematischen Wissenschaften, vol. 338, Springer,
Berlin, 2009.


http://refhub.elsevier.com/S0022-0396(19)30388-2/bib4361726C656Es1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib6C695F5345s1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib6C695F5345s1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib4350s1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib4C61666665727479s1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib4C61666665727479s1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib6C695F67656F6D65747279s1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib4C6F7474s1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib4E656C736F6E30s1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib4E656C736F6E30s1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib4E656C736F6E31s1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib4E656C736F6Es1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib4E656C736F6E33s1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib4E656C736F6E33s1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib4E656C736F6E33s1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib4F74746Fs1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib4F74746Fs1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib76696C32303033s1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib76696C32303033s1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib76696C32303038s1
http://refhub.elsevier.com/S0022-0396(19)30388-2/bib76696C32303038s1

	Wasserstein Hamiltonian ﬂows
	1 Introduction
	2 Hamiltonian ﬂows on Riemannian manifolds
	3 Hamiltonian ﬂows on density manifold
	3.1 L2-Wasserstein metric tensor
	3.2 Wasserstein Hamiltonian ﬂows

	4 Examples
	5 Discussions
	Acknowledgment
	References


