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Abstract
In this work, we present a method to explore the landscape of a smooth potential
in the search of global minimizers, combining a double-descent technique and a
basin-escaping technique based on intermittent colored diffusion. Numerical results
illustrate the performance of the method.
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1 Introduction

Let g : R
n → R, n ≥ 1 be a sufficiently smooth function (say, C∞); we call g

the “potential,” or “objective function.” Let ∇g be the gradient of g, and H be the
Hessian. Finally, we also let G : Rn → R

+ be defined as G = 1
2 (∇g)T (∇g); we call

G the “auxiliary potential.” Our goal is to minimize g.
Finding global minimizers for a general objective function g is one of the old-

est and most challenging problems in applied mathematics. Whereas it is at times
possible to exploit a-priori knowledge for specific potentials, it remains an outstand-
ing task to devise effective general optimization strategies which can be applied to
a general problem. In the literature, one finds extensive collections of real-world
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potentials, arising from chemistry, physics, mathematics, etc., as well as artificial
problems. Many challenging problems in the first group are obtained as models of
interatomic forces, and are distinguished by having a reduced region of interest,
expensive computation of the potential and its gradient, and full (not sparse) Hes-
sians. Problems in the second group are useful to validate an optimization technique,
to illustrate it, and to have objective functions with selectively distinguished fea-
tures: a single global minimum, multiple global minima in the presence of many local
minima (in which case any deterministic technique will be trapped in the basin of
attraction of a minimizer without being able to escape it), long narrow valleys (which
will slow down the search process), and flat surfaces. Unsurprisingly, some meth-
ods perform well on some problems, and poorly on others, and—aside from knowing
ahead of time what method to use on a specific potential—one is left wondering on
what to use for a given problem.

We are often confronted with this frustrating state of affairs when teaching a
course on numerical methods for optimization. Even absolutely marvelous textbooks
(e.g., [7]) are ultimately having to accept some uncertainties, and to deal with fine-
tuning of parameters, and empirical choices. To be fair, these difficulties are intrinsic
to the task at hand, and surely not the result of negligence. So, when we teach such
a course, we end up teaching local techniques, maybe continuation and embedding
techniques, emphasize gradient descent and Newton’s method and their variants,
stress convex or maybe polynomial functions, but in the end we fail at providing
rigorous answers to the recurring questions of alert students relative to a general
smooth function g: “how do we know that we found the global minimum? how do we
know that we have visited the interesting regions of configuration space?” We do not
know, and most likely we will not know for the foreseeable future. Indeed, barring
a painstaking and extensive search of the configuration space, we have few hints to
offer to our students for answering their questions above. Motivated by our classroom
experience, one of our purposes in this work is to present methods and ideas that can
be taught in a numerical optimization course. That said, quite honestly, we have no
pretense that our work is an answer to the above questions, but we are hopeful to be
taking a (small) step in the right direction.

Let us immediately stress that we are putting forth some ideas for a general pur-
pose method, one which does not rely on the specific properties of the potential.
With this purpose in mind, we may recall that the main components of a global min-
imization algorithm are to explore the landscape and to locate minima. The shape of
the level sets of g dictates the nature of the landscape: flat, rough, predictable, and
crowded with minima. At the same time, the shape of the level sets of G is more
directly responsible for properly identifying the basins of attraction of the minima of
g for important techniques, such as Newton’s method. Naturally, the level sets of g

and of G are often of a very different nature; for example, in Fig. 1, we show them
relative to the function of Example 6.1.1.

Unfortunately, graphical insight provided by the level sets is all but unavail-
able for problems in several variables, and exploration of the landscape remains a
mix of randomization and subdivision ideas. Most global optimization techniques
switch repeatedly between local and global phases. In the former, a restricted area
is explored, whereas in the latter points, they are generated in order to explore the
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Fig. 1 Level sets for g (on the left) and G (on the right); Example 6.1.1

search domain. The global phase usually consists in a random generation of points
that are generally far from the regions that have already been visited. As for the local
phase, various techniques have been presented, such as the so-called variable neigh-
borhood search [18], basin hopping [15], and iterated local search [17]. If the reader
is missing a general glance at optimization methods, some elementary methods such
as pure random search, best start, and multistart or clustering methods, together with
the abovementioned methods and the well-known simulated annealing, genetic and
particle swarm algorithms are excellently summarized in [16]. Another characteris-
tic of global optimization methods concerns the sequential or parallel nature of the
algorithm. An example of sequential method is simulated annealing, which makes
use of a probability function to decide how to move in the search space; briefly, the
method can be described as follows: call x the current state, xnew a randomly selected
neighbor of x, and let the probability function be given by

P(x, xnew, T ) =
{
1, if g(xnew) < g(x),

exp
(−[g(xnew)−g(x)]

T

)
, if g(xnew) > g(x),

where T is called the temperature and is a function of the ratio between the current
iteration number and the total number of iterations allowed. Given this setting, a
random number r is generated: if the probability to move from x to xnew is greater
than r , then the new state is accepted; otherwise, it is rejected; note that a downhill
direction will always be accepted, though one may also take uphill steps. This method
is inherently better suited for discrete problems, and it is sequential in nature (see [4]
for more details on simulated annealing).

It is useful to mention some of the techniques from the 1970s and 1980s, when
several works were concerned with global optimization, e.g., the collection of works
in the two volumes [9] and [10], and especially the global optimization method pro-
posed in [1] and [2]. The techniques in these latter works can be viewed as a steepest
descent differential equation perturbed by adding a stochastic white noise term and a
further penalization function to ensure the paths remain in a given region is used in
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the implementation. A key aspect of our approach in this work represents an exten-
sion of [1] and [2], in that a minimization method is modified by perturbing with a
colored noise stochastic term.

In this work, we introduce a method which uses a combination of new techniques,
namely a double-descent method to search for minima and an intermittent colored
diffusion technique to escape critical points. The global phase avoids the usual ran-
domness of the exploration of the search domain, by using the information gathered
at the critical points to move in an educated way in the landscape exploration.

All along, we will tacitly assume that critical points (i.e., values x where G(x) =
0) are simple, in the sense that the Hessian is invertible there. In particular, at min-
ima, the associated Hessian will be positive definite. Nevertheless, the proposed
method will also be able to solve problems where at the critical point the Hessian has
eigenvalues equal to 0.

We conclude this introduction with some practical considerations.

(i) Although we are considering an unconstrained minimization problem, the case
of constrained optimization is of course also important, and we expect to
consider it in the future.

(ii) Of the many minimization methods proposed during the years, some use only
gradient information, some also Hessian, and some use only functional evalu-
ations (so-called direct search algorithms). Of course, the specific problem at
hand may inhibit using the gradient and/or the Hessian, we will assume that
these are available to us. In fact, in our technique, we make use of repeated
eigen-decomposition of the Hessian. Of course, this is an expense which may
be prohibitive for truly large problems, though by today’s standards, it is easily
doable for dimensions of up to a few hundreds. It is not by coincindence that
a lot of people have been concerned with efficient updating of Hessian fac-
torizations (e.g., the BFGS (Broyden-Fletcher-Goldfarb-Shanno) or the DFP
(Davidon-Fletcher-Powell) updates); see [11].

(iii) The prevailing wisdom (e.g., see the well-known Levenberg-Marquardt algo-
rithm, trust-region methods, and the discussion in [7] and [14]) is to use
Newton’s method near a minimizer. Our technique is designed to automat-
ically do Newton’s method as well, as we reach the neighborhood of a
minimizer, or of another critical point.

(iv) Many recent advances in global optimization (e.g., genetic algorithms, direct
search techniques, multiple random initializations) have found their place in
public domain software; e.g., see [12] and the Matlab Global Optimization
Toolbox. In particular, the latter contains three routines which we have used
for cross-comparison of our results: GlobalSearch, simulannealbnd,
and MultiStart. The function simulannealbnd is the Matlab imple-
mentation of simulated annealing. Instead, GlobalSearch finds minimizers
at different stages: first a local search (carried out by the function fmincon)
starts from an initial point x0 provided by the user, and then a list of trial point
is generated as potential starting points, taking into account penalty functions,
spherical basins of attractions, and run-time, to eventually perform the local
search from a large number of initial points. (For fair comparison with the

Numerical Algorithms (2020) 85:145–169148



results of our method, we used this function by providing gradient and Hes-
sian information). The MultiStart routine runs a local solver (fmincon)
from a different given number of starting points.

(v) Finally, we must stress that it is very delicate to implement any method, and
that methods that look good on paper may not deliver according to expecta-
tions. For this reason, we will detail our implementation choices so that our
results may be replicated.

A plan of this paper is as follows. In Section 2, we give some background material.
In Section 3, we introduce the double-descent technique, and in Section 4, we give
the combined “double-descent color-intermittent diffusion” method (DD-CID, for
short). An overview of our numerical method is in Section 5, and several numerical
experiments are reported in Section 6.

2 Preliminaries

2.1 Intermittent diffusion

In the recent work [5], the authors proposed a general methodology, called inter-
mittent diffusion (ID, for short), motivated by the fact that the most widely used
stochastic technique available for global optimization, the simulated annealing men-
tioned before, needs a deterministic part to speed up the convergence towards the
minimizers. In order to do so, ID alternates between gradient descent and diffusion
processes, by turning on and off a white noise term. In mathematical terms, the ID
methodology can be summarized by the following stochastic differential equation:

dx(t, w) = −∇g(x(t, w))dt + σ(t)dW(t), t ∈ [0, +∞] (1)

where W(t) is Brownian motion in R
n, w is a random path in the Wiener space,

and σ(t) is a piecewise constant function of time alternating between positive and
zero values. In particular, when the noise is off (σ(t) = 0), the method reduces
to the gradient-descent technique, leading the trajectory towards a minimizer of the
potential; when the noise is on (σ(t) > 0), the trajectory should leave a neighborhood
of the minimizer and, eventually, reach the basins of attraction of different minima.

The discontinous diffusion term is given in [5] as

σ(t) =
N∑

j=1

σj I[Sj ,Tj ](t) (2)

where 0 = S1 < T1 < S2 < T2 · · · < SN < TN < SN+1 = T and I[Sj ,Tj ] is
the characteristic function of the interval [Sj , Tj ]. In [5], the length of the intervals
Tj − Sj , and the constants σj are supposedly chosen randomly for all j = 1, . . . , N ;
therefore, when the characteristic function is 1, the minimizer is perturbed by a posi-
tive random number for a certain amount of time, and when the noise is off, namely
I[Sj ,Tj ] = 0, the method reduces to gradient descent and slowly converges to a local
minimum.
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As originally proposed, the ID approach is a general methodology, but to make it
become a practical method requires making a lot of choices; for example, to decide
how long the diffusion process needs to be carried out. In our experimentation of this
technique, at first, we used the discrete analog of (1):

xk+1 = xk − h∇g(xk) + √
hσ(tk)W , (3)

where W ∈ N(0, 1)n. However, when using this technique, we faced the need to
adjust too many parameters based on the potential we were trying to minimize, and
realized that there were some key aspects to be addressed:

• The local convergence towards minima, using the gradient descent, was too slow,
and a faster method (eventually, Newton-like) was desirable.

• White noise–based diffusion did not account for the local landscape of the
potential, and we eventually wanted to modify this with color noise diffusion.

• Criteria were needed to replace choosing the interval length randomly, finding
instead a deterministic criterion to switch the noise on and off.

We addressed all of the above concerns in the present paper.
In order to achieve our goal to build up a method which automatically adjusts to the

optimization problem, we resorted to exploiting the Hessian’s spectral information.

2.2 R
n via the Hessian

Below, we clarify the structure of regions of Rn where the eigenvalues of H have a
specified signature (inertia).

Definition 1 Given a symmetric matrix H , the inertia of H is the triplet

ν(H) = {n+(H), n0(H), n−(H)},
where n+, n0, and n− are the number of positive, zero, or negative eigenvalues of H ,
counted with their multiplicities. H is called hyperbolic if n0(H) = 0.

Observe that H : Rn → R
n×n is a smooth symmetric function of n parameters;

hence, the reasonings below are valid.
We will always order the eigenvalues of H as λ1 ≥ λ2 ≥ · · · ≥ λn, and v1, . . . , vn

will be the corresponding orthogonal eigenvectors. According to ν(H), we will also
use the notation V = [v1, . . . , vn] = [V+, V0, V−], and will call the columns of V+
the basis for the positively dominant subspace, or simply (with improper language)
the dominant subspace, etc..

Lemma 2 Consider the set P := {x ∈ R
n : yT H(x)y > 0 , ∀y ∈ R

n}. We have
the following properties:

(1) P is open.
(2) P = ∪iPi , where each Pi is open and connected and Pi ∩ Pj = ∅ for i �= j .
(3) Each Pi is path connected.
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Proof (1) follows from these considerations.

(i) The eigenvalues of the function H are continuous functions of x. (This is a
standard result).

(ii) If A is a symmetric positive definite function, and B = BT is such that ‖A −
B‖2 < λn(A), then B is positive definite. (This is also well known).

Thus, if we take a value x0 where H(x0) is pos-def, consider the smallest eigenvalue
of H as a function of x, and use the continuity of λn(·), then H(·) must remain
positive definite for x ∈ Br(x0) (an open ball centered at x0, of radius r): Br(x0) =
{y ∈ R

n : ‖x −y‖ < r}, or also Br(x0) = {x ∈ R
n : x = x0+ρw, ‖w‖ = 1, ρ <

r}.
As far as (2), the observation is that the function H ceases to be positive definite

when λn(x) = 0. So, we define a set Pi as that component of P such that for any
two x, y ∈ Pi there is a curve joining x and y such that along this curve λn > 0. As
above, Pi is open, and thus the set P is separated into open connected components
Pi’s, and Pi ∩ Pj = ∅, for i �= j .

(3) follows from a classical result in topology, telling that “open connected sets
in R

n are path connected.” [It is also possible to argue directly, since, given that the
Pi’s are open, an open ball centered at any point x ∈ P must intersect all coordinate
directions].

Remark 3 Properties similar to (1)-(2)-(3) above are still true in case the Hessian is
hyperbolic. Indeed, considering the sets

P := {x ∈ R
n : n0(H(x)) = 0 , n+(H(x)) and n−(H(x)) constant �= 0} ,

any of these sets for a fixed constant of n+ and n− is open and the union of (path)
connected components. The reason is that perturbation of a hyperbolic Hessian ren-
ders a hyperbolic one, with same inertia, as a consequence of the fact that invertible
matrices form an open set.

2.3 Courant’s theorem

As we will see in the following, a main idea of our method is to escape the basin
of attraction of a minimizer by searching for a saddle point. Now, it is well known
that if the potential is a function of one real variable, g : R → R, and x1 and x2 are
two strict minima, that is, g′′(x1,2) > 0, then g must have another critical point x3
between x1 and x2. However, as soon as we consider a real-valued function of two
variables, a similar result does not hold, in general.1 Nevertheless, under certain con-
ditions, the existence of other non-extremal critical points has been proved, and this
result, due to Courant, dates back to 1950 (see [13, p.49], where g is only assumed
to be C1).

1As an example, consider the function g1(x, y) = (x2y − x − 1)2 + (x2 − 1)2: it has two local minima at
(1, 2) and (−1, 0), and no other critical point.

Numerical Algorithms (2020) 85:145–169 151



Theorem 4 Suppose that g is coercive2 and possesses two distinct strict relative
minima x1 and x2. Then g possesses a third critical point distinct from x1 and x2,
characterized by

g(x3) = inf
�∈�

max
x∈�

g(x) ,

where � = {� ⊂ R
N ; � is compact and connected and x1, x2 ∈ �}.

Moreover, x3 is not a relative minimizer; that is, in every neighborhood of x3, there
exists a point x such that g(x) < g(x3).

Theorem 4 is part of “mountain pass theory.” An accessible introduction to this
theory and its applications is in [3], a comprehensive treatment is [13], and the report
[19] and the work [20] propose numerical methods to approximate mountain pass
points (here, the authors use the characterization of mountain pass points as critical
points where the (nonsingular) Hessian has exactly one negative eigenvalue).

3 Descent directions and the double descent

Here we introduce the double-descent direction. First, we recall the definition of
(gradient) descent and Newton’s directions.

(a) (Descent direction). Assuming that ∇g(x0) �= 0, any direction v such that
g(x0 + αv) < g(x0), for all sufficiently small α > 0, is called a direction
of descent for the potential g. A trivial computation shows that a direction of
descent v must satisfy (∇g(x0))

T v < 0. The classic choice is v = −∇g(x0)

(the so-called gradient descent choice).
(b) (Newton’s direction). This is the direction resulting from using Newton’s

method to solve the problem ∇g(x) = 0. In other words, it is the direc-
tion (assuming that ∇g(x0) �= 0 and that the Hessian is invertible) given by
v(x0) = −H(x0)

−1∇g(x0). We note that this is a descent direction for the
functional G at x0, since ∇G = H∇g.

Remark 5 Of course, we can always normalize a descent (and/or Newton’s) direction
to be a vector of norm 1.

3.1 Descent direction within a positive definite region

The following result, which is both fundamental and well known (see [7, p.114]),
serves as motivation for some of our later algorithmic choices.

Lemma 6 Let x0 be a point where ∇g �= 0 and let H(x0) be positive definite. Then,
the Newton’s direction is a direction of descent for g.

2Recall g : Rn → R is coercive if lim‖x‖→∞ g(x) = +∞, that is, for any constant M , there is a constant
RM such that ‖g(x)‖ > M whenever ‖x‖ > RM .
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Proof We need to show that—at x0—we have (∇g)T v < 0 when v = −H−1∇g.
But this is obvious since H is positive definite.

With the help of Lemma 6, the following is immediate.

Proposition 7 Suppose that x0 ∈ 	0, where 	0 is a path-connected component
where H is positive definite. Then, either ∇g(x0) = 0 or there exists a direction v ∈
R

n, and a scalar α > 0, such that bothG(x0+αv) < G(x0) and g(x0+αv) < g(x0).
Further, when ∇g(x0) �= 0, one can also choose τ so that both potentials decrease
and H(x0 + τv) is positive definite.

Proof We want v such that both of these relations hold at x0:

vT ∇G < 0 and vT ∇g < 0 .

Since ∇G = H∇g, these relations are

vT H∇g < 0 and vT ∇g < 0 .

Each of the above inequalities defines an open half space, and the Newton’s direction
is in both of these. Therefore, the existence of a unit vector v giving us the sought
decrease is established, and there exists a scalar α, positive, such that both G(x0 +
αv) < G(x0) and g(x0 + αv) < g(x0).

Further, since H(x0) is positive definite, then there is an open ball centered at x0
and of radius r > 0, Br(x0), such that H(x) remains positive definite for any x ∈
Br(x0). Therefore, there exist τ so that H(x) is positive definite for x = x0+τv.

Remark 8 Because of Lemma 6, in Proposition 7, we can choose v to be the Newton’s
direction.

We note right away that it is often not advisable to select the step length τ so that
the Hessian remains positive definite. Indeed, in our numerical experiments, doing so
often resulted in a severe restriction of the step length and inefficient computations,
and it was quite preferable to allow a decrease in the potentials without forcing a fixed
inertia for the Hessian. For this reason, we now define the double-descent direction
allowing for the Hessian to be indefinite.

3.2 Descent direction within an indefinite region

Here, we generalize the above result to the case of regions with different Hessian’s
inertia.

Proposition 9 Let 	 be a path-connected region where ν(H) = {n+, n0, n−} for all
x ∈ 	, with n+ ≥ 1. Let x0 ∈ 	, and let V+ = span{v1, . . . , vn+}, where v1, . . . , vn+
are eigenvectors corresponding to positive eigenvalues of H(x0).

Then, if V T+ ∇g(x0) �= 0, there exists a direction v ∈ R
n, and a scalar α > 0, such

that both G(x0 + αv) < G(x0) and g(x0 + αv) < g(x0). Further, if n0 = 0, i.e.,
H(x0) is hyperbolic, then there exists τ > 0 so that ν(H(x0 + τv)) = ν(H(x0)).
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Finally, in all cases above, the direction v can be taken as v =
−(H+(x0))

†∇g(x0), where H+ is the closest positive semidefinite matrix to H ; that
is, if H = V �V T , and � = diag(�+, �0, �−), then H+ = V �+V T , with
�+ = diag(�+, 0n0 , 0n−), and thus (H+)† = V+(�+)−1V T+ .

Proof We want v such that both of these relations hold at x0:

vT H∇g < 0 and vT ∇g < 0 .

Considering the direction v given in the statement, we have

vT ∇g = −∇g(x0)
T (H+(x0))

†∇g(x0) < 0

since V T+ ∇g(x0) �= 0. For the same reason, we also have

vT H∇g = −∇g(x0)
T (H+(x0))

†H∇g(x0)

= −(V T+ ∇g)T (�+)−1(V T+ ∇g) < 0 .

Therefore, the existence of a unit vector v giving us the sought decrease is estab-
lished, and there exists a scalar α, positive, such that both G(x0 + αv) < G(x0) and
g(x0 + αv) < g(x0). Further, if H(x0) is hyperbolic, then ν(H(x0)) = {n+, n−}.
Therefore, there is an open ball centered at x0 and of radius r > 0, Br(x0), such that
ν(H(x)) = ν(H(x0)) for any x ∈ Br(x0). Thus, we can choose τ > 0 such that
ν(H(x0 + τv)) = ν(H(x0)).

Remark 10 The direction v = −(H+(x0))
†∇g(x0) of Theorem 9 is effectively

the Newton’s direction restricted to the subspace associated with the positive
eigenvalues.

Summary 11 To sum up, as long as the point x0 is in a region where the Hessian
has at least one positive eigenvalue, and ∇g has a nontrivial component in the sub-
space spanned by the eigenvectors corresponding to the positive eigenvalues, we can
always find a direction v which is of descent for both G and g. If H(x0) has no 0
eigenvalue, we can also maintain the inertia of H by taking a step in the direction v;
however, this may be counterproductive (as our computations showed), since it may
unduly restrict the step τ , and it is much more desirable to let the iterate enter and
exit regions of different Hessian’s inertia while decreasing the potentials g and G.

Remark 12 One more comment is needed about the condition V T+ (x)∇g(x) �= 0.
The dimension of the subspace spanned by the columns of V+ is n+, while ∇g is
a vector in R

n. Therefore, in general, the requirement V T+ ∇g = 0 would define a
set of n+ equations in the n variables x ∈ R

n. Generally, these define an n − n+
dimensional manifold immersed in R

n. Therefore, we should expect that, at any x,
the vector ∇g will have a nontrivial component in V+. This is the truer the larger is
n+. In the limiting case of n+ = n, Lemma 6 already told us that. At the same time,
if n+ = 0, then obviously there is no direction v+ to begin with. In this case, there is
no double-descent direction to begin with, and our method (see below) will revert to
using the gradient direction.
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4 Double-descent colored-diffusionmethod

The main idea of our technique is to take advantage of information about the inertia
of the Hessian, in order to explore the landscape going from a saddle point to a
minimum and vice versa, avoiding being trapped in the basins of attraction of the
critical points while following an educated path.

There are two types of processes we use: “local zoom-in” and “basin-escaping”
methods.

4.1 Reaching a critical point: local search

This part is based on the developments of Section 3. We distinguish between the
cases of searching for a minimum or a saddle. In the former case, we have a host of
possibilities: the double-descent algorithm, gradient descent, and Newton’s method
(damped); in the latter, we use a (damped) Newton’s method. Still, we must make
some careful implementation choices.

For example, when searching for a minimum, beside the usual concerns on how
to choose the step length (see [7]), we also accounted for the following aspects when
implementing the double-descent method.

(i) When using the double-descent direction, we demand that both g and G have
appreciably decreased.

(ii) To declare that ∇g has no meaningful component in the subspace spanned
by V+, we used the criterion ‖V T+ (xk)

∇g(xk)
‖∇g(xk)

‖‖ ≤ √
n/10, where n is the

ambient dimension. When this happens, we reverted to the direction v given
by the simpler gradient-descent direction, and kept this descent strategy for
5 steps before retrying the double-descent direction. Likewise, we reverted to
the gradient-descent direction when too many damping steps are taken with
the double-descent direction.

(iii) Another important consideration is about the stopping criterion (both when
searching for a minimum or a saddle). In our implementation, we chose the
following stopping criterion (always within the maximum allowed number of
iterations). We iterate as long as:

‖∇g(xk)‖ ≥ atol+‖∇g(x0)‖rtol and ‖xk−xk−1‖ ≥ atol+‖x0‖rtol ,

where atol and rtol stand for absolute and relative tolerance, and they are
chosen by the user.

4.2 Basin escaping by color diffusion

Here we adopt (some of) the ideas in Section 2.1 in order to leave the basin of attrac-
tion (for Newton’s method) of a critical point. In particular, compare (4), (5), and (6)
with (3) from Section 2.1; just as (3) can be viewed as a discretization of the SDE
(1), our equations (4), (5), and (6) can be thought of as discretizations of an under-
lying SDE in regions where the inertia of the Hessian and the sign of the dominant
(respectively, smallest) eigenvalue are not changing.
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As seen in Section 3, the double-descent method is designed to lead to a minimum
when the Hessian at the starting point is either positive definite or indefinite, and—
when properly implemented—it will really be Newton’s method close to a minimum.
In contrast, when the initial value lies in a region in which both n+(H) and n−(H)

are nonzero, we will presume that (damped) Newton method will converge to a saddle
point (or perhaps to a maximum); this expectation has effectively been borne out in
practice for the vast majority of our experiments.

Regardless, if we are at either a minimum or at a saddle, we need to leave
the respective basins of attraction for (damped) Newton method. To do this, we
implemented a colored intermittent diffusion method as follows, by reflecting the
choices made above to look for either a saddle or a minimum, and the discussion in
Section 2.1.

(a) From a min x0, trying to go to a saddle. Let us first assume that, λ1 > λ2 ≥
· · · ≥ λn > 0 along our iterates. There are three basic steps.

(i) Select α > 0, and generate

x1 = x0 + αv1(x0)v
T
1 (x0)W , W ∈ N(0, 1)n .

(ii) Find h such that |G(x̂k+1)| < |G(xk)|, with x̂k+1 = xk −
h

(
H †(xk)∇g(xk)

)
, and then

xk+1 = xk − h
(
H †(xk)∇g(xk)

)
+ α

√
hσ(xk)W ,where

σ(xk) = −v1(xk)v1(xk)
T , and W ∈ N(0, 1)n . (4)

(iii) Continue with the diffused damped Newton’s above until the Hes-
sian has some negative eigenvalues or the maximum number of
diffusive iteration has been exceeded. At that point, use (damped)
Newton’s method. Hence, select the Newton direction v and the
step length h to decrease the auxiliary potential G; say, G(xk +
hv) < G(xk). If gm denotes the value of the potential g at the
minimum from which we started, we observed that consistently
g(xk + hv) > gm which betrays that we are not going back to the
starting minimum.

The rationale for the colored noise diffusive step is to move away as quickly as
possible from the basin of attraction of the minimum. If x0 is a minimum, the
standard quadratic approximation in a ε-ball around x0 will give:

g(x0 + εy) = g(x0) + ε∇g(x0)
T y + 1

2
ε2yT H(x0)y + . . .

and therefore, with ‖y‖ = 1, the fastest increase is for y = v1. In the (very
unlikely) case that the dominant eigenvalue has multiplicity greater than 1, we
select a random vector in the span of the dominant eigenvectors.

(b) From a saddle x0, trying to go to a min. Let us first assume that λ1 ≥ · · · ≥
λn−1 > λn, with λ1 > 0 and λn < 0. Even here, there are two basic steps,
getting out of the saddle and going to a minimum. The second step, see below,
can be carried out with the double-descent method, or with gradient descent, or
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possibly with a (damped) Newton approach. In all cases, first we use colored
diffusion steps to move out of the saddle.

(i) Select α and generate

x1 = x0 + αvn(x0)v
T
n (x0)W , W ∈ N(0, 1)n .

As before, the choice of the colored noise diffusive step is to move
away as quickly as possible from the basin of attraction of the sad-
dle, while decreasing the potential g. If x0 is a saddle, in a ε-ball
around x0, we have:

g(x0 + εy) = g(x0) + ε∇g(x0)
T y + 1

2
ε2yT H(x0)y + . . .

and therefore, with ‖y‖ = 1, the fastest decrease is for y = vn.
(ii) Double descent. If ∇g(xk) has a meaningful component in the

direction of V+(xk), do (ii-a), otherwise do (ii-b).

(ii-a) Find h such that both |G(x̂k+1)| < |G(xk)| and
|g(x̂k+1)| < |g(xk)| with x̂k+1 = xk −
h

(
H

†
+(xk)∇g(xk)

)
, and then

xk+1 = xk − h
(
H

†
+(xk)∇g(xk)

)
+ α

√
hσ(xk)W ,where

σ(xk) = −vn(xk)vn(xk)
T , and W ∈ N(0, 1)n .

(5)
(ii-b) Find h such that |g(x̂k+1)| < |g(xk)|, with x̂k+1 =

xk − h ∇g(xk), and then

xk+1 = xk − h ∇g(xk) + α
√

hσ(xk)W ,where
σ(xk) = −vn(xk)vn(xk)

T , and W ∈ N(0, 1)n .
(6)

(iii) Diffused double descent. Continue with the diffused double
descent above until the Hessian has all positive eigenvalues or the
maximum number of diffusive iteration has been exceeded. At that
point, use double-descent method. Hence, select the direction v

and the step length h to decrease the potential g and the auxiliary
potential G; say, g(xk + hv) < g(xk) and G(xk + hv) < G(xk).

Again, in the (very unlikely) event that the smallest eigenvalue has multiplicity
greater than 1, we select a random unit vector in the corresponding subspace.

5 The method at a glance

In the previous sections, we presented only the two key components of the method,
namely, the local search and the basin escaping. Here, we give a broader idea of the
method.
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Fig. 2 Basin-escaping main idea. Consider the function of Example 6.1.1, which has two minima and a
saddle point. To escape the basin of attraction of a minimum, the idea is to move towards a saddle point,
as in a. Starting from a saddle point, instead, the goal is to find a direction to move as quick as possible to
a minimum, as illustrated in b

(0) The very first initial datum x0 is randomly chosen (within a region of interest).
A local search for a minimum starts with the double-descent method, and the
point found is stored in a table of critical points.

(1) A point from the table is randomly selected. Colored diffusion to escape the
basin of this critical point is performed (see Fig. 2), followed by a local search
for the next critical point. The new point is stored in the table,3 and step (1) is
thus repeated until a predefined number of critical points is found.

5.1 Sketch of the algorithm

(1) Choose a random point x0 in the search region.
(2) Look for a minimum xmin by using the double-descent method.
(3) Store xmin in the list of critical points.
(4) LOOP BEGINS - to be repeated for a preassigned number of iterations.

(a) Randomly choose a point x from the list.
(b) If x is a minimum, start diffusion according to (4) until n−(H) �= 0 (see

Fig. 3a) or maximim number of diffusive steps is exceeded.
Apply (damped) Newton method to find a saddle point.
Store the saddle in the list of critical points.

(c) If x is a saddle point, take diffusive steps according to (5) (or (6)), until
n−(H) = 0 (see Fig. 3b) or the maximum number of diffusive steps is
exceeded. Apply double descent to find a minimizer.

Store the minimum in the list of critical points.

LOOP ENDS

3The same point can thus appear multiple times in the table.
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Fig. 3 Switch timing for colored diffusion. The blue region represents the set of points at which the
Hessian is positive definite, while the white region has an indefinite Hessian. Suppose we need to escape
the basin of attraction of a minimum (a), the diffusion process is triggered until reaching the white region,
where a local search starts. Conversely, starting from a saddle point, as in b, the diffusion process stops
when the blue region is reached, and the local search begins

5.2 Computational considerations

A main drawback of Newton’s type technique, hence also of the double-descent
method, is the need to form, evaluate, and decompose, the Hessian. Except for
problems where the Hessian is simple to evaluate, and very structured (e.g., tridi-
agonal), this can be very expensive and it restricts applicability of Hessian based
techniques to small dimension (say, up to a few hundred variables on a typical
laptop). We also note that for some problems, evaluating the Hessian is itself an
expensive task; e.g., this is the case for interatomic potentials, such as the Morse
and Lennard-Jones potentials (see Section 6). Although our purpose in this work
has not been to deal specifically with efficient implementations, but rather to give
ways to explore the phase space (the landscape), for large (possibly sparse) prob-
lems, we have experimented with Lanczos techniques, and a subspace version of
Newton’s method, whereby we project the Hessian in the direction of the most dom-
inant eigenvalues (positive and negative). We will report on these aspects in other
works.

An important consideration pertains to the colored noise diffusion. To perform
this diffusion, and to monitor when to stop it, it is straightforward to bypass the
Hessian factorization. In fact, to form the color noise and to decide when to stop
diffusion, we only need the two eigen-directions v1 and vn. These are inexpensive to
obtain with a well-designed Lanczos technique (e.g., eigs in Matlab), by asking
for (respectively) the largest and smallest eigenvalues. This feature is particularly
useful when using just a damped Newton’s method with color noise (as in our basic
intermittent diffusion method from a min to a saddle), since the linear systems arising
during the iteration are then solved without resorting to a full eigen-decomposition.
To elucidate and to account for the possibility of singular Hessian, we first form the
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QR factorization with column pivoting of the Hessian:HP = QR with diagonal ofR
ordered in decreasing magnitude. Then solve the resulting triangular system, possibly
for the minimum norm solution (if the Hessian was singular, which is betrayed by
Rnn = 0).

Finally, as seen in Section 4.2, we use a variable stepsize controlled through the
requirement of moving in the descent direction(s). The initial stepsize is set to 1, and
the stepsize is always required to remain in [2−26, 25], where 2−26 = √

eps, the
square root of the machine precision. When one step is taken in the desired direc-
tion, and the computation is immediately accepted, then the stepsize is doubled; if
the computation is rejected, the stesize is halved. If we reach the minimum allowed
stepsize, the algorithm halts and restarts from a different critical point in the table (or
a different random point, the very first time).

6 Applications and examples

In this section, we show performance of our method on several problems, both stan-
dard model problems, with an illustrative purpose and to validate the method on
different landscape features, and those arising from chemical potentials.

6.1 Test problems

6.1.1 An illustrative example

Consider the following elementary potential:

g(x, y) = (x2 − 1)2 + (x2 + y − 1)2. (7)

It has 2 minimizers, located at (−1, 0) and (1, 0), and a saddle point at (0, 1). Starting
from a random point x0, the double-descent technique quickly leads to a minimizer,
and the diffusion combined with Newton method allows to find the saddle point,
from which the algorithm looks again for a minimizer. By using our technique, and
asking the algorithm for at most 4 critical points, we were able to find, in a single
run, the two minimizers and the saddle point. Indeed, the method is behaving exactly
like we were hoping: first, it converges to (−1, 0), then it goes through the saddle
point and from there localizes the other minimum at (1, 0), and then it goes back
to the saddle point. On average, we counted 3 diffusive steps and 8.25 local search
iterations.

6.1.2 Shubert function

The Shubert function is a highly multimodal potential: it has several local minima and
many global ones. Naturally, the function presents many saddle points and maxima.
Moreover, the global minima and the global maxima are extremely close, and this is
one of the reason why it may be difficult to find the global minimizers.
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Although our algorithm is designed to find minima and saddles, it could end
up finding maxima as well, due to the Newton’s basins of attractions, which are
nontrivial. Schubert’s potential,

g(x, y) =
(

5∑
i=1

i cos [(i + 1) x + i]

)(
5∑

i=1

i cos [(i + 1) y + i]

)
, (8)

is represented in Fig. 4a. Figure 4 b is a zoom of the contour plot around the
global minimizer, and the points are the minimizers found by just applying the dou-
ble descent technique, starting from random initial values. While finding the global
minimizer by applying a deterministic technique requires a starting point in its neigh-
borhood, the ability to explore the landscape eliminates this necessity. One single
run of our technique, asking for 100 possible critical points, gave us 45 minima, 3 of
which were global, at different locations. On average, for attempt, we counted one
diffusive step and 5.9 local search iterations.

6.1.3 Biggs function

Let us consider the following function:

g(X) =
10∑
i=1

(
e−ti x1 − 5e−ti x2 − yi

)2
(9)

where ti = 0.1 i and yi = e−ti − 5e10 ti .
There are two critical points: a minimum at (1, 10) and a saddle at

(16.7047, 16.7047), as shown in Fig. 5.
The challenges in this problem are the flat landscape of the potential and the pres-

ence of narrow regions in which the Hessian is positive (negative) definite, but that do
not contain a minimum (maximum), as shown in Fig. 6. Asking for 2 critical points,

Fig. 4 Shubert function. a Potential landscape. b Contour plot around a global minimizer
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Fig. 5 Biggs function’s critical points. (Global) Minimum in black and saddle point in magenta

we were able to find, in a single run, both the minimum and the saddle point. On
average, we performed 2.5 diffusive steps and 18 local search iterations.

6.1.4 Camel function

Let us consider the following function:

g(x, y) =
(
4 − 2.1 x2 + x4

3

)
x2 + xy + 4(y2 − 1)y2 (10)

-20 -10 0 10 20 30 40
-20

-10
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20
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40

Fig. 6 Biggs function. In blue, the regions of the plane in which the Hessian is positive definite. In redm
the one in which H is negative-definite; elsewhere, H is indefinite
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This function is a standard test function for global optimization, but it is also useful
as a test for the mountain passes’ search (see [19]). In fact, our algorithm can be
also used to compute mountain passes. As in [19], these are characterized as critical
points whose Hessian has exactly one negative eigenvalue, that is, n−(H)=1.

Consider the region [−2, 2]×[−1, 1]. Here, there are 14 critical points: 6 mountain
passes, 6 minima, and 2 maxima. Our method has no difficulty in computing all of
these points in one single execution. Results are summarized in Fig. 7 and in Table 1.

6.1.5 Rosenbrock function

This function is given by

g(x) =
N−1∑
i=1

[
100 (xi+1 − x2

i )2 + (xi − 1)2
]

, (11)

and it has a global minimum value of 0 at at (1, 1, ..., 1), for any value of N . The
Hessian is very inexpensive to compute and factor, being tridiagonal. The global
minimum lies inside a long, narrow, parabolic shaped flat valley; while finding the
valley is trivial, detecting the global minimizer is not.

We take N = 50. A Monte Carlo gradient-descent technique using 20 random
initial guesses did not find the global minimizer. A single implementation of our
technique with the possibility to find at most 20 critical points found 16 minimizers,
9 of which were global. On average, per attempt to find a critical point, we counted
1.8 diffusive steps and 136 local search steps. For comparison sake, the Matlab
routine GlobalSearch found the global minimizer, whereas the Matlab simu-
lated annealing routine simulannealbnd gave a best value for the minimum of

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 7 Camel Function’s critical points. In the region of interest, represented in this figure, there are 6
minima (in black), 2 maxima (in red), and 6 mountain passes (in magenta)
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Table 1 Camel critical points

x y f (x, y) Spectrum of H

0.0898 − 0.7127 − 1.0316 7.6822 16.4932

− 0.0898 0.7127 − 1.0316 7.6823 16.4932

1.6071 0.5687 2.1043 7.1215 10.0216

− 1.6071 − 0.5687 2.1043 7.1215 10.0216

1.7036 − 0.7961 − 0.2155 18.8171 22.6975

− 1.7036 0.7961 − 0.2155 18.8171 22.6975

1.2302 0.1623 2.4963 − 8.0149 − 5.9537

− 1.2302 − 0.1623 2.4963 − 8.0149 − 5.9537

0 0 0 − 8.0623 8.0623

1.1092 − 0.7683 0.5437 − 7.9026 20.3667

− 1.1092 0.7683 0.5437 − 7.9026 20.3667

1.2961 0.6051 2.2295 − 6.1772 9.6376

− 1.2961 − 0.6051 2.2295 − 6.1772 9.6376

1.6381 0.2287 2.2294 − 5.5458 2.4367

40.7188, and with Matlab routine MultiStart none of the 20 local solver runs
converged, providing no result.

6.2 Chemical potentials

An interesting application of global optimization is protein folding. Mathematically,
this consists in finding the equilibrium configuration of d atoms, assuming that the
forces between the atoms are known. In the end, one has to find the minimizer of a
potential energy function depending on 3d variables.

The Lennard-Jones and Morse clusters are two well-known systems of this kind
and they have been extensively studied, and the minima tabulated. For example, the
(currently best) global minima for Lennard-Jones and Morse potential can be found
at the database [6]. These results were obtained with the methods presented in [8]
and [15]. Both are “basin-hopping” techniques; they exploit the funneling structure
of the potentials (that is, the global minimizer lies at the bottom of a monotonically
descending sequence of minimizers), and make a number of choices explicitly based
on the specific problem at hand. For example, the authors perform a continuation
based upon an optimal configuration reached with d atoms to initiate the search for
(d + 1) atoms.

With no pretense of comparing with these other results, below we present some of
the results we obtained applying our general technique on both Morse and Lennard-
Jones potentials. These potentials depend on the mutual distances (in R

3) between
the atoms, namely rij = ‖Pj − Pi‖, with 1 ≤ i < j ≤ d and Pk = (xk, yk, zk), for
all k = 1, ..., d .

Given obvious symmetries in the problem, we imposed the following location
constraints: we fix one atom at the origin (P1 = (0, 0, 0)), another one on the x axis
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(P2 = (x2, 0, 0)), and a third one in the xy-plane (P3 = (x3, y3, 0)). All other atoms
are unconstrained. With this setup, each configuration will be identified by the vector
of coordinates

X = (x2, x3, y3, x4, y4, z4, . . . , xd, yd, zd),

and the dimension of the problem becomes N = 3d − 6.
In our experiments, we compute the gradient analytically, and the Hessian

numerically, by forward finite differences.

6.2.1 Lennard-Jones potential

This is defined as follows:

V (r) = 4 ε

d∑
i<j

[(
σ

rij

)12

−
(

σ

rij

)6
]

, (12)

where ε and 21/6σ are the pair equilibrium well depth and separation respectively.
We take ε = σ = 1.

This is a problem where a simple gradient-descent technique, coupled with a
Monte Carlo randomization, performs reasonably well; as a matter of fact, our own
double-descent method quite often automatically reverts to gradient descent. On this
problem, the basin-hopping techniques of [15] is an effective way to find the global
minima, since the knowledge of the potential landscape is exploited in the algo-
rithm itself; our method is really a landscape exploration approach. Nevertheless, the
method worked well for small values of d , as reported in Table 2.

For the sake of comparison, we ran MultiStart with 100 starting points. This
technique provided global solutions for d ≤ 4, but gave local results for d > 4.

Table 2 Lennard-Jones global
minima d N Potential at global minima

2 1 − 1

3 3 − 3

4 6 − 6

5 9 − 9.104

6 12 − 12.712

7 15 − 16.505

8 18 − 19.821

9 21 − 24.113

10 24 − 28.422

11 27 − 32.766

12 30 − 37.968

13 33 − 44.327

14 36 − 47.845
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Table 3 Morse global minima
(d = 11, N = 27) ρ Global minima

3 − 37.930817

6 − 31.521880

10 − 30.265230

14 − 29.596054

6.2.2 Morse potential

The Morse potential is defined as follows:

Vρ(r) =
d∑

i<j

[
eρ(1−rij )

(
eρ(1−rij ) − 2

)]
(13)

where ρ is a parameter which determines the width of the well. We treat this problem
as truly unconstrained, and this may create difficulties to descent techniques, since
descent directions may well identify points “at infinity” (i.e., some coordinates grow
unbounded); e.g., this happens to the Matlab code GlobalSearch. A further
difficulty is that global minima become harder to locate when ρ increases. In Table 3,
we report the results of our method for 11 atoms and ρ = 3, 6, 10, 14; our minima
match those of [6].

For the sake of comparison, we remark that Matlab functions GlobalSearch,
simulannealbnd, and MultiStart did not give acceptable results. Namely,
we obtained the results in Table 4.

6.3 Nonlinear systems

Our technique can also be used to solve nonlinear systems. Indeed, a nonlinear system

S(x) = 0, with x ∈ R
n, (14)

can be reformulated as an optimization problem, simply by considering the objective
function given by

g(x) = 1

2
S(x)T S(x) (15)

Table 4 Results obtained using Matlab global optimization toolbox (GlobalSearch,
simulannealbnd, and MultiStart ) on Morse Potential (d = 11, N = 27)

ρ GlobalSearch simulannealbnd MultiStart

3 − 31.2539 − 11.1367 − 6

6 − 19.3274 − 3.1483 − 6

10 − 0.0036 − 1 − 1

14 − 8.006 − 1 − 3.2060e-32
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Fig. 8 Boggs system. a Contour plot of the potential (15), and solutions of the nonlinear system. b Critical
points of (15) found by our method; the green dots correspond to diffusion steps

In this case, ∇g(x) = JS(x)T S(x), where JS indicates the Jacobian of S. Therefore,
the critical points of the objective function g correspond to both the zeros of S(x),
and the points for which S(x) is in the left null space of the Jacobian.

6.3.1 Boggs system

Given the nonlinear system [
x2 − y + 1
x − cos

(
π
2 y

) ]
= 0, (16)

we construct the objective function according to (15).
The solutions of the problem are (− 1, 2), (0, 1), and (− √

2/2, 3/2), illustrated
in Fig. 8a.

Numerical results from a single run of the algorithm, asking for at most 20 critical
points, are shown in Table 5 and illustrated in Fig. 8.

Table 5 Critical points—Boggs
system x y g(x, y) id

0 1 0 Global minima

− 1 2 0

− 0.7071 1.5 0

− 2.1530 5.9055 0.7139 Local minima

0.1301 − 0.3768 1.2161

0.1890 − 0.3663 1.1941

− 0.8898 1.7671 0.0013 Saddle points

− 0.3319 1.1830 0.0038

0.4555 2.4926 1.5111

− 0.3277 4.3927 6.0502
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7 Conclusions

In this work, we presented a method apt at exploring the landscape of a smooth (at
least C2) potential, in order to locate global minima. The new components of our
method are a double-descent technique (to locate minima) and a colored intermit-
tent diffusion (to escape basin of attraction of minima and other critical points). The
idea of the technique is to use Hessian information in order to bias the exploration
of the landscape. We illustrated performance of our technique on several problems
from the literature, observing that our method is able, in most cases, to adapt to dif-
ferent features of the potential. We believe that our method can be easily taught in an
optimization course, along with other well-established techniques.
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