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A B S T R A C T

In this study, an analytical model to evaluate the bending behavior of wood-based sandwich panels with a biaxial
corrugated core was developed. A homogenization method was adopted to replace the geometry of the core with
a homogeneous medium. Considering the deformation of the core under pure tension, compression, and shear,
the properties of the homogenized core were computed. A high-order sandwich panel theory, that takes into
account the deformation of the sandwich beam through the thickness, was applied to derive the governing
equations. Fourier series expansions were used to solve the governing equations for a simply supported sandwich
beam. The analytical results for sandwich beams with two different geometries were compared to finite element
predictions and experimental results. The analytical model differed by 0.5–1.9% from the finite element model,
and 1.6–7.8% with experiment.

1. Introduction

Sandwich structures are widely used in aerospace, automotive, civil,
and marine industries due to their high strength/stiffness-to-weight
ratio, and have been evaluated experimentally and numerically [1–6].
However, the development of an analytical model for sandwich struc-
ture with a complex core geometry such as honeycomb and corrugated
cores is difficult because of the variation in the geometry of the cores
[7]. One of the earliest analytical studies on sandwich panels was
performed by Libove and Batdorf [8] to develop a small deflection
theory for elastic behavior of sandwich panels with either homogenous
or non-homogenous cores. He et al. [7] presented a semi-analytical
method for the bending behavior of a corrugated core, honeycomb core
and X core sandwich structures. They modelled the facesheets as plates
and the core sheet as a beam, so that the sandwich panels were ana-
lyzed as a composite structure of plates and beams. Subsequently,
classical sandwich plate theory, based on the geometry of the core
along with minimum potential energy, was applied to derive the gov-
erning equations. Unfortunately, these analytical models cannot be
applied for sandwich structures with biaxially corrugated cores, thus
requiring the development of a new model.

Homogenization theory substitutes a heterogeneous structure with
an equivalent homogeneous material, and can overcome the complexity
of the core geometry [9]. The effective elastic constants of the

equivalent homogeneous structure can be obtained using the homo-
genization method [10]. Libove and Hubka [11] presented formulas for
evaluating the effective elastic constants of a corrugated core sandwich
panel. These elastic constants, expressed in terms of the cross sectional
area and moment of inertia of the actual geometry of the core, can be
combined with general sandwich-plate theories to evaluate the beha-
vior of the corrugated core sandwich structure. Chang et al. [12] used
the formulas developed by Libove and Hubka [11] to obtain the ef-
fective properties of a corrugated core sandwich structure. Subse-
quently, they used the Mindlin–Reissner plate theory to investigate the
linear bending behavior of a corrugated core sandwich structure.
Others [13–15] have also computed core effective properties using the
geometry of the core, where a known function describing the corru-
gation shape of the core was used to calculate the effective properties.
For complicated core geometries, such as biaxial corrugated core
sandwich beams, however, these approaches of finding effective prop-
erties are not valid.

For a corrugated core sandwich structure in which the core is also a
sandwich member, Kazemahvazi et al. [16] proposed an analytical
model using effective properties that are calculated from tensile, com-
pressive, bending and shear deformations of elements comprising the
core structure. Frostig et al. [17] developed a new theory for sandwich
panels with a flexible core known as high-order sandwich panel theory
(HSAPT). Unlike the most theories for sandwich structures that neglect
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the deformation through the thickness direction, HSAPT defines a
second-order polynomial function as a through thickness displacement
field. Many researchers have used this theory for linear and nonlinear
analysis of sandwich structures [18–22]. However, this theory has not
been used for sandwich panels with a corrugated core geometry.

Voth et al. [23] developed a wood-based sandwich structure with a
biaxial corrugated core [20]. Experimental studies have revealed this
type of sandwich structure to have improved bending response in the
transverse directions as well as longitudinal direction [24,25]. To the
authors’ knowledge, no analytical model has been developed for
sandwich structures with a biaxial core. In this study an analytical
model was developed to describe the bending behavior of wood-strand
sandwich beams with two different biaxial corrugated cores as shown in
Fig. 1. The analytical bending response for two core geometries was
compared with experiment and a finite element model.

2. Materials and fabrication process

The core and facesheets of the sandwich panels were fabricated
from thin strands with an average thickness of 0.38mm. Strands were
produced from small diameter ponderosa pine and lodgepole pine logs.
Strands were resinated with 8% phenol formaldehyde resin in a drum
blender. A mat or preform of resinated strands oriented parallel to the
longitudinal direction as shown in Fig. 2a was formed. The unidirec-
tional wood-strand mat was hot pressed at 160 °C for 6min to fabricate
the 6.35mm thick facesheets. The top and bottom facesheet thickness
was designated ht and hb, respectively. The biaxial corrugated cores

were made using matched die molds with a process similar to the fa-
cesheets. Sandwich panels were formed by bonding two flat layers to a
corrugated core using a polyurethane adhesive (LOCTITE HB X452
PURBOND, Henkel) at room temperature.

A unit cell (UC) of the corrugated structure is highlighted in Fig. 2a.
The UC dimensions for two configurations are given in Fig. 2b and the
associated table.

Engineering elastic constants were obtained from tension, com-
pression, and shear tests following ASTM guidelines [26] of small
coupons cut from flat layers and are presented in Table 1. These elastic
constants are given in a local coordinate system, 1-2-3, shown in
Fig. 2b, where the 1-axis is parallel to the wood fibers. Because of the
complicated core geometry, a local coordinate system was defined for
each core face. Faces with the same color in Fig. 2b represent the same
local coordinate system. A global coordinate system, x-y-z, is shown in
Fig. 2a. As the fiber orientation in individual strands varies in the width
direction with respect to an idealized orthotropic material axes and the
layers are a conglomeration of wood strands oriented uniaxially,
transverse isotropy was assumed for the material properties of both face
and core layers given in Table 1 [28].

3. Finite element model

SolidWorks software (Education Edition) was used as a preprocessor
to simulate and generate the complex geometry of the corrugated core.
Then, finite element software (Abaqus, version 6.14-1) was used as a
solver to describe the bending behavior of the sandwich beams with
biaxial corrugated cores. Shell elements were used to model the core
layer, whereas the facesheets were modeled using solid elements. The
nodes in the contact area between the bottom facesheet and the support
were constrained in the z-direction. As observed with experiment, all
other nodes were unconstrained.

4. High-order sandwich panel theory

Due to the corrugated geometry of the core and the resulting flex-
ibility [11,27], deformation in the z-direction of the sandwich beams,
caused by bending loads, can be important. Through the thickness de-
formation leads to a change in cross section as shown in Fig. 3. Notably,
cross section deformation in Fig. 3b were captured at the free edge of
the overhang. In the following, a high-order sandwich panel theory
(HSAPT) was used to describe through thickness core deformation [17].

The displacement field for HSAPT is defined by third- and second-
order polynomial functions [22] through the length and thickness of the
core, respectively, as

Fig. 1. Wood-based biaxial corrugated cores (a) Core A (b) Core B.

Fig. 2. Schematic of a biaxial corrugated core (a) longitudinal and transverse directions along with highlighted unit cell and (b) dimensions of unit cell (mm).
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where c refers to the core, w0(x), u0(x) and φ0(x) are deflection in the
thickness direction (i.e., z-direction), the axial displacement, and angle
of rotation of cross section about the y-axis with respect to the thickness
direction, respectively. The coefficients of w1(x), w2(x), u1(x), and
u2(x) are unknown functions that are obtained using the compatibility
equations at the interface layer of the core and facesheets. The com-
patibility equations are given as
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where t and b indicate top and bottom facesheets, and H is the height of
the corrugated core. The displacement field of the classical beam theory
that is used to evaluate the facesheets is expressed as
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where f (superscripts and subscripts) refers to the top (t) or bottom (b)
facesheets. Dimensions of the bending specimen with local coordinate
systems are shown in Fig. 4. The unknown displacement functions,
w1(x), w2(x), u1(x), and u2(x) are determined by substituting Eqs. (1)
and (3) into Eq. (2). The core displacement field in Eq. (1) becomes
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Using Eq. (4) for the core and Eq. (3) for the facesheets, the com-
ponents of the strain tensor can be computed in terms of displacement,
from which we obtain
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The components of stiffness matrix are described in [29]. Because

classical beam theory is used for the facesheets, we haveεzz
t b, = γxz

t b, =0.
The governing equations and boundary conditions are derived using the
variational form of the principle of minimum potential energy as [30]
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The variation of strain energy is
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where L and A are respectively span length and cross section of the
components of the sandwich beams as shown in Fig. 4. The first var-
iation of virtual work done by external forces, is
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In which fxand fz are the x- and z-components of body forces, re-

spectively, and mxy is the y-component of body moment. Also
−

N ,
−
V,

and
−

M are, respectively, the applied axial force, transverse shear force,
bending moments at point x= xl. The number of concentrated loads
and moments is identified by n, while −δ x x( )d l is the Dirac delta
function that is used to define the position of these concentrated loads
on the beam. Substituting Eqs. (7) and (8) in Eq. (6) and applying the
fundamental lemma of the calculus of variation result in governing
equations and boundary conditions.

5. Homogenization method

Computing Eq. (7) is cumbersome because the geometry of the core
results in a varying cross section along its length. A homogenization
method was used to overcome this difficulty. The corrugated geometry
of the core was replaced with a continuous core that has a constant
cross section. The effective properties of the homogenized core are es-
tablished using simple constitutive and linear beam equations as

= = =δ F L
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δ F L
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3

T C S B&
3

(9)

where FT C& , FS, and FB are tensile or compression load, shear load, and
bending load, E and G are material properties, A and I are area and
moment of inertia of the beam cross section.

5.1. Effective Young’s modulus in the x-direction, Ex
eff

Due to symmetry, the tensile response of one half of a UC of the

Table 1
Material Properties of wood composite material.

E1 (GPa) E2 (GPa) E3 (GPa) υ12 υ13 υ23 G12 (GPa) G13 (GPa) G23 (GPa)

9.80 1.71 1.71 0.358 0.358 0.2 2.56 2.56 0.71

Fig. 3. Deformation through the thickness due to flexibility of the core. Cross section (a) before and (b) after applying bending load.
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corrugated core was considered as shown in Fig. 5. The half UC was
divided into five sections, also shown in Fig. 5. Since sections 1 and 5
are without any corrugation, the tensile load is given as

= = =
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L
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where Y21, L1, and t are core dimensions shown in Fig. 2, and E1 is
the longitudinal Young’s modulus of the wood composite material given
in Table 1. For the sections 2, 3, and 4, a thin element of width dy was
considered as shown in Fig. 6. Parametric equations describing the di-
mensions of these sections are given in Table 2. The cross sectional area
and moment of inertial for different parts (a, b, and c) of the thin ele-
ment shown in Fig. 6 are indicated by A and I with corresponding
subscripts and also given in Table 2.

Since the tensile load on each small element (dFi) is applied ec-
centrically, a bending moment (dMi) is created on the element. The
offset distance, h "i , for this eccentric load from the centroid is given as
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where Vi and hi are the volume and moment arm for each element,
respectively. Considering the relations given in Eq. (9) and geometric
parameters given in Table 2, the relation between eccentric load that
acts on each element and specified displacement of δx can be expressed
as

=
⎡
⎣⎢

+ + + + ⎤
⎦⎥

=

+ −
dF δ i

2, 3, 4

i
x

L
A E

L L L sinθ
E I

L sinθ
G A

L cosθ
A E

L
A E

2 2( ( ) )( )
3

2 ( ) 2 ( )ai
ai

bi bi bi
bi

bi
bi

bi
bi

ci
ci1

' 3 ' 3 1 2

1
1 2

12
1 2

1 1

(12)

Integrating dFi over the width gives the tensile load for sections 2, 3,
and 4. The effective longitudinal Young’s modulus of the core is now
defined as

= + + + +E L F F F F F
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x
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5.2. Effective through thickness modulus, Ez
eff

Due to symmetry, one quarter of the UC was considered for through
thickness compressive response as shown in Fig. 7. The through
thickness compressive load creates F1 and F2, and F1h and F2h, as shown
in Fig. 7. Since E1≫ E2, the horizontal deformation in the longitudinal
direction caused by F2h is small and was neglected.

Applying the principle of superposition, δz can be expressed in terms
of deformation in the inclined walls (δ ') and deformation in the hor-
izontal parts (δ"), as depicted in Fig. 8.

Because of the continuity and symmetrical geometry of the UC, all
inclined walls must have the same δs. Thus, the compression loads in

Fig. 4. Schematic view of sandwich beam under bending load.

Fig. 5. UC submitted to tensile loading to obtain effective E1.

Fig. 6. Schematic view of thin elements cut from sections 2, 3, and 4 shown in
Fig. 5.

Table 2
Geometrical parameters specified in Fig. 6 for Sections 2–4.

Section Geometric parameters

2
= = = − − =L L L L L L cosθ h ytanθ, , 2 2 ,a

X
b

h
sinθ c a a2

1
2 2

2
'

1
2 1 2 2 1 2

'
2

= = = = ∈A A tdy A dy I dy y h tanθ, , , [0, / ]a b c
t

cosθ b
t

2 2 2
2

2
3

12 2

3 = = = =L L h sinθ L X h h, / , ,a
X

b c3
1

2 3
'

1 3 1 3
'

= = = = ∈ ⎡
⎣

− ⎤
⎦

A A A tdy I dy y Y, , 0,a b c b
t h

tanθ3 3 3 3
3

12 22
2

4
= + = = = −L L L X h h ytanθ, , ,a

X ytanθ
tanθ b

h
sinθ c4

1
2

2
1

4
4
'

1
4 1 4

'
2

= = = = ∈A dy A A tdy I dy y h tanθ, , , [0, / ]a
t

cosθ b c b
t

4
2

4 4 4
3

12 2

Fig. 7. UC submitted to compression loading to obtain effective E3.
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the inclined walls, F1 and F2, can be found using
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where E1
' is the modulus of the wood composite material in the direc-

tion parallel to F2 shown in Fig. 7, expressed as
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Considering Eq. (14), δs is given as
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Substituting Eq. (16) in Eq. (14), the compression loads in the in-
clined walls, F1 and F2, can be described in terms of the total com-
pression load applied to the UC as
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Now, loads F1h and F2h, can be found from F1 and F2, given in Eq.
(17). Then, δh can be obtained from
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The effective modulus of the core through the thickness becomes
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5.3. Effective shear modulus in the x-z plane, Gxz
eff

Because of the complicated geometry of the core, it is difficult to
derive an effective shear modulus using the UC deformation and the
simple equations given in Eq. (9). To address this issue, the finite ele-
ment method was used to find an equivalent and simplified geometry
that represents the shear behavior of the real geometry. The deforma-
tion of this simplified geometry under shear load was used to find the
effective shear modulus.

When a UC of the corrugated core is submitted to shear loading, the
inclined walls, which undergo shear, tensile, and compressive de-
formations, play an important role to carry the load. Thus, the dimen-
sions of inclined walls are important to find a simplified geometry that
has a similar shear behavior to the real configuration. A UC of the ac-
tual and simplified geometries of the corrugated core are shown in
Fig. 9a and b, respectively. As can be seen, the height and wall thickness
of the simplified geometry in Fig. 9b have been increased compared to
the actual geometry shown in Fig. 9a to retain the length of the inclined

walls carrying the shear load. In the finite element model, both the
actual and simplified geometries were submitted to the same shear
forces. Comparison between the shear modulus, G, of the actual and
simplified geometries revealed a 0.26% and 0.22% difference for cores
A and B, respectively. Considering this strong agreement, the relations
in Eq. (9) were applied to this new simplified geometry to derive the
effective shear modulus in the x-z plane.

For a simplified UC (Fig. 9b) loaded in shear, the red sections shown
in Fig. 10a were subjected to shear, while the green were loaded in
bending as shown in Fig. 10b. The shear displacement (δxz) and shear
force (F1) acting on the vertical walls are related by
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H
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where tN, H’, and L1 are core parameters shown in Fig. 9.
For those vertical walls with bending deformation (Fig. 10b), the

shear load (F2) can be defined in terms of shear displacement (δxz) as
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The effective shear modulus in the x-z plane is now expressed as
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6. Solution method

In this study, the bending behavior of simply supported sandwich
beams with two different corrugated core geometries, as shown in
Fig. 1, was investigated. Fourier series expansions, which satisfy the
boundary conditions of simply supported beams and plates, were used
to solve the governing equations of beams and plates. The expansions
for generalized displacements u0(x) and w0(x) and rotation φ0(x) are
[22,31]
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where Un, Wn, and ϕnare the Fourier coefficients. After solving the
governing equations and obtaining the deflection at mid-span of the
beam, the bending stiffness for sandwich beams under four point
bending is expressed as

= − → =
= =

D Pa L a D mL
48Δ

(3 4 ) 23
1296

a L m P
2 2 3 , Δ 3

(24)

where P, Δ, L, and m are the bending load, deflection at mid-span,

Fig. 8. Components of the transverse deflection in the inclined and horizontal sections of the core due to transverse compression loading as shown in Fig. 7.
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span length, and slope of the load–deflection curve, respectively. The
constant “a” is the distance between the support and loading point as
shown in Fig. 4.

7. Results and discussions

Sandwich beams were submitted to four-point bending test as
shown in Fig. 4. After obtaining the beam deflection at mid-span, the
bending stiffness was computed using Eq. (24). For the analytical
model, the effective properties obtained from the homogenization
method were used where the Poisson effect was not considered [7]. In
this section, analytical, FE, and experimental bending stiffness of
sandwich beams with both core A and B are compared. Notably, two
different span lengths were chosen to evaluate the bending behavior of

sandwich beams: 1) long and narrow (with 1 UC wide), and 2) short
and wide (2 UC wide). The specimens’ dimensions are given in Table 3.

Since the mold to fabricate Core A was only 787mm long, com-
parison with experiment was not possible for the sandwich beams with
Core A. Comparison between the analytical bending stiffness of these
sandwich beams with those of the FE model is presented in Fig. 11a.
Predictions of bending stiffness based on the analytical model is 1.9%
higher than FE for a slenderness ratio of 25.5, short and wide speci-
mens. As the slenderness ratio doubled, i.e. long and narrow specimens,
the difference between the analytical and FE bending stiffness was
approximately −0.5%. The negative difference indicates that the ana-
lytical results fall on the conservative side of the FE predictions. Since,
the analytical model was developed for sandwich beams, an increase in
specimen length (from 972mm to 1943mm) accompanied with a de-
crease in width (from 216mm to 108mm) improved the agreement
between the analytical and FE models.

The same slenderness ratios for core A was used to determine the
span length of sandwich beams with Core B. Comparison between the
analytical bending stiffness of these sandwich beams with those of FE
and experimental results is presented in Fig. 11b. For Core B, the
slenderness ratio of 25.6, i.e. short and wide specimens, yielded an
analytical bending stiffness that was 0.85% to 7.8% higher than those
of FE and experimental bending stiffness values. For beams with a
longer span (2437mm) and greater slenderness ratio (51.2), the dif-
ference in the results between the analytical and FE and experimental
bending stiffness was −2.8% and −1.6%. The analytical model was
developed for beams and therefore does not capture deformation along
the width of the specimen, thus potentially contributing to differences
between the theoretical and the experimental results in addition to the
slenderness ratio. In addition, the complex geometry of the core, the
nonhomogeneous wood composite material, and the inherent variations
in material properties also contribute to these differences between the
analytical and the experimental bending stiffness of sandwich beams,
especially with small slenderness ratio when shear deformations are
significant.

Comparison of the bending stiffness showed that the analytical
model can efficiently estimate the effective elastic properties of the

Fig. 9. A UC of the corrugated core (a) actual geometry (b) simplified geometry with similar shear behavior.

Fig. 10. Vertical walls of simplified UC (shown in Fig. 9b) subjected to shear
loading undergo (a) shear deformation and (b) tensile deformation.

Table 3
Dimensions of sandwich beams used for bending test (mm).

Core
Type

Specimen
Configuration

Width b Span
length L

Thickness
t= ht+H+hb

Slenderness
ratio L/t

A Short and wide 216 969 38 25.5
A Long and

narrow
108 1938 38 51

B Short and wide 406 1219 47.6 25.6
B Long and

narrow
203 2437 47.6 51.2

Fig. 11. Comparison between analytical, FE, and experimental bending stiffness of sandwich beam with (a) Core A and (b) Core B.
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homogenized core and bending behavior of the sandwich beams. Unlike
some studies [13–15] that have used the actual geometry of the core to
compute the effective properties, the analytical model developed in this
study used a homogenization method to obtain the core effective
properties. A comparison between the effective properties of the
homogenized core and those of the actual corrugated core is presented
in Table 4. The axial stiffness, EA, and bending stiffness, EI, of the core
show a significant difference between the corrugated cores with the
homogenized one. This difference reveals the importance of using the
homogenized core instead of the actual core geometry to develop an
analytical model. In fact, employing the actual geometry to develop an
analytical model requires the actual material properties, area and mo-
ment of inertia, while the homogenization method also takes the de-
formation of the UC into account to derive the effective properties.

The results for sandwich beams with both Core A and B indicated
that the analytical model shows a better agreement with FE and ex-
perimental results for long specimens compared to the short sandwich
beams. In other words, the slenderness ratio of the sandwich beams can
affect the accuracy of the analytical model. To evaluate this effect,
difference between the bending stiffness obtained by the analytical
model with those predicted by FE for different slenderness ratio is given
in Fig. 12. The negative error shows that the analytical model predicts
lower bending stiffness than the FE model and falls on the conservative
side. This figure shows that for slenderness ratios lower than 20, the
error in bending stiffness is more than 8%.

8. Conclusions

In this study, a high-order sandwich panel theory, that takes into
account the deformation of the beam through the thickness, was used to
derive the governing equations for predicting the elastic bending stiff-
ness of wood strand sandwich beams with biaxial corrugated cores. A
homogenization method was applied to replace the discrete geometry
of the core with a homogeneous material to simplify the analysis of a
beam with a complex core geometry. Using deformation of a UC under
tension, compression, and shear loading along with a simple relation
obtained from constitutive equations and a linear beam model, equa-
tions to determine the effective properties of the homogenized core

were derived and used in a constitutive model. Comparison between the
predicted bending stiffness using the analytical model and the FE model
and experimental results revealed 0.5% to 7.8% difference. The ana-
lytical method was most effective for predicting the bending stiffness of
long beams.

The analytical model developed in this study can be used to effi-
ciently estimate the effective elastic properties and to understand how
geometrical parameters affect the bending behavior of the sandwich
beams with a biaxial corrugated core. The effect of these geometrical
parameters on the bending stiffness can be used in design of new biaxial
corrugated cores to achieve a higher bending stiffness.
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