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Quantum approximate Bayesian computation for
NMR model inference

Dries Sels©®'2™, Hesam Dashti®3, Samia Mora®3#4, Olga Demler®3 and Eugene Demler’

Recent technological advances may lead to the development of small-scale quantum computers that are capable of solving
problems that cannot be tackled with classical computers. A limited number of algorithms have been proposed and their rel-
evance to real-world problems is a subject of active investigation. Analysis of many-body quantum systems is particularly
challenging for classical computers due to the exponential scaling of the Hilbert space dimension with the number of particles.
Hence, solving the problems relevant to chemistry and condensed-matter physics is expected to be the first successful applica-
tion of quantum computers. In this Article, we propose another class of problems from the quantum realm that can be solved
efficiently on quantum computers: model inference for nuclear magnetic resonance (NMR) spectroscopy, which is important
for biological and medical research. Our results are based on three interconnected studies. First, we use methods from classical
machine learning to analyse a dataset of NMR spectra of small molecules. We perform stochastic neighbourhood embedding
and identify clusters of spectra, and demonstrate that these clusters are correlated with the covalent structure of the mol-
ecules. Second, we propose a simple and efficient method, aided by a quantum simulator, to extract the NMR spectrum of any
hypothetical molecule described by a parametric Heisenberg model. Third, we propose a simple variational Bayesian inference

procedure for estimating the Hamiltonian parameters of experimentally relevant NMR spectra.

during the past few years has been a search for useful

applications of near-term quantum machines'. Although
considerable progress has been made in increasing the number of
qubits and improving their quality?’, in the near future we expect
the number of reliable gates to be limited by noise and decoher-
ence—the so-called noisy intermediate-scale quantum era. As such,
hybrid quantum-classical methods have been proposed to make the
best of the available quantum hardware and supplement it with clas-
sical computation. Most notably, there has been the development
of the quantum approximate optimization algorithm (QAOA)*
and the variational quantum eigensolver (VQE)°. Both algorithms
use the quantum computer to prepare variational states, some of
which might be inaccessible through classical computation, but use
a classical computer to update the variational parameters. A num-
ber of experiments have already been performed, demonstrating
the feasibility of these algorithms®™, yet their bearing on real-world
problems remains unclear. In model-based statistical inference one
is often faced with similar problems. For simple models one can
find the likelihood and maximize it, but for complex models the
likelihood is typically intractable””. NMR spectroscopy is a per-
fect example. There is a good understanding of the type of model
that should be used (equation (1)) and one only needs to determine
the appropriate parameters. However, computing the NMR spec-
trum for a specific model requires performing computations in the
exponentially large Hilbert space, which makes it extremely chal-
lenging for classical computers. This feature has been one of the
original motivations for proposing NMR as a platform for quantum
computing''. Although it has been shown that no entanglement
is present during NMR experiments'*"’, strong correlations make
it classically intractable; that is, the operator Schmidt rank grows
exponentially, which, for example, prohibits efficient representation

O ne of the central challenges for quantum technologies

through tensor networks'“. Its computational power is between that
of classical computation and that of deterministic quantum com-
putation with pure states'®, which makes it an ideal candidate for
hybrid quantum-classical methods. As we argue below, the required
initial quantum states can be prepared by low-depth circuits and the
problem is robust against decoherence. By simulating the model on
a quantum computer, it runs efficiently while the remaining infer-
ence part is simply solved on a classical computer. One can think
of this as an example of quantum approximate Bayesian computa-
tion, placing it in the broader scope of quantum machine learning
methods'®. In contrast to most of the proposed quantum machine
learning applications, the present algorithm does not require chal-
lenging routines such as amplitude amplification'”'* or the Harrow-
Hassidim-Lloyd (HHL) algorithm.

NMR spectroscopy

NMR spectroscopy is a spectroscopic technique that is sensitive
to local magnetic fields around atomic nuclei. Typically, samples
are placed in a high magnetic field while driving (radiofrequency,
RF) transitions between the nuclear magnetic states of the system.
Because these transitions are affected by the intramolecular mag-
netic fields around the atom and the interaction between the differ-
ent nuclear spins, one can infer details about the electronic and thus
chemical structure of a molecule in this way. One of the main advan-
tages of NMR is that it is non-destructive (in contrast to X-ray crys-
tallography or mass spectrometry, for example). This makes NMR
one of the most powerful analytical techniques available to biology’,
as it is suited for in vivo and in vitro studies’’. NMR can, for example,
be used for identifying and quantifying small molecules in biological
samples (serum, cerebral fluid and so on)”?!. On the other hand,
NMR experiments have limited spectral resolution. As such, thereis a
challenge in interpreting the data, because the extracted information
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is quite convoluted. We only directly observe the magnetic spectrum
of a biological sample, whereas our goal is to learn the underlying
microscopic Hamiltonian and ultimately identify and quantify the
chemical compounds. Although this inference is tractable for small
molecules, it quickly becomes problematic, making inference a slow
and error-prone procedure®. The analysis can be simplified by incor-
porating a priori spectral information in the parametric model*. For
that purpose, considerable attention has been devoted to determin-
ing NMR model parameters for relevant metabolites such as those
found in plasma, cerebrospinal fluid and mammalian brains® .

In what follows we will be concerned with one-dimensional (1D)
proton NMR, but generalization to other situations is straightfor-
ward. For liquid '"H NMR, a Heisenberg Hamiltonian

H(0) =Y JySi-Sj+ > hiS} (1)
ij i

yields a reasonable effective description for the nuclear spins, where 6
explicitly denotes the dependence of the Hamiltonian on its parameters
0=1{J;, h}. Here J; encodes the interaction between the nuclear spins S
and h; is the effective local magnetic field. Note that this Hamiltonian
contains two essential approximations: (1) the interactions are chosen
to be SU(2) invariant and (2) the local magnetic fields—called chemi-
cal shifts in the NMR literature—are unidirectional. The rationale for
the latter is that most of these local magnetic fields are caused by dia-
magnetic screening due to electronic currents induced by the large
external magnetic field. This field will tend to oppose the external
field and is hence largely uniaxial. For liquid-state NMR, the rapid
tumbling of the molecules averages out the dipolar coupling between
the nuclei, approximately resulting in isotropic exchange interactions
between nuclear spins®. The fact that the interactions are rotation-
ally invariant allows us to remove the average (external) field from
the Hamiltonian, that is S, = > S/ commutes with Hamiltonian (1)
and will therefore only shift the NMR spectrum.

Within the linear response, the evolution of the system subject to
a RF z-magnetic field is determined by the response function:

S(tle) = Tr[e Oz, e HO1SE | 2)

where p, denotes the initial density matrix of the system and
Si. = >_;Si. The measured spectrum is simply given by

A(w|0) = Re /:C dte™7'8(t|6) (3)

where y is the effective decoherence rate. For room-temperature 'H
NMR, the initial density matrix can be taken to be an infinite tem-
perature state, that is

Indeed, even a 20 T magnetic field will only lead to a bare proton
resonance frequency of ~900 MHz. In contrast, room temperature
is ~40 THz, so for all practical purposes we can consider it equally
likely for the spin to be in the excited state or in the ground state.
Chemical shifts /; are of the order of a few parts per million, resulting
in local energy shifts of a few kHz, while the coupling or interaction
strength J is of the order of a few Hz. Despite these low frequen-
cies and the high temperature of the system, one can typically still
infer the parameters due to the small decoherence rate of the pro-
ton nuclear spin. Owing to the absence of a magnetic quadrupole
moment, the protons do not decohere from the electric dipole
fluctuations caused by the surrounding water molecules. This gives
the proton nuclear spin a coherence time of the order of seconds to
tens of seconds, sufficiently long to create some correlations between

the various spins. The remaining part of this work is concerned with
the question of how to infer the model parameters J; and k; of our
effective Hamiltonian (1) from measured spectrum (3).

Clustering
Given real NMR data, summarized by the experimentally acquired
spectrum A(w), our goal, in general, is to learn a parametrized
generative model that explains how the NMR data are generated.
Fortunately, we have a good idea about the physics, which allows
us to write down a model—equation (3)—that is close to reality,
thereby ensuring a small misspecification error. The drawback,
however, is that the model is analytically intractable and becomes
increasingly complex to simulate with increasing number of spins.
In the next section we will discuss how to alleviate this problem
by using a programmable quantum simulator to simulate the prob-
lem instead. Even if we can simulate our model (3), we still have to
find a reliable and robust way to estimate parameters 6. Physical
molecules have far from typical parameters 6 (see Supplementary
Information for a mathematical description). After all, if they do
not, how could we infer any structural information out of the spec-
trum? To extract NMR spectral features, we first perform unsuper-
vised learning on a dataset containing 69 small organic molecules,
all composed of four 'H atoms, observable in NMR 1D-'H experi-
ments. Their effective Hamiltonian parameters € have been deter-
mined previously, which provides us with a labelled dataset to test
our procedure. Furthermore, by only using the spectra themselves,
we can use any relevant information as an initial prior for infer-
ence on unknown molecules. The dataset was compiled using the
GISSMO library™®*"*. To extract the structure in the dataset, we
perform a t-distributed stochastic neighbourhood embedding
(t-SNE)***” to visualize the data in two dimensions. Figure 1b shows
the 2D t-SNE embedding of the dataset based on the Hellinger dis-
tance shown in Fig. 1a (a detailed comparison of different metrics is
presented in the Supplementary Information). The colour scale in
Fig. 1b shows the inverse participation ratio (IPR) of each sample,
IPR = [* dwA(w|0)/ [~ dwA’*(w|d), a measure for the total
number of transitions that contribute to the spectrum. At least four
well-defined clusters are identified, and density-based spatial clus-
tering of applications with noise (DBSCAN)* was used to perform
the clustering. Using the clusters as indicated in Fig. 1b, we can sort
the molecules per cluster and have a look at the spectra. The sorted
distance matrix is shown in Fig. 2a, which clearly shows that we
have managed to find most of the structures in the system. In fact,
a closer look at the spectra of each of the clusters indeed reveals
they are all very similar. Figure 2b shows a representative spectrum
for each of the clusters and, as expected, the IPR goes up if we go
from cluster 1 to cluster 4. All spectra in cluster 1 have the prop-
erty of containing two large peaks and two small peaks, where the
larger peak is about three times higher than the small peak. This is
indicative of molecules with a methyl group (CH,) with its protons
coupled with a methine proton (CH). One example of such struc-
tures can be seen in acetaldehyde oxime (BMRB ID* bmse000467)
(as shown to the left in Fig. 2b). The fact that the three protons
are equivalent results in the 3:1 ratio of the peaks. Molecules from
cluster 2 are highly symmetric and have two pairs of two methine
protons (CH) where the protons are on neighbouring carbon
atoms. The symmetry in the molecule makes the spectrum highly
degenerate. In contrast, cluster 3 has molecules where there are two
neighbouring methylene groups (CH,). The interacting splitting
causes a spectrum as shown in Fig. 2b. Finally, cluster 4 has four
inequivalent protons with different chemical shifts and interactions
between them. As a result, there are a plethora of possible transi-
tions and the spectrum has an erratic form, as shown in Fig. 2b. In
that sense, cluster 4 is most like a disordered quantum spin chain.
Given a new spectrum of an unknown molecule, we can find
out whether the molecule belongs to any of the identified molecular
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Fig. 1| Clustering analysis to identify whether naturally occurring
molecules have an atypical NMR spectrum. a, The distance between

the various NMR spectra, where the Bhattacharyya coefficient is used to
measure similarity. To obtain a meaningful comparison, spectra are shifted
and scaled such that they are all centred around the same frequency and
have the same bandwidth. b, To extract clusters we perform a t-SNE with
perplexity of 10. This is chosen because it has minimal Kullback-Leibler
(KL) loss (the KL loss was 0.145).

sub-structures; that is, by computing the mean Hellinger distance to
each of the identifed clusters one can robustly classify the spectra. In
the Supplementary Information we present results in which we ran-
domly choose 39 samples and consider those as clustered, while we
use the other 30 samples to test the procedure. Samples that belong to
clusters 1 and 2 are always correctly classified. One sample from clus-
ter 4 was misclassified for cluster 3. Because we know the spin matrix
0, for each of the molecules in the dataset, we have a rough estimate
of what the Hamiltonian parameters are and where the protons are
located with respect to each other. However, there is still a lot of fine
structure within clusters, in particular in clusters 3 and 4, as can be
seen in Fig. 2a. In what remains, we are concerned with finding an
algorithm to further improve the Hamiltonian parameter estimation.

Quantum computation

Although our model is microscopically motivated, thereby captur-
ing the spectra very well and allowing for a physical interpretation
of the model parameters, it has the drawback that, unlike simple
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models such as Lorentzian mixture models***, there is no analytic
form for the spectrum in terms of the model parameters. Moreover,
even simulating the model becomes increasingly complex when the
number of spins increases. Before we solve the inference problem, let
us present an efficient method to extract the simulated NMR spec-
trum on a quantum simulator-computer. The basic task is to extract
spectrum (3) by measuring (2). Recall that we work at infinite tem-
perature, so by inserting an eigenbasis of the total z-magnetization
S = ijj|zj)(zj , we find

S(t16) = mim;P(ilj, 0)Po (j) (5)

i

with the transition probability Py(ilj,0) = |(zi|Ug(t)|z;) ?, initial
distribution Py(j)=27" and m, is the total z-magnetization in the
eigenstate ‘zj). Consequently, we can extract the spectrum by ini-
tializing our system in a product state of z-polarized states, after
which we quench the system to evolve under U,(t), generated by
Hamiltonian H(#), and then finally perform a projective measure-
ment in the z-basis again at time t. By repeating the procedure by
uniformly sampling the initial eigenstates and estimating the prod-
uct of the initial and final magnetization m,m;, one obtains an esti-
mate of S(¢|0) (Fig. 3). Note that, at this stage, the problem is entirely
classical and all quantum physics is hidden in the transition proba-
blity P,(i]j,0). It is the intractability of this transition probability that
forms the basis of recent quantum supremacy experiments*.

In contrast to the latter, we are only interested in estimating a
simple statistic, namely the average m;m;. Note that this quantity is
bounded by N*/4, so, according to Hoeffding’s inequality, one needs
to sample at most O(N*/€?) times to get a precision of € on S(t|6). At
present, the structure of equation (5) allows one to bound the vari-
ance of m,m; by 3(N/4)?, such that O(N?*/e?) would suffice. As shown
in detail in the Supplementary Information, one can in general not
improve on this scaling with N unless one uses additional structure
of the transition probability P. At short times, one benefits from
importance sampling, for example. Although we have no control
over the transition probability P, we can control the initial prob-
ability out of which we sample states, as long as those states are easy
to prepare. Because equation (5) is diagonal in the z-basis, it is suf-
ficient to consider sampling product states in the z-basis; that is, one
can equivalently write the response function as

sto) =3, ("2 D) e do0n @

where Q, is the distribution from which we sample. By minimiz-
ing the variance of estimand r=m;m;P,/Q,, one obtains an optimal
sampling distribution. The true optimal depends on time through
P, and, given that this is unknown to us, we must settle for a good,
albeit suboptimal, distribution Q,. Various approximations might
be considered, but the distribution

4 m;
Q) = NZ_I{I (7)
is particularly interesting because it gives zero variance for r at
t=0 and at any other time the variance is smaller than (N/4)
Consequently, we can estimate S(t|@) with precision e by taking
at most O(N*/e?) samples. Given the finite decoherence rate y
and the fact that the energy bandwidth of the many-body spec-
trum scales linearly with N, one needs to measure S(t|6) at worst
in time steps of the order of 1/N up to a time that scales as 1/y.
One thus has to repeat the entire circuit at worst O(N*/€?) times.
Furthermore, if the time evolution is implemented as an ana-
logue simulation, this takes a time of O(1/y). The gate complex-
ity is at worst a factor of N> more because one, at worst, has to

NATURE MACHINE INTELLIGENCE | VOL 2 | JULY 2020 | 396-402 | www.nature.com/natmachintell


http://www.nature.com/natmachintell

NATURE MACHINE INTELLIGENCE

ARTICLES

/NH
4

N=\L>H>
H—o/ H

Acetaldehyde-oxime mixture

1,4-Benzoquinone

/H

P
3
o}
<] A
= H H
ol NI
|
\\ \H
ERRA|
! H H
Molecule j H/o *r

a-ketoglutaric acid

L
I

4 " <|>
H/’b\/\ A >
/"\/l\

\JJ

2-Aminophenol

Fig. 2 | NMR spectra. a, By clustering the molecules according to the Hellinger distance t-SNE clusters, we can reorganize the distance matrix as shown.
For each of the clusters, we look at the different spectra, which indeed show great similarity. b, A representative spectrum for each of clusters 1-4, where
the spectra are labelled according to the t-SNE clusters shown in Fig. 1b. In addition, we show an example small molecule from this cluster next to the
associated spectrum. The atoms and interactions responsible for the shown portions of the spectra are indicated by blue and red arrows, respectively.
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Fig. 3 | Method overview. We take a product state with a given total magnetization m, according to Q,(j). The latter can be chosen to minimize the
variance of the estimand. After this initial preparation, we evolve the state under the Hamiltonian H(6) and measure the project back onto the z-basis at
time t. By applying a fast Fourier transform to the estimate S(t|@), one obtains the spectrum, which can be used to infer the parameters of the Hamiltonian.

implement a Heisenberg interaction between all possible qubits,
yielding O(N*/y). Note that these are worst-case scalings; for an
extensive spectrum one actually expects linear scaling of the gate
complexity with N. Typical transitions happen between states that
only differ by an energy of O(1), such that the typical sampling
complexity is only quadratic with N.

Variational Bayesian inference

Now that we have a procedure for efficiently obtaining the spectra
of hypothetical molecules, how do we solve the inference prob-
lem? The standard approach would be to do maximum likelihood
estimation of the parameters given the experimental spectrum
or minimize one of the aforementioned cost functions. This can-
not be done analytically and the problem can clearly be highly
non-convex. We thus require a method to numerically minimize
the error; gradient descent seems an obvious choice but is not
well suited for this task. First, there is the obvious problem that
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additional measurements will need to performed to estimate
the gradients. Those estimates are not easy to obtain because
they require the measurement of three-point correlators in time.
Moreover, using a quantum simulator, one only obtains a statis-
tical estimate of the cost function and its gradient, because we
only perform a finite number of measurements. To move down
the optimization landscape we thus need to resolve the signal
from the noise, meaning gradients have to be sufficiently large to
be resolved. However, we find extremely small gradients for this
problem. Taking, for example, the Hellinger distance, Dy, used to
construct Fig. 1, we find the gradient satisfies

96D =

(8)

aeA <Vl

where I, is the diagonal component of the Fisher information. The
bound simply follows from the Cauchy-Schwarz inequality. As
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Fig. 4 | Inference. For each of the clusters, labelled according to Fig. 2, we investigate the convergence of the parameter inference in our variational
Bayesian inference scheme by looking at the total variation distance between the spectra. Dashed lines indicate the shot noise limit, set by the finite

number of acquired quantum measurements.

shown in the Supplementary Information, the Fisher information,
even for optimal values, is very small, typically of the order 10~*—10~¢
for our four spin molecules. We are thus in a situation where there
is a very shallow rough optimization landscape. The problem is of
similar origin as the vanishing gradient problem in quantum neural
networks®. A gradient free method seems advisable. Here, we adopt
a Bayesian type of approach to update our estimated parameters.
Alternative approaches, suchasthe DIRECT method adoptedinref.*,
are expected to work as well, but more research on the structure of
the optimization landscape is required to understand the hardness
of this inference problem. Recall that Bayes theorem, in the current
notation, reads as

_ A(@|0)P(9)

Plelo) = =5

©)

where P(f|w) is the conditional probability to have parameters
0 given that we see spectral weight at frequency w, A(w|0) is the
NMR spectrum for fixed parameters 6, P(0) is the probability to
have parameters @ and A(w) is the marginal NMR spectrum aver-
aged over all 6. If we acquire some data, say a new spectrum A(®),
and we have some prior belief about the distribution P(6), we can
use it to update our belief about the distribution of the param-

eters; that is
dw
2

with A(w)= /dHA((ulQ) »(6). Note that the above rule indeed con-
serves positivity and normalization. Moreover, it simply reweights
the prior distribution with some weight

A(w]0)
A,(a))

Piy1(6) A(w)

P;(0) (10)

A(w|0)
Ai(w)

wi(0) = [ 52 Aw) (11)
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that is directly related to the log-likelihood, because the Jensen
inequality gives

A(w]0)
Ai(w)

=L(0)+c

log (wi(0)) > czl—:A(w)log (12)

where £(0) is the log-likehood and ¢ is a constant independent of
6. Consequently, iterating equation (10) is expected to converge
to a distribution of parameters that is highly peaked around the
maximum likelihood estimate. Although it avoids the use of any
gradients, it requires us to sample from the current parameter distri-
bution ,(6). This by itself could become intractable and so we make
an additional approximation. To be able to sample from the parame-
ter distribution, we approximate it by a normal distribution at every
step. That is, given that we have obtained some Monte Carlo samples
out of ,,(6), we can estimate all the weights w,(6) by simply simulat-
ing the model and obtaining A(w|6,) for all the samples. Next, we
approximate ., ,(6) with a normal distribution that is as close as pos-
sible to it; that is, it has minimal KL distance. The latter is simply the
distribution with the same sample mean and covariance as ;. ,(6).
We use an atomic prior, Py(6) = Zileé(H — 0;), consisting of all
the samples that belong to the same cluster to which the spectrum is
identified to belong. The result of this procedure for some randomly
chosen test molecules is shown in Fig. 4. We observe steady, albeit
noisy, convergence of the molecular spectra. Convergence is limited
by three factors: (1) shot noise from the quantum measurements,
(2) sampling noise from the Monte Carlo procedure and (3) the
Gaussian variational approximation. Although both noise sources
can be made smaller by using more computational resources, more
advanced methods ultimately seem to be needed.

Summary and outlook
We have presented a method to improve model inference for NMR
with a relatively modest amount of quantum resources. Similar to
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generic generative models such as Boltzmann machines, for which
a more efficient quantum version has been constructed*>*, we have
constructed an application-specific model from which a quantum
machine can sample more efficiently than a classical computer.
Model parameters are determined through a variational Bayesian
approach with an informative prior, constructed by applying t-SNE
to a dataset of small molecules. As a consequence of the noisy nature
of the generative model, as well as the absence of significant gra-
dients, both the initial bias as well as the derivative-free nature of
Bayesian inference are crucial to tackling the problem. This situa-
tion, however, is generic to any hybrid quantum-classical setting
that is sufficiently complicated. A similar approach might thus be
useful to improve convergence of QAOA or VQE. For example,
heuristic optimization strategies for QAOA have been developed in
ref. V7. Both the classical and quantum parts of our approach can be
extended further. On the quantum side, one can envision develop-
ing more efficient approaches for computing the spectra—trading
computational time for extra quantum resources. On the classical
side, improvements on the inference algorithm might be possible by
combining or extending the variational method with Hamiltonian
Monte Carlo techniques*.

It is interesting to extend our technique to other types of
experiment. NMR is hardly the only problem where one performs
inference on spectroscopic data. For example, one can imag-
ine combining resonant inelastic X-ray scattering (RIXS) data
from strongly correlated electron systems* with Fermi-Hubbard
simulators based on ultracold atoms™>*'. Currently, RIXS data are
analysed by performing numerical studies of small clusters on clas-
sical computers (see ref. *? for a review). A dynamical mean field
theory-based hybrid algorithm was recently proposed in ref. *.
With cold atoms in optical lattices one may be able to create larger
systems and study their non-equilibrium dynamics corresponding
to RIXS spectroscopy.

Data availability

The data and code to numerically generate the NMR data sets
used in this manuscript can be found at https://github.com/dsels/
QuantumNMR.
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