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One of the central challenges for quantum technologies 
during the past few years has been a search for useful 
applications of near-term quantum machines1. Although 

considerable progress has been made in increasing the number of 
qubits and improving their quality2,3, in the near future we expect 
the number of reliable gates to be limited by noise and decoher-
ence—the so-called noisy intermediate-scale quantum era. As such, 
hybrid quantum–classical methods have been proposed to make the 
best of the available quantum hardware and supplement it with clas-
sical computation. Most notably, there has been the development 
of the quantum approximate optimization algorithm (QAOA)4 
and the variational quantum eigensolver (VQE)5. Both algorithms 
use the quantum computer to prepare variational states, some of 
which might be inaccessible through classical computation, but use 
a classical computer to update the variational parameters. A num-
ber of experiments have already been performed, demonstrating 
the feasibility of these algorithms6–8, yet their bearing on real-world 
problems remains unclear. In model-based statistical inference one 
is often faced with similar problems. For simple models one can 
find the likelihood and maximize it, but for complex models the 
likelihood is typically intractable9,10. NMR spectroscopy is a per-
fect example. There is a good understanding of the type of model 
that should be used (equation (1)) and one only needs to determine 
the appropriate parameters. However, computing the NMR spec-
trum for a specific model requires performing computations in the 
exponentially large Hilbert space, which makes it extremely chal-
lenging for classical computers. This feature has been one of the 
original motivations for proposing NMR as a platform for quantum 
computing11. Although it has been shown that no entanglement 
is present during NMR experiments12,13, strong correlations make 
it classically intractable; that is, the operator Schmidt rank grows 
exponentially, which, for example, prohibits efficient representation 

through tensor networks14. Its computational power is between that 
of classical computation and that of deterministic quantum com-
putation with pure states15, which makes it an ideal candidate for 
hybrid quantum–classical methods. As we argue below, the required 
initial quantum states can be prepared by low-depth circuits and the 
problem is robust against decoherence. By simulating the model on 
a quantum computer, it runs efficiently while the remaining infer-
ence part is simply solved on a classical computer. One can think 
of this as an example of quantum approximate Bayesian computa-
tion, placing it in the broader scope of quantum machine learning 
methods16. In contrast to most of the proposed quantum machine 
learning applications, the present algorithm does not require chal-
lenging routines such as amplitude amplification17,18 or the Harrow–
Hassidim–Lloyd (HHL) algorithm19.

NMR spectroscopy
NMR spectroscopy is a spectroscopic technique that is sensitive 
to local magnetic fields around atomic nuclei. Typically, samples 
are placed in a high magnetic field while driving (radiofrequency, 
RF) transitions between the nuclear magnetic states of the system. 
Because these transitions are affected by the intramolecular mag-
netic fields around the atom and the interaction between the differ-
ent nuclear spins, one can infer details about the electronic and thus 
chemical structure of a molecule in this way. One of the main advan-
tages of NMR is that it is non-destructive (in contrast to X-ray crys-
tallography or mass spectrometry, for example). This makes NMR 
one of the most powerful analytical techniques available to biology20, 
as it is suited for in vivo and in vitro studies21. NMR can, for example, 
be used for identifying and quantifying small molecules in biological 
samples (serum, cerebral fluid and so on)22–24. On the other hand, 
NMR experiments have limited spectral resolution. As such, there is a 
challenge in interpreting the data, because the extracted information 
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is quite convoluted. We only directly observe the magnetic spectrum 
of a biological sample, whereas our goal is to learn the underlying 
microscopic Hamiltonian and ultimately identify and quantify the 
chemical compounds. Although this inference is tractable for small 
molecules, it quickly becomes problematic, making inference a slow 
and error-prone procedure25. The analysis can be simplified by incor-
porating a priori spectral information in the parametric model26. For 
that purpose, considerable attention has been devoted to determin-
ing NMR model parameters for relevant metabolites such as those 
found in plasma, cerebrospinal fluid and mammalian brains27–33.

In what follows we will be concerned with one-dimensional (1D) 
proton NMR, but generalization to other situations is straightfor-
ward. For liquid 1H NMR, a Heisenberg Hamiltonian

HðθÞ ¼
X

i;j

J ijSi  Sj þ
X

i

hiS
x
i ð1Þ

yields a reasonable effective description for the nuclear spins, where θ 
explicitly denotes the dependence of the Hamiltonian on its parameters 
θ = {Jij, h}. Here Jij encodes the interaction between the nuclear spins S 
and hi is the effective local magnetic field. Note that this Hamiltonian 
contains two essential approximations: (1) the interactions are chosen 
to be SU(2) invariant and (2) the local magnetic fields—called chemi-
cal shifts in the NMR literature—are unidirectional. The rationale for 
the latter is that most of these local magnetic fields are caused by dia-
magnetic screening due to electronic currents induced by the large 
external magnetic field. This field will tend to oppose the external 
field and is hence largely uniaxial. For liquid-state NMR, the rapid 
tumbling of the molecules averages out the dipolar coupling between 
the nuclei, approximately resulting in isotropic exchange interactions 
between nuclear spins34. The fact that the interactions are rotation-
ally invariant allows us to remove the average (external) field from 
the Hamiltonian, that is Sxtot ¼

P
iS

x
i

I
 commutes with Hamiltonian (1) 

and will therefore only shift the NMR spectrum.
Within the linear response, the evolution of the system subject to 

a RF z-magnetic field is determined by the response function:

SðtjθÞ ¼ Tr eiHðθÞtSztote
�iHðθÞtSztotρ0

h i
ð2Þ

where ρ0 denotes the initial density matrix of the system and 
Sztot ¼

P
iS

z
i

I
. The measured spectrum is simply given by

AðωjθÞ ¼ Re
Z 1

0
dteiωt�γtSðtjθÞ ð3Þ

where γ is the effective decoherence rate. For room-temperature 1H 
NMR, the initial density matrix can be taken to be an infinite tem-
perature state, that is

ρ0 
1

Tr 1½  ð4Þ

Indeed, even a 20 T magnetic field will only lead to a bare proton 
resonance frequency of ~900 MHz. In contrast, room temperature 
is ~40 THz, so for all practical purposes we can consider it equally 
likely for the spin to be in the excited state or in the ground state. 
Chemical shifts hi are of the order of a few parts per million, resulting 
in local energy shifts of a few kHz, while the coupling or interaction 
strength J is of the order of a few Hz. Despite these low frequen-
cies and the high temperature of the system, one can typically still 
infer the parameters due to the small decoherence rate of the pro-
ton nuclear spin. Owing to the absence of a magnetic quadrupole 
moment, the protons do not decohere from the electric dipole  
fluctuations caused by the surrounding water molecules. This gives 
the proton nuclear spin a coherence time of the order of seconds to 
tens of seconds, sufficiently long to create some correlations between 

the various spins. The remaining part of this work is concerned with 
the question of how to infer the model parameters Jij and hi of our 
effective Hamiltonian (1) from measured spectrum (3).

Clustering
Given real NMR data, summarized by the experimentally acquired 
spectrum AðωÞ

I
, our goal, in general, is to learn a parametrized 

generative model that explains how the NMR data are generated. 
Fortunately, we have a good idea about the physics, which allows 
us to write down a model—equation (3)—that is close to reality, 
thereby ensuring a small misspecification error. The drawback, 
however, is that the model is analytically intractable and becomes 
increasingly complex to simulate with increasing number of spins. 
In the next section we will discuss how to alleviate this problem 
by using a programmable quantum simulator to simulate the prob-
lem instead. Even if we can simulate our model (3), we still have to 
find a reliable and robust way to estimate parameters θ. Physical 
molecules have far from typical parameters θ (see Supplementary 
Information for a mathematical description). After all, if they do 
not, how could we infer any structural information out of the spec-
trum? To extract NMR spectral features, we first perform unsuper-
vised learning on a dataset containing 69 small organic molecules, 
all composed of four 1H atoms, observable in NMR 1D-1H experi-
ments. Their effective Hamiltonian parameters θ have been deter-
mined previously, which provides us with a labelled dataset to test 
our procedure. Furthermore, by only using the spectra themselves, 
we can use any relevant information as an initial prior for infer-
ence on unknown molecules. The dataset was compiled using the 
GISSMO library30,31,35. To extract the structure in the dataset, we 
perform a t-distributed stochastic neighbourhood embedding 
(t-SNE)36,37 to visualize the data in two dimensions. Figure 1b shows 
the 2D t-SNE embedding of the dataset based on the Hellinger dis-
tance shown in Fig. 1a (a detailed comparison of different metrics is 
presented in the Supplementary Information). The colour scale in 
Fig. 1b shows the inverse participation ratio (IPR) of each sample, 
IPR ¼

R1
�1 dωAðωjθÞ=

R1
�1 dωA2ðωjθÞ;

I
 a measure for the total 

number of transitions that contribute to the spectrum. At least four 
well-defined clusters are identified, and density-based spatial clus-
tering of applications with noise (DBSCAN)38 was used to perform 
the clustering. Using the clusters as indicated in Fig. 1b, we can sort 
the molecules per cluster and have a look at the spectra. The sorted 
distance matrix is shown in Fig. 2a, which clearly shows that we 
have managed to find most of the structures in the system. In fact, 
a closer look at the spectra of each of the clusters indeed reveals 
they are all very similar. Figure 2b shows a representative spectrum 
for each of the clusters and, as expected, the IPR goes up if we go 
from cluster 1 to cluster 4. All spectra in cluster 1 have the prop-
erty of containing two large peaks and two small peaks, where the 
larger peak is about three times higher than the small peak. This is 
indicative of molecules with a methyl group (CH3) with its protons 
coupled with a methine proton (CH). One example of such struc-
tures can be seen in acetaldehyde oxime (BMRB ID39 bmse000467) 
(as shown to the left in Fig. 2b). The fact that the three protons 
are equivalent results in the 3:1 ratio of the peaks. Molecules from 
cluster 2 are highly symmetric and have two pairs of two methine 
protons (CH) where the protons are on neighbouring carbon 
atoms. The symmetry in the molecule makes the spectrum highly 
degenerate. In contrast, cluster 3 has molecules where there are two 
neighbouring methylene groups (CH2). The interacting splitting 
causes a spectrum as shown in Fig. 2b. Finally, cluster 4 has four 
inequivalent protons with different chemical shifts and interactions 
between them. As a result, there are a plethora of possible transi-
tions and the spectrum has an erratic form, as shown in Fig. 2b. In 
that sense, cluster 4 is most like a disordered quantum spin chain.

Given a new spectrum of an unknown molecule, we can find 
out whether the molecule belongs to any of the identified molecular 
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sub-structures; that is, by computing the mean Hellinger distance to 
each of the identifed clusters one can robustly classify the spectra. In 
the Supplementary Information we present results in which we ran-
domly choose 39 samples and consider those as clustered, while we 
use the other 30 samples to test the procedure. Samples that belong to 
clusters 1 and 2 are always correctly classified. One sample from clus-
ter 4 was misclassified for cluster 3. Because we know the spin matrix 
θi for each of the molecules in the dataset, we have a rough estimate 
of what the Hamiltonian parameters are and where the protons are 
located with respect to each other. However, there is still a lot of fine 
structure within clusters, in particular in clusters 3 and 4, as can be 
seen in Fig. 2a. In what remains, we are concerned with finding an 
algorithm to further improve the Hamiltonian parameter estimation.

Quantum computation
Although our model is microscopically motivated, thereby captur-
ing the spectra very well and allowing for a physical interpretation 
of the model parameters, it has the drawback that, unlike simple 

models such as Lorentzian mixture models40,41, there is no analytic 
form for the spectrum in terms of the model parameters. Moreover, 
even simulating the model becomes increasingly complex when the 
number of spins increases. Before we solve the inference problem, let 
us present an efficient method to extract the simulated NMR spec-
trum on a quantum simulator–computer. The basic task is to extract 
spectrum (3) by measuring (2). Recall that we work at infinite tem-
perature, so by inserting an eigenbasis of the total z-magnetization 
Sztot ¼

P
jmj zj

 ihzj


I
, we find

SðtjθÞ ¼
X

i;j

mimjPtðijj; θÞP0ðjÞ ð5Þ

with the transition probability Ptðijj; θÞ ¼ hzijUθðtÞjzji
�� ��2

I
, initial 

distribution P0(j) = 2−N and mj is the total z-magnetization in the 
eigenstate zj

�� i
I

. Consequently, we can extract the spectrum by ini-
tializing our system in a product state of z-polarized states, after 
which we quench the system to evolve under Uθ(t), generated by 
Hamiltonian H(θ), and then finally perform a projective measure-
ment in the z-basis again at time t. By repeating the procedure by 
uniformly sampling the initial eigenstates and estimating the prod-
uct of the initial and final magnetization mimj, one obtains an esti-
mate of S(t∣θ) (Fig. 3). Note that, at this stage, the problem is entirely 
classical and all quantum physics is hidden in the transition proba-
blity Pt(i∣j,θ). It is the intractability of this transition probability that 
forms the basis of recent quantum supremacy experiments42.

In contrast to the latter, we are only interested in estimating a 
simple statistic, namely the average mimj. Note that this quantity is 
bounded by N2/4, so, according to Hoeffding’s inequality, one needs 
to sample at most O(N4/ϵ2) times to get a precision of ϵ on S(t∣θ). At 
present, the structure of equation (5) allows one to bound the vari-
ance of mimj by 3(N/4)2, such that O(N2/ϵ2) would suffice. As shown 
in detail in the Supplementary Information, one can in general not 
improve on this scaling with N unless one uses additional structure 
of the transition probability Pt. At short times, one benefits from 
importance sampling, for example. Although we have no control 
over the transition probability Pt, we can control the initial prob-
ability out of which we sample states, as long as those states are easy 
to prepare. Because equation (5) is diagonal in the z-basis, it is suf-
ficient to consider sampling product states in the z-basis; that is, one 
can equivalently write the response function as

SðtjθÞ ¼
X

i;j

mimjP0ðjÞ
Q0ðjÞ

 
Ptðijj; θÞQ0ðjÞ ð6Þ

where Q0 is the distribution from which we sample. By minimiz-
ing the variance of estimand r = mimjP0/Q0, one obtains an optimal 
sampling distribution. The true optimal depends on time through 
Pt and, given that this is unknown to us, we must settle for a good, 
albeit suboptimal, distribution Q0. Various approximations might 
be considered, but the distribution

Q0ðjÞ ¼
4
N

m2
j

2N
ð7Þ

is particularly interesting because it gives zero variance for r at 
t = 0 and at any other time the variance is smaller than (N/4)2. 
Consequently, we can estimate S(t∣θ) with precision ϵ by taking 
at most O(N2/ϵ2) samples. Given the finite decoherence rate γ 
and the fact that the energy bandwidth of the many-body spec-
trum scales linearly with N, one needs to measure S(t∣θ) at worst 
in time steps of the order of 1/N up to a time that scales as 1/γ. 
One thus has to repeat the entire circuit at worst O(N3/ϵ2) times. 
Furthermore, if the time evolution is implemented as an ana-
logue simulation, this takes a time of O(1/γ). The gate complex-
ity is at worst a factor of N2 more because one, at worst, has to 
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Fig. 1 | Clustering analysis to identify whether naturally occurring 
molecules have an atypical NMR spectrum. a, The distance between 
the various NMR spectra, where the Bhattacharyya coefficient is used to 
measure similarity. To obtain a meaningful comparison, spectra are shifted 
and scaled such that they are all centred around the same frequency and 
have the same bandwidth. b, To extract clusters we perform a t-SNE with 
perplexity of 10. This is chosen because it has minimal Kullback–Leibler 
(KL) loss (the KL loss was 0.145).
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implement a Heisenberg interaction between all possible qubits, 
yielding O(N2/γ). Note that these are worst-case scalings; for an 
extensive spectrum one actually expects linear scaling of the gate 
complexity with N. Typical transitions happen between states that 
only differ by an energy of O(1), such that the typical sampling  
complexity is only quadratic with N.

Variational Bayesian inference
Now that we have a procedure for efficiently obtaining the spectra 
of hypothetical molecules, how do we solve the inference prob-
lem? The standard approach would be to do maximum likelihood 
estimation of the parameters given the experimental spectrum 
or minimize one of the aforementioned cost functions. This can-
not be done analytically and the problem can clearly be highly 
non-convex. We thus require a method to numerically minimize 
the error; gradient descent seems an obvious choice but is not  
well suited for this task. First, there is the obvious problem that 

additional measurements will need to performed to estimate 
the gradients. Those estimates are not easy to obtain because 
they require the measurement of three-point correlators in time. 
Moreover, using a quantum simulator, one only obtains a statis-
tical estimate of the cost function and its gradient, because we 
only perform a finite number of measurements. To move down 
the optimization landscape we thus need to resolve the signal 
from the noise, meaning gradients have to be sufficiently large to 
be resolved. However, we find extremely small gradients for this 
problem. Taking, for example, the Hellinger distance, DH, used to 
construct Fig. 1, we find the gradient satisfies

∂θD
2
H

  ¼
Z

dω
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðωÞ
AðωjθÞ

s
∂θAðωjθÞ



≤
ffiffiffiffiffiffi
Iθθ

p ð8Þ

where Iθθ is the diagonal component of the Fisher information. The 
bound simply follows from the Cauchy–Schwarz inequality. As 
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shown in the Supplementary Information, the Fisher information,  
even for optimal values, is very small, typically of the order 10−4−10−6 
for our four spin molecules. We are thus in a situation where there 
is a very shallow rough optimization landscape. The problem is of 
similar origin as the vanishing gradient problem in quantum neural 
networks43. A gradient free method seems advisable. Here, we adopt 
a Bayesian type of approach to update our estimated parameters. 
Alternative approaches, such as the DIRECT method adopted in ref. 44,  
are expected to work as well, but more research on the structure of 
the optimization landscape is required to understand the hardness 
of this inference problem. Recall that Bayes theorem, in the current 
notation, reads as

PðθjωÞ ¼ AðωjθÞPðθÞ
AðωÞ ð9Þ

where P(θ∣ω) is the conditional probability to have parameters 
θ given that we see spectral weight at frequency ω, A(ω∣θ) is the 
NMR spectrum for fixed parameters θ, P(θ) is the probability to 
have parameters θ and A(ω) is the marginal NMR spectrum aver-
aged over all θ. If we acquire some data, say a new spectrum AðωÞ

I
, 

and we have some prior belief about the distribution P(θ), we can 
use it to update our belief about the distribution of the param-
eters; that is

Piþ1ðθÞ ¼
Z

dω
2π

AðωÞAðωjθÞ
AiðωÞ

PiðθÞ ð10Þ

with Ai(ω) = ∫dθA(ω∣θ)Pi(θ). Note that the above rule indeed con-
serves positivity and normalization. Moreover, it simply reweights 
the prior distribution with some weight

wiðθÞ ¼
Z

dω
2π

AðωÞAðωjθÞ
AiðωÞ

ð11Þ

that is directly related to the log-likelihood, because the Jensen 
inequality gives

log ðwiðθÞÞ≥
Z

dω
2π

AðωÞlog AðωjθÞ
AiðωÞ

¼ LðθÞ þ c ð12Þ

where LðθÞ
I

 is the log-likehood and c is a constant independent of 
θ. Consequently, iterating equation (10) is expected to converge 
to a distribution of parameters that is highly peaked around the 
maximum likelihood estimate. Although it avoids the use of any 
gradients, it requires us to sample from the current parameter distri-
bution Pi(θ). This by itself could become intractable and so we make 
an additional approximation. To be able to sample from the parame-
ter distribution, we approximate it by a normal distribution at every 
step. That is, given that we have obtained some Monte Carlo samples 
out of Pi(θ), we can estimate all the weights wi(θ) by simply simulat-
ing the model and obtaining A(ω∣θi) for all the samples. Next, we 
approximate Pi + 1(θ) with a normal distribution that is as close as pos-
sible to it; that is, it has minimal KL distance. The latter is simply the 
distribution with the same sample mean and covariance as Pi + 1(θ). 
We use an atomic prior, P0ðθÞ ¼

P
i
1
Ns
δðθ � θiÞ

I
, consisting of all 

the samples that belong to the same cluster to which the spectrum is 
identified to belong. The result of this procedure for some randomly 
chosen test molecules is shown in Fig. 4. We observe steady, albeit 
noisy, convergence of the molecular spectra. Convergence is limited 
by three factors: (1) shot noise from the quantum measurements, 
(2) sampling noise from the Monte Carlo procedure and (3) the 
Gaussian variational approximation. Although both noise sources 
can be made smaller by using more computational resources, more 
advanced methods ultimately seem to be needed.

Summary and outlook
We have presented a method to improve model inference for NMR 
with a relatively modest amount of quantum resources. Similar to 
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generic generative models such as Boltzmann machines, for which 
a more efficient quantum version has been constructed45,46, we have 
constructed an application-specific model from which a quantum 
machine can sample more efficiently than a classical computer. 
Model parameters are determined through a variational Bayesian 
approach with an informative prior, constructed by applying t-SNE 
to a dataset of small molecules. As a consequence of the noisy nature 
of the generative model, as well as the absence of significant gra-
dients, both the initial bias as well as the derivative-free nature of 
Bayesian inference are crucial to tackling the problem. This situa-
tion, however, is generic to any hybrid quantum–classical setting 
that is sufficiently complicated. A similar approach might thus be 
useful to improve convergence of QAOA or VQE. For example, 
heuristic optimization strategies for QAOA have been developed in 
ref. 47. Both the classical and quantum parts of our approach can be 
extended further. On the quantum side, one can envision develop-
ing more efficient approaches for computing the spectra—trading 
computational time for extra quantum resources. On the classical 
side, improvements on the inference algorithm might be possible by 
combining or extending the variational method with Hamiltonian 
Monte Carlo techniques48.

It is interesting to extend our technique to other types of 
experiment. NMR is hardly the only problem where one performs 
inference on spectroscopic data. For example, one can imag-
ine combining resonant inelastic X-ray scattering (RIXS) data 
from strongly correlated electron systems49 with Fermi–Hubbard 
simulators based on ultracold atoms50,51. Currently, RIXS data are 
analysed by performing numerical studies of small clusters on clas-
sical computers (see ref. 52 for a review). A dynamical mean field 
theory-based hybrid algorithm was recently proposed in ref. 53. 
With cold atoms in optical lattices one may be able to create larger 
systems and study their non-equilibrium dynamics corresponding 
to RIXS spectroscopy.

Data availability
The data and code to numerically generate the NMR data sets 
used in this manuscript can be found at https://github.com/dsels/
QuantumNMR.
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