
Compiler Aided Checkpointing using Crash-Consistent Data
Structures in NVMM Systems

Tyler Coy
School of Engineering and Computer Science

Washington State University
Vancouver, WA, USA
tyler.coy@wsu.edu

Shuibing He
College of Computer Science and Technology

Zhejiang University
Hangzhou, Zhejiang, China
heshuibing@zju.edu.cn

Bin Ren
Department of Computer Science

College of William & Mary
Williamsburg, VA, USA

bren@cs.wm.edu

Xuechen Zhang
School of Engineering and Computer Science

Washington State University
Vancouver, WA, USA

xuechen.zhang@wsu.edu

ABSTRACT

Scientific applications use checkpointing for failure recovery. The
existing checkpointing approaches were proposed for storing persis-
tent states of applications as checkpoints in disk-based file systems
via the block interface. As non-volatile main memory (NVMM)
will be included in high-performance computing systems, stor-
ing the checkpoints in NVMM-based file systems can significantly
waste the performance benefits of NVMM. This is because it under-
utilizes memory resources and it does not take advantage of the
byte-addressability of NVMM.

In this paper, we propose an NVMM-aware checkpointing ap-
proach, named NV-Checkpoint. It uses a compiler-aided technique
to automatically generate multi-version data structures, which con-
sist of both the persistent version of data stored in NVMM for failure
recovery and the ephemeral version of data placed across DRAM
and NVMM. Because of the byte-addressability of NVMM, any
versions can be accessed via the memory interface. The multiple
versions may share data that are not mutated during the program’s
execution to reduce data redundancy. NV-Checkpoint provides
the same level of guarantee of failure recovery compared to the
conventional checkpointing approaches proposed for file systems.
Furthermore, its runtime system manages the layout of the data
structures to reduce the number of writes to NVMM. It alsomanages
the checkpointing frequency to reduce persistence overhead using
machine learning models. Our experimental results with real-world
scientific applications show that the performance of annotated pro-
grams with NV-Checkpoint using a hybrid of DRAM and NVMM
matches the performance of best-effort hand-written versions. It
achieves similar scalability as those with ephemeral data structures
using only DRAM. It offers up to 121X speedup of execution time

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICS ’20, June 29-July 2, 2020, Barcelona, Spain
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7983-0/20/06. . . $15.00
https://doi.org/10.1145/3392717.3392755

compared to the conventional checkpointing approaches using the
Atlas parallel file system on the Titan supercomputer.

CCS CONCEPTS

• Computer systems organization → Reliability; Processors
and memory architectures;

KEYWORDS

Checkpointing, Compiler Aided, Non-Volatile Main Memory

ACM Reference Format:

Tyler Coy, Shuibing He, Bin Ren, and Xuechen Zhang. 2020. Compiler
Aided Checkpointing using Crash-Consistent Data Structures in NVMM
Systems. In 2020 International Conference on Supercomputing (ICS ’20), June
29-July 2, 2020, Barcelona, Spain. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3392717.3392755

1 INTRODUCTION

Ordinary data structures are ephemeral in the sense that only the
newest version of data is stored inmemory aftermaking changes [14].
They are parallelized and ubiquitous in scientific simulations and
analytics, from arrays in LAMMPS for molecular dynamics sim-
ulations [39] to octrees in Gerris for solving partial differential
equations describing fluid flows [1, 33], to graphs in biological
networking analysis [63]. These ephemeral data structures are
usually well-tuned for DRAM-based high-performance comput-
ing (HPC) systems [4, 19, 45, 46]. Large-scale HPC systems are
likely to be interrupted by failures because its components are not
reliable [21, 35, 50]. Consequently, checkpointing is required for
long-running HPC applications designed with the ephemeral data
structures to provide failure recovery.

Checkpointing can be implemented at the system level or the
application level. The system-level checkpointing approaches save
the memory states of the entire memory systems [20, 26]. They are
usually transparent to the end-users of the HPC systems at the cost
of high checkpointing overhead. Application-level checkpointing
saves only application states as snapshots (or logs) and store them
in file systems [6, 15]. Because of its much smaller checkpointing
overhead, the application-level checkpointing is widely adopted in
HPC applications (e.g., Gerris and LAMMPS). For checkpointing,

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Tyler Coy, Shuibing He, Bin Ren, and Xuechen Zhang

saving the persistent memory states to the disk-based file systems
may cause a performance bottleneck in large-scale HPC systems [61,
62]. As non-volatile main memory (NVMM) is increasingly adopted
in HPC systems, we attempt to use NVMM for storing the persistent
states of applications to reduce CPU stall time caused by accessing
the slow I/O buses.

When NVMM is used as a block device, simply storing the snap-
shots in NVMM-based file systems seems a straightforward ap-
proach because no changes are required for HPC applications. How-
ever, it can significantly waste the full benefits of NVMM for two
reasons. (1) This approach under-utilizes memory resources. After
the checkpointing operations are executed, serialized snapshot files
containing application states are saved in file systems. At the same
time, the deserialized application states still live in the form of mem-
ory objects (e.g., arrays and trees) in DRAM. They may contain
mostly duplicated data stored in DRAM and NVMM, separately. (2)
It does not take advantage of the byte-addressability of NVMM. This
is because the snapshots in the file format in NVMM are only ac-
cessed for failure recovery. It cannot be accessed by an application
during its normal execution.

In this paper, we propose an NVMM-aware compiler-aided ap-
proach for application-level checkpointing. It is namedNV-Checkpoint
and has three novel features. First, it replaces ephemeral data struc-
tures with crash-consistent multi-version data structures. Each
snapshot is mapped to a version of the data managed by the data
structures. At least one version will be stored in NVMM and im-
mutable during the execution of applications until a newer snapshot
becomes persistent. The persistent version can be used as a snapshot
for failure recovery. NV-Checkpoint allows the ephemeral versions
to be placed in both DRAM and NVMM together with its persistent
version in NVMM. Because of the byte-addressability of NVMM,
any versions can be accessed via memory interface supported by
operating systems/runtime. Furthermore, NV-Checkpoint allows
data sharing between the ephemeral versions and its corresponding
persistent version of the data. As a result, it does not need to store
duplicated data separately in DRAM and NVMM.

Second, it uses a compiler-aided technique to transform the data
structures automatically. End-users may annotate program vari-
ables that are vulnerable to data inconsistency upon failures. The
compiler can then generate NVMM-aware code from the annotated
version of the code. For annotations, NV-Checkpoint provides a
simple but flexible set of annotations to specify the ephemeral data
structures and provide application’s hints. After the code annota-
tions, NV-Checkpoint uses a source-to-source compiler to create
a data enclave structure that uses multi-version data structures
with persistent pointers allocated in NVMM to replace ephemeral
data structures. The transformed data structures provide the same
level of guarantee of failure recovery compared to the conventional
checkpointing approaches proposed for file systems. Compiler-
aided code annotation and transformation are general and can be ap-
plied to applications using various data structures. NV-Checkpoint
requires no expertise in software design using NVMM. It keeps the
baseline code structure for good readability and maintenance.

Third, its runtime system manages the checkpointing frequency
to reduce persistence overhead using machine learning models.
It also manages the layout of the data structures to reduce the

number of writes to NVMM using the application’s hints specified
by end-users.

Many scientific applications will benefit from adopting NV-
Checkpoint, such as those that demand more memory, those that
require consistent checkpoints, and those that do not checkpoint
data but may benefit from NVMM for persistence. Specifically, we
made the following contributions.

• We propose a novel compiler-aided technique to automat-
ically transform an ephemeral data structure to its corre-
sponding crash-consistent multi-version data structures for
application-level checkpointing in NVMM systems. It signif-
icantly reduces the burden of programmers of using NVMM
models.
• In the runtime system of NV-Checkpoint, we use machine
learning models to automatically determine when to create
a persistent version of a data structure from its ephemeral
versionwhich resides in both DRAMandNVMMconsidering
the cost of data persistence and the time of recomputing for
failure recovery.
• We implement a software prototype of NV-Checkpoint and
apply it to parallel programs (e.g., LU decomposition, adaptive-
mesh refinement, page ranking, and LAMMPS). Our experi-
mental results show that the programs using NV-Checkpoint
achieve similar performance and scalability compared to its
ephemeral version on the Titan supercomputer. It reduces
checkpointing overhead by up to 99% compared to that using
disk-based application-level checkpointing approaches.

The rest of the paper is organized as follows. Section 2 explains
why ephemeral data structures are not crash-consistent in NVMM
systems using examples. Section 3 describes how to build crash-
consistent multi-version data structures. Section 4 describes the
software architecture of NV-Checkpoint, presents the annotations
and source-to-source compiler, and describes its runtime system.
Section 5 discusses implementation issues and Section 6 describes
and analyzes experimental results. In Section 7 we introduce related
work. And Section 8 concludes the paper.

2 EPHEMERAL DATA STRUCTURES ARE NOT

CRASH-CONSISTENT IN NVMM SYSTEMS

Crash consistency is the recoverability of persistent data frommem-
ory in a consistent state after system failures. We studied the crash
consistency of three representative ephemeral data structures (i.e.,
arrays, quad/octrees, and graphs), which are widely used in sci-
entific simulations and analysis. We found none of them is crash-
consistent upon failures when its ephemeral version of the data
structures resides in NVMM.

Array objects are not crash-consistent because of partial up-
dates after failures. We use LU decomposition as an example. LU
decomposition factors a matrix A as the product of a lower triangu-
lar matrix L and an upper triangular matrix U [56]. The execution
of LU decomposition program typically consists of a sequence of
iterations. The normal output after iteration i is denoted as Ai in
Figure 1(a). All the elements in the shaded area are updated in
iteration i . If a failure happens before the completion of iteration
i or before a CPU cache flush to make Ai persistent in NVMM,
the matrix A after failed LU decomposition (shown in Figure 1(b))

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Tyler Coy, Shuibing He, Bin Ren, and Xuechen Zhang

Data

Structure
Feature

Arrays
ne : total number of array elements in DRAM
sizee : array element size
dim: array dimensions

Quad/octrees

no: total number of quadrants/octants in DRAM
sizeo : quadrant/octant size
depth: depth of tree
f anout : tree fanout

Graphs
nn: total number of nodes in DRAM
sizen : node size
deдr ee : average degree per node

Table 1: Features collected from arrays, quad/octrees, and graphs.

the time of recomputing from the last checkpoint. This is because
the compute time varies across iterations.

To opportunistically create a checkpoint in NVMM,NV-Checkpoint
uses a greedy approach inside the potential functions. Specifically,
NV-Checkpoint calculates the recomputing time (Trc) which is
the duration from the time when the last persistent version of the
data structure is generated in NVMM to the time that the clock
is examined in potential_persistent (). Then it computes the time
(Tp) required to establish a new persistent version using a cost
model considering the amount of data that needs to be merged
from DRAM to NVMM.When the recomputing time is smaller than
the cost, NV-Checkpoint skips the persistent operations; otherwise,
a new persistent version of the data structure is created in NVMM
to replace the previous version. In Figure 6, Tp is produced by the
function persistent_cost (), which estimates the persistence cost
using a cost model.

Cost model: NV-Checkpoint partitions data structure across
DRAM and NVMM. We observed that the cost of merging data in
DRAMwith data in NVMMor the time of executing thepersistent ()
function primarily depends on the total size of objects in DRAM
and the type of data structures. Our approach is thus to monitor
the state of major data structures (e.g., arrays, quad/octrees, and
graphs) in simulations and analytics, collect statistics from them as
features, and use these features to build machine learning models to
predict the time of executing the persistent () function at runtime.

More specifically, NV-Checkpoint is designed to record statistics
of data structures. Table 1 lists the statistics that we collect for the
three data structures related to applications used in this paper. All
of these features affect memory consumption and consequently
the execution time of object persistent functions. Our experimental
results show that the overhead of obtaining the values of these
statistics is 1% on average.

With the statistics, we use the following steps to build a ma-
chine learning model. (1) To collect training datasets, we randomly
partition the data structures across DRAM and NVMM and then
run persistent () and measure its execution time T ip in test runs,
where i is the sequence number of a test run. (2) After each test
run, we record the value of the data features as a vector FVi and
the execution time T ip as a pair. (3) To provide sufficient coverage
of potential layout partitioning schemes of data structures, we run
the test 70,000 times for each data structure offline. (4) We then
feed the pairs of (FV i

,T ip) to M5P model [40, 55] from Weka [18]

since it gives us the most accurate predictions overall. The detailed
results are shown in Section 6.4. (5) A trained model is deployed
in HPC systems to predict the cost of persistent operations (i.e.,
persistent_cost () in Figure 6). The decision is made by a centralized
master process.

In this paper, we train a model for each of the application, re-
spectively, because we found that an application-specific model
achieves higher accuracy than a universal model for all applications.
We train the model offline, thus not incurring execution overhead.

5 IMPLEMENTATION ISSUES AND

OPTIMIZATION

Latency-aware data placement.NVMMhas longer read/write la-
tency thanDRAM.At runtime, NV-Checkpoint dynamically changes
the layout of in-memory objects to hide the latency according to
applications’ hints. We found three hints that are particularly ef-
fective in partitioning data structures between NVMM and DRAM
for scientific applications using the following data structures. Ar-
rays: In the matrix-based applications, users can provide matrix
indices to inform NV-Checkpoint runtime which matrix regions
may be accessed in each iteration. Quad/octrees: We may parti-
tion quad/octrees using data features which are application-level
knowledge and realized as functions for quadrants or octants re-
finement/coarsening or solver functions traversing the tree in com-
putations. A similar approach was used in PMOctree [33]. Graphs:
We may partition the application-defined data and runtime states
of graphs according to network properties. For example, end-users
can use the network centrality [31] of nodes for data partition-
ing. Research has shown that the network centrality of nodes is
correlated to their memory access frequency [28].

Permanent node failures. In the scenario that the compute
nodes may be lost permanently after failures, NV-Checkpoint run-
time can be configured to add parity data in NVMM to tolerate
losing one or multiple compute nodes. The parity data is created
using erasure coding schemes [41]. Previous work has shown that
the overhead of parity data management is 19% on average for large-
scale simulations [32]. We may also leverage the staging nodes or
burst-buffer nodes on supercomputers to store the parity data.

Simplicity and generality. We would like to emphasize that
the main goal of building NV-Checkpoint is to demonstrate the
power of the compiler-aided approach. Although we use specific
data structures for illustration throughout the paper, the proposed
approach can be applied to other data structureswithminor changes
(e.g., adding structure-specific functions for accessing data in DRAM
in the runtime system) leveraging the power of static analysis
tools and compilers. When an ephemeral data structure is designed
and implemented, developers and users only need to specify the
simple data-structure-specific knowledge (e.g., hints that direct
layout transformation) through the annotation functions in NV-
Checkpoint. During our evaluation, the time we spent on imple-
menting annotation API is little after understanding each data
structure. We believe the actual application developers will take
even less effort as they have a better understanding of the code as
they implement the applications.

Compiler Aided Checkpointing in NVMM Systems ICS ’20, June 29-July 2, 2020, Barcelona, Spain

Integrationwith existing scientificworkflows.Checkpoints
in real applications are used formore than just fault tolerance. For in-
tegration with existing scientific workflows requiring visualization
and data steering, NV-Checkpoint can be configured to maintain
multiple versions in NVMMs. The data of old versions in NVMMs
can be used for in-situ visualization and data steering. Furthermore,
NV-Checkpoint can be configured to write checkpoints to file sys-
tems when NVMM is full. Users may still read the checkpoint files
for visualization and data steering without changing the design of
existing workflows.

6 EVALUATION

We conduct an extensive performance study of NV-Checkpoint
to experimentally benchmark the performance and scalability of
NVMM-aware data structures compared to their corresponding
ephemeral data structures and hand-written code.

6.1 Experimental Setup

Computer clusters for NVMM emulation: We evaluated the
code annotatedwithNV-Checkpoint on the Titan supercomputer [49]
at Oak Ridge National Laboratory. Titan consists of 18,688 nodes,
each of which is configured with a 16-core AMD Opteron 6274 CPU
and 32 GB memory. Each node runs Cray Linux Environment oper-
ating system. All nodes were interconnectedwith a Gemini network.
They share a site-wide Lustre parallel file systemAtlas [47]. Because
of the real NVMM hardware is not available on supercomputers
when we conducted this work, we model NVMM using DRAM on
Titan using an emulation based approach, which is similar to those
in other projects [23, 34, 53, 54]. The emulation approach makes
our work not depend on any specific NVMM implementation and
deployment.

We tried our best to ensure the emulation parameters resemble
realistic NVMM. Specifically, the emulated read and write latency
are 100 and 150 ns respectively. Our NVMM emulator introduces
extra latency for NVMM write and read through routines that
write to or read from DRAM. We create delays using a software
spin loop [34, 53] that uses the x86 RDTSP instruction to read the
processor timestamp counter and spins until the counter reaches
the intended delay. We also model NVMM bandwidth by inserting
a proper delay after the request sequence completes to limit the
effective bandwidth. Specifically, the bandwidth of NVMM is limited
to 10 GB/s for write and 35 GB/s for read in the experiments. A
similar approach was used in Mnemosyne [54].

Scientific applications. We use four applications with distinct
data structures in their compute kernels. They cover a wide range of
applications’ characteristics from array computation with regular
memory access to graph computationwith irregular memory access,
and from simple matrix computation to complex multi-length-scale
fluid physics computation.

• LU-Decomposition (LU): This program is designed to factor
a matrix A as the product of a lower triangular matrix L

and an upper triangular matrixU . Multiplying the results of
the factored matrix (e.g., L ∗U) should return the original
matrix A. It is a C program, which duplicates the major
functionalities of its corresponding Fortran version in the
ScaLAPACK software [36]. All MPI processes of LU are used

for computations. Specifically, LU generates a randommatrix
in a 2d array named A. The data to be computed by all the
processes is distributed with cyclic distribution and uses
partial pivoting [52]. The maximum array size is 31,500 *
31,500 elements of double precision floating point number.
• Adaptive Mesh Refinement with Octree (AMR): This AMR

code is designed to simulate droplet movement [22, 48] us-
ing MPI. It uses the Cartesian mesh based finite method to
simulate the flow. The code consists of five major routines,
including creating a new octree on each processor, refining
and/or coarsening a domain, balancing the octree, partition-
ing and distributing octants among processors, and extract-
ing mesh structures for visualization. This is a C++ program
and developed based on the popular open-source Gerris flow
solver [44]. The maximum input size is 130 million elements
in a mesh and the maximum tree depth is 9.
• Page Ranking (PR): The program outputs a probability dis-
tribution which represents the relative importance of web
pages in networks [37]. It executes a random walk which
jumps to a random node with a certain probability α , and
follows a randomly chosen outgoing edge of a node with
probability 1 − α from the current node. PR is a C program
and uses a master/slave MPI implementation, which is de-
scribed by Sangamuang et al. [42]. The master sends the
number of graph nodes to the slaves which will be respon-
sible for calculating the rank. The graph data is stored in
compressed sparse row (CSR) [29] format in memory. The
program continues to run until the difference between the
values of page ranks computed in consecutive iterations is
below a threshold of .000001 or the limit of the number of
iterations is reached. We use MAWI graph datasets which
were generated from packet trace data from the WIDE back-
bone maintained by the MAWI working group [12]. The
graph has 129 million vertices and 270 million edges. We
may use a subset of the graph data in experiments.
• LAMMPS: The program is designed as a large-scale atomic
and molecular massively parallel simulator [39] from Sandia
National Laboratories. It is written in C++ with MPI and
performs force and energy calculations on discrete atomic
particles. For checkpointing, the atoms arrays and their re-
lated metadata (i.e., array size, space boundaries, and time
steps) are written to persistent storage devices. In the exper-
iments, we use 2d crack simulation. The maximum number
of atoms is 253 million.

We evaluate the applications with five combinations of imple-
mentations of data structures and storage options. (1)Vanilla (DRAM):
it denotes that the program is implemented using ephemeral data
structures and executed using only DRAM. (2) Vanilla (NVMM):
it denotes that the program is implemented using ephemeral data
structures and executed using only NVMM. Both (1) and (2) may suf-
fer data inconsistency upon failures. (3) Atlas-FS: it denotes that the
program is executed using only DRAM with ephemeral data struc-
tures. To provide crash consistency its runtime states are written to
the Atlas parallel file system periodically using parallel I/Os. We use
the default setting of the file system, in which the files are striped

Compiler Aided Checkpointing in NVMM Systems ICS ’20, June 29-July 2, 2020, Barcelona, Spain

checkpoints and computation leveraging the byte-addressability of
NVMM. PMOctree was designed as a crash-consistent multi-version
octree data structure for adaptive meshing [32, 33]. NVGRAPH was
designed as a multi-version graph data structure for NVMM-aware
evolving graph computation [28]. However, all of them focused on
manual transformation of main data structures and require pro-
grammers to have a deep understanding of NVMMmemory models.
The changed code layout for exploring NVMM makes the source
code difficult to read and understand. In this paper, we design NV-
Checkpoint to serve two purposes: (1) automatically transforming
ephemeral data structures to its corresponding NVMM-aware crash-
consistent version with the aid of compilers, dramatically reducing
the burden of programmers; and (2) implementing a runtime sys-
tem which determines when to create a persistent version of a data
structure using machine learning models.

Compiler-AidedData Structure Transformation.Compiler-
aided approaches have been widely used in automatically trans-
forming sequential data structures to concurrent data structures
that are aware of UMA [5, 57] or NUMA [7]. For example, the node
replication technique was proposed by Calciu et al. to produce
NUMA-aware concurrent data structures satisfying linearizability
using shared logs [7]. To the best of our knowledge, NV-Checkpoint
is the first compiler-aided approach that is designed to transform
ephemeral data structures to its corresponding crash-consistent
multi-version data structures in NVMM systems. To make persis-
tence very simple to use, SoftPM was proposed to provide orthogo-
nal persistence for sequential data structures [17]. It identifies struc-
tures of in-memory objects (e.g., linked lists) using static analysis
and persistent arbitrary data structures using containers on storage
devices. Compared to SoftPM, NV-Checkpoint uses multi-version
data structures as the container of ephemeral data structures and
targets on both sequential and parallel/distributed data structures.
In addition, NV-Checkpoint automatically tunes the performance
of NVMM-aware data structures at runtime by managing the per-
sistence interval and the layout of data structures placed in a hybrid
of DRAM and NVMM considering the characteristics of HPC appli-
cations and NVMMs.

OtherWork inContext.NV-Checkpoint’s annotationAPI uses
C/C++ compiler front-end Clang [10] and Java parser for source-
to-source translation and source code analysis. Other compilers
have been designed for different programming languages. For ex-
ample, ROSE compiler infrastructure [11] offers analysis tools for
large-scale Fortran, C, OpenMP, and UPC applications. ROSE uses
a uniform abstract syntax tree (AST) to represent source code us-
ing a high-level intermediate code, while Clang uses a lower-level
representation to simplify the intermediate code.

8 CONCLUSION AND FUTURE WORK

We analyze the root causes of crash inconsistency of scientific appli-
cations using ephemeral data structures (i.e., arrays, quad/octrees,
and graphs) upon fail-stop failures in NVMM systems. We then
propose, implement, and evaluate a general framework, called NV-
Checkpoint, which can automatically transform source code for
enforcing crash consistency using multi-version data structures
with the aid of compilers. Its runtime system uses such data struc-
tures to provide crash consistency because at least one version of its

data is immutable until a newer version becomes persistent. We use
a machine learning based approach to determine a desired persis-
tence interval considering persistence overhead and recomputing
time. For the evaluation of NV-Checkpoint, we use four representa-
tive real-world scientific applications: LU-Decomposition, adaptive
mesh refinement, page ranking, and molecular simulation using
LAMMPS. The experimental results show that the performance of
annotated programs using NV-Checkpoint is commensurate with
the version using the corresponding ephemeral data structures.
It scales well up to 1000 processes on Titan. It offers up to 121X
speedup of program execution time and 16X speedup of restore
time compared to those using parallel file systems on the Titan
supercomputer. Finally, NV-Checkpoint significantly reduces pro-
grammers’ burden of using NVMM in HPC systems.

Our work suggests several avenues for future research, including
(1) automatically identifying variables that may suffer from data
inconsistency upon failures using static analysis, (2) a richer set
of annotations, (3) characterizing different types of applications
and building uniform machine-learning models for persistence
management, and (4) evaluation of NV-Checkpoint with scientific
applications using other popular data structures (e.g., B-trees, hash
tables) on other HPC platforms, especially those with real NVMM
hardware.

ACKNOWLEDGMENT

We are grateful to the anonymous reviewers. This research was sup-
ported by US National Science Foundation under CNS 1906541. This
work was also funded in part by WSU Vancouver Research Mini
Grant and the Key Scientific Technological Innovation Research
Project by Ministry of Education in China.

REFERENCES
[1] 2003. Gerris: a tree-based adaptive solver for the incompressible Euler equations

in complex geometries. J. Comput. Phys. 190, 2 (2003), 572 ś 600.
[2] 2019. pmdk: Persistent Memory Development Kit. https://github.com/pmem/

pmdk.
[3] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczynski, James

Nunez, Milo Polte, and Meghan Wingate. 2009. PLFS: A Checkpoint Filesystem
for Parallel Applications. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (SC ’09).

[4] Amanda Bienz, Robert D. Falgout, William Gropp, Luke N. Olson, and Jacob B.
Schroder. 2016. Reducing Parallel Communication in Algebraic Multigrid through
Sparsification. SIAM J. Scientific Computing 38 (2016).

[5] Silas Boyd-wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich.
Technical Report TR-2014-019, MIT CSAIL. OpLog: a library for scaling update-
heavy data structures.

[6] Greg Bronevetsky, Daniel Marques, Keshav Pingali, Peter Szwed, and Martin
Schulz. 2004. Application-Level Checkpointing for Shared Memory Programs.
In Proceedings of the 11th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS XI). Association for
Computing Machinery, New York, NY, USA, 235âĂŞ247. https://doi.org/10.1145/
1024393.1024421

[7] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K. Aguilera.
2017. Black-box Concurrent Data Structures for NUMA Architectures. In Pro-
ceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’17).

[8] Adrian M. Caulfield, Joel Coburn, Todor Mollov, Arup De, Ameen Akel, Jiahua
He, Arun Jagatheesan, Rajesh K. Gupta, Allan Snavely, and Steven Swanson.
2010. Understanding the Impact of Emerging Non-Volatile Memories on High-
Performance, IO-Intensive Computing. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’10).

[9] Sourav Chakraborty, Ignacio Laguna, Murali Emani, Kathryn Mohror, Dha-
baleswar K. Panda, Martin Schulz, and Hari Subramoni. 2020. EReinit: Scalable
and efficient fault-tolerance for bulk-synchronous MPI applications. Concurrency

ICS ’20, June 29-July 2, 2020, Barcelona, Spain Tyler Coy, Shuibing He, Bin Ren, and Xuechen Zhang

and Computation: Practice and Experience 32, 3 (2020), e4863. https://doi.org/
10.1002/cpe.4863 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4863
e4863 cpe.4863.

[10] clang: a C language family frontend for LLVM. 2019. http://clang.llvm.org/.
[11] ROSE compiler infrastructure. 2019. http://rosecompiler.org/.
[12] MAWI Datasets. 2019. https://graphchallenge.mit.edu/data-sets.
[13] Xiangyu Dong, Naveen Muralimanohar, Norm Jouppi, Richard Kaufmann, and

Yuan Xie. 2009. Leveraging 3D PCRAM Technologies to Reduce Checkpoint
Overhead for Future Exascale Systems. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis (SC’09). Association
for Computing Machinery, New York, NY, USA, Article Article 57, 12 pages.
https://doi.org/10.1145/1654059.1654117

[14] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. 1989.
Making Data Structures Persistent. J. Comput. Syst. Sci. 38, 1 (Feb. 1989).

[15] H. Elnawawy, M. Alshboul, J. Tuck, and Y. Solihin. 2017. Efficient Checkpointing
of Loop-Based Codes for Non-volatile Main Memory. In 2017 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT). 318ś329.
https://doi.org/10.1109/PACT.2017.58

[16] Hussein Elnawawy, Mohammad Alshboul, James Tuck, and Yan Solihin. 2017.
Efficient Checkpointing of Loop-Based Codes for Non-volatile Main Memory.
In 2017 26th International Conference on Parallel Architectures and Compilation
Techniques (PACT). 318ś329. https://doi.org/10.1109/PACT.2017.58

[17] Jorge Guerra, Leonardo Marmol, Daniel Campello, Carlos Crespo, Raju Ran-
gaswami, and Jinpeng Wei. 2012. Software Persistent Memory. In Presented as
part of the 2012 USENIX Annual Technical Conference (USENIX ATC 12).

[18] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. 2009. The WEKA Data Mining Software: An Update. SIGKDD
Explor. Newsl. 11, 1 (Nov. 2009), 10ś18. https://doi.org/10.1145/1656274.1656278

[19] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vi-
jayan Prabhakaran, Wenguang Chen, and Enhong Chen. 2014. Chronos: A
Graph Engine for Temporal Graph Analysis. In Proceedings of the Ninth European
Conference on Computer Systems (EuroSys’14).

[20] Paul H Hargrove and Jason C Duell. 2006. Berkeley lab checkpoint/restart (BLCR)
for Linux clusters. Journal of Physics: Conference Series 46 (sep 2006), 494ś499.
https://doi.org/10.1088/1742-6596/46/1/067

[21] AminHassani, Anthony Skjellum, PurushothamV. Bangalore, and Ron Brightwell.
2015. Practical Resilient Cases for FA-MPI, a Transactional Fault-Tolerant MPI. In
Proceedings of the 3rd Workshop on Exascale MPI (ExaMPI âĂŹ15). Association for
Computing Machinery, New York, NY, USA, Article Article 1, 10 pages. https:
//doi.org/10.1145/2831129.2831130

[22] Stephen D. Hoath. 2016. Fundamentals of inkjet printing: the science of inkjet and
droplets. Wiley-VCH Verlag GmbH &Co.

[23] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. 2014. NVRAM-aware
Logging in Transaction Systems. Proc. VLDB Endow. 8, 4 (Dec. 2014).

[24] Yingchao Huang, Kai Wu, and Dong Li. 2017. High Performance Data Per-
sistence in Non-Volatile Memory for Resilient High Performance Computing.
arXiv:cs.DC/1705.00264

[25] Dewan Ibtesham, Kurt B Ferreira, and Dorian Arnold. 2015. A Checkpoint
Compression Study for High-Performance Computing Systems. Int. J. High
Perform. Comput. Appl. 29, 4 (Nov. 2015), 387âĂŞ402. https://doi.org/10.1177/
1094342015570921

[26] Sudarsun Kannan, Ada Gavrilovska, Karsten Schwan, and Dejan Milojicic. 2013.
Optimizing Checkpoints Using NVM as Virtual Memory. In Parallel Distributed
Processing (IPDPS), 2013 IEEE 27th International Symposium on. 29ś40.

[27] Kyushick Lee, Michael B. Sullivan, Siva Kumar Sastry Hari, Timothy Tsai,
Stephen W. Keckler, and Mattan Erez. 2019. GPU Snapshot: Checkpoint Offload-
ing for GPU-Dense Systems. In Proceedings of the ACM International Conference
on Supercomputing (ICS âĂŹ19). Association for Computing Machinery, New
York, NY, USA, 171âĂŞ183. https://doi.org/10.1145/3330345.3330361

[28] Soklong Lim, Zaixin Lu, Bin Ren, and Xuechen Zhang. 2019. Enforcing Crash Con-
sistency of Evolving Network Analytics in Non-Volatile Main Memory Systems.
In 2019 28th International Conference on Parallel Architectures and Compilation
Techniques (PACT’19).

[29] Peter Macko, Virendra J. Marathe, Daniel W. Margo, and Margo I. Seltzer. 2015.
LLAMA: Efficient graph analytics using Large Multiversioned Arrays. In 2015
IEEE 31st International Conference on Data Engineering (ICDE’15).

[30] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. 2010. Design, Mod-
eling, and Evaluation of a Scalable Multi-level Checkpointing System. In SC ’10:
Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. 1ś11. https://doi.org/10.1109/SC.
2010.18

[31] Mark E. J. Newman. 2010. Networks : An introduction.
[32] Bao Nguyen, Hua Tan, Kei Davis, and Xuechen Zhang. 2018. Persistent Octrees

for Parallel Mesh Refinement Through Non-Volatile Byte-Addressable Memory.
In IEEE Transactions on Parallel and Distributed Systems.

[33] Bao Nguyen, Hua Tan, and Xuechen Zhang. 2017. Large-scale AdaptiveMesh Sim-
ulations Through Non-Volatile Byte-Addressable Memory. In Proceedings of the

ACM/IEEE International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC’17).

[34] Jiaxin Ou, Jiwu Shu, and Youyou Lu. 2016. A High Performance File System for
Non-volatile Main Memory. In Proceedings of the Eleventh European Conference
on Computer Systems (EuroSys ’16).

[35] Burcu Ozcelik Mutlu, Gokcen Kestor, Joseph Manzano, Osman Unsal, Samrat
Chatterjee, and Sriram Krishnamoorthy. 2018. Characterization of the Impact
of Soft Errors on Iterative Methods. In 2018 IEEE 25th International Conference
on High Performance Computing (HiPC). 203ś214. https://doi.org/10.1109/HiPC.
2018.00031

[36] ScaLAPACK-Scalable Linear Algebra Package. 2019. http://www.netlib.org/
scalapack/.

[37] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking: Bringing Order to the Web. Technical Report 1999-
66. Stanford InfoLab. http://ilpubs.stanford.edu:8090/422/ Previous number =
SIDL-WP-1999-0120.

[38] Roger Pearce, Maya Gokhale, and Nancy M. Amato. 2010. Multithreaded Asyn-
chronous Graph Traversal for In-Memory and Semi-External Memory. In Pro-
ceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’10). IEEE Computer Society,
Washington, DC, USA, 1ś11. https://doi.org/10.1109/SC.2010.34

[39] Steve Plimpton, Roy Pollock, and Mark Stevens. 2007. Particle-Mesh Ewald and
rRESPA for Parallel Molecular Dynamics Simulations. In Proc of the Eighth SIAM
Conference on Parallel Processing for Scientific Computing.

[40] John R. Quinlan. 1992. Learning With Continuous Classes. In 5th Australian Joint
Conference on Artificial Intelligence. World Scientific, 343ś348.

[41] I. S. Reed and G. Solomon. 1960. Polynomial Codes Over Certain Finite Fields. J.
Soc. Indust. Appl. Math. 8, 2 (1960), 300ś304.

[42] Sumalee Sangamuang, Pruet Boonma, and Lai Lai W. Kyii. 2015. An algorithm
to improve MPI-PageRank performance by reducing synchronization time. In
2015 International Computer Science and Engineering Conference (ICSEC). 1ś4.
https://doi.org/10.1109/ICSEC.2015.7401454

[43] Bianca Schroeder and Garth A Gibson. 2007. Understanding failures in petascale
computers. Journal of Physics: Conference Series 78 (jul 2007), 012ś022. https:
//doi.org/10.1088/1742-6596/78/1/012022

[44] Gerris Flow Solver. 2019. http://gfs.sourceforge.net/wiki/index.php/Main_Page.
[45] Hari Sundar, Rahul S. Sampath, Santi S. Adavani, Christos Davatzikos, and George

Biros. 2007. Low-constant parallel algorithms for finite element simulations using
linear octrees. In Supercomputing, 2007. SC ’07. Proceedings of the 2007 ACM/IEEE
Conference on. 1ś12.

[46] Hari Sundar, Rahul S Sampath, and George Biros. 2008. Bottom-up construction
and 2: 1 balance refinement of linear octrees in parallel. SIAM Journal on Scientific
Computing 30, 5 (2008), 2675ś2708.

[47] Lustre File Systems. 2019. https://lustre.org/.
[48] Hua Tan, Eric Torniainen, David P. Markel, and Robert N. K. Browning. 2015. Nu-

merical simulation of droplet ejection of thermal inkjet printheads. International
Journal for Numerical Methods in Fluids 77 (March 2015), 544ś570.

[49] Titan. 2019. https://www.olcf.ornl.gov/titan/.
[50] Suleyman Tosun, Vahid B. Ajabshir, Ozge Mercanoglu, and Ozcan Ozturk. 2015.

Fault-Tolerant Topology Generation Method for Application-Specific Network-
on-Chips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 34, 9 (Sep. 2015), 1495ś1508. https://doi.org/10.1109/TCAD.2015.2413848

[51] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.
Campbell. 2011. Consistent and Durable Data Structures for Non-volatile Byte-
addressable Memory. In Proceedings of the 9th USENIX Conference on File and
Stroage Technologies (FAST’11).

[52] Solving Linear Systems via LU Factorization. 2019. http://www.netlib.org/utk/
papers/pblas/node21.html.

[53] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam, Venkatanathan
Varadarajan, Prashant Saxena, and Michael M. Swift. 2014. Aerie: Flexible File-
system Interfaces to Storage-class Memory. In Proceedings of the Ninth European
Conference on Computer Systems (EuroSys ’14).

[54] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Light-
weight Persistent Memory. SIGPLAN Not. 47, 4 (March 2011), 91ś104.

[55] Jingjing Wang and Magdalena Balazinska. 2017. Elastic Memory Management
for Cloud Data Analytics. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17). USENIX Association, Santa Clara, CA, 745ś758. https://www.usenix.
org/conference/atc17/technical-sessions/presentation/wang

[56] Panruo Wu, Dong Li, Zizhong Chen, Jeffrey S. Vetter, and Sparsh Mittal. 2016.
Algorithm-Directed Data Placement in Explicitly Managed Non-Volatile Memory.
In Proceedings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing (HPDC’16). Association for Computing Ma-
chinery, New York, NY, USA, 141ś152. https://doi.org/10.1145/2907294.2907321

[57] Lingxiang Xiang and Michael Lee Scott. 2013. Compiler Aided Manual Specula-
tion for High Performance Concurrent Data Structures. In Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’13).

Compiler Aided Checkpointing in NVMM Systems ICS ’20, June 29-July 2, 2020, Barcelona, Spain

[58] Shuo Yang, Kai Wu, Yifan Qiao, Dong Li, and Jidong Zhai. 2017. Algorithm-
Directed Crash Consistence in Non-volatile Memory for HPC. In 2017 IEEE
International Conference on Cluster Computing (CLUSTER).

[59] Xuechen Zhang, Kei Davis, and Song Jiang. 2010. IOrchestrator: Improving the
Performance of Multi-node I/O Systems via Inter-Server Coordination. In Proceed-
ings of the ACM/IEEE International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC’10).

[60] Xuechen Zhang, Kei Davis, and Song Jiang. 2011. QoS Support for End Users of
I/O-intensive Applications using Shared Storage Systems. In Proceedings of the
ACM/IEEE International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC’11).

[61] Xuechen Zhang, Kei Davis, and Song Jiang. 2012. Opportunistic Data-driven
Execution of Parallel Programs for Efficient I/O Services. In 2012 IEEE 26th
International Parallel and Distributed Processing Symposium. 330ś341. https:
//doi.org/10.1109/IPDPS.2012.39

[62] Xuechen Zhang, Song Jiang, and Kei Davis. 2009. Making resonance a common
case: A high-performance implementation of collective I/O on parallel file systems.
In 2009 IEEE International Symposium on Parallel Distributed Processing. 1ś12.
https://doi.org/10.1109/IPDPS.2009.5161070

[63] Xuechen Zhang, Ujjwal Khanal, Xinghui Zhao, and Stephen Ficklin. 2017. Making
sense of performance in in-memory computing frameworks for scientific data
analysis: A case study of the spark system. J. Parallel and Distrib. Comput. (2017).

