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A B S T R A C T

In this study, an analytical model was developed to evaluate the bending behavior of a wood composite sand-
wich panel with a biaxial corrugated core. To explore the effect of shear deformation, two plate theories were
considered: classical plate theory (CPT) and a third-order shear deformation plate theory (TOSDPT). The effect
of simply supported-simply supported, clamped–clamped, and simply supported-free boundary conditions on the
bending behavior of the sandwich panel was investigated. A homogenization method was used to replace the
corrugated geometry of the core with a continuous layer. Based on the deformation of the corrugated core, the
effective properties of the homogenized layer were obtained. Classical lamination theory and the principle of
minimum potential energy were applied to derive the governing equations and apply the boundary conditions. A
generalized differential quadrature method was applied to solve the governing differential equations. The
bending stiffness of a panel with simply supported-free boundary conditions agreed with the experiment within
3.67% and 0.28% for CPT and TOSDPT, respectively.

1. Introduction

Bio-based sandwich structures that are environmentally friendly,
renewable, and recyclable have been developed recently [1–5]. How-
ever, those with hollow cores have attracted interest because the hollow
geometry of the core can be used to improve the thermal and acoustic
performance.

Using the elastic constants developed by Libove and Hubka [6] for
corrugated core sandwich panels, Chang et al. [7] employed a first-
order shear deformation theory to understand the bending behavior of a
uniaxial corrugated core sandwich panel with simply supported-simply
supported (SSSS) and clamped–clamped (CCCC) boundary conditions.
By computing the second moment of inertia for the sinusoidal cross
section of a uniaxial corrugated core, Magnucki et al. [8] found the
bending stiffness of a sandwich structure and evaluated the bending and
buckling behavior. However, the effect of shear deformation was not
included. Aboura el al. developed an analytical model to find the ef-
fective material properties of corrugated cardboard [9]. Considering the
sinusoidal cross section of the uniaxial corrugated core, the global
stiffness matrices were calculated for the cardboard. However, only the
extensional stiffness matrix was used to obtain the effective properties.
Cheon and Kim [10] suggested an equivalent plate model for uniaxial

corrugated core sandwich panels with trapezoidal and sinusoidal cor-
rugation. Using the equivalent energy method and classical plate
theory, which does not take shear deformation into account, the ex-
tensional stiffness matrix and bending stiffness matrix were obtained to
compute the effective material properties and thickness of a homo-
geneous plate. A finite element (FE) model of the actual geometry was
used to verify the analytical model.

When the core geometry of a sandwich panel can be described by a
known function, analytical models often allow relatively simple eva-
luation of the sandwich structure. However, the geometry of many
panel cores are complex, i.e. a core where the geometry varies along
both the length and width of the panel. Analytical models for these
cases have found limited application.

Other researchers used the internal forces and deformations of the
core to evaluate corrugated core sandwich panels. Using curved beam
theory, Nordstand et al. [11] established the relation between applied
loads and moments with displacements and rotations for a sinusoidal
corrugated core sandwich panel. Effective transverse shear moduli, Gxz

and Gyz, were obtained and compared with FE results and those ob-
tained by Libove and Hubka [6]. Considering the deformation of a
uniaxial corrugated core subjected to a unit displacement, Kazemahvazi
and Zenkert [12] derived the relation between internal forces and
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global displacements to obtain the shear modulus, Gxz, and out-of-plane
modulus, Ezz. A strength model that predicts the shear and normal
stresses acting on the core members was developed and validated using
the results obtained from FE. Bartolozzi et al. [13] found displacements
caused by unit forces using Castigliano’s theorem, and derived the
material properties required for a first-order shear deformation theory.
The bending stiffness and acoustic behavior of a sandwich panel with a
uniaxial sinusoidal corrugated core were evaluated and compared with
FE. Other approaches used to model and evaluate sandwich structures
can be found in the review articles by Noor et al. [14] and Hohe and
Becker [15]. To evaluate the bending behavior of sandwich beams with
a biaxial corrugated core geometry, a high-order sandwich panel theory
(HSAPT) was used [16] (Fig. 1). Based on the deformation and internal
forces generated in a corrugated core subjected to a unit displacement,
the effective properties were found. However, since beam theory was
used, all deformation in the width direction was neglected, and the
boundary conditions were defined only on opposing ends of the panels.

No analytical model has been developed for a full size sandwich
panel with a biaxial corrugated core (shown in Fig. 1), where de-
formation in the width direction is considered, and boundary condi-
tions can be defined on all four edges of the panel. Since this sandwich
panel was developed as a construction material for building envelopes
[5,17–19], development of an analytical model to evaluate a full size
panel will help analyze the influence of geometry, reduce experimental
work, and assist in designing new cores for targeted applications or
specifications.

2. Materials

Thin wood strands with an average thickness of 0.36 mm were dried
to a target moisture content of 3–5% and sprayed with aerosolized li-
quid phenol formaldehyde (PF) resin to a target resin content of 8% by
oven-dry wood weight. Resinated wood strands were oriented and
hand-formed unidirectionally (parallel to the x-axis shown in Fig. 2) to
fabricate a wood strand mat or preform. The unidirectional mat was

then consolidated in a hot press for 6 min into a corrugated core panel
with a matched-die mold, or a flat panel without a mold for facesheets.
To fabricate the sandwich panels, 6.35 mm thick flat panels were
bonded with a polyurethane adhesive (LOCTITE HB X452 PURBOND,
Henkel) to a biaxial corrugated core (Fig. 1) at room temperature. A
unit cell (UC) of the biaxial corrugated core and its dimensions are
shown in Fig. 2.

Because of the changing fiber direction in the core, a local co-
ordinate system (1–2-3, where 1is parallel to the wood fibers and 2 is in
plane and perpendicular to 1) was defined on each face of the core
(Fig. 2b). Faces with the same color in Fig. 2b share the same local
coordinate system. The local coordinate system on the facesheets is
aligned with the global coordinate system. The elastic constants in the
local coordinate system for both facesheets and the corrugated core
[16] are given in Table 1.

3. Analytical model

In developing the analytical model, a homogenization method [15]
was used to find the effective properties of the homogenous layer.
Classical plate theory (CPT) and third-order shear deformation theory
(TOSDPT) which have been used by many researchers for layered
structures [6–9,16,20–30] and were used here to develop the analytical
model and consider the effect of shear deformation. The displacement
field for these theories in the global coordinate system (x, y, and z) can
be defined as [31]
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where u0, v0 and w0 are, respectively, the x-, y-, and z-components of
the displacement at any point on the mid-plane of the panel, and ϕx and
ϕyare the angle of rotation of the cross section about the y-axis and x-
axis with respect to the z-axis, respectively. The panel geometry was

Fig. 1. Biaxial corrugated wood composite core and corresponding sandwich panel.

Fig. 2. Biaxial corrugated core (a) global coordinate system along with longitudinal and transverse directions (b) unit cell along with its dimensions and local
coordinate system (dimensions are in mm).
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described using =c α4 /3Ht1
2, and = + +H h H ht b t where Ht and H are

the height of the sandwich panel and core, respectively, and hb and ht
are the thickness of the bottom and top facesheets, respectively, as
shown in Fig. 2. Note when =α 1 we have a third-order shear de-
formation plate theory, and when = = −∂ ∂α ϕ w x0, / ,x 0 and

= −∂ ∂ϕ w y/ ,y 0 so that the displacement field for classical plate theory is
achieved.

3.1. Governing equations

The first variation of strain energy in a deformed material occupying
region Ω is given by [32]

∫= =δU σ δε dv i j( ) , , x, y, zij ijΩ (2)

where σ and ε are stress and strain tensors, respectively. The compo-
nents of the strain tensor are

= ∇ + ∇ = + =ε u u u u ε1
2

( ( ) ) 1
2

( )ij
T

i j j i ji, , (3)

The components of displacement field (ux, uy anduz) of any point of
the panel in the coordinate system (x, y, and z) are given in Eq. (1). The
constitutive relation to find the stresses can be defined as
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where t and b indicate top and bottom facesheets, respectively, and c
refers to the core. The components of stiffness matrix, Cij, can be found
in the literature [28]. The Poisson effect was not considered. The
general form of the first variation of work done by the external forces is
given by

∫
∫

= + + +

+ + +
∂

− − − −

δW
f δu f δv f δw dxdy

δu δv Vδw δϕ ds

[ ]
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where fu, fv and fw are, respectively, the x-, y- and z-components of the
body force per unit length, and

−
Nnx and

−
Nny are the axial forces,

−
V and

−
Mn are transverse force and bending moment at the boundary of the
panel, respectively.

The governing equations can be derived using the principle of
minimum potential energy as [33]

= − =δ δU δWΠ 0 (6)

The governing equations are lengthy, and therefore, included in the
Appendix.

4. Homogenization method

To introduce the core geometry into the analytical model, a
homogenization method was used to replace the biaxial corrugated core
with a continuous layer. The effective properties of an equivalent beam
were derived from the internal forces and deformation caused by a unit
displacement applied to a UC [16]. The remaining effective properties
of the homogenized core were derived using linear beam theory as
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where F and δ are the load and displacement, E and G are material
properties, and A and I are area and moment of inertia of the beam.
Tensile, compressive, shear and bending loads and corresponding dis-
placements are denoted by subscripts T, C, S, and B, respectively.

4.1. Effective Young’s modulus in the y-Direction, Ey
eff

Taking advantage of the geometric symmetry in the UC, the tensile
deformation of one half of a UC (Fig. 3) was investigated. This half was
divided into three sections. A thin element with a width of dx from each
section was used to consider the load from a unit displacement. The
cross sectional area and moment of inertia for different parts of the thin
elements are shown in Fig. 4 and given in Table 2.

The height of the centroid line was used to compute the moment
caused by an eccentric load, dFi, as
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Using Eqs. (7) and geometric parameters in Table 2, the load that
acts on each element of width dx can be found in terms of a unit dis-
placement δy as

Table 1
Elastic constants of wood composite material.

E1(GPa) E2(GPa) E3(GPa) υ12 υ13 υ23 G12(GPa) G13 (GPa) G23 (GPa)

9.80 1.71 1.71 0.358 0.358 0.2 2.56 2.56 0.71

Fig. 3. UC under tensile loading to obtain the effective E2.

Fig. 4. Schematic view of thin elements cut from (a) sections 1 and 3 (b)
Section 2 shown in Fig. 3. Subscripts d-p refer to straight element segments,
corresponding to the definitions in Table 2. The subscript i refers to the section
number, defined in Fig. 3, and the corresponding definitions in Table 2.
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The tensile load for sections 1, 2, and 3 was computed by integrating
dFi over the width of the corresponding section. The effective long-
itudinal Young’s modulus of the core was found from

= + +E L F F F
HL

δ2 ( )
y
eff

y
2 1 2 3
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4.2. Effective shear modulus in the y-z Plane, Gyz
eff

Since the geometry of the core is complex and includes parts with
varying cross section through the height of the UC, it is difficult to
derive an effective shear modulus using the internal forces and de-
formation. Therefore, finite element analysis was used to find an
equivalent and simplified geometry that represented the shear behavior
of the actual geometry. The shear deformation of this simplified geo-
metry was used to find the effective shear modulus. An actual UC under
shear in the y-z plane is shown in Fig. 5a; whereas, a simplified UC,
with similar shear behavior is shown in Fig. 5b. The UC was simplified
by moving the outer walls (green) inward, forming a continuous inward
wall (green). The shear modulus, Gyz, of the simplified geometry was

2.35% lower than the actual geometry. When a simplified UC (Fig. 5b)
is subjected to a shear displacement, the red sections undergo shear
deformation as shown in Fig. 6a, while the green sections experience
tension/compression, shear, and bending deformation as shown in
Fig. 6b.

The load caused by a unit displacement (δyz) in the red sections
shown in Fig. 6a is
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For the green sections shown in Fig. 6b, the load can be expressed in
terms of a unit displacement as
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The effective shear modulus in the y-z plane can then be written as
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4.3. Effective shear modulus in the x-y Plane, Gxy
eff

Finite element analysis was also used to find a simplified geometry
that has the same shear behavior as the actual geometry under a unit
displacement ofδxy. Both the actual and simplified geometries are
shown in Fig. 7. The shear modulus in the x-y plane (Gxy) of the sim-
plified geometry was 0.66% higher than the actual geometry.

To evaluate the shear behavior of the UC, the simplified geometry
was divided into four sections as shown in Fig. 7b. The load generated
by a unit displacement δxy in each of the sections is
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Using the loads for each section given in Eq. (14), the effective shear
modulus in the x-y plane is

Table 2
Geometrical parameters specified in Fig. 4 for Sections 1–3.

Section Geometric parameters shown in Fig. 4

1
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Fig. 5. A UC of the corrugated core (a) actual geometry (b) simplified geometry, with similar shear behavior in the y-z plane.
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5. FE model

Abaqus finite element software (version 6.14-1) was used to simu-
late the bending behavior of the actual geometry of the panels under
different loading and boundary conditions. The corrugated core was
modeled using shell elements, while solid elements were used to model
the facesheets. The nodes of the facesheets and 3-D core were tied to-
gether as occurs for ideal adhesion. The model was run in displacement
control.

6. Experimental procedure

As shown in Fig. 8, three sandwich panels were tested in four-point
bending with simple supports on opposing ends and free conditions on
the remaining ends (SSFF). These experimental results were used to
verify the analytical and FE models under the same boundary condi-
tions.

7. GDQ method

The generalized differential quadrature (GDQ) method has been
used by many researchers [34–38] to solve partial differential equa-
tions. Unlike the Fourier series expansion that are commonly used for
simply supported boundary conditions, GDQ can be applied for fixed
and free boundary conditions. The GDQ method discretizes the domain
into several sample points which are non-uniformly spaced and are
obtained from the following equations as
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where N and M are the number of the grid points in the x and y di-
rection, respectively. The derivatives of a function at the grid point (xi,
yi) can be discretized as
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The weighting coefficients Aik
n( ) and Bjl

m( ) can be found in the lit-
erature [39].

8. Results and discussions

Three sandwich panels with SSFF boundary conditions were tested
in four-point bending (Fig. 9). Dimensions of the sandwich panels are
given in Fig. 8. The experimental results of the bending test are pre-
sented in Fig. 9.

The average linear bending stiffness from three sandwich panels is
compared with the analytical and FE results in Fig. 10. The bending
stiffness from the FE model and classical plate theory were 4.7% and
3.7% higher than experiment, respectively, while the third-order shear
deformation plate theory was 0.3% higher. Surprisingly, for a panel
with a relatively large span, agreement with experiment improved
when shear deformation was considered.

Since distributed loads (i.e. snow and wind) are common for con-
struction materials, the bending behavior of the sandwich panels under
a distributed load is of interest. Since experimental data was not
available for this test, the plate theories were compared to the FE
model. A uniform pressure of 34.5 kPa was applied over the surface of
the panel for SSSS and CCCC boundary conditions. The slope of the
load–deflection at the center of the panel, which is proportional to the
bending stiffness, is compared in Fig. 11.

For SSSS, stiffness from CPT and TOSDPT exceeded the FE model by
3.3% and 1.3%, respectively. For CCCC, the stiffness from CPT and
TOSDPT exceeded the FE model by 14.2% and 6.3%, respectively.

Both the facesheets and the core of the sandwich panel evaluated in

Fig. 6. Generated load in different parts of the UC with the simplified geometry shown in Fig. 5b.

Fig. 7. A UC of the corrugated core (a) actual geometry (b) simplified geometry with similar shear behavior in the x-y plane.

M. Mohammadabadi, et al. Composite Structures 241 (2020) 112133

5



this study were a wood composite. However, facesheets of a sandwich
structure are often stiffer than the core. Fig. 12 shows the sensitivity of
the stiffness of a SSSS panel with a uniform pressure on the change in
the core and facesheet properties using TOSDPT.

The longitudinal and transverse modulus of the core (E c
1 , E c

2 ) had a
negligible effect on the bending stiffness of the sandwich panel. The
longitudinal and transverse modulus of the facesheets (E f

1 , E f
2 ) has a

larger influence on the bending stiffness. DoublingE f
1 andE f

2 increased
the bending stiffness of the sandwich panel by 11% and 32.8%, re-
spectively. These results demonstrate the utility of predictive models in
describing the responses of structural panels.

9. Limitations

The edge effect, which occurs when there is a mismatch in material
properties of two adjacent layers along free edges, can affect the panel
failure load [40–42]. Edge effects were neglected here since this study
considered the linear behavior of sandwich panels. This approach was
justified from an FE model, that considered edge effects, on a panel with
SSFF boundary conditions. It was observed that the stresses associated
with edge effects are at most 1.5% of the bending stresses. Edge effects
also had a negligible effect on the distribution of bending stresses in the
facesheets. While edge effects were negligible in this study, they should
be considered for sandwich panels with different geometries and di-
mensions of that considered here.

10. Conclusions

An analytical model using two different plate theories was devel-
oped to evaluate the linear bending behavior of a sandwich panel with a
biaxial corrugated core. A homogenization method was employed to
replace the non-homogenous geometry with a continuous and homo-
genous layer. A GDQ method was used to solve the governing equations
of the panels subjected to two different loadings, and three types of
boundary conditions. For all loading and boundary conditions con-
sidered here, the TOSDPT model agreed better with experiment and
numerical simulations than the CPT model. The results showed that
shear deformation is important in these sandwich panels, even for cases
involving relatively large span.

The analytical model was used in a parametric study that considered

the effect of the properties of the core and facesheets on the bending
stiffness of the panel. Increasing the modulus of the facesheets in both
the longitudinal and transverse directions had a significant influence on
the panel bending stiffness, while the effect of the core modulus was
negligible. The results demonstrate the utility of using predictive

Fig. 8. Schematic view of a four-point bending ex-
periment of a sandwich panel with simple supports.
a = 2438 mm, b = 1219 mm, ht = hb = 6.35 mm,
H = 35 mm.

Fig. 9. Four-point bending test and load- mid-span deflection curves for sandwich panels with SSFF boundary conditions.

Fig. 10. Experimental, FE, and analytical bending stiffness of a sandwich panel
subjected to four-point bending and SSFF boundary conditions. Error bar re-
presents one standard deviation, or COV = 4.5%.

Fig. 11. Slope of the load–deflection curve of the panels subjected to a dis-
tributed load with SSSS and CCCC boundary conditions.
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models to describe the response of structural panels.
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Appendix

The governing equations in terms of displacement are expressed as
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where =c c32 1, and other coefficients are defined as

Fig. 12. The effect of the properties of the core and face sheet on the panel
bending stiffness.
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Since all coefficients given in Eq. (A.6) with odd subscripts are zero, only Eqs. (A.3)–(A.5) must be solved to obtain the deflection of the sandwich
panel.
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