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Abstract—Streaming codes encode a string of source packets
and output a string of coded packets in real time, which
eliminate the queueing delay of block coding and are thus
especially suitable for delay-sensitive applications. This work
studies random linear streaming codes (RLSCs) and i.i.d. packet
erasure channels. While existing works focused on the asymptotic
error-exponent analyses, this work characterizes the error rate in
the finite memory length regime and the contributions include:
(i) A new information-debt-based description of the error event;
(ii) A matrix-based characterization of the error rate; (iii) A
closed-form approximation of the error rate that is provably
tight for large memory lengths; and (iv) A new Markov-chain-
based analysis framework, which can be of independent research
interest. Numerical results show that the approximation, i.e. (iii),
closely matches the exact error rate even for small memory
length (=~ 20). The results can be viewed as a sequential-
coding counterpart of the finite length analysis of block coding
[Polyanskiy et al. 10] under the specialized setting of RLSCs.

I. INTRODUCTION

Streaming codes are a class of sequential coding for which
the encoder receives a string of source packets sequentially
and outputs a string of coded packets in real time. Streaming
codes can thus be viewed as generalizing the basic encoding
unit of the convolutional codes from “bits” to “packets” and
synchronizing the operation of the shift registers with the
actual arrival, encoding, and transmission of the packets. By
eliminating the concepts of queueing delay in block cod-
ing, streaming codes have significant potential for the delay-
sensitive applications such as tele-/video conferencing, online
gaming, live TV, and are actively studied as a possible solution
to the ultra-reliable and low latency communication (URLLC)
services in 5G [1].

The error rate analysis of sequential coding mostly follows
the tree-code analysis of [2]. For any given finite memory
length «, [2] first derives a genie-aided error-rate lower bound
and a union-bound-based achievable error-rate upper bound,
and then shows that they share the same error exponent
and are thus asymptotically (exponentially) tight when « is
sufficiently large, which generalizes the block-coding error-
exponent analysis [3]-[5] for sequential coding. Nonetheless,
while the genie-aided relaxation and the union bound do not
alter the decay rate of the error probability, i.e., the error
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exponent, they are ill-suited when used to bracket! the error
probability for arbitrary «.

Motivated by the novel techniques reported in [6] that
strengthen the error exponent analysis of block coding with
tighter achievability and converse bounds for the finite (code-
word) length regime, this work studies the error rate of random
linear streaming codes (RLSCs) in the finite memory length
regime. The contributions of this work include: (i) A new
definition of information debt that handles the finite memory
setting, a generalization of the infinite-memory-based defini-
tion in [7, Chapter 9]; (ii) A matrix-based characterization
of the error rate for any a < oo; (iii) A closed-form low-
complexity approximation of the error rate that is provably
tight for large memory lengths; and (iv) A new Markov-
chain-based analysis framework, which can be of independent
research interest. Contributions (ii), (iii), and (iv) are brand
new developments that have no similar counterparts in [7].
Numerical results show that the proposed approximation, i.e.,
(iii), closely matches the exact error rate even for small
memory length (o ~ 20). The results thus represent the
first analysis of RLSCs that characterizes the actual error
probability of the finite memory length regime, not limited
to just the decay rate.

A. Comparison to Other Existing Results

This work follows a probabilistic approach and the goal is
to analyze the error rate of RLSCs under the i.i.d. channel
model. For comparison, [8]-[15] take a deterministic ap-
proach. Namely, given a deterministic set of possible channel
error patterns, the goal is to design the optimal streaming codes
such that the original message can be perfectly decoded with
zero error within a hard deadline constraint A, for all channel
realizations in the predefined set. These two approaches are
distinctly different where we use a stochastic channel model
and the other one can be viewed as an adversarial channel
model.

A closely related work is [16], which also uses a stochastic
channel model. Specifically, for any fixed ratio of the memory
length over the deadline that satisfies 3 £ % > 1, [16] studies
the error exponent (decay rate) when « and A jointly go to

I E.g., the bounds are usually of the form e~®E(R)+0o(a) for which the
little-o term o(«) can still dramatically change the value of the expression.



infinity while £ is fixed. A critical finding is that if
certain threshold 8* > 1, the error exponent stop:
and a finite ratio X = 3 is as good as the i
X = oc. In contrast, this work does not impose a
constraint, i.e., A = oco. Therefore, the ratio % -
finite . Then we characterize the exact error probe

any finite «, not just the decay rate.

II. SYSTEM MODEL AND BASIC NOTAT:

Basic notation: The boldface lower and upper le
column vectors and matrices, respectively, e.g., s(
column vector indexed by t. We use s? to represer
lative column vector s’ £ [s"(a),s"(a+1),..
The operator (-)* £ max(0,-). Matrix I, sta
identity matrix of size n. 510_0 (resp. 50_01) is a co
with all entries being 0 except for the first one (resg
one). 1 is a column vector of all 1s.
The encoder: Consider a slotted coding system.
time slot ¢ > 1, the encoder receives K packets, de
s(t) = [s1(t), s2(t), .. .,sK(t)]—r where each packe
of ¢ bits and is drawn from the finite field GF(29). Th
also stores the o - K packets in the previous « slot
T € [t—a,t)}, where « is the memory length. Joint
the (o + 1)K packets as input and outputs N code
x(t) = [z1(t), ...,z (t)] . See Fig. 1 for illustratiow. o
we focus exclusively on linear codes, define G as the N-by-
(min (a + 1,t) - K) generator matrix for slot ¢, and we have
x(t) = Gys' ()

max(t—a,1)"

The packet erasure channel: In each time slot ¢, the source
transmits all N packets in x(t). A random subset of these
N packets, denoted by C; C {1,2,---, N}, will arrive at the
decoder perfectly and the complement of which is corrupted
heavily and thus considered as erasure. The random set C; is
i.i.d. across t and we define C; £ |C;| and P; £ Pr(C; = 1)
as the probability of receiving ¢ packets successfully.

The destination/decoder: The received packets, totally C} of
them, are denoted by y(£) = [y1(¢), ..., yc, (t)] . We write

y(t) = Hys] 2)

max(t—a,1)

where H; is the projection of G; onto the random (row index)
set C;. The following notation of the cumulative generator and
receiver matrices turns out to be very useful:

xi = G(t)st1 and yi = H(t)sﬁ, 3)

where we properly shift and stack the instantaneous matrices
G, and H, to create their cumulative representation G® and
H®), respectively. See Fig. 2 for illustration.

For any t > 1, k € [1, K], and 7 > ¢, we use Sk,t to denote
the location vector of packet s (t) at time 7, which is a (7 K)-
dimensional row vector for which the (k4 (¢t—1)K)-th entry is
one and all other entries are zero. We then have the following
self-explanatory lemma.

Lemma 1. A packet si(t) is decodable by time t + A if and
only if 8+ is in the row space of HIHA),
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Fig. 2. The illustration of the cumulative receiver matrix in (3) with oo = 2.
The gray area shows the non-zero entries.

Definition 1. The vector s(t) is decodable by time t + A if
all {si(t) : k € [1, K|} are decodable by time t + A.

The objective: Given any finite N, K, o and {P;}, we aim
to quantify the packet error rate p.:

Pe = lim  lim
T—00 A—00

T
1

— ZPr (s(t) is not decodable by time ¢t + A). (4)
T

A. Technical Assumptions

To avoid some corner cases in the analysis, we introduce
some technical assumptions.
The Less-than-Capacity (LC) condition: This work assumes
0 < K <E{C,}, i.e., we operate within the capacity.

Random linear streaming codes (RLSCs): We assume that
each entry of G; is chosen uniformly randomly from GF(29),
excluding 0. RLSCs are known to be capacity-achieving when
(o, A) = (00, 00), though being strictly suboptimal if A < oo
[7]. In this work, instead of quantifying the probabilistic
behavior of RLSCs, we simply assume the RLSC encoder
satisfies the following two deterministic conditions.
The Generalized MDS Condition: (i) All N-(«a+1)K entries
in G are non-zero Vt; and (ii) For any finite ¢ and any finite
sequence of pairs {(i;,J;) : | € [1,L]}, define Sgp = {i; :
le€1,L])} and Sc = {ji : | € [1,L]} and define M as the
submatrix of G® induced by Sg and Sc. The second half
of the MDS condition requires that M is invertible for any
t and any {(i;, ;) : | € [1, L]} satisfying (ii.a) 4, # i1, and
Ji, # Ji, for any I # Iy and (ii.b) the (i, 5;)-th entry of G*)
are non-zero for all [ € [1, L].



Non-systematic construction (NS): We assume that for any
distinct k1, k2 € [1, K] and any ¢ < oo, s, (t) is decodable if
and only if sy, (¢) is decodable.

Remark 1: If the transmission only lasts for a bounded
duration, then the probability of RLSCs satisfying the MDS
condition approaches one when ¢ approaches infinity. See the
Schwartz-Zippel theorem in [17, Theorems 3 and 4]. Similarly,
with close-to-one probability, RLSCs will fully “mix” all K
packets in s(t) to a degree that to decode any one of these
K packets requires the decodability of all K packets, i.e., the
NS condition.

IIT. MAIN RESULTS
A. Information-Debt Under Finite Memory

The first main result of this work is to generalize the concept
of information debt originally defined in the infinite-memory
setting [7], denoted by I4(t), and use it to characterize the
error events for the finite memory setting.

Definition 2. Define a constant ( & oK + 1 and initialize
14(0) £ 0. For any t > 1, we iteratively compute

I(t) & (K — Cy 4+ min {I4(t — 1),aK})" (5)
La(t) 2 min {¢, Tu(t)}. ©)

Clearly, I4(t) evolves according to the channel realization
(linear equations delivered) {C; : t}. The intuition behind
1,(t) is as follows. The debt cannot be negative, hence the ()™
in (5). Also, since the memory length is «, the maximum debt
one can “carry forward” is at most oK, thus the min(-, oK)
operation in (5). ( £ aK + 1 defines the absolute “ceiling”
of the information debt, hence the min({,-) in (6). The
difference between ¢ = aK + 1 and the maximum allowable
debt o/ is that the former represents the event that the
information debt exceeds the maximum allowable debt, i.e., go
bankrupt, while the latter represents the event of reaching the
maximum allowable debt but still maintaining good standing.
We introduce two minimum operations, one in (5) and one in
(6), to capture the subtle distinction between the two.

Remark 2: When oo = oo, the above definition collapses to
the original infinite-momory-based definition in [7].

The following propositions show how the information debt
can characterize the error event of the RLSCs. Define ¢ty £ 0
and 75 £ 0, and define iteratively

t; =inf{t 1 t > t;_1, I4(t) = 0}

= (7
Ti e mf{t > Tifl,Id(t) = C}

(8)
as the ¢-th time that I,;(¢) hits 0 and (, respectively.

Proposition 1. Assume the MDS and NS conditions. For any
fixed iy > 0, if there exists no 7; € (tiy,tig+1), then s(t) is
decodable by time t; 1 for all t € (t;,,ti,+1]. If there exists
a 7; € (tiy, tig+1), define Tj as the one* with the largest j.
Then s(t) is decodable by t; 41 for all t € (Tj+ — a, i +1]-
sz definition, 75+ < t;,+1. Furthermore, t;, +a < 7;« since by (5) for

each time slot I;(t) can increase by at most K and it takes at least o + 1
for I4(t) to start from I4(t;,) = 0 to reach I4(7;+) = ¢ = aK + 1.

Proposition 2. Continue from Proposition 1. None of {s(t) :
t € (tiy, 77 —al} is decodable by time T} —a+ A, regardless
how large we set the deadline A.

The intuition behind is quite straightforward. Whenever
I4(t) hits O at time t;,4+1, it means that we have observed
enough linear equations, i.e., large {C; : t} in (5), and
can thus start decoding from s(t;,+1),8(tip41 — 1),---, in
a backward fashion. However, if I4(¢) ever hits the bankrupt
ceiling ¢ during (t;,,t;,+1). say at time 7;«, then the temporal
coupling between the earlier packets {s(t) : ¢t < 7;+ — a}
and the later packets {s(t) : ¢ > 7;+ — a} is severed. The
backward decoding thus cannot proceed beyond 7;- — a, see
Propositions 1 and 2. The earlier packets {s(t) : ¢t < 7j« —a}
are forever “stranded” and cannot be decoded.’

B. Exact Error Rate Analysis

Note that the iterative definition of I;(¢) in (5) and (6), and
the assumption of i.i.d. C; imply that I;(¢) is a Markov chain
with the state space being {0, 1,-- -, (}. Propositions 1 and 2
then imply that the packet error rate in (4) can be solved by
analyzing the Markov chain I4(t).

Lemma 2. Assuming the LC, MDS and NS conditions, we
have

E {]l{ﬂfj* E(tigtig+1)} (7 —a— tig)}
E{tio+1 —tio}
Jfor any fixed i, where 1.y is the indicator function.

Pe = (€))

The proof follows from Propositions 1 and 2 and that each
round (¢;,,%;,+1] is a Markov renewal process.

Since the state space is {0,1,--- ,(}, the transition matrix
is of dimension (¢ + 1)-by-(¢ + 1) and we denote it by " =
(7i,;)- To slightly abuse the notation, we assume the subscripts
i,7 € [0, (], rather than the traditional range of [1,( + 1]. The
value +; ;, the intersection of the i-th row and j-th column
of T, is the transition probability from state ¢ to state j, i.e.,
Yi,; = Pr(Iq(t) = j | Is(t — 1) = 4). The actual value of ~; ;
can be easily computed by the encoder parameters N, K,
the channel distribution {P;}, and the iterative update rules
of I;(t) in (5) and (6). In the sequel, we thus assume I is
known. Define ¢ = {1,2,...,( — 1} as the collection of non-
boundary states. We then partition I' into 9 sub-matrices:

Too Toe Toc
=1 Tso Toe Tec |, (10)
Peo Teo Teg

where I'x y, = [ 7;,; ], Vi € x and j € y. Subsequently, define
two (¢ + 1)-by-(¢ + 1) matrices M; and M as follows.

0 Toe Toc 0 Toe Toc
Mi=|0 Tggp TI'pe | Ma= |0 T DIgpec
0 Teop Tee 0 0 0
(an

3The proof of Proposition 2 is highly nontrivial, though. One has to prove
that those packets are undecodable regardless how one designs a decoding
algorithm, which may be significantly different from the scheme used in the
achievability proof in Proposition 1.



Proposition 3. Assume the MDS, NS and LC conditions. The
error rate pe in (9) equals

A2 — - A1
;= (12)
be E {tio+1 - tio}
where
E{tiyy1 —tin} = ng()-0<14+1 - M;)'1 (13)
A1 é g;)-O(IC*Fl — M2)_150-01 (14)
Ay 2 (L1 —Tye)™! (15)

AQ 2 (FO,C + FO,¢,A3F¢,,<) <

+T0,6(A3) Ty

1+ T (A3)° Ty )
1 =Tee—TegpAslgc
(16)

Since t;,4+1 — ti,, the first time I4(t) goes from state-0
back to state-0, is a stopping time, its expectation formula
in (13) is easy to derive and follows directly from [18]. The
main challenge of Proposition 3 is that 7;- in (9) is defined
as the 7; € (t;,,ti,+1) with the largest j*. As a result, ;-
is not a stopping time, which prevents the use of various
well-developed tools in Markov chain analysis. The multi-
step computation in (14) to (16) is designed to handle the
complication that 7;+ is not a stopping time. We omit the
derivation of (12) to (16) due to the limited space.

C. A Provably-Tight Closed-Form Error Rate Approximation

Based on matrix operations, the complexity of using Propo-
sition 3 to compute p. is O((aK)?) assuming the computer
program has no numerical precision problem when inverting
matrices with large o and K. The third goal of this work is
to derive an approximation formula of the form

pe = (B1-a+ Bs) -exp(—a - Bs) + o(exp(—a - Bg)) (17)

where the values of the constants B;, By, and By > 0
depend only on N, K, and {P;} but not on «. Note that
the approximation formula (17) is a much stronger result than
the classical error exponent analysis [2], also see footnote 1.

To that end, we introduce some conditions and definitions.

Lemma 3. From the perspective of analyzing the Markov
chain I4(t), we can assume Py > 0 and Py > 0 without
loss of generality.

Proof. If Py = 0, then we can effectively reduce N to N —1
and the Markov chain I,(t) will follow the same distribution.

The distribution of I4(t) is decided by two orthogonal
factors: (i) the distribution of (K — C}) in (5), and (ii)
the thresholds oK and (¢ in (5) and (6). If Py = 0, then
Pr(Cy > 1) = 1. Since K > 0, we can reduce K to K — 1
and C; to C; — 1, and the effects of (i) remain unchanged.
If we still use the same threshold values in (ii), then the new
14(t) will follow the same distribution as the old I;(¢). O

In the sequel, we assume exclusively Py > 0 and Py > 0.
The Irreducible Markov-Chain (IMC) condition: In
Markov chain analysis, one has to carefully handle irreducibil-
ity. For example, if K is even and Pr(C; is even) = 1, then

the Markov chain I;(¢) only hops on even numbers and is thus
reducible. To avoid this complications of being reducible, we
impose that the values of K and N are coprime.*

Definition 3. The joint coding and channel characteristic
(JCCC) equation is

N
xN_K — E ijN—] =0.
J=0

(18)

The expressions of By to B3 depend on the roots of the
JCCC equation. We now characterize the N roots of (18).

Lemma 4. Assume the LC and IMC conditions. The following
statements always hold: (i) x = 1 is a single root of (18); (ii)
there exists a positive value v > 1 such that x = r is a single
root; (iii) There is no other positive (real-valued) root other
than x = 1 and x© = r; (iv) there are exactly K — 1 complex-
valued roots satisfying |x| > r; (v) there are exactly N— K —1
complex-valued roots satisfying |x| < 1.

Definition 4. Continuing from Lemma 4, we say the encoder
operates “sufficiently-close-to-capacity” (SCTC) if the follow-
ing stronger version of statement (v) holds: (vi) there are
exactly N — K — 1 complex-valued roots satisfying |z| < L.

Remark 3: Whether the SCTC condition holds can be easily

verified by first using a numerical solver to find all N roots
and then checking whether statement (vi) holds.
Example 1: Let K =2, N =5, and C; be a binomial distri-
bution with p = £ +0.01 = 0.41, i.e, P, = (3)p'(1 —p)>~.
We solve the JCCC equation numerically and the 5 roots are:
ry = —5.3106,70 = r = 1.0867,73 = 1,r4 = —0.1253 +
10.1112, and r5 = —0.1253 —0.1112 with precision until the
fourth decimal point. It is clear that the roots satisfy all five
statements in Lemma 4 and statement (vi) in Definition 4.

Remark 4: Suppose we relax the model of using a fixed K
and allow the encoder to take a random number of K packets
per slot. One can then rigorously prove that when the value
of E{C;} — E{K} is sufficiently small (but still > 0), then
statement (vi) in Definition 4 always holds. That is why we
call this definition “‘sufficiently-close-to-capacity”.

We now provide the formulas of the By and Bj3 in (17).
The derivation is omitted due to space limits.

Proposition 4. When LC, IMC and SCTC conditions are
satisfied, we have

B; = K ln(r). (19)

Remark 5: Since (vi) in Definition 4 holds, the unique
positive root > 1 becomes the dominant root, which in turn
determines the error exponent B3 in Proposition 4. In a broad
sense, Definition 4 is in parallel to the classical error exponent
result, which states that the error exponent of random block
codes has two different expressions, depending on whether

“There are other, more complicated conditions that also imply IMC. If
desired, we can even revise our statements to accommodate for reducible
Markov chain as well. However, the added complexity will negatively impact
readability. We thus use the simplest IMC condition herein.



R < Ry or Ry < R < C where Ry is the cutoff rate. The
SCTC definition corresponds to the latter, more interesting
case of Ry < R < C.

To describe B;, we notice that Lemma 4 and Definition 4
allow us to partition the N roots into 4 groups, the dominant
root 7, the unit root 1, and K — 1 roots denoted by

i€ LK —1] and |7] > 7y (20)
and N — K — 1 roots denoted by
1
r;:j€[L,N—-K—1]and |r;| < —; (21)
r
Define the following 2 + (N — K — 1) polynomials
B K-1 N—-K-1
f@)y=1] @-m), f@= ] (@-r), @2
i=1 j=1
f(z) ,
(2)= =" Vje[l,N-K—1]. (23)
- (z—1;)

Proposition 5. Assume LC, IMC and SCTC conditions.
Define n 2 N — K — 1. If all N roots of the JCCC equation
are single roots, then the By value can be computed by

FOF20) (K70 = ) 3 (Pre-s b))

B =
1 r. B4 B
By =
K n n k
7o ul O o (cf-1) 9,
E{c - K)"} X Peen X M
E{C} - K ’
n o ktn .
b =1k — 7 f(r) ry ' (r—1) gj(r)

02" 1w

Remark 6: Proposition 5 holds only when all N roots are
single roots, which can be easily verified by a numerical root
solver. In all our numerical exploration, we only see single
roots. It is not hard to envision that the event of having a
double root is of measure zero and the assumption is thus not
restrictive in practice.

Remark 7: One must ensure that in the formulas of Propo-
sition 5, the ranges of the summation/product are correctly
specified and the denominators of all the fractions are non-
zero. That is why a significant amount of efforts is spent on
the careful discussion of the locations and multiplicities of the
roots in Lemma 4, Definition 4, and Proposition 5.

We have also found a closed-form formula of By in (17). As
a second-order term hidden behind the dominant term B - «,
its expression is the most complicated. We omit the expression
of By due to the space limits.

IV. NUMERICAL VERIFICATION

We use Example 1 described in Section III and the 5
roots listed there. Numerically plugging in the formulas in
Section III-C, we have By = 0.1393, B, = —0.7893, and
Bs = 0.1662. We then compare the results for different

100 r :
- ¢ - Simulation
—¥— Exact
Approximation 1
............ ¥ Approximation 2
@ 107" .
10—2 L L L L L
0 5 10 15 20 25 30

Fig. 3. Packet error rate p. versus memory length c.

« values in Fig. 3. The curve “Approximation 1” plots the
expression (Bia + Bs)exp(—aBs) and “Approximation 2”
only plots Bjaexp(—«aBs) while ignoring the By term.
The curve “Exact” is obtained by Proposition 3. The curve
“Simulation” is plotted by running Monte Carlo simulation on
I4(t) and counting the erroneous packets using Propositions 1
and 2. We deliberately choose the (N, K, «) and {P;} so that
the p, is large (> 1072). In this way, simulation can be very
accurate and serve as the ground truth. Our analytical results
work equally well for small p. (< 1075) that is beyond the
reach of simulation. For example, if the binomial distribution
parameter p in Example 1 is changed to p = 0.45, our formulas
of Exact lead to p, = 4.52 x 10~7 and 1.80 x 107 when
o = 20 and 30, respectively. The curve of Approximation 1
is indistinguishable from that of Exact, with the relative gap
less than 0.1% for any « > 9.

As expected, the simulation curve matches the exact error
rate computation. The absolute gap between Approximation
1 and Exact is of order o(exp(—aBs)), which becomes
negligible after ¢ > 20. The strong characterization power
of our approximation follows from the fact that we do not
use any union bound or genie-aided techniques. Instead, the
approximation is made by carefully quantifying the effects of
the dominant root, using a new Markov-chain-based frame-
work. When comparing Approximations 1 and 2, one can see
that the seemingly harmless choice of discarding the Bs term
can substantially and negatively impact the accuracy of the
approximation for small «, see the gap when « € [20, 30].

V. CONCLUSION

We have proposed a new information debt definition to
describe the random events of random linear streaming codes
with finite memory length. We have derived a matrix-based
procedure that computes the exact packet error rate. Ad-
ditionally, we have provided a closed-form approximation
of the error rate that is provably tight for large memory
lengths. Numerical results have been used to demonstrate the
characterization power of our derivations.
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