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Abstract

Epilepsy is a common neurological disorder which can occur in people of all ages globally. For the
clinical treatment of epileptic patients, the detection of epileptic seizures is of great significance.
Objective: Electroencephalography (EEG) is an essential component in the diagnosis of epileptic
seizures, from which brain surgeons can detect important pathological information about patient
epileptiform discharges. This paper focuses on adaptive seizure detection from EEG recordings. We
propose a new feature extraction model based on an adaptive decomposition method, named intrinsic
time-scale decomposition (ITD), which is suitable for analyzing non-linear and non-stationary data.
Approach: Firstly, using the ITD technique, every EEG recording is decomposed into several proper
rotation components (PRCs). Secondly, the instantaneous amplitudes and frequencies of these PRCs
can be calculated and then we extract their statistical indices. Furthermore, we combine all these
statistical indices of the corresponding five PRCs as the feature vector of each EEG signal. Finally, these
feature vectorsare fed into a feedforward neural network (FNN) classifier for EEG classification. The
whole process of feature extraction proposed in this paper only involves one parameter and the role of
the ITD method is based on a piecewise linear function, which makes the computation of the model
simple and fast. More useful information for classification can be obtained since we take advantage

of both instantaneous amplitude and instantaneous frequency for feature extraction. Main results:
We consider the 17 classification problems which contain normal versus epileptic, non-seizure versus
seizure and normal versus interictal versus ictal using a FNN classifier which only contains one hidden
layer. Experimental results show that the proposed method can catch the discriminative features of
EEG signals and obtain comparable results when compared with state-of-the-art detection methods.
Significance: Therefore, the proposed system has a great potential in real-time seizure detection and
provides physicians with a real-time diagnostic aid in their practice.

1. Introduction

Epilepsy isa chronicbrain dysfunction syndrome, which is characterized by recurrent epileptic seizures caused by
abnormal discharge of brain neurons. Nowadays, epilepsy is a common neurological disease, and its prevalence
is only second to stroke. According to a new report from the World Health Organization, there are around
50 million people worldwide suffering from epilepsy (WHO 2019). Moreover, epilepsy can cause other health
problems. Therefore, its prevention and diagnosis have become one of the primary problems in the medical
community. An electroencephalogram (EEG) is a graph obtained by amplifying and recording the spontaneous
biologic potential of the brain cells with sophisticated electronic instruments. EEG recordings reflect the
spontaneous and rhythmic electrical activities of the brain cells, which makes it an essential component in the
evaluation of epilepsy (Nolan et al 2004). However, reviewing a continuous EEG recording is tedious and time-
consuming. In addition, when the number of EEG channels increases, the problem becomes even worse, which
reduces the efficiency. To overcome these limitations, it is of great significance to design an automated EEG
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recognition system to assist neurologists in classifying epileptic and non-epileptic EEG recordings (Ullah et al
2018). Automatic seizure detection, particularly if performed online, can be a valuable clinical tool to identify
segments of the EEG likely to contain seizures (Lietal 2013).

In the last decade, much research work on automatic EEG detection has been carried out, and this can be
mainly categorized into two research hotspots. One is feature extraction and the other is classifier design. In
terms of EEG feature extraction, some researchers extracted features directly from the EEG signals (Zhou et al
2008, Minasyan et al 2010, Acharya et al 2012a). However, the features extracted only from the time domain are
not comprehensive and inevitably ignore a lot of important information. Therefore, other researchers were more
concerned with extracting features from the time-frequency combination by means of transform techniques.
They transformed the EEG signals into the frequency domain and extracted the features in the frequency domain
as well as in the time domain (Polat and Giines 2007, Tzallas et al 2009, Li et al 2013, Martis et al 2013, Pachoriand
Patidar 2014, Das and Bhuiyan 2016, Djemili et al 2016, Riaz et al 2016, Bhattacharyya and Pachori 2017, Li et al
2017, Gaur etal 2018). For multichannel EEG recordings, some researchers considered joint analysis-based tech-
niques to extract the features (Zhou et al 2016, Bhattacharyya and Pachori 2017). Sparse representation-based
techniques have also been used (Li et al 2014, Zhang et al 2019). Regularization-based techniques can prevent
overfitting in EEG detection (Zhang et al 2016). Some researchers turned the problem of feature extraction into
an optimization problem. They designed special penalized functions and solved them to obtain discriminative
EEG features (Hosseini et al 2016, Hussein et al 2018). After extracting the features, one can choose proper classi-
fiers for EEG classification. There are many classical classifiers to choose from. Classifiers frequently used in liter-
ature include the k-nearest neighbor (KNN), artificial neural network (ANN), decision tree (DT), random forest
(RF) and support vector machine (SVM) (Martis et al 2013, Sharmila and Geethanjali 2016, Lietal 2017, Hussein
etal 2018). Some researchers modified the classical classifiers; for example in Richhariya and Tanveer (2018), the
authors proposed a novel model named universum SVM for EEG classification. Meanwhile, the authors in Jin
etal (2018) proposed a sparse Bayesian extreme learning machine (ELM) to solve the EEG classification problem
by integrating the Bayesian interference into the ELM. Some researchers tried to apply recent deep learning tech-
niques to this field (Acharya et al 2018, Ullah eral 2018). However, training a deep model needs a large number of
samples, which does not always work in reality. In this study, we provide an alternative means of seizure detection
using a different feature extraction strategy that only involves one parameter and runs fast. In addition, using
these features, a feedforward neural network (FNN) classifier which only has one hidden layer can achieve high
accuracy. These characteristics make our system suitable for online recognition and big dataset operation.

The organization of this paper is as follows. The dataset used in this paper is described in section 2. We also
present the literature review in this section. Section 3 contains the methodology. We describe the proposed
method for EEG feature extraction. We also introduce the process of intrinsic time-scale decomposition (ITD)
and explain how to obtain the instantaneous amplitude and instantaneous frequency of each proper rotation
component (PRC). The descriptions of the statistical features are also presented. Section 4 is the experimental
section. We compare our method with state-of-the-art methods. Finally, section 5 provides the conclusion of this

paper.
2. Dataset description and literature review

2.1. Dataset description

The EEG dataset is taken from the public resource at the University of Bonn, which has been extensively used in
epilepsy recognition®. The EEG signals were recorded by the same 128-channel amplifier system and digitized
using a 12-bit analog-to-digital converter. The total dataset consists of EEG signals for healthy and epileptic
subjects. It has five classes (A, B, C, D and E). Each class contains 100 single-channel EEG segments with sampling
time 23.6 s and sampling rate 173.61 Hz. A summary is given in table 1. For a more detailed description of the

dataset please refer to Andrzejak etal (2001).

2.2. Literature review

Transform is a common method in the problem of feature extraction. By means of a suitable transform, some
discriminative features of EEG recordings can be extracted from the transform domain. In Polat and Giines
(2007), the authors calculated power spectral density (PSD) by fast Fourier transform as EEG features and used
the DT classifier for the two-class classification problem: A versus E. Finally, they obtained 98.68% classification
accuracy using five-fold cross-validation and 98.72% accuracy using ten-fold cross-validation, respectively. In
another study, the PSD of each EEG segment was calculated by means of short-time Fourier transform and
time-frequency distributions for feature extraction (Tzallas et al 2009). Then an ANN classifier was used for
EEG classification. For the two-class classification problem A versus E, they obtained an average accuracy of

4The data can be downloaded from http://epileptologie-bonn.de/cms/upload/workgroup/lehnertz/eegdata.html.
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Table 1. Description of the public dataset.

Set A Set B Set C Set D SetE
Subjects Healthy Healthy Epileptic Epileptic Epileptic
State Eyes open Eyes closed Interictal Interictal Ictal
Electrode International 10-20 International 10-20 Opposite to Within Within
placement  system system epileptogenic zone epileptogenic zone epileptogenic zone
Number 100 100 100 100 100
Time 2365 23.6s 23.6s 23.6s 23.6s
duration
Samplerate 173.61 Hz 173.61 Hz 173.61 Hz 173.61 Hz 173.61 Hz

94.27%; for the three-class classification problem A versus C versus E, they obtained an average accuracy of
94.68%. More and more researchers are trying to apply wavelet transform to EEG feature extraction (Acharya
et al 2012b, Li et al 2017). The authors in Acharya ef al (2012b) applied the wavelet packet decomposition to
EEG signals and extracted EEG features by calculating the eigenvalues from the obtained wavelet coefficients.
A Gaussian mixture model classifier was used in their study and they reached 99% classification accuracy for
the three-class classification problem A versus C versus E. Li et al (2017) considered the problem of detecting
normal, interictal and epileptic signals, and the authors used discrete wavelet transform and envelope analysis
for EEG feature extraction. The experimental results showed that the scheme achieved 98.78% classification
accuracy when using the neural network ensemble as the classifier. Since the EEG recordings are typical non-
linear and non-stationary signals (Acharya et al 2012a), the adaptive decomposition method can reveal the
signal composition better. Hilbert Huang transform (HHT) is an adaptive signal transform and suitable for
such signals (Huang et al 1998). The fundamental part of HHT is the empirical mode decomposition (EMD)
method. Through this process, the input signal can be decomposed adaptively into subcomponents named
intrinsic mode functions (IMFs) whose frequencies range from high to low. The instantaneous amplitude
and instantaneous frequency of each IMF are calculated by Hilbert transform. Then the time-frequency
distribution is obtained consequently. Many authors have analyzed the EEG signals using the EMD and Hilbert
transform method (Li et al 2013, Pachori and Patidar 2014, Das and Bhuiyan 2016, Djemili et al 2016, Riaz
et al 2016, Gaur et al 2018). Riaz et al (2016) used HHT to extract the temporal and spectral features. The
authors in that study tested the performance of four classifiers (KNN, DT, ANN and SVM). It was found that
the accuracies of these four classifiers were higher than 99% for dealing with the two-class EEG classification
problem, but the results on the three-class EEG classification problem were less than satisfactory. Lietal (2013)
also used the EMD method to extract EEG features. After obtaining the IMFs, the authors chose the first five
IMFs and calculated their coefficients of variation and fluctuation as features. Finally, they achieved satisfactory
classification accuracies for the two-class problem. Although the EMD technique is self-adaptive and used
in many applications, it has several drawbacks, such as overenveloping (Yang et al 2013, 2014), mode mixing
(Hu et al 2012) and end point effects (Zheng et al 2013), that bring down its practical utility. Instead, ITD,
another self-adaptive decomposition method (Frei and Osorio 2007), uses a novel process of constructing the
baseline. The ITD method can strictly control the end point effect at the end points and does not propagate
the whole data. Moreover, the ITD method constructs the baseline signals through a piecewise linear function
and the whole algorithm has monolevel iteration which makes the algorithm run fast. This method has been
a useful tool in many recognition problems since it was proposed (Martis et al 2013, Duan et al 2016, Xing
et al 2017). However, there are few articles about using the ITD method in EEG signal analysis. In Martis et al
(2013), the authors used the ITD method to extract features for EEG signal classification. After this, they
computed the energy, Higuchi fractal dimension and sample entropy of the PRCs as features. Then they fed
the features into the DT classifier to verify the proposed features and the experimental results showed that the
sensitivity, specificity and classification accuracy were all more than 90%. Empirical wavelet transform (EWT)
is another decomposition technique, which is a fusion of wavelet transform and EMD, and also used in EEG
feature extraction (Bhattacharyya and Pachori 2017, Bhattacharyya e al 2018). For example, the authors in
Bhattacharyya and Pachori (2017) analyzed multichannel EEG recordings via EWT. The EEG recording in
each selected channel was decomposed into ten mode components using EWT. Three characteristics were
extracted from the joint instantaneous amplitude to form a feature vector. Finally, their model showed good
performance. However, the EWT technique is relatively complex and has many parameters to be adjusted,
which limit its running speed. Therefore, in this paper, we choose the ITD technique to decompose the EEG
recordings. Meanwhile, it is noticed that Bhattacharyya and Pachori (2017) extracted the features from the joint
instantaneous amplitude. Inspired by this, we consider both the instantaneous amplitudes and instantaneous
frequencies and extract the EEG features from both of them for classification.
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3. Methodology

Here we present the proposed method of feature extraction from EEG recordings. Our method can be boiled
down to the following three steps.

Step1 Using the ITD technique, each EEG recording is decomposed into several PRCs (more than five

because of the complex neural system). Moreover, the EEG waveforms are often subdivided into five
bandwidths depending on the range of frequencies (Tatum 2014). Based on this, we choose the first five PRCs
for further feature extraction.

Step2 Theinstantaneous amplitude and instantaneous frequency of each PRC s calculated. Then, we
extract the statistical indices (mean, standard deviation, kurtosis and skewness) from the instantaneous
amplitudes and frequencies of these PRCs. For each EEG signal, we combine all these indices of its five PRCs
as the feature vector. Obviously, the feature vector has 40 dimensions for each EEG signal.

Step3 We choose a classifier for the classification of EEG signals. In the experimental part, we tested
multiple classifiers: KNN, DT, RE, SVM and FNN. We find that the FNN classifier achieves the optimal
performance.

A brief illustration of our scheme is given in figure 1.

3.1. Intrinsictime-scale decomposition (ITD)
As a self-adaptive signal decomposition technique, ITD is applied to the field of signal analysis successfully
(Martis et al 2013, Restrepo et al 2014, Xing et al 2017). Through the ITD process, the input signal can be
decomposed adaptively into several PRCs, with frequencies ranging from high to low, and a trend component.
In this subsection, we briefly review the ITD technique. For a more detailed description please refer to Frei and
Osorio (2007).

For a given signal x(t), let £ be the baseline extracting operator, and let 1 be the PRC extracting operator.
Then in the first step of ITD, x(t) is decomposed into two components:

x(t) = Lx(t) + Hax(t) = L(¢) + H(z), (1)

where L(t)isabaselineand H(t)isa PRC.
After the first step, the process can be re-applied using the baseline signal as the new input signal. We iterate
this procedure until the resulting baseline has only two extrema, or is a constant. Finally, the input signal x(¢) can

be decomposed into a sequence of PRCs with decreasing instantaneous frequencies. If the iteration has S steps,
the decomposition has the following form:

s
L) = x(t) = I3(t) + S HI(0). @
=1
PRCs and baselines satisfy
L) =LY (t)+H' (1), j=0,1,2,...,5. (3)
Let {'r;:T ,k=1,2,...,K}betheextrema points of IJ(t),and we define Ty = 0 for convenience. If there are sev-

eral successive data points with the same extremal value, we take 'r,-;" to the rightmost time of these extremal values.
To simplify, we define L,‘: = L1 (’rg ). Then the baseline I*1(#) is constructed by a piecewise linear formula: in the
interval t € ('r,;" ,'rk‘zr]], between successive extrema,
( 1 gt )
L = L+ 2 (V0 - 1), 0

i i
(Lk+1 - Lk)

where the knots in the above formula are

Tij 1_"?(Jf

o , . , ,

L, =L,)=a lL;: + (7j j (L;;+2 - Lg))
Tea2 — Tk

+(1— Q)LI{_;_]! (5)

where o isatunable parameter,and 0 < o < L.Ingeneral,a = 1/2.
TheITD technique is self-adaptive and can be used to analyze EEG signals, which are typically non-linear and
non-stationary signals. Figure 2 illustrates the decomposition results of an EEG signal using the ITD method.




0P Publishing

Physiol. Meas. 40 (2019) 095004 (15pp) LYangetal

I
I
|
| L:Ih |
I
I
I

| Time-frequency Analysis I

R

. -f.I-f.\I_J,:I.\I\w A

............................. .
m | ——
Py : l Classification |
|
o — et — — — — —
2 : . |
® | | Mean(u ), Standard deviation(o), |-
| _>| Kurtosis(a), Skewness(f) |
Il '
‘ Apply ITD Method ‘ [ Combine Featyres of Five PRCs |
| .
. ' I
e | o Feature Vector with -
e | || | |40 dimensions I
P ] : I
O - — . I
- e o FNN|Classifier :
g At | | |
o ! | v .
>l | s | || ] Classification I
| 8 Checwewmeietc ] apwgi ] Results I
I | ‘é_ { i o a 3 + | !
| a . o | ety P, e o  — — — — — —_—
I e Instantaneous Instantaneous |
Amplitude Frequency

Figure 1. A briefillustration of the proposed method.
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Figure 2. The ITD decomposition results of an EEG signal.

EEG signals are typically non-linear and non-stationary signals and obtain multiple modes of oscillation
(Acharya eral 2012a). Therefore, each EEG signal has more than five components after ITD processing. From the

procedure of the ITD method, we know the sum of these PRCs constitutes the input signal. Figure 3 illustrates the

correlativity between each PRC and the original signal. The left figure plots the coefficients between the first five
PRCsand the input EEG signal, and the right figure is the bar graph of these coefficients, in which we choose ten
EEG signals. From figure 3 it can be seen that the correlations decrease in turn and the fifth coefficients are very
small. This also implies that it is reasonable to choose the first five components for further analysis.
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Figure3. Left: The coefficients of each PRC and the corresponding EEG signal. Right: The coefficient bar graph of ten EEG signals.

3.2. Instantaneousamplitude and instantaneous frequency

After having decomposed the input signal into a set of PRCs and a residual using I'TD, the next step is to consider
the instantaneous amplitude, instantaneous phase and instantaneous frequency for further analysis. Unlike in
the HHT method, the authors in Frei and Osorio (2007) did not use Hilbert transform but instead used a wave-
based method to calculate the instantaneous phase and instantaneous amplitude of PRCs, which guarantees a
monotonically increasing phase angle. The formula of the instantaneous phase is as follows:

(&) iy
A ) 22
6(t) = (5)3+(1-5)m  relnmn)

(FX2) 2+ (1+52) 7 relnmn)y

( ij‘)) + (1 + X(‘)) 2w, tE [ta15),

where t; and t5 are two successive zero up-crossing points, #; € [, 5] is the zero down-crossing point, t; € [t1, #3)
is the maximum point and #; € [f3, t5) is the minimum point. A; is the value at , (i.e. the maximum on the

positive half-wave) and —A; is the value at #; (i.e. the minimum on the negative half-wave). The instantaneous
amplitude is defined as follows:

t € [t, )3

(6)

_ Al: t e [tl’t:i);
A(t) o {Az, te [t3,1'5). @)

Obviously, A(t) is a piecewise constant and determined by the extrema of the PRCs. Then, the instantaneous
frequency can be calculated by the following formula:
1do

According to the decomposition results in figure 2, the instantaneous amplitudes and instantaneous frequencies
of the first five PRCs are illustrated in figure 4.

3.3. Featureextraction

Once the PRCs of each EEG signal are obtained, we can calculate the instantaneous amplitudes and instantaneous
frequencies of these PRCs, which contain a large amount of physiological and pathological information and can
be used to extract the features. Since the EEG waveforms are often subdivided into five bandwidths depending
on the range of frequencies (Tatum 2014), we choose the first five PRCs for further feature extraction. For each
PRC, we extract the following statistical indices of each instantaneous amplitude and instantaneous frequency to
contribute feature vectors for EEG classification:

1 N—-1
p=2_ % ©)
i=0
1 N—-1
7=\ FoT (10)
i=0
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Figure4. The instantaneous amplitudes (left) and instantaneous frequencies (right) of the first five PRCs in figure 2.

1 N-—1
a=—> (x—p) (11)
i=0
1 N—1
B= ;g(xf—u)“, (12)

where x; corresponds to the ith value of the instantaneous amplitude or the instantaneous frequency of each
PRC. Nisthelength of the signal.

The mean, standard deviation, kurtosis and skewness are important numerical features reflecting the distri-
bution form. The reasons why we choose them for EEG classification are as follows.

e Mean p reflects the arithmetic mean of the instantaneous amplitude or the instantaneous frequency.
Observing the normal and epileptic EEG signals, we can find their ranges are different in most cases. Hence,
the mean index can distinguish normal and abnormal signals to some extent and can be used as an EEG
feature.

e Standard deviation o represents the degree of dispersion of data points and is mathematically defined as the
square root of the variance. Since the epileptic EEG signals have a more dramatic fluctuation, it is reasonable
to have standard deviation as a feature.

o Skewness o is a measurement of reflecting the asymmetry of the data distribution. Right skewness (also
called positive skewness) is represented by a long tail on the right side of the data. At this time, most values are
distributed on the left side, and a small part of the values are distributed on the right side.

¢ Kurtosis B isan index used to measure the deviate degree of outlier data. The higher the kurtosis is, the more
extreme values are in the data series. The different modes of oscillation between normal and abnormal EEG
recordings make a significant difference to their kurtosis values, which motivates us to use the kurtosis index
as a feature for EEG signal classification.

For each PRC of an EEG recording, we calculate its instantaneous amplitude and instantaneous frequency and
then extract the four statistical features of them. Sequently, we combine all these indices of the five PRCs as the
feature vector. Obviously, the feature vector has 40 dimensions. For quantitative analysis, we apply the analysis of
variance (ANOVA) on these extracted features for their statistical tests. The detailed results are shown in table 2.
The tests compute an F measure (F-value) and a probability value (p-value) among the eight indices of the five
sets A, B, C, D and E. The higher F-value and lower p-value show the good discrimination of the features. Since
there are five PRCs for each EEG recording, we compute the F-values and p-values of each feature via arithmetic
average. It can be seen from table 2 that the indices p, ¢ of the instantaneous amplitudes and o, a, 3 of the
instantaneous frequencies provide good discrimination. Although the p-values of a, 3 of the instantaneous
amplitudes and p of the instantaneous frequencies are not lower, they work in a complementary fashion. The
proposed method exploits this combination.

In addition, to illustrate the effectiveness of these features, we present two detailed examples. Considering the
EEGsignals in set A and E, figure 5 plots the box and scatter diagrams of the two features (skewness and kurtosis)
of the instantaneous frequencies on these two classes. It is shown that the kurtosis and skewness values of the

two different classes are significantly different and obviously separable, which confirms the statistical analysis in
table 2.
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Table 2. The ANOVA test based on the extracted features.

Features
Instantaneous amplitude Instantaneous frequency
ANOVA o o 3 B I o [t B
F-value 140.05 126.82 41.02 12.04 1.85 65.62 72.86 64.38
p-value 994 x 103 638x 1073 013 0.16 0.36 251 x 10712 146 x 1073 3.04 x 1072
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Figure 5. Upper left: Box diagram of kurtosis feature. Upper right: Scatter diagram of kurtosis feature. Lower left: Box diagram of
skewness feature. Lower right: Scatter diagram of skewness feature.

Considering the first PRC of each EEG recording as an example, we randomly select 40 signals from A and E,
separately. Figure 6 plots the features extracted from the instantaneous frequency of these PRCs. In the figure, we
can easily see the feasibility of these features.

3.4. EEG classification

The classifier selection is the last step of EEG classification. In our study, we tested the performance of several
classifiers, i.e. KNN, DT, RE, SVM and FNN. The results show that FNN achieves the optimal performance.
Therefore, we will use the results based on the FNN classifier for the comparison with state-of-the-art methods
(see table 9). In the experimental part, there is only one hidden layer with ten nodes in our FNN structure. The
active function in the hidden layer is the logarithmic sigmoid transfer function and that in the output layer is the

linear transfer function.
4. Resultsand discussion
Classification experiments are performed in this section. We adopt sensitivity, specificity and accuracy for

evaluation. Most of the state-of-the-art methods for epilepsy detection also employ these metrics. Their
definitions are given below:

Sensitivity = %, (13)
. TN
SPECIﬁCﬂy = m, (14)
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of PRC1sbetween set A and E.

TP +TN
TotalSamples’

Accuracy = (15)
where TP, true positive, represents the number of samples belonging to the positive class that are also identified as
positive by the classifier; TN, true negative, represents the number of samples belonging to the negative class that
are also identified as negative; FP, false positive, represents the number of samples belonging to the negative class
that are identified as positive; and FN, false negative, represents the number of samples belonging to the positive
class that are identified as negative.

For the five data sets of EEG recordings described in section 2, we have considered different experimental
cases for classification: (1) non-seizure versus seizure (A versus E, B versus E, AB versus E, C versus E, D versus
E, CD versus E, ABCD versus E); (2) normal versus epileptic (AB versus CD, AB versus CDE); (3) normal ver-
sus inter-ictal versus ictal (AB versus CD versus E, A versus C versus E). In the following experiments, we will
abbreviate accuracy, sensitivity and specificity as Acc, Sen and Spe for convenience. All experiments will be per-
formed using ten-fold cross-validation. All experiments are run using MATLAB R2017a on a laptop with Intel ®
Core™){7-8550U CPU @1.80 GHz having 16 GB RAM.

4.1. Experiment 1: effectiveness of the proposed feature extraction model

In the first experiment, we test four classifiers (KNN, RE, SVM and ENN) with the extracted features based on the
proposed model. We note that KNN, RF and FNN are trained by the built-in functions in MATLAB toolboxes,
and SVM is trained by the Libsvm package. Table 3 gives the classification accuracies of these classifiers. It is
shown that the features are effective in detecting normal and ictal EEG signals. Based on the extracted features,
most classifiers show good performance. From table 3, we can see that the FNN classifiers achieve the optimal

performance compared with the other three classifiers.

4.2. Experiment 2: comparison of two methods both using ITD

In Martis et al (2013), the authors also used the ITD method to extract features for EEG classification and
the three-class problem A versus C versus E was considered. Different from the present study, these authors
decomposed each EEG recording once using the ITD technique and obtained the high pass signal (the first PRC)
and the low pass signal (the remaining signal). Then they computed the energy, Higuchi fractal dimension and
sample entropy of the first PRC and the remaining signal as EEG features. They tested several classifiers and
found the DT classifier achieved the best performance, yielding 99.0% sensitivity, 99.5% specificity and 95.67%
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Table 3. Classification results using different classifiers with ten-fold cross-validation (Sen—-Spe—Acc) (%).

Classifiers

Type of experiment KNN RF SVM FNN

A versus E 99-100-99.5 100-100-100 100-100-100 100-100-100
B versus E 99-98-98.5 100-100-100 100-100-100 100-100-100
AB versus E 100-98-99.33 99.5-100-99.67 100-100-100 100-100-100
Cversus E 99-99-99 99-100-99.5 100-100-100 100-100-100
D versus E 95-94-94.5 98-96-97 95-96.7-95.5 100-100-100
CD versus E 96-97-96.67 98.5-97-98 97.24-97.31-97.33 100-98-99.33
AB versus CD 94-91-92.25 96.5-94.5-95.6 99.5-97.8-98.75 99-100-99.5
ABCD versus E 96.5-100-97.2 98.5-97-98.2 98.25-96.75-98.2 99-100-99.75
AB versus CDE 93-92.5-93.8 93.5-97.33-95.8 99.34-97.97-98.8 99.33-99-99.2

classification accuracy. This example is a three-class classification problem. In order to compute the sensitivity
and specificity, which are concepts traditionally defined for two-class classification problems, researchers usually
transfer a multiclass problem into several two-class problems and then obtain the sensitivity and specificity for
the multiclass problem through the arithmetic average, which is exactly what we did here. We transferred the
problem A versus C versus E into three two-class problems: A versus C, A versus E and C versus E. The values
of sensitivity, specificity and accuracy for the two-class problems were computed and then these metrics of the
problem A versus C versus E were obtained through the arithmetic average. Finally, we yielded 99.33% sensitivity,
99.67% specificity and 99.5% classification accuracy with the FNN classifier. We found that the classification
results for the problem A versus C were less accurate compared with A versus E and C versus E. The detailed
results are listed in table 4. In order to compare features proposed by Martis et al (2013) with our features, we
also tested the DT classifier. When using the ten-fold cross-validation, we reached 98.33% sensitivity, 95.67%
specificity and 97.0% classification accuracy. According to the mathematical formulas for sensitivity, specificity
and accuracy, the value of accuracy should be varying between the values of sensitivity and specificity considering
the data used. Our results in table 4 follow this pattern. Since (Martis ezal 2013) did not provide the formulas that
were used to compute their values, we only compare the final accuracies. Obviously, the classification accuracies
of the proposed features are higher than that of Martis et al (2013) whether using the DT classifier or using
ENN classifier. Although both Martis ef al (2013) and this paper use the ITD technique in the process of feature
extraction, the classification accuracies are different. Comparing the two processes of feature extraction we can
see that the authors in Martis ef al (2013) extracted the features directly from the first PRC and the baseline
signal, while we extract the features from the instantaneous amplitude and the instantaneous frequency. Table 4
shows that our method achieves higher classification accuracy which verifies that there is indeed more useful

information contained in the instantaneous amplitudes and frequencies.

4.3. Experiment 3: comparison of EWT,EMD and ITD

EWT, EMD and ITD are used to decompose non-stationary and non-linear signals. After the decomposition
process, the instantaneous amplitude and instantaneous frequencies of each component can be calculated by
different approaches. Among these three techniques, the ITD method is relatively simple since the baselines in
it are based on a piecewise linear operation. Furthermore, there is only one layer of iteration and one parameter
() in the ITD processing. Therefore, the ITD process has a faster decomposition speed. Table 5 compares
the decomposition rate of the three methods. It shows that, compared with EWT and EMD, the ITD method
can decompose more rapidly, at nearly two orders of magnitude faster. As the quantity of data increases, this
advantage becomes more obvious.

In addition, we compare the performances of the three decomposition techniques (EWT, EMD and ITD)
with the same statistical indices. This means that EWT, EMD and ITD separately decompose the EEG recordings
and extract the same statistical indices as the EEG feature vectors from the instantaneous amplitude and instan-
taneous frequency of each corresponding component (modes, IMFs and PRCs). Finally, the three kinds of EEG
feature vectors are fed into the same classifier for seizure detection. We present the classification results of the
common classification problems: A versus E, C versus E, AB versus CDE and ABCD versus E. Table 6 shows the

detailed results. Obviously, the combination strategy of ITD and statistical indices is optimal.

InLieral (2013),every EEG signal was decomposed into several IMFs through the EMD process. The authors
also used the first five components (IMFs) for feature extraction. They calculated the coefficients of variation
and fluctuation indexed from the IMFs as features and fed them into the SVM classifier. In order to compare
the effectiveness of the two feature extraction models, we also used the SVM classifier. In addition, like Li et al
(2013), we also calculated the sensitivity and specificity when using the features of every single component or
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Table4. Several two-class classification results and the comparison with Martis et al (2013) (Sen—Spe-Acc) (%).

Classifiers
Type of experiment DT FNN
A versus C 96-92-94 98-99-98.5
A versus E 100-98-99 100-100-100
Cversus E 99-97-98 100-100-100
A versus C versus E (Proposed method) 08.33-95.67-97 99.33-99.67-99.5

A versus C versus E (Martis et al (2013)) 99-99.595.67 —

Table5. Speed comparison of three decomposition methods: EWT, EMD and ITD.

Data length Method Decomposition time
4097(from data set A) EWT 2416201 s

EMD 0.175299 s

ITD 0.003557 s
7305(from data of length-of-day) EWT 11.059461 s

EMD 0.203845s

ITD 0.005567 s

Table6. Classification results using EWT, EMD and ITD with a ten-fold cross-validation (Sen—Spe-Acc) (%).

Type of experiments
Decomposition method Aversus E Cversus E AB versus CDE ABCD versus E
EWT 99-97-98 99-95-97 81-83.33-82.4 99-99.75-99.38
EMD 99-100-99.5 98-97-97.5 95.5-97.33-96.6 98.75-100-99.38
ITD 100-100-100 100-100-100 99.33-99-99.2 99-100-99.75

their combination. All the comparison results are summarized in table 7. In this table, IMF1 means that the corre-
sponding features are calculated solely over the single IMF1, IMF2 and IMF3 are similar, while IMF1-3 represents
the combined features based on the first three IMFs used for EEG classification. From table 7, we can see that the
combined features are indeed more effective than the features of single IMFs. The results are the same as features
based on PRCs. However, our method always shows higher sensitivity and specificity, whether the features of
a single component or the features of the combined components are used. For example, when the features of
PRCI are used, the sensitivity and specificity are 100% and 99.00%, respectively, which is obviously better than
the previous results obtained by IMF1 (93.25% sensitivity and 96.90% specificity).

The authors in Djemili et al (2016) also used the EMD technique to preprocess the EEG signals before feature
extraction. Instead of directly using EMD on EEG datasets, they divided each EEG recording into segments with
a length of 256, and applied EMD on these segments. They chose the first four IMFs to calculate the minimum,
maximum, standard deviation and the mean of absolute values as EEG features. Then the multilayer perceptron
neural network classifier was used for seizure detection. They also tested the classification results using the fea-
tures of every single IMF or their combination. Performance results are listed in table 8. It can be seen that, on
the two-class problem (i.e. A versus E), regardless of whether the features of a single component or the features
of the combined components are used, our scheme always shows the better performance. It is worth mentioning
that the method in Djemili et al (2016) achieves a superior classification accuracy of 100% using the combined
IMF1-4, while our model reaches the same superior classification accuracy only by using the combined PRC1-2.
Table 8 also gives the classification results of the two-class problem (i.e. D versus E). The results in table 8 show
that globally higher accuracies are obtained for the first component, no matter what decomposition method is
used (EMD or ITD), and the classifier performance begins to decrease for the rest of the components, whereas
the results improve when using features from a combination of components. It can be seen that the sensitivity,

specificity and accuracy results obtained by ITD are superior to those obtained by EMD.

4.4. Experiment 4: comparison with published results

There are also lots of state-of-the-art studies using methods other than EMD or ITD to extract EEG features.
In this subsection, a comparison will be shown between our method and several other studies without using
EMD or ITD. These studies all use the same dataset. The comparison results are summarized in table 9. We
can see that all the methods achieved superior accuracy 100% in the two-class problem normal versus seizure
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Table7. The performance comparison of components obtained by EMD (Lietal 2013) and ITD acting on the normal and ictal EEG data
(A versus E). The classifier is SVM.

Method Features on Sen (%) Spe (%) Method Features on Sen (%) Spe (%)

EMD IMF1 93.25 96.90 ITD PRC1 100 99.00
IMF2 87.50 94.50 PRC2 100 99.33
IMF3 85.25 94.40 PRC3 99.00 99.60
IMF1-3 97.75 99.40 PRC1-3 100 100
IMF1-4 97.75 99.40 PRC1-4 100 100
IMF1-5 98.00 99.40 PRC1-5 100 100

Table8. Performance comparison of components obtained by EMD (Djemili et al 2016) and ITD acting on the classification problems A
versus Eand D versus E.

A versus E D versus E

Methods Features on Sen (%) Spe (%) Acc (%) Sen (%) Spe (%) Acc (%)

EMD IMF1 97.6 98.6 98.1 97.7 97.7 97.7
IMF2 94.3 99.2 96.7 90.2 96.4 93.3
IMF3 89.7 98.8 94.2 78.1 87.2 82.6
IMF4 834 92.9 88.2 72.6 77.8 75.2
IMF1-2 99.3 99.8 99.6 97.2 96.7 96.9
IMF1-3 98.2 99.9 99.2 97.7 96.6 97.1
IMF1-4 100 100 100 96.0 94.3 95.2

ITD PRC1 100 99.0 99.5 98.0 97.0 97.5
PRC2 100 100 100 94.0 97.0 95.5
PRC3 98.0 99.0 98.5 90.0 89.0 89.5
PRC4 92.0 87.0 89.5 86.0 82.0 84.0
PRC1-2 100 100 100 98.0 99.0 98.5
PRC1-3 100 100 100 99.0 97.0 98.0
PRCI1-4 100 100 100 96.0 99.0 97.5

(AversusE).Sharmaetal (2017) employed analytic time-frequency flexible wavelet transform (ATFFWT) to deal
with EEG recordings, and calculated each sub-band’s fractal dimension as EEG features. The chosen classifier is
least-squares SVM (LS-SVM) which has a superior performance in the two-class problems A versus E, B versus E
and AB versus E, all with an accuracy of 100%. However, in other binary class problems, the performance of the
model in Sharma et al (2017) is reduced. Notably, it reached the accuracy of 92.5% in the experiment AB versus
CD while our proposed model yielded a superior accuracy of 99.5%. Swami et al (2016) decomposed the EEG
signals using dual-tree complex wavelet transform (DTCWT) to extract features and used the general regression
neural network (GRNN) for classification. Their classification accuracies vary from 93.3% to 99.2% with the
exception of the A versus E experiment, while our accuracies all are higher than theirs, which shows that our
model outperforms theirs. The authors in Sharmila and Geethanjali (2016) employed discrete wavelet transform
(DWT) to extract EEG features and naive Bayes (NB) and KNN for EEG classification. In table 9, we can see
that their accuracies vary from 96.4% to 100% for the different classification cases, while the proposed model
achieves the better performance in all these cases. Most studies focus on the two-class problem to detect seizures
(such as A versus E, ABCD versus E, etc.). However, there is less research on recognizing normal, interictal and
ictal EEG recordings (Zhang et al 2017). The authors in Zhang et al (2017) considered three-class problems (AB
versus CD versus E). They extracted EEG features by fusing variational mode decomposition (VMD) and auto-
regression (AR), which achieved an accuracy of 97.35% when using the RF classifier. Our model achieves 1.4%
higher accuracy than that of Zhang et al (2017) in this three-class problem. Ullah ef al (2018) constructed a
pyramidal 1D-CNN (P-1D-CNN) which contained three convolution layers for EEG classification. Since CNN
needs a large amount of data, the authors in Ullah et al (2018) used a window sliding (WS) through the EEG data
for augmentation. Finally, they tested the performances of a single P-1D-CNN and ensemble of three P-1D-
CNNs. Theaccuracies of Ullah et al (2018) in table 9 were obtained by using the P-1D-CNN ensemble, which was
better thansingle P-1D-CNN. Compared with their results, our accuracies are higher in 11 of the 17 classification
problems. Moreover, the proposed model in this study is simple and runs fast, so it is suitable for online detection
and also provides a diagnostic aid for physicians in their practice.
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Table9. Performance comparison of the proposed model with state-of-the-art studies.

Type of experiment Method used State-of-the-art Acc (%) Qur Acc (%)

A versus E ATFFWT+LS-SVM Sharma et al (2017) 100 100
DWT+NB/KNN Sharmila and Geethanjali (2016) 100
DTCWT+GRNN Swami et al (2016) 100
WS5+P-1D-CNN Ensemble Ullah et al (2018) 100

B versus E ATFFWTHLS-SVM Sharma et al (2017) 100 100
DTCWT+GRNN Swami et al (2016) 98.9
WS5+P-1D-CNN Ensemble Ullah et al (2018) 99.8

AB versus E ATFFWTH+LS-SVM Sharma et al (2017) 100 100
DTCWT+GRNN Swami et al (2016) 99.2
WS5+P-1D-CNN Ensemble Ullah et al (2018) 99.8

Cversus E ATFFWT+LS-SVM Sharma et al (2017) 99 100
DTCWT+GRNN Swami et al (2016) 98.7
WS5+P-1D-CNN Ensemble Ullah et al (2018) 99.1

D versus E ATFFWTH+LS-SVM Sharma et al (2017) 98.5 100
DTCWT+GRNN Swami et al (2016) 99.3
WS5+P-1D-CNN Ensemble Ullah et al (2018) 99.4

CD versus E DWT+NB/KNN Sharmila and Geethanjali (2016) 98.8 99.33
ATFFWT+LS-SVM Sharma et al (2017) 98.7
DTCWT+GRNN Swami et al (2016) 95.2
WS5+P-1D-CNN Ensemble Ullah et al (2018) 99.7

AB versus CD ATFFWTH+LS-SVM Sharma et al (2017) 92.5 99.5
WS5+P-1D-CNN Ensemble Ullah et al (2018) 99.9

AC versus E DWT+NB/KNN Sharmila and Geethanjali (2016) 99.6 100
WS5+P-1D-CNN Ensemble Ullah et al (2018) 99.7

BC versus E DWT+NB/KNN Sharmila and Geethanjali (2016) 98.3 99.67
WS5+P-1D-CNN Ensemble Ullah et al (2018) 99.5

BD versus E DWT+NB/KNN Sharmila and Geethanjali (2016) 96.5 98.67
WS5+P-1D-CNN Ensemble Ullah et al (2018) 99.6

BCD versus E DWT+NB/KNN Sharmila and Geethanjali (2016) 96.4 99.5
WS5+P-1D-CNN Ensemble Ullah et al (2018) 99.3

ABCD versus E ATFFWTHLS-SVM Sharma et al (2017) 99.2 99.75
WS5+P-1D-CNN Ensemble Ullah et al (2018) 99.7
FT+MLP Samiee et al (2015) 98.1

AB versus CDE WS+P-1D-CNN Ensemble Ullah et al (2018) 99.5 99.2

ABC versus E DWT+NB/KNN Sharmila and Geethanjali (2016) 98.7 100
WS5+P-1D-CNN Ensemble Ullah et al (2018) 99.97

ACD versus E DWT+NB/KNN Sharmila and Geethanjali (2016) 97.3 99.67
WS5+P-1D-CNN Ensemble Ullah et al (2018) 99.8

A versus C versus E ITD+DT Martis et al (2013) 95.67 99.5

AB versus CD versus E VMD+AR+RFTQWT Zhang et al (2017) 97.4 08.8
WS5+P-1D-CNN Ensemble Ullah et al (2018) 99.1

5. Conclusion

This paper provides an alternative seizure detection strategy. The proposed model extracts the features based
on the ITD technique and detects seizures using the FNN classifier. The ITD is a self-adaptive decomposition
technique and suitable for analyzing non-linear and non-stationary signals (such as EEG signals). Using ITD
every EEG recording is decomposed into several PRCs. Then the inherent information in the EEG signals can
be obtained from the instantaneous amplitudes and instantaneous frequencies of PRCs. Therefore, we extract
the statistical indices mean, standard deviation, kurtosis and skewness from these instantaneous amplitudes
and instantaneous frequencies as EEG feature vectors to detect normal, interictal and ictal EEG recordings.
Experimental results show a good performance of the proposed system. Compared with the latest references,
our model reaches a comparable or even better detection accuracy. The proposed model is particularly effective
in detecting normal and ictal EEG recordings, and achieves superior sensitivity of 100%, superior specificity
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of 100% and superior classification accuracy of 100% from the public dataset. The ITD method only contains
monolayer iteration, and the baseline is based on a piecewise linear model, which makes the ITD algorithm run
very fast and makes it suitable for big data processing and online processing. Therefore, the proposed system has
great potential in real-time seizure detection.

In the future, we will continue our research on this paper in two aspects. Firstly, we will consider extending the
proposed strategy to the classification problems of multichannel EEG recordings. Secondly, the robustness of the
proposed method will be tested since EEG recordings are often disturbed by various noises in their acquisition
process. Through the experiments we conducted in this research, we feel that the neural network can be an effec-
tive tool for medical signal classifications. However, different from the typical applications of neural networks in
machine learning where a large amount of data is available, obtaining large-scale medical signals for training is
practically challenging. This is a significant burden. One of the future research projects that we plan to tackle is
designing strategies to train the neural networks with relatively small datasets.
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