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A bst r a ct

We  est a blis h  ki n eti c  H a milt o ni a n  fl o ws  i n d e nsit y  s p a c e e m b e d d e d  wit h  t h e L 2 - Wass erst ei n m etri c  t e n-
s or. We  d eri v e  t h e E ul er- L a gr a n g e  e q u ati o n  i n d e nsit y  s p a c e, w hi c h  i ntr o d u c es t h e ass o ci at e d  H a milt o ni a n  
fl o ws.  We  d e m o nstr at e  t h at m a n y  cl assi c al  e q u ati o ns,  s u c h as  Vl as o v  e q u ati o n,  S c hr ö di n g er  e q u ati o n  a n d  
S c hr ö di n g er  bri d g e  pr o bl e m,  c a n  b e  r e writt e n as  t h e f or m alis m of  H a milt o ni a n  fl o ws  i n d e nsit y  s p a c e.
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1.  I nt r o d u cti o n

I n r e c e nt y e ars,  o pti m al  tr a ns p ort t h e or y pr o vi d es  ess e nti al  t o ols f or p arti al  diff er e nti al  e q u a-
ti o ns [1 2 ,1 3 ]. It i ntr o d u c es a  t y p e of  dist a n c e  f u n cti o ns i n t h e s p a c e  of  pr o b a bilit y  d e nsiti es,  
w hi c h  e v ol v e  diff er e nti al  str u ct ur es  i n t h e u n d erl yi n g  s a m pl e  s p a c e.  A  p arti c ul ar  dist a n c e  f u n c-
ti o n, n a m e d  L 2 - Wass erst ei n dist a n c e,  e x hi bits  t h e m etri c  t e ns or str u ct ur e.  T h e  d e nsit y  s p a c e  
wit h  t his m etri c  f or ms a n  i n fi nit e- di m e nsi o n al Ri e m a n ni a n  m a nif ol d,  n a m e d  d e nsit y  m a nif ol d  
[4 ]. M a n y  w ell- k n o w n  d e nsit y  e q u ati o ns  ar e  gr a di e nt  fl o ws  i n d e nsit y  m a nif ol d  [1 1 ]. A  f a m o us 
e x a m pl e  is a  F o k k er- Pl a n c k  e q u ati o n  wit h  gr a di e nt  drift  v e ct or  fi el d.  It m at h e m ati c all y  d e m o n-
str at es  a n  i nt uiti o n: T h e  d e nsit y  of  gr a di e nt  fl o w  i n s a m pl e  s p a c e  is gr a di e nt  fl o w  i n d e nsit y  
m a nif ol d.

D es pit e  v ari o us  s u c c essf ul  st u di es  of  gr a di e nt  fl o ws,  t h e ot h er  ess e nti al  fl o ws  i n d e nsit y  m a ni-
f ol d, H a milt o ni a n  fl o ws,  ar e  n ot  c o m pl et el y  cl e ar.  S e e  a  d et ail e d  dis c ussi o n  o n  p a g e 2 5 3  of  [1 2 ]. 
It is b e c a us e  t h at a  t y pi c al ki n eti c  H a milt o ni a n  fl o w  i n m a nif ol d  (i n cl u di n g d e nsit y  m a nif ol d)  

✩ T his  w or k  is s u p p ort e d b y  A F O S R  M U RI  F A 9 5 5 0- 1 8- 1- 0 5 0 2.
* C orr es p o n di n g  a ut h or.

E- m ail  a d dr ess: w cli @ m at h. u cl a. e d u ( W.  Li).
htt ps:// d oi. or g/ 1 0. 1 0 1 6/j.j d e. 2 0 1 9. 0 8. 0 4 6

0 0 2 2- 0 3 9 6/ © 2 0 1 9  Els e vi er  I n c. All  ri g hts r es er v e d.

http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2019.08.046
http://www.elsevier.com/locate/jde
mailto:wcli@math.ucla.edu
https://doi.org/10.1016/j.jde.2019.08.046
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2019.08.046&domain=pdf


1 2 0 6 S.- N.  C h o w et al. / J.  Diff er e nti al  E q u ati o ns 2 6 8 ( 2 0 2 0) 1 2 0 5 – 1 2 1 9
r eli es o n  t h e ass o ci at e d  C hrist off el  s y m b ol  [5 ]. T his  p a p er  t a k es a  n at ur al  first  st e p  i n t his dir e c-
ti o n. F oll o wi n g  k e y  i d e as i n [2 ,5 ,7 ], w e  est a blis h  t h e f or m alis m of  H a milt o ni a n  fl o ws  f or d e nsit y  
m a nif ol d  i n T h e or e m 1 . It dir e ctl y  f oll o ws fr o m t h e v ari ati o n al  pri n ci pl e  i n t a n g e nt b u n dl es  of  
d e nsit y  m a nif ol d.  I n ot h er  w o r ds, w e  pr o p os e  t o st u d y  t h e f oll o wi n g s e c o n d  or d er  e q u ati o n:

∂ tt ρ t − ∂ t ρ t
†
ρ t

∂ t ρ t +
1

2
ρ t (∇

†
ρ t

∂ t ρ t )
2 = ∇ · ( ρt ∇

δ

δ ρ t
F ( ρt )),

w h er e  ρ (t ,  x )  : = ρ t i s t h e d e nsit y  f u n cti o n, ∂ tt i s t h e s e c o n d  ti m e d eri v ati v e,  ρ = ∇ · ( ρ ∇ )
is a n  elli pti c  o p er at or,  a n d  F ( ρ ) is a  gi v e n  e n er g y  f u n cti o n al. H er e  t h e c o ef fi ci e nt  of  q u a dr ati c  
f or m ul ati o n f or ∂ ρ t i s t h e C hrist off el  s y m b ol  i n d e nsit y  m a nif ol d.  Gi v e n  v ari o us  e n er gi es,  w e  
will  s h o w  t h at t h e a b o v e  e q u ati o n  is t h e ot h er  f or m ul ati o n of  m a n y  cl assi c al  e q u ati o ns,  i n cl u di n g 
Vl as o v  e q u ati o n,  S c hr ö di n g er  e q u ati o n  a n d  S c hr ö di n g er  bri d g e  pr o bl e m.

I n lit er at ur e, t h e st u d y  of  H a milt o ni a n  fl o ws  i n d e nsit y  m a nif ol d  f oll o ws N els o n’s  st o c h asti c  
m e c h a ni cs  [1 ,7 – 1 0 ]. S e e  r el at e d w or k  i n [3 ]. Al o n g  wit h  t his fr a m e w or k, L aff ert y  i ntr o d u c es 
t h e Ri e m a n ni a n  m a nif ol d  str u ct ur e  of  d e nsit y  s p a c e.  S e e  [4 ] or s e cti o n  3  of  [1 0 ]. N o w a d a ys  t his 
m etri c  t e ns or is n a m e d  L 2 - Wass erst ei n m etri c,  k n o w n  i n o pti m al  tr a ns p ort c o m m u niti es  [1 1 – 1 3 ]. 
I n cl assi c al  a p pr o a c h es,  t h e H a milt o ni a n  fl o w  i n d e nsit y  s p a c e  is i n d u c e d b y  t h e v e ct or  fi el d  i n 
s a m pl e  s p a c e.  It r eli es o n  t h e c ot a n g e nt  b u n dl e  ( d u al c o or di n at es)  of  d e nsit y  m a nif ol d,  w hi c h  
is oft e n  n a m e d  Ott o  c al c ul us  [1 3 ]. I n c o ntr ast  t o t h eir w o r k, o ur  a p pr o a c h  c o nsi d ers  t h e ot h er  
dir e cti o n.  We  us e  t h e v e ct or  fi el d  i n d e nsit y  s p a c e  t o d es cri b e  t h e o n e  i n s a m pl e  s p a c e.  T his  
a p pr o a c h  a p pli es  t h e t a n g e nt b u n dl e  of  d e nsit y  m a nif ol d  [5 ]. Fr o m  t his a n gl e,  w e  i ntr o d u c e t h e 
L a gr a n gi a n  f or m alis m of  d e nsit y  m a nif ol d.

T h e  pl a n  of  p a p er  is as  f oll ows.  I n s e cti o n 2 , w e  r e vi e w t h e f or m ul ati o n of  H a milt o ni a n  fl o ws  
wit h  ass o ci at e d  C hrist off el  s y m b ol  o n  Ri e m a n ni a n  m a nif ol ds.  I n s e cti o n 3 , w e  d eri v e  t h e o n es  i n 
d e nsit y  m a nif ol d.  S e v er al  e x a m pl es  ar e  d e m o nstr at e d  i n s e cti o n 4 .

2.  H a milt o ni a n  fl o ws  o n  Ri e m a n ni a n  m a nif ol ds

I n t his s e cti o n,  w e  bri e fl y  r e vi e w cl assi c al  H a milt o ni a n  fl o ws  o n  a  fi nit e  di m e nsi o n al  Ri e m a n-
ni a n  m a nif ol d.  It pr o vi d es  us  t h e i nt uiti o n t o d eri v e  t h e o n es  i n d e nsit y  s p a c e.

L et  ( M , g ) b e  a  s m o ot h,  c o m p a ct,  d - di m e nsi o n al Ri e m a n ni a n  m a nif ol d  wit h o ut  b o u n d ari es.  
H er e  g is t h e m etri c  t e ns or of  M . Gi v e n  a  s m o ot h  p ot e nti al  f u n cti o n F : M → R , a  cl assi c al  
H a milt o ni a n  fl o w  i n ( M , g ) r ef ers t o t h e f oll o wi n g s e c o n d  or d er  diff er e nti al  e q u ati o n

ẍ + ( ẋ , ẋ ) = − gr a d f ( x ), ( 1)

w h er e  x = ( xi )
d
i= 1 i s a  l o c al c o or di n at e  i n M , ẋ = d x (t )

dt , ( ẋ ,  ẋ )  = 1 ≤ i, j ≤ d
k
ij ( x ) ẋ i ẋ j

d

k = 1
, 

k
ij ( x ) is t h e C hrist off el  s y m b ol,  w hi c h  is t h e c o ef fi ci e nt  of  t h e q u a dr ati c  t er m of  ẋ , f : M → R

is a  gi v e n  p ot e nti al  f u n cti o n, a n d  gr a d is  t h e Ri e m a n ni a n  gr a di e nt  o p er at or.
We  n e xt  ill ustr at e e q u ati o n  (1 ) b y usi n g  H a milt o n’s  v ari ati o n al  pri n ci pl e.  We  will  e x pl ai n  

w h at  is t h e L a gr a n gi a n  f or m alis m of  e q u ati o n  (1 ), w h at  is its e x pli cit  f or m ul ati o n a n d  w h y  d o es  
it r el at e t o H a milt o n’s  e q u ati o ns.  T h e  L a gr a n gi a n  is t h e f u n cti o n L d e fi n e d  b y

L( x, ẋ ) =
1

ẋ T g ( x ) ẋ − f ( x ).

2
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I n a b o v e,  L r e pr es e nts t h e ki n eti c  e n er g y  mi n us  t h e p ot e nti al  e n er g y  f . H er e  t h e m etri c  t e ns or 
g ( x )  ∈ R d × d i s i ntr o d u c e d i n ki n eti c  e n er g y.  C o nsi d er  a  v ari ati o n al  pr o bl e m  i n ( M , g ) b y

I ( x (t )) = i nf
x (t )

T

0

L( x , ẋ ) dt : x ( 0 ) = x 0 , x ( T ) = x T .

A  p at h  is criti c al  f or L i n c as e  I ( x (t )) is st ati o n ar y  f or v ari ati o ns.  It s atis fi es  t h e E ul er- L a gr a n g e  
e q u ati o n

d

dt

d

d ẋ
L( x , ẋ ) =

d

d x
L( x , ẋ ). ( 2)

I n f a ct, t h e tr aj e ct or y of  H a milt o ni a n  fl o w  is a  criti c al  p at h.  I n ot h er  w or ds,  e q u ati o n  (1 ) c a n 
b e  d eri v e d  b y  e x pr essi n g  (2 ) e x pli citl y. S u bstit uti n g  d

d ẋ L( x ,  ẋ )  = g ( x ) ẋ i nt o (2 ),

d

dt
( g ( x ) ẋ ) = g ( x ) ẍ + ( dx g ij ( x ) ẋ ) 1 ≤ i, j ≤ d ẋ =

1

2
ẋ T d x g ( x ) ẋ − d x f ( x ).

B y  m ulti pl yi n g  g ( x ) − 1 o n  b ot h  si d es  a n d  c oll e cti n g  all  t h e q u a dr ati c  t er ms of  ẋ i n a b o v e  e q u ati o n,  
t h e n

ẍ + g ( x ) − 1 ( dx k g ij ( x ) ẋ ) 1 ≤ i, j ≤ d ẋ −
1

2
ẋ T d x k g ( x ) ẋ

n

k = 1
= − g ( x ) − 1 d x f ( x ).

C o m p ari n g  t h e a b o v e  e q u ati o n  wit h  (1 ), t h e e x pli cit  f or m ul ati o n of  g e o m etri c  f or m ul as ar e  d e-
ri v e d:

( ẋ , ẋ ) = g ( x ) − 1 ( dx k g ij ( x ) ẋ ) 1 ≤ i, j ≤ d ẋ −
1

2
ẋ T d x k g ( x ) ẋ

n

k = 1
,

a n d

gr a d f = g ( x ) − 1 d x f ( x ),

w h er e  d x i s t h e diff er e nti al  o p er at or.
M or e o v er,  t h er e is a  H a milt o ni a n  str u ct ur e  f or e a c h  criti c al  p at h.  I n ot h er  w o r ds, e q u ati o n  (1 )

f or ms a  first  or d er  O D E  s yst e m,  w hi c h  is wit h  t h e H a milt o ni a n  v e ct or  fi el d  ( a s y m pl e cti c  m atri x  
ti m es t h e diff er e nti al  of  H a milt o ni a n).  C o nsi d er  t h e L e g e n dr e  tr a nsf or m ati o n

p = g ( x ) ẋ.

H er e,  ( x , ẋ ) r ef ers t o t h e pri m al  c o or di n at es  i n t h e t a n g e nt b u n dl e  w hil e  ( x, p ) r e pr es e nts t h e 
d u al  c o or di n at es  i n t h e c ot a n g e nt  b u n dl e.  T h e  fl o w  i n pri m al  c o or di n at es  c a n  b e  r e c ast as  t h e first  
or d er  O D E  i n d u al  c o or di n at es.  I n ot h er  w or ds,

ẋ
ṗ

=
0 I

− I 0
d x, p H ( x , p ),
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w h er e  
0 I

− I 0
is n a m e d  t h e s y m pl e cti c  m atri x,  d is t h e diff er e nti al  o p er at or  a n d  H is t h e 

H a milt o ni a n  f u n cti o n

H ( x, p ) =
1

2
p T g ( x ) − 1 p + f ( x ) =

1

2
ẋ T g ( x ) ẋ + f ( x ).

We  n ot e  t h at H is t h e s u m m ati o n  of  ki n eti c  e n er g y  a n d  p ot e nti al  e n er g y.  B as e d  o n  a b o v e  k n o w n  
f a cts, w e  i ntr o d u c e H a milt o ni a n  fl o ws  i n d e nsit y  m a nif ol d.

3.  H a milt o ni a n  fl o ws  o n  d e nsit y  m a nif ol d

I n t his s e cti o n,  w e  d eri v e  t h e H a milt o ni a n  fl o w  i n d e nsit y  s p a c e  wit h  r es p e ct t o t h e 
L 2 - Wass erst ei n m etri c  t e ns or.

3. 1.  L 2 - W ass erst ei n m etri c  t e ns or

We  first  r e vi e w s o m e  f a cts. C o nsi d er  t h e s p a c e  of  p ositi v e  s m o ot h  d e nsit y  f u n cti o ns s u p p ort e d  
o n  M .

P + ( M ) = { ρ d v ol M : ρ ∈ C ∞ ( M ), ρ  > 0 ,

M

ρ d v ol M = 1 }.

D e n ot e  t h e t a n g e nt s p a c e  at  ρ ∈ P + ( M ) b y

T ρ P + ( M ) = { σ ∈ C ∞ ( M ) :

M

σ d v ol M = 0 }.

T h e  L 2 - Wass erst ei n m etri c  t e ns or is d e fi n e d  as  f oll o ws. D e n ot e  t h e s p a c e  of  p ot e nti al  f u n c-
ti o ns o n  M b y  F ( M ). C o nsi d er  t h e q u oti e nt  s p a c e

F ( M ) /R = {[ ] | ∈ C ∞ ( M )},

w h er e  [ ] = {  + c | c ∈ R } ar e  f u n cti o ns d e fi n e d  u p  t o a d diti o n  of  c o nst a nts.
T h e  i d e nti fi c ati o n m a p  is d e fi n e d  b y

V : F ( M ) /R → T ρ P + ( M ), V = − ∇ · ( ρ ∇ ).

Si n c e  M is a  m a nif ol d  wit h o ut  b o u n d ar y,  it is cl e ar  t h at M V d v ol M = 0.  T h e  pr o p ert y  of  
elli pti c al  o p er at or

ρ = ∇ · ( ρ ∇ )

s h o ws  t h at V : F ( M ) /R  → T ρ P + ( M ) is a  w ell  d e fi n e d  m a p,  li n e ar, a n d  o n e  t o o n e.  I n ot h er  
w or ds,  F ( M ) /R  ∼= T ∗

ρ P + ( M ), w h er e  T ∗
ρ P + ( M ) is t h e s m o ot h  c ot a n g e nt  s p a c e  of  P + ( M ).

T h e  i d e nti fi c ati o n i n d u c es t h e f oll owi n g  i n n er pr o d u ct  o n  T ρ P + ( M ). We  first  pr es e nt  t his 
m etri c  t e ns or i n a  d u al f or m ul ati o n [6 ].
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D e fi niti o n  1  (I n n er pr o d u ct  i n d u al  c o or di n at es).  T h e  i n n er pr o d u ct  g W : T ρ P + ( M ) ×
T ρ P + ( M ) → R t a k es a n y  t w o t a n g e nt v e ct ors  σ 1 = V 1 a n d  σ 2 = V 2 ∈ T ρ P + ( M ) t o

g W ( σ1 , σ2 ) =

M

σ 1 2 d v ol M =

M

σ 2 1 d v ol M =

M

(∇ 1 , ∇ 2 ) ρ d v ol M .

D e fi n e  (− ρ )† : T ρ P + ( M ) → T ρ P + ( M ) t h e ps e u d o  i n v ers e o p er at or  of  (− ρ ). O n e  si m pl y  
c h e c ks  t h e f a ct t h at

(− ρ )† (− ρ )(− ρ )† = (− ρ )† .

T h us

M

(∇ 1 , ∇ 2 ) ρ d v ol M =

M

1 (− ρ ) 2 d v ol M

=

M

V 1 (− ρ )† (− ρ )(− ρ )† V 2 d v ol M

=

M

σ 1 (− ρ )† σ 2 d v ol M .

B as e d  o n  a b o v e  u n d erst a n di n gs,  w e  n e xt  pr es e nt  t h e m etri c  t e ns or i n pri m al c o or di n at es.

D e fi niti o n  2  (I n n er pr o d u ct  i n pri m al  c o or di n at es).  Gi v e n  σ 1 , σ 2 ∈ T ρ P + ( M ), t h e i n n er pr o d u ct  
g W (·, ·) : T ρ P + ( M ) × T ρ P + ( M ) → R is d e fi n e d  b y

g W ( σ1 , σ2 ) =

M

σ 1 (− ρ )† σ 2 d v ol M .

F oll o wi n g [ 4 ], (P + ( M ), g W ) is n a m e d  d e nsit y  m a nif ol d.  T h e  v ari ati o n al  pr o bl e m  fr o m i n n er 
pr o d u ct  gi v es  a  mi ni mi z ati o n  of  g e o m etr y  e n er g y  f u n cti o n al i n P + ( M ).

E ( ρ t ) = i nf
ρ t ∈ P + ( M )

1

0 M

∂ t ρ t (− ρ t )
† ∂ t ρ t d v ol M dt : ρ 0 = ρ 0 , ρ1 = ρ 1

= i nf
ρ t ∈ P + ( M )

1

0 M

(∇ t , ∇ t ) ρt d v ol M dt : ∂ t ρ t + ∇ · ( ρt ∇ t ) = 0 , ρ0 = ρ 0 , ρ1 = ρ 1 .

T h e  e n er g y  f u n cti o n e q u als  t h e s q u ar e d  of  g e o d esi c  dist a n c e,  k n o w n  as  L 2 - Wass erst ei n dist a n c e.  
I n t his c as e,  t h e i n v ers e L a pl a ci a n  o p er at or  (− ρ )† i ntr o d u c es t h e L e g e n dr e  tr a nsf or m ati o n i n 
d e nsit y  m a nif ol d

t = (− ρ t )
† ∂ t ρ t .
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As  i n pr e vi o us  s e cti o n,  ( ρt , ∂ t ρ t ) r e pr es e nts t h e pri m al  c o or di n at es  i n t a n g e nt b u n dl e  w hil e  
( ρt , t ) r ef ers t h e d u al  c o or di n at es  i n c ot a n g e nt  b u n dl e.

We  n ot e  t h at t h e L 2 - Wass erst ei n m etri c  h as  m a n y  ot h er  e q ui v al e nt  f or m ul ati o ns, i n cl u di n g 
o pti m al  m a p pi n g  f or m ul ati o n, n a m e d  M o n g e  pr o bl e m,  a n d  t h e st ati c al  f or m ul ati o n, c all e d  K a n-
t or o vi c h pr o bl e m.  F or  m or e  d et ails  s e e  [1 2 ]. I n t his p a p er,  w e  f o c us o n  its i n d u c e d m etri c  t e ns or 
i n pri m al  c o or di n at es.

3. 2.  W ass erst ei n  H a milt o ni a n  fl o ws

We  n e xt  pr es e nt  t h e H a milt o ni a n  fl o ws  i n d e nsit y  m a nif ol d.  We  s h all  i ntr o d u c e t h e f oll o wi n g 
s e c o n d  or d er  p arti al  diff er e nti al  e q u ati o n

∂ tt ρ t + W ( ∂t ρ t , ∂t ρ t ) = − gr a d W F ( ρt ), ( 3)

w h er e  W i s t h e C hrist o p h er  s y m b ol,  r e pr es e nti n g t h e q u a dr ati c  f u n cti o n of  ∂ t ρ t , a n d  gr a d W i s 
t h e Ri e m a n ni a n  gr a di e nt  o p er at or  i n (P + ( M ), g W ). T h e  a b o v e  e q u ati o n  h as  b e e n  d eri v e d  b y  a  
g e o m etri c  a p pr o a c h  i n [5 ]. I n t his p a p er,  w e  w o ul d  li k e t o pr o c e e d  wit h  t h e ot h er  d eri v ati o n  b as e d  
o n  H a milt o n’s  v ari ati o n al  pri n ci pl e.

L et  F : P + ( M ) → R b e  a  s m o ot h  p ot e nti al  e n er g y.  T h e  L a gr a n gi a n  i n d e nsit y  m a nif ol d  is 
gi v e n  b y

L ( ρt , ∂t ρ t ) =
1

2
g W ( ∂t ρ t , ∂t ρ t ) − F ( ρt ).

I n a b o v e  f or m ul a, L r e pr es e nts t h e ki n eti c  e n er g y  mi n us  p ot e nti al  e n er g y  i n d e nsit y  m a nif ol d.  
It c a n  b e  vi e w e d  as  t h e “ e x p e ct ati o n ”  of  L a gr a n gi a n  i n M b as e d  o n  c urr e nt  pr o b a bilit y  d e nsit y.  
H er e  t h e p at h  x (t ) i n M is r e pr es e nt e d b y  t h e c orr es p o n di n g  d e nsit y  p at h  ρ t .

C o nsi d er  t h e v ari ati o n al  pr o bl e m

I ( ρ t ) = i nf
ρ t

T

0

L ( ρt , ∂t ρ t ) dt : ρ 0 = ρ 0 , ρT = ρ T . ( 4)

A  d e nsit y  p at h  is criti c al  f or L i n c as e  I ( ρ t ) is st ati o n ar y  f or v ari ati o ns.  We  n e xt  d eri v e  H a milt o-
ni a n  fl o ws  b y  fi n di n g  criti c al  p at hs  of  (4 ).

T h e o r e m  1  ( H a milt o ni a n fl o w  i n pri m al  c o or di n at es).  T h e  E ul er- L a gr a n g e  e q u ati o n  of  v ari a-
ti o n al pr o bl e m  (4 ) s atis fi es

∂ t
δ

δ ∂ t ρ t
L ( ρt , ∂t ρ t ) =

δ

δ ρ t
L ( ρt , ∂t ρ t ) + C (t ), ( 5)

w h er e  δ
δ ρ t

, δ
δ ∂ t ρ t

i s t h e L 2 fi rst  v ari ati o n  w.r.t.  ρ t , ∂ t ρ t r es p e cti v el y,  a n d  C (t ) is a  s p ati all y-
c o nst a nt  f u n cti o n. M or e  e x pli citl y,  t h e E ul er- L a gr a n g e  e q u ati o n  c a n  b e  r e writt e n  as

∂ tt ρ t − ∂ t ρ t
†
ρ t

∂ t ρ t +
1

2
ρ t (∇

†
ρ t

∂ t ρ t )
2 = ∇ · ( ρt ∇

δ

δ ρ t
F ( ρt )). ( 6)
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R e m a r k  1.  B y  c o m p ari n g  (6 )  wit h (3 ), w e  n ot e  t h at

W ( ∂t ρ t , ∂t ρ t ) = − ∂ t ρ t
†
ρ t

∂ t ρ t +
1

2
ρ t (∇

†
ρ t

∂ t ρ t )
2 ,

w hil e

gr a d W F ( ρt ) = − ∇ · ( ρt ∇
δ

δ ρ t
F ( ρt )).

P r o of. D e n ot e  a  s m o ot h  p ert ur b ati o n  f u n cti o n h t = h(t ,  ·), s u c h  t h at M h t d v ol M = 0 f or  all  
t ∈ [ 0 , T ] a n d  h( 0 , ·) = h( T ,  ·) = 0.  D e n ot e  ρ t = ρ (t , ·) = ρ t + h t , a n d  c o nsi d er  t h e Ta yl or  
e x p a nsi o n  of  I ( ρ t ) w.r.t.  ,

I ( ρ t ) = I ( ρ t ) +
d

d
I ( ρ t )| = 0 + o( ).

N oti c e  t h at

I ( ρ t ) =

T

0

L ( ρt + h t , ∂t ρ t + ∂ t h t ) dt

=

T

0

L ( ρt , ∂t ρ t ) dt +

T

0 M

δ

δ ρ t
L ( ρt , ∂t ρ t ) · h t +

δ

δ ∂ t ρ t
L ( ρt , ∂t ρ t ) · ∂ t h t d v ol M dt

+ o( ).

It is cl e ar  t h at d
d I ( ρ t )| = 0 = 0 i m pli es

T

0 M

δ

δ ρ t
L ( ρt , ∂t ρ t ) · h t +

δ

δ ∂ t ρ t
L ( ρt , ∂ ρt ) · ∂ t h t d v ol M dt = 0 .

P erf or m  i nt e gr ati o n b y  p arts  w.r.t.  t i n a b o v e  f or m ul a a n d  n oti c e  h( 0 , x )  = h( T ,  x )  = 0.  T h e n

T

0 M

δ

δ ρ t
L ( ρt , ∂t ρ t ) − ∂ t

δ

δ ∂ t ρ t
L ( ρt , ∂ ρt ) h t d v ol M dt = 0 .

Si n c e  M h t d v ol M = 0,  t h e n t h e e q u ati o n  (5 ) h ol ds u p  t o a  s p ati all y- c o nst a nt  f u n cti o n s hrift.

We  n e xt  d eri v e  (6 ) b y e x pr essi n g  (5 ) e x pli citl y. I n ot h er  w or ds,  n oti c e  δ
δ ∂ t ρ t

L  = (− ρ t )
† ∂ t ρ t , 

t h e n (5 ) f or ms

∂ t (− ρ t )
† ∂ t ρ t =

δ

δ ρ t

1

2
∂ t ρ t (− ρ t )

† ∂ t ρ t d v ol M − F ( ρt ) + C (t ).
M
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T o w ar ds  t h e a b o v e  e q u ati o n,  w e  s h all  s h o w  t h at its L. H. S.  s atis fi es

∂ t (− ρ t )
† ∂ t ρ t = (− ρ t )

† ∂ tt ρ t − (− ρ t )
† (− ∂ t ρ t )(− ρ t )

† ∂ t ρ t , ( 7)

w hil e  t h e R. H. S.  s atis fi es

δ

δ ρ t

1

2
M

∂ t ρ t (− ρ t )
† ∂ t ρ t d v ol M − F ( ρt ) = −

1

2
(∇ †

ρ t
∂ t ρ t )

2 −
δ

δ ρ t
F ( ρt ). ( 8)

C o m bi ni n g  (7 ) a n d (8 ), m ulti pl yi n g  ρ t o n  b ot h  si d es  a n d  c oll e cti n g  all  q u a dr ati c  t er m of  ∂ tρ t , 
w e  pr o v e  t h e r es ult.

We  n e xt  pr o v e  (7 ) a n d (8 ) b y t h e f oll o wi n g cl ai m.

Cl ai m.  F o r a n y  σ ∈ T ρ P + ( M ), t h e n

∂ t (− ρ t )
† σ = − (− ρ t )

† (− ∂ t ρ t )(− ρ t )
† σ.

P r o of  of  Cl ai m. Gi v e n  t ∈ [ 0 , T ], d e n ot e  ρ = ρ t ∈ P + ( M ). Si n c e  (− ρ )† i s s e mi- p ositi v e,  w e  
c o nstr u ct  a  p ositi v e  s elf- a dj oi nt  o p er at or  g ( ρ ) : C ∞ ( M ) → C ∞ ( M ) t o c o m p ut e  its d eri v ati v e.  
D e fi n e

g ( ρ ) f = − ρ
†
( f −

M

f d v ol M ) +

M

f d v ol M , f or f ∈ C ∞ ( M ).

We  s h all  si m pl y  c h e c k  t h at t h e i n v ers e o p er at or  of  g ( ρ ) s atis fi es

g ( ρ ) − 1 f = (− ρ ) f +

M

f d v ol M .

N oti c e

g ( ρ ) − 1 g ( ρ ) f = (− ρ ) − ρ
†
( f −

M

f d v ol M ) +

M

f d v ol M +

M

f d v ol M

= f −

M

f d v ol M + (− ρ

M

f d v ol M ) +

M

f d v ol M

= f −

M

f d v ol M +

M

f d v ol M = f.

Si n c e  g ( ρ ) is a  li n e ar o p er at or,  t h e n

0 = ∂ t f = ∂ t ( g ( ρt )
− 1 g ( ρ t ) f )

= ∂ g ( ρ )− 1 g ( ρ ) f + g ( ρ )− 1 ∂ g ( ρ ) f.
t t t t t t
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T h us  ∂ t g ( ρ t ) f = − g ( ρ t ) ∂t g ( ρ t )
− 1 g ( ρ t ) f . If f = σ ∈ T ρ P + ( M ), i. e. M σ d v ol M = 0,  t h e n 

g ( ρ ) σ = (− ρ )† σ . T h us

∂ t g ( ρ t ) σ = − g ( ρ t ) ∂t g ( ρ t )
− 1 g ( ρ t ) σ

= − g ( ρ t ) ∂t (− ρ t ) g ( ρt ) σ

= − (− ρ t )
† (− ∂ t ρ t )(− ρ t )

† σ,

w h er e  t h e l ast e q u alit y  is tr u e si n c e  ρ t = ∇ · ( ρt ∇ ) is li n e ar w.r.t.  ρ t . ✷

We  d e m o nstr at e  (7 ). Fr o m  t h e cl ai m,

∂ t (− ρ t )
† ∂ t ρ t = (− ρ t )

† ∂ t ( ∂t ρ t ) + ∂ t (− ρ t )
† ∂ t ρ t

= (− ρ t )
† ∂ tt ρ t − (− ρ t )

† (− ∂ t ρ t )(− ρ t )
† ∂ t ρ t .

We  s h o w  (8 ). C o nsi d er  a  p ert ur b ati o n  f u n cti o n h  ∈ C ∞ ( M ), t h e n

d

d
M

∂ t ρ t (− ( ρt + h) )† ∂ t ρ t d v ol M | = 0

=

M

∂ t ρ t − (− †
ρ t + h )(− h )(− ρ t + h )† ∂ t ρ t d v ol M | = 0

=

M

∂ t ρ t − (− †
ρ t

)(− h )(− ρ t )
† ∂ t ρ t d v ol M

=

M

( †
ρ t

∂ t ρ t )( h )( †
ρ t

∂ t ρ t ) d v ol M =

M

( †
ρ t

∂ t ρ t )∇ · ( h∇ †
ρ t

∂ t ρ t ) d v ol M

= −

M

(∇ †
ρ t

∂ t ρ t )
2 h d v ol M ,

w h er e  t h e first  e q u alit y  is s h o w n  b y  t h e cl ai m.  Fr o m  t h e d e fi niti o n  of  L 2 first  v ari ati o n,  (8 ) is 
pr o v e d. ✷

S e c o n dl y,  w e  d e m o nstr at e  t h at E ul er - L a gr a n g e (6 ) c a n b e  r e c ast i nt o H a milt o n’s  e q u ati o ns.

P r o p ositi o n  1  ( H a milt o ni a n fl o w  i n d u al  c o or di n at es).  C o nsi d er

t = − ρ t

†
∂ t ρ t ,

t h e n e q u ati o n  (6 ) c a n  b e  f or m ul at e d as  t h e first  or d er  s yst e m  of  ( ρt, t ),

∂ t ρ t + ∇ · ( ρt ∇ t ) = 0

∂ t t + 1 (∇ t )
2 = − δ F ( ρt ),
2 δ ρ t
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w h er e  t i s u p  t o a  s p ati all y- c o nst a nt  f u n cti o n s hrift.  I n ot h er  w or ds,

∂ t ρ t =
δ

δ t
H ( ρt , t ), ∂t t = −

δ

δ ρ t
H ( ρt , t ),

w h er e  t h e H a milt o ni a n  is gi v e n  b y

H ( ρt , t ) =

M

1

2
(∇ t )

2 ρ t d v ol M + F ( ρt ).

P r o of. We  dir e ctl y  c h e c k  t h e r es ult. Si n c e  t = (− ρ t )
† ∂ t ρ t , t h e n t h e c o nti n uit y  e q u ati o n  

h ol ds,  i. e. ∂ t ρ t + ρ t t = ∂ t ρ t + ∇ · ( ρt ∇ t ) = 0.  We  o nl y  n e e d  t o s h o w  t h at t u p  t o a  
s p ati all y- c o nst a nt  f u n cti o n s hrift  s atis fi es  t h e H a milt o n-J a c o bi  e q u ati o n.  We  r e writ e (6 ) b y

0 = ∂ t ( ∂t ρ t ) − ∂ t ρ t
†
ρ t

∂ t ρ t −
1

2
ρ t (∇

†
ρ t

∂ t ρ t )
2 − ρ t

δ

δ ρ t

F ( ρt )

= − ∂ t ( ρ t t ) + ∂ t ρ t t −
1

2
ρ t (∇ t )

2 − ρ t

δ

δ ρ t
F ( ρt )

= − ρ t ∂ t t +
1

2
(∇ t )

2 +
δ

δ ρ t
F ( ρt ) .

B as e d  o n  t h e pr o p ert y  of  elli pti c al  o p er at or  (− ρ t ), t u p  t o a  s p ati all y- c o nst a nt  f u n cti o n s hrift  
s atis fi es  t h e H a milt o n-J a c o bi  e q u ati o n. ✷

I n t h e l ast, w e  d e m o nstr at e  a  n at ur al  m at h e m ati c al  c o n n e cti o n  b et w e e n  H a milt o ni a n  fl o ws  i n 
(P + ( M ), g W ) a n d  ( M , g ) . We  s h all  s h o w  t h at t h e d e nsit y  tr a nsiti o n e q u ati o n  of  a  s e c o n d  or d er  
O D E  (1 ) s atis fi es a  s e c o n d  or d er  P D E  (6 ). F or  ill ustr ati o n, l et ( M , g ) b e  a  d di m e nsi o n al  t or us 
(T d , I ).

P r o p ositi o n  2  ( H a milt o ni a n fl o w  as  d e nsit y  tra nsiti o n  e q u ati o n).  L et  ( Xt )0 ≤ t < T b e  a  s m o ot h  
diff e o m or p his m  i n T d wit h  X 0 = I d, ˙X 0 = ∇ f or s o m e  s m o ot h  f u n cti o n ( x ). S u p p os e  X t

s atis fi es

d 2

dt 2
X t = − ∇ X t

δ

δ ρ (t ,  X t )
F ( ρt ). ( 9)

Gi v e n  t h e i niti al d e nsit y  μ  ∈ P + (T d ), ρ t = X t # μ , i. e. ρ t e q u als  X t p us h-f or w ar d  μ . T h e n  t h e 
d e nsit y  p at h  ρ t = ρ (t ,  ·) is a  s ol uti o n  of  (6 ).

P r o of. D e n ot e  d
dt X t ( x ) = v (t ,  X t ( x )), (9 ) c a n b e  r e writt e n as

d
dt X t ( x ) = v (t , X t ( x ))
d v (t , X t ( x )) = − ∇ X

δ F ( ρt ).
dt t δ ρ (t , X t ( x ))
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O n  o n e  h a n d,  b y  diff er e nti ati n g  d
dt X t ( x ) = v (t ,  X t ( x )), w e  o bt ai n  f or a n y  x ,

− ∇ X t

δ

δ ρ (t ,  X t ( x ))
F ( ρt ) =

d

dt
v (t , X t ( x ))

= ∂ t v (t , X t ( x )) + ∇ v (t , X t ( x )) ·
d

dt
X t ( x )

= ∂ t v (t , X t ( x )) + ∇ v (t , X t ( x )) · v (t , X t ( x )).

T h us

∂ t v (t , x ) + ∇ v (t , x ) · v (t , x ) = − ∇
δ

δ ρ (t , x )
F ( ρ ). ( 1 0)

O n  t h e ot h er  h a n d,  w e  d e m o nstr at e  t h at ρ t = X t # μ s ol v es  t h e c o nti n uit y  e q u ati o n

∂ t ρ (t , x ) + ∇ · ( ρ (t , x ) v (t , x )) = 0 . ( 1 1)

We  s h all  s h o w  t h at f or a n y  t est f u n cti o n ψ ∈ C ∞ (T d ),

d

dt
T d

ψ ( x ) ρ (t , x ) d x = −

T d

∇ · ( ρ (t , x ) v (t , x )) ψ (t , x ) d x ≡

T d

(∇ ψ (t , x ) · v (t , x )) ρ (t , x ) d x.

B y  t h e d e fi niti o n  of  p us h-f or w ar d  ρ t = X t # μ , w e  h a v e

T d

ψ ( x ) ρ (t , x ) d x =

T d

ψ ( X t ( x )) μ( x ) d x.

T h e n

d

dt
T d

ψ ( x ) ρ (t , x ) d x =
d

dt
T d

ψ ( X t ( x )) μ( x ) d x =

T d

d

dt
ψ ( X t ( x )) μ( x ) d x

=

T d

∇ ψ ( X t ( x )) ·
d

dt
X t ( x ) μ( x ) d x

=

T d

∇ ψ ( X t ( x )) · v (t , X t ( x )) μ( x ) d x

=

T d

∇ ψ ( x ) · v (t , x ) ρ (t , x ) d x,

w h er e  t h e l ast e q u alit y  is fr o m t h e d e fi niti o n  of  p us h-f or w ar d,  i. e. ρ t = X t # μ . T h us  ( ρ (t , x ),
v (t ,  x )) s ol v es  t h e s yst e m  of  (1 0 ) a n d (1 1 ).

We  n e xt  d e m o nstr at e  t h at t h e s yst e m  of  (1 0 ), (1 1 ) c a n b e  writt e n  i nt o a  si n gl e  e q u ati o n  (6 ). 
We  first  c o nstr u ct  a  f u n cti o n (t , x ) s u c h  t h at v (t ,  x )  = ∇ (t , x ) , (0 , x )  = ( x ). We  c h e c k  
t h at e q u ati o n  (1 0 ) is e q ui v al e nt  t o
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∇ ∂ t t +
1

2
(∇ t )

2 +
δ

δ ρ t
F ( ρt ) = 0 .

I n ot h er  w or ds,

∂ t t +
1

2
(∇ t )

2 +
δ

δ ρ t
F ( ρt ) = C (t ),

f or s o m e  c o nst a nt  f u n cti o n C (t ) . Fr o m  (1 1 ), t = (− ρ t )
† ∂ t ρ t . S u bstit uti n g  it i nt o t h e a b o v e,  

w e  h a v e

∂ t (− ρ t )
† ∂ t ρ t +

1

2
∇ ((− ρ t )

† ∂ t ρ t )
2 +

δ

δ ρ t
F ( ρt ) = C (t ).

Fr o m  t h e e q u alit y  (7 ), w e  d eri v e

(− ρ t )
† ∂ tt ρ t + †

ρ t ∂ t ρ t
†
ρ t

∂ t ρ t +
1

2
(∇ †

ρ t
∂ t ρ t )

2 +
δ

δ ρ t
F ( ρt ) = C (t ).

A p pl yi n g  o p er at or  (− ρ t ) o n  b ot h  si d es  of  t h e a b o v e  e q u ati o n,  w e  pr o v e  t h at ρ t s atis fi es  e q u ati o n  
(6 ). ✷

4.  E x a m pl es

I n t his s e cti o n,  w e  d e m o nstr at e  t h at m a n y  w ell- k n o w n  e q u ati o ns  r el at e d t o d e nsiti es  c a n  b e  
r e c ast i n t h e f or m alis m of  H a milt o ni a n  fl o ws  i n d e nsit y  m a nif ol d.

E x a m pl e  1  ( Li n e ar Vl as o v  e q u ati o n).  Gi v e n  a  p ot e nti al  V ∈ C ∞ (T d ). C o nsi d er  a  li n e ar Vl as o v  
e q u ati o n

∂ f (t , x, v )

∂t
+ v · ∇x f (t , x , v ) − ∇ V ( x ) · ∇v f (t , x , v ) = 0 .

It r e pr es e nts t h e e v ol uti o n  of  d e nsit y  f (t ,  x,  v ) o n  T d
x × R d

v f or p arti cl es  m o vi n g  wit h  a  f or c e 
b as e d  o n  a  p ot e nti al.  I n ot h er  w or ds,  f (t ,  x,  v ) is t h e tr a nsiti o n d e nsit y  of  ( Xt , v t ) s atisf yi n g

d
dt X t = v t

d
dt v t = − ∇ V ( X t ).

O n  t h e ot h er  h a n d,  t h e first  or d er  O D E  s yst e m  c a n  b e  r e writt e n as  t h e s e c o n d  or d er  O D E

¨X t = − ∇ V ( X t ).

Fr o m  Pr o p ositi o n 2 , t h e d e nsit y  of  X t o n  T d
x , i. e. ρ (t ,  x )  = R d f (t ,  x ,  v ) d v , s atis fi es  t h e tr a nsi-

ti o n e q u ati o n

∂ tt ρ t − ∂ t ρ t
†
ρ ∂ t ρ t +

1
ρ t (∇

†
ρ ∂ t ρ t )

2 = ∇ · ( ρt ∇ V ( x )).

t 2 t
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It is a  H a milt o ni a n  fl o w  (3 ) i n d e nsit y  m a nif ol d  w.r.t.  t h e li n e ar p ot e nti al  e n er g y

F ( ρ ) =

T d

V ( x ) ρ ( x ) d x.

E x a m pl e  2  ( N o nli n e ar Vl as o v  e q u ati o n).  Gi v e n  a n  i nt er a cti o n p ot e nti al  W ∈ C ∞ (T d ). C o nsi d er  
a  n o nli n e ar  Vl as o v  e q u ati o n

∂ f (t , x, v )
∂t + v · ∇x f (t , x , v ) − ∇ ¯W ( x , ρ ) · ∇v f (t , x , v ) = 0

¯W ( x , ρ ) = T d W ( |x − y |) ρ (t , y ) d y, ρ (t , x ) = R d f (t , x , v ) d v.

T h e  a b o v e  e q u ati o n  r e pr es e nts t h at p arti cl es  e v ol v e  wit h  a  f or c e b as e d  o n  a n  i nt er a cti o n p ot e nti al  
¯W , w hi c h  is cr e at e d  b y  all  of  p arti cl es.  I n t his c as e,  f (t ,  x,  v ) is t h e d e nsit y  e q u ati o n  of  ( Xt , v t )

s atisf yi n g

d
dt X t = v t

d
dt v t = − ∇ V ( X t ) − ∇ ¯W ( X t , ρt ),

w h er e  ρ t i s t h e d e nsit y  f u n cti o n of  X t . Si mil ar  as  t h e first  e x a m pl e,  t h e d e nsit y  of  X t s atis fi es  t h e 
tr a nsiti o n e q u ati o n

∂ tt ρ t − ∂ t ρ t
†
ρ t

∂ t ρ t +
1

2
ρ t (∇

†
ρ t

∂ t ρ t )
2 = ∇ · ρ t ∇ ¯W ( x , ρ t ) .

It is a  H a milt o ni a n  fl o w  i n d e nsit y  m a nif ol d  w.r.t.  t h e i nt er a cti o n p ot e nti al  e n er g y

F ( ρ ) =
1

2
T d T d

W ( |x − y |) ρ ( x ) ρ ( y ) d x d y.

E x a m pl e  3  ( S c hr ö di n g er e q u ati o n).  Gi v e n  a  p ot e nti al  V ∈ C ∞ (T d ). C o nsi d er  a  li n e ar 
S c hr ö di n g er  e q u ati o n

i ∂t (t , x ) = −
1

2
(t , x ) + V ( x ) (t , x ).

H er e  is t h e c o m pl e x  w a v e  f u n cti o n of  t h e q u a nt u m  s yst e m.  T h e  c o m pl e x  w a v e  e q u ati o n  c a n  
b e  r el at e d t o t h e d e nsit y  f u n cti o n b y  “ M a d el u n g ”  ( B o h m) tr a nsf or m

(t , x ) = ρ (t , x ) e − i (t , x ) .

H er e  ρ (t ,  x ) is a  d e nsit y  f u n cti o n o n  T d
x a n d  (t , x ) is a  p ot e nti al  f u n cti o n. T h e n  ( ρ (t , x ),

(t , x )) s atis fi es  t h e f oll o wi n g p air  of  e q u ati o ns

∂ t ρ t + ∇ · ( ρt ∇ t ) = 0

∂ t t + 1 (∇ t )
2 = − V ( x ) − 1 δ

d (∇ l o g ρ t )
2 ρ t d x.
2 8 δ ρ t T
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H er e  T d (∇ l o g ρ ) 2 ρ d x r e pr es e nts a  f u n cti o n al i n d e nsit y  m a nif ol d,  n a m e d  Fis h er  i nf or m ati o n. 
Fr o m  Pr o p ositi o n 1 , t h e d e nsit y  ρ (t ,  x ) s atis fi es

∂ tt ρ t − ∂ t ρ t
†
ρ t

∂ t ρ t +
1

2
ρ t (∇

†
ρ t

∂ t ρ t )
2 = ∇ · ρ t ∇ ( V ( x ) +

1

8

δ

δ ρ t
T d

(∇ l o g ρ t )
2 ρ t d x ) .

It is a  H a milt o ni a n  fl o w  (3 ) i n d e nsit y  m a nif ol d  w.r.t.  t h e li n e ar p ot e nti al  e n er g y  pl us  t h e Fis h er  
i nf or m ati o n

F ( ρ ) =

T d

V ( x ) ρ ( x ) d x +
1

8
T d

(∇ l o g ρ ( x )) 2 ρ ( x ) d x.

Si mil ar  f or m ul ati o n is als o  tr u e f or n o nli n e ar  S c hr ö di n g er  e q u ati o ns.

E x a m pl e  4  ( S chr ö di n g er  bri d g e  pr o bl e m).  C o nsi d er  a  S c hr ö di n g er  s yst e m  [3 ]

∂ t η t =
1

2
η t , ∂t η

∗
t = −

1

2
η ∗

t .

H er e  η,  η ∗ : T d → R ar e  r e al v al u e  f u n cti o ns. T h e  c o m pl e x  w a v e  e q u ati o n  c a n  b e  r el at e d t o t h e 
d e nsit y  f u n cti o n b y  “ H o pf- C ol e ”  tr a nsf or m ati o n

η =
√

ρ e S / 2 , η∗ =
√

ρ e − S / 2

H er e  ρ (t ,  x ) is a  d e nsit y  f u n cti o n o n  T d
x a n d  (t , x ) is a  p ot e nti al  f u n cti o n. T h e n  ( ρ (t , x ),

(t , x )) s atis fi es  t h e f oll o wi n g p air  of  e q u ati o ns

∂ t ρ t + ∇ · ( ρt ∇ t ) = 0

∂ t t + 1
2 (∇ t )

2 = 1
8

δ
δ ρ t T d (∇ l o g ρ t )

2 ρ t d x.

H er e  T d (∇ l o g ρ ) 2 ρ d x r e pr es e nts a  f u n cti o n al i n d e nsit y  m a nif ol d,  n a m e d  Fis h er  i nf or m ati o n. 
Fr o m  Pr o p ositi o n 1 , t h e d e nsit y  ρ (t ,  x ) s atis fi es

∂ tt ρ t − ∂ t ρ t
†
ρ t

∂ t ρ t +
1

2
ρ t (∇

†
ρ t

∂ t ρ t )
2 = − ∇ · ρ t ∇ (

1

8

δ

δ ρ t
T d

(∇ l o g ρ t )
2 ρ t d x ) .

It is a  H a milt o ni a n  fl o w  (3 ) i n d e nsit y  m a nif ol d  w.r.t.  n e g ati v e  Fis h er  i nf or m ati o n

F ( ρ ) = −
1

8
T d

(∇ l o g ρ ( x )) 2 ρ ( x ) d x.
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5.  Dis c ussi o ns

T o  s u m m ari z e,  w e  d e m o nstr at e  t h e E ul er- L a gr a n g e  e q u ati o ns,  a n d  ass o ci at e d  H a milt o ni a n  
fl o ws  i n d e nsit y  m a nif ol d  wit h  L a gr a n gi a n  f or m alis m. We  s h o w  t h at t h e H a milt o ni a n  fl o ws  i n 
d e nsit y  s p a c e  ar e  pr o b a bilit y  tr a nsiti o n e q u ati o ns  of  cl assi c al  H a milt o ni a n  O D Es.  It m at h e m ati-
c all y  d e m o nstr at es  t h e i nt uiti o n: T h e  d e nsit y  of  H a milt o ni a n  fl o w  i n s a m pl e  s p a c e  is H a milt o ni a n  
fl o w  i n d e nsit y  m a nif ol d.

A c k n o wl e d g m e nt

T h e  a ut h ors  t h a n k Pr of.  C h o n g c h u n  Z e n g  f or m a n y  sti m ul ati n g  dis c ussi o ns.
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