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ABSTRACT
One of the essential problems, in educational data mining,
is to predict students’ performance on future learning ma-
terials, such as problems, assignments, and quizzes. Pio-
neer algorithms for predicting student performance mostly
rely on two sources of information: students’ past perfor-
mance, and learning materials’ domain knowledge model.
The domain knowledge model, traditionally curated by do-
main experts, maps learning materials to concepts, topics,
or knowledge components that are presented in them. How-
ever, creating a domain model by manually labeling the
learning material can be a difficult and time-consuming task.
In this paper, we propose a tensor factorization model for
student performance prediction that does not rely on a pre-
defined domain model. Our proposed algorithm models stu-
dent knowledge as a soft membership of latent concepts. It
also represents the knowledge acquisition process with an
added rank-based constraint in the tensor factorization ob-
jective function. Our experiments show that the proposed
model outperforms state-of-the-art algorithms in predicting
student performance in two real-world datasets, and is ro-
bust to hyper-parameters.

Keywords
student modeling, predicting student performance, tensor
factorization

1. INTRODUCTION
The popularity of online learning services and massive open
online courses has led to extensive growth in the amount
of student activity and learning data. As the number of
students and learning materials increase in these online sys-
tems, the need for automatic sense-making from this data,
educational data mining, becomes more evident. One of the
important tasks in educational data mining is accurately
predicting students’ performance (PSP). PSP can be used
in early detection of high-risk students that may fail or quit
a class, in class evaluation and course planning activities,

and in learning material recommendation to students.

Many successful PSP techniques aim to predict students’
performance in a problem by modeling their state of knowl-
edge in different concepts required by that problem. To do
this, pioneer and recent PSP techniques rely on the avail-
ability of a domain knowledge model that maps problems
to concepts [19, 5, 25]. However, given the vast scope of
learning materials in today’s online learning systems, such
domain knowledge models may not be available. Ideally, a
PSP model should be able to work without requiring such a
predefined map.

Additionally, a successful data mining model for PSP should
be capable of considering specific characteristics of student
learning process: (a) that students gain their knowledge on
concepts over time, by practicing different problems, (b)
that they may forget some of the gained knowledge, (c) that
this knowledge gain is a gradual process, and (d) that learn-
ing can happen differently for different students in different
problems and different times. Finally, to provide better in-
sight to students and teachers, such a model should also be
interpretable considering these characteristics. Previous re-
search in the literature only cover some of the limitations
above.

In this paper, we propose a student performance prediction
model, Ranked-Based Tensor Factorization (RBTF), con-
sidering all the above requirements. To model student se-
quences on problems, we represent their scores over time as a
three-dimensional tensor. To avoid the need for a predefined
domain knowledge model, we propose a tensor factorization
model for PSP, that maps problems and student knowledge
in a lower-dimensional “latent” concept space. Representing
student knowledge in this lower-dimensional space leads to a
soft-membership approach that provides more flexibility by
avoiding strict assignment of student knowledge to discrete
“knowledge states”. By learning student, problem, and time-
based biases in this model we take into account the differ-
ences between students, problems, and times in the learning
process. To capture the gradual learning requirement, we
impose a rank-based constraint on student knowledge vari-
ables, that allows for occasional forgetting of concepts, but
imposes a generally positive learning trend.

In our experiments, we study the proposed model in com-
parison with two state-of-the-art baseline PSP algorithms,
on two real-world datasets. Our experiments show that our
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model performs better than both baselines in the task of
predicting student performance. We experiment with the
performance and sensitivity of our model with various hyper-
parameters.

Paper Outline. The remaining of the paper is organized
as follows. Section 2 provides a brief literature review of the
related work.Section 3 describes our model (RBTF) and the
parameter learning steps. Section 4 evaluates extensively
RBTF and other baselines on two real datasets. Lastly,
Section 5 concludes the paper and suggests some directions
for future works.

2. RELATED WORK
Many pioneer solutions to the problem of predicting stu-
dent performance are based on either regression models [19]
or Bayesian knowledge tracing (BKT) [5]. Regression-based
models, such as performance factor analysis (PFA), try to
predict students’ performance using a pre-defined domain
model that maps learning material to knowledge compo-
nents [19]. PFA, which is based on learning factor analy-
sis [4], takes into account prior successes and failures of a
student on knowledge components associated with the cur-
rent problem.

BKT is a constrained two-state hidden Markov model that
models student knowledge in each knowledge component
(KC) as two binary states: “known” and “unknown”. It
learns the probability of transitioning between these two
states, and probabilities of students’ success and failure in
each KC, given their state of knowledge. Despite being suc-
cessful in PSP for certain datasets, this model, in its origi-
nal form, does not consider continuous states of knowledge
or soft membership to knowledge states. Moreover, BKT
does not capture the relationships between KCs, and is not
personalized for individual student. Additionally, BKT also
relies on a pre-defined domain model. Recently, new BKT-
based models aim to address some of these problems [2,
9, 29]. For example, Pardos and Heffernan has addressed
BKT’s non-personalized modeling in [18, 17]. Song et al.
proposed PSFK in [25] to address PSP when students en-
counter a knowledge component for the first time. But, these
models rely on labeled problem knowledge components or
concepts. Later, Gonzalez-Brenes and Mostow proposed a
topical hidden Markov model that jointly learns the domain
model and predicts student performance [10, 8]. However,
this model has two restricting assumptions: that at each at-
tempt, the student works on one skill of a problem, and that
the students do not forget any acquired skills.

Recently, other approaches inspired by recommender sys-
tems’ research and factorization models have been used for
PSP. Despite being successful, these approaches are not tai-
lored for the educational data mining problems specifically
since they do not explicitly model student learning as a
learning gain process. The matrix-factorization approaches
in this area do not consider student sequences and only rely
on a snapshot of student performance. For example, Thai-
Nghe and Schmidt-Thieme proposed a multi-relational fac-
torization student model that considers multiple relations
between students and tasks, but does not consider student
sequences [27]. Later, Nedungadi and Smruthy proposed
a similar multi-relational matrix factorization approach ex-

ploring the effect of modeling biases [16]. Sahebi et al. also
proposed another multi-relational learning approach that
learned student performance according to canonical corre-
lation analysis [22]. Non-negative matrix factorization has
been used to improve performance predictions [28]. Pero et
al. compared collaborative filtering techniques for the task
of PSP in a small dataset [20]. Elbadrawy et al. predict stu-
dent performance using their interactions with the learning
management system to achieve a higher accuracy [7].

Some other recommender system-based approaches consider
student sequence, but do not explicitly model knowledge
gain in students. For example, Thai-Nghe et al. explored
different factorization models, including tensor factorization,
to predict student performance [26]. Sahebi et al. [23] stud-
ied educational data mining methods, such as PFA and
BKT, with matrix and tensor factorization approaches, from
the recommender systems literature, for PSP. Almutairi et
al. have used tensor and coupled-matrix factorization to pre-
dict course-based student performance [1]. However, their
tensor decomposition models do not explicitly model stu-
dents’ knowledge gain.

Although there have been some promising research on PSP
that consider student sequence without requiring a domain
model, these approaches have been limited. For example,
SPARse Factor Analysis (SPARFA) by Lan et al. that uses
Kalman filters to jointly learn the domain model, student
knowledge, and the underlying question difficulties, can be
very expensive to learn due to having a big state space [12].
Sahebi et al. have proposed a feedback-driven tensor factor-
ization algorithm that can model student gradual knowledge
acquisition [24]. But, their model has a strict constraint
that does not allow for forgetting the concepts by students.
Lindsey et al. proposed a non-parametric Bayesian tech-
nique that can refine the expert-labeled skills. However,
they simplify the problem by finding coarse-grained skills
as they restrict each problem to have exactly one skill [14].
In this paper, we propose a tensor factorization model for
predicting student performance that does not require do-
main knowledge, models problems and student knowledge
as soft-membership of latent concepts, and can model stu-
dent sequences and gradual knowledge increase.

3. RANK-BASED TENSOR
FACTORIZATION (RBTF)

Here we present our model, rank-based tensor factorization,
by which we aim to predict students’ performance in prob-
lems, considering their performance sequence and knowledge
growth. Our proposed model is inspired by the recommender
systems domain. Our choice of a recommender systems-
based model was because of two main reasons: a) student
performance similarities, and b) problem similarities. First,
we consider that students with similar knowledge levels will
perform similarly in solving problems. Second, we assume
that a student will have similar performance on two prob-
lems with similar concepts. Recommender-based factoriza-
tion models consider these two expectations. However, as
discussed in the introduction section, a successful student
model needs to include additional considerations. One of
which is that knowledge gain is a gradual process for stu-
dents, which happens over time. As students interact with
learning materials, such as problems, they learn from them.
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To represent this time-based process, we model students’
activity sequences as a series of attempts on problems. For
the student performance data to be represented according
to these assumptions, we represent student sequences in a
three-dimensional tensor (Y), that has the student, prob-
lem, and time (attempt) dimensions. Each cell ya,s,p in this
tensor represents student s’s score in problem p, that she
has chosen to study at attempt a.

The core idea of the aforementioned assumptions is the no-
tion of “concepts”: gradual learning can be viewed as gain-
ing knowledge in course concepts; student knowledge-based
similarities are based on how much they mastered each of
the concepts; and problem similarities are defined on how
their represented concepts are shared. However, in many
online educational systems, concepts are undefined and dif-
ficult to measure. In these systems, there are no “observed”
features defined as problem concepts or knowledge compo-
nents. Hence, we propose to discover shared “latent” fea-
tures between students and problems as representatives for
the notion of concepts. We model each problem as a vector
of k latent concepts, that shows the importance of each la-
tent concept in that problem. Also, we model each student’s
knowledge at any time point as another vector of the same
latent concepts.

We assume that a student s’s performance on problem p at
time a is a result of her existent knowledge in the latent con-
cepts required by the problem. Accordingly, we model esti-
mated student score ŷa,s,p as a dot product between prob-
lem’s latent concept vector qp and student’s knowledge in
those concepts ta,s:

ŷa,s,p ≈ ta,s.qp (1)

To maintain the interpretability of our model, we enforce
latent variables in qp to be non-negative. Here, by choosing
the number of concepts (k) less than the number of problems
and students, we are representing students and problems in
a lower-dimensional latent space that can better capture stu-
dent and problem similarities (our second and third assump-
tions). However, the model in Equation 1 does not consider
differences in factors such as student ability, problem dif-
ficulty, or student cohort strength. For example, students’
average score in a more difficult problem is expected to be
less than their average score in an easier problem. To address
this issue, we add student, problem, and attempt biases (bs,
bp, and ba), in addition to an overall cohort bias (µ) to our
model:

ŷa,s,p ≈ ta,s.qp + bs + bp + ba + µ (2)

To learn the parameters of this problem (T , Q, bs, bp, ba,
and µ) we minimize the objective function in Equation 3.
The first component calculates the squared difference be-
tween observed student scores and estimated student scores.
The last three components are for regularizing biases, stu-
dent knowledge, and problem concepts for generalizability
purposes.

L1 =
∑
a,s,p

(ŷa,s,p − ya,s,p)2

+ λ(b2s + b2p + b2a) + λ1 ‖ta,s‖2 + λ2 ‖qp‖2
(3)

The model in Equation 2 does not address our gradual learn-
ing assumptions for students. To capture this gradual learn-
ing, we can assume that a student’s knowledge (ta,s) in-
creases over time. But, we should also note that this knowl-
edge increase depends on the problems that the student se-
lects to solve and the concepts presented in them. As a
result, we can translate this knowledge increase as an in-
crease in estimated student scores in problems (ta,s.qp). In
other words, we expect that student s’s predicted scores at
attempt a to be larger than her scores at attempt a− 1:

ta,s.qp − ta−1,s.qp ≥ 0

In reality, this knowledge increase can be non-monotonic.
For example, a student may forget some concepts after a
while. For this reason, we propose to use a rank-based
model for student knowledge gain, that allows knowledge
loss to happen for students, but penalizes it. Using this rank-
based model, we aim to maximize the difference between the
aggregation of all students’ scores on all questions at each
attempt versus the attempts before that. Hence, we would
like to maximize L2 in Equation 4. Here, σ(·) is the sigmoid
function, defined as σ(x) = 1/(1 + e−x). Sigmoid function
is selected because of its superiority in rank-based recom-
mendation systems [21, 6]. The term log(σ(ta,sqp − tj,sqp))
means that for attempt a of student s, the ranking of s’s
score at a is higher than the one of s at j with j < a.

L2 =

a∑
j=1

∑
s

∑
p

log(σ(ta,sqp − tj,sqp)) (4)

To capture the dynamics between all assumptions, we com-
bine the minimization of L1 in Equation 3 and maximization
of L2 in Equation 4. Our final objective is to minimize the
loss function in Equation 5. The hyper-parameter ω is to
control the relative strictness of knowledge increase versus
the importance of having a more accurate estimate of stu-
dent performance.

L =
∑
a,s,p

(ŷa,s,p − ya,s,p)2 + λ1 ‖ta,s‖2 + λ2 ‖qp‖2

+ λ(b2s + b2p + b2a)− ω
a∑

j=1

∑
s

∑
p

log(σ(ta,sqp − tj,sqp))

(5)

Learning the Parameters: By using stochastic gradient
descent algorithm to minimize L , we find student knowl-
edge of each latent concept at any point, the importance
of each latent concept in each problem, and estimation of
student score in each problem at any attempt. Recall that
the parameters the we want to infer are T , Q, bs, bp, ba,
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and µ. For the cohort bias µ, we assign the average score

of all students on all problems [11], i.e. µ =
∑

a,s,p ya,s,p∑
a,s,p I(a,s,p)

where I(a, s, p) is an indicator function returning 1 if the
tuple (a, s, p) is in our training set; otherwise 0.

4. EXPERIMENTS
In the following, we evaluate our model in comparison with
two state-of-the-art methods in the task of predicting stu-
dent performance. Further, we analyze how our solution
models students’ learning process by looking at students’
knowledge gain in course concepts. Eventually, we experi-
ment on RBTF’s sensitivity to various hyper-parameter set-
tings.

4.1 Dataset and Experiment Setup
For experiments, we use the Canvas network dataset1 which
is available online [3]. Canvas Network hosts many freely
available open online courses. In addition to learning mod-
ules, each course can have different types of assignments,
discussions, and quizzes. In this platform, participants are
not limited to a specific sequence of learning material or
assignments. The dataset is anonymized such that student
IDs, course names, discussion contents, submission contents,
or course contents are not available.

Dataset #students #problems #attempts Avg. attempts
Course 1 531 91 87 29.92
Course 2 2597 32 30 12.73

Table 1: Dataset Statistic.

We select two courses in Canvas and denote them as Course
1 and Course 2. The selected courses have the most number
of quizzes in the whole dataset. We consider each quiz as
a problem in our model. Quizzes are graded between zero
and a maximum possible score. For consistency, we normal-
ize the quiz grades between zero and one. Table 1 shows
the statistics of these two courses. As shown in the table,
Course 2 has more students but less number of problems and
attempts than Course 1.

The data of each course is represented as a list of tuples
(attempt, student id, quiz id, grade). We randomly split
80% of tuples for training and the remaining (i.e. 20%) for
testing.

Hyper-parameter Setting: In the performance predic-
tion experiments (Section 4.2), we set ω = 0.5, λ1 = λ2 =
0.1 and regularization of bias λ = 0.001. The number of
concepts is set to 3.

4.2 Student Performance Prediction
In this section, we compare the prediction performance of
RBTF with other baselines to evaluate the prediction ability
of RBTF.

Baselines: To compare the prediction performance, we em-
ploy the following two baselines:

1http://canvas.net

• Feedback-Driven Tensor Factorization (FDTF) [24]: It
is a tensor factorization model specifically tailored to
predict students’ performance. It considers students’
gradual learning process. However, the assumption of
hard constraint on knowledge increase in students lim-
its its modeling capacity. Also, it does not include
biases and does not allow for the concepts to be for-
gotten by students.

• SPARse Factor Analysis (SPARFA) [13]: SPARFA is
a probabilistic factor analysis approach that calculates
the probability of a student’s correct response to a
problem. It does not require a predefined domain
knowledge model. However, it does not consider stu-
dents’ sequences. To adapt it to our problem, we use
the probability scores instead of the predicted student
grade.

Metrics: We use two measures to evaluate the performance
prediction task. Since our main goal is to predict student
scores or grades, we would like to measure how close our
predictions are to the actual student scores. To do this, we
use the root mean squared error (RMSE). The lower the
value of RMSE, the better the model.

Since many performance prediction models focus on predict-
ing students’ success and failure as a binary value, instead of
their score [13, 5], we also employ accuracy for performance
comparison. To do this, we regard scores greater than 0.5
as success and the rest as failure. Unlike RMSE, the higher
the value of accuracy, the better the model.

Dataset RMSE Accuracy
RBTF FDTF SPARFA RBTF FDTF SPARFA

Course 1 0.12 0.27 0.59 92.5% 85.2% 81.7%
Course 2 0.2056 0.2116 0.567 95.24% 92.8% 87.41%

Table 2: Prediction Performance.

Results: Table 2 shows the prediction performance of our
model (RBTF) and the two baselines (FDTF and SPARFA)
on the two datasets. As we can see, both tensor factorization
models (RBTF and FDTF) perform better than SPARFA
in both courses. This shows the importance of considering
student sequences in predicting their performance. Also,
we can see that RBTF performs better than FDTF in both
courses. This shows that, even though modeling sequential
knowledge increase in students is important, this increase
should not be strictly monotonic and should be flexible to
allow for occasional forgetting of concepts.

4.3 Hyper-parameter Sensitivity Analysis
In this section, we study RBTF’s sensitivity to hyper pa-
rameter values. First, we experience on the balance between
training error on student performance fitting (L1 in Equa-
tion 3) versus modeling student knowledge increase (L2 in
Equation 4) on the generalizability of our model. To do this,
we measure the test error by varying hyper-parameter ω,
that controls this balance in Equation 5. Then, we capture
the effect of the number of concepts on RBTF’s performance
by varying k in Equation 5 and measuring its error on test
data.
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ω
Dataset 0.01 0.25 0.5 0.75 1.0
Course 1 0.191 0.128 0.12 0.137 0.141
Course 2 0.233 0.2064 0.2056 0.2154 0.2224

Table 3: RMSE with different value of ω and number
of concept is 3.

Sensitivity to ω: Recall that ω controls the trade-off be-
tween having an accurate estimation of student performance
and the constraint of knowledge increase. A larger value
of ω, imposes more contribution of knowledge increase con-
straint to the performance of RBTF, and a smaller value of ω
dictates a stricter fit of student performance to the training
data. We use different values of ω from 0 to 1 and measure
RBTF’s RMSE corresponding to these values. For other pa-
rameters, we use the default values mentioned in Section 4.1.
Table 3 presents the performance of RBTF with different
values of ω on the two datasets. From the table, we observe
that ω = 0.5 yields the best performance of RBTF and it is
consistent for the two datasets. However, the results from
Course 2 dataset is more sensitive to the changes in ω. One
reason for this can be the smaller number of attempts and
more sparsity of Course 2 dataset, compared to Course 1
dataset, that can lead to easier overfitting to training data.

k
Dataset 3 5 10 15
Course 1 0.12 0.122 0.127 0.128
Course 2 0.2056 0.206 0.2065 0.2065

Table 4: RMSE with different value of number of
concepts and ω = 0.5.

Sensitivity to k: Recall that, in our model, concepts are
latent lower-dimensional representations of student perfor-
mance and problems over attempts. They can be used to
model the similarity between students and problems. To
measure the effect of the number of concepts k, we tune the
value of k while using the default values for other parame-
ters (see Section 4.1). We measure the RMSE of RBTF by
changing k. Table 4 shows the results. From the table, we
observe that increasing the value of k makes RBTF perform
slightly worse. This finding is consistent in both datasets.
However, RBTF is relatively robust to k as this increase in
error is minor.

5. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel rank-based tensor factor-
ization method (RBTF), which is able to predict the perfor-
mance score of students by considering the gradual learning
of students as a ranking problem. Our model has the flexi-
bility to present student knowledge as a soft-membership of
latent concepts, only requires activity sequences of students,
and discovers individualized student knowledge model in-
cluding biases. Our extensive evaluations show that RBTF
outperforms state-of-the-art baselines in both root mean
square error and accuracy measures. Also, we show our
models robustness to hyper-parameters by experimenting
the balance between knowledge ranking and performance
fitting parts of the model, and by varying the number of
latent concepts.

There are several directions to extend this research work

further. In this work, we experiment on performance pre-
diction within the same course. This model can be used
to experiment on between-course performance predictions.
Another application of our model is to detect knowledge
gaps in students and recommend useful learning materials to
them. Moreover, contingent on the availability of a domain
knowledge model, this work can be extended to improve
the existing domain knowledge model. Recent studies show
that order and length of students’ activities are essential for
understanding students’ performance [15]. So, integrating
these features can enhance the prediction performance of
our model.
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