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ABSTRACT

Scientific applications use checkpointing for failure recovery. The
existing checkpointing approaches were proposed for storing persis-
tent states of applications as checkpoints in disk-based file systems
via the block interface. As non-volatile main memory (NVMM)
will be included in high-performance computing systems, stor-
ing the checkpoints in NVMM-based file systems can significantly
waste the performance benefits of NVMM. This is because it under-
utilizes memory resources and it does not take advantage of the
byte-addressability of NVMM.

In this paper, we propose an NVMM-aware checkpointing ap-
proach, named NV-Checkpoint. It uses a compiler-aided technique
to automatically generate multi-version data structures, which con-
sist of both the persistent version of data stored in NVMM for failure
recovery and the ephemeral version of data placed across DRAM
and NVMM. Because of the byte-addressability of NVMM, any
versions can be accessed via the memory interface. The multiple
versions may share data that are not mutated during the program’s
execution to reduce data redundancy. NV-Checkpoint provides
the same level of guarantee of failure recovery compared to the
conventional checkpointing approaches proposed for file systems.
Furthermore, its runtime system manages the layout of the data
structures to reduce the number of writes to NVMM. It also manages
the checkpointing frequency to reduce persistence overhead using
machine learning models. Our experimental results with real-world
scientific applications show that the performance of annotated pro-
grams with NV-Checkpoint using a hybrid of DRAM and NVMM
matches the performance of best-effort hand-written versions. It
achieves similar scalability as those with ephemeral data structures
using only DRAM. It offers up to 121X speedup of execution time
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compared to the conventional checkpointing approaches using the
Atlas parallel file system on the Titan supercomputer.
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1 INTRODUCTION

Ordinary data structures are ephemeral in the sense that only the
newest version of data is stored in memory after making changes [14].
They are parallelized and ubiquitous in scientific simulations and
analytics, from arrays in LAMMPS for molecular dynamics sim-
ulations [39] to octrees in Gerris for solving partial differential
equations describing fluid flows [1, 33], to graphs in biological
networking analysis [63]. These ephemeral data structures are
usually well-tuned for DRAM-based high-performance comput-
ing (HPC) systems [4, 19, 45, 46]. Large-scale HPC systems are
likely to be interrupted by failures because its components are not
reliable [21, 35, 50]. Consequently, checkpointing is required for
long-running HPC applications designed with the ephemeral data
structures to provide failure recovery.

Checkpointing can be implemented at the system level or the
application level. The system-level checkpointing approaches save
the memory states of the entire memory systems [20, 26]. They are
usually transparent to the end-users of the HPC systems at the cost
of high checkpointing overhead. Application-level checkpointing
saves only application states as snapshots (or logs) and store them
in file systems [6, 15]. Because of its much smaller checkpointing
overhead, the application-level checkpointing is widely adopted in
HPC applications (e.g., Gerris and LAMMPS). For checkpointing,
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saving the persistent memory states to the disk-based file systems
may cause a performance bottleneck in large-scale HPC systems [61,
62]. As non-volatile main memory (NVMM) is increasingly adopted
in HPC systems, we attempt to use NVMM for storing the persistent
states of applications to reduce CPU stall time caused by accessing
the slow I/O buses.

When NVMM is used as a block device, simply storing the snap-
shots in NVMM-based file systems seems a straightforward ap-
proach because no changes are required for HPC applications. How-
ever, it can significantly waste the full benefits of NVMM for two
reasons. (1) This approach under-utilizes memory resources. After
the checkpointing operations are executed, serialized snapshot files
containing application states are saved in file systems. At the same
time, the deserialized application states still live in the form of mem-
ory objects (e.g., arrays and trees) in DRAM. They may contain
mostly duplicated data stored in DRAM and NVMM, separately. (2)
It does not take advantage of the byte-addressability of NVMM. This
is because the snapshots in the file format in NVMM are only ac-
cessed for failure recovery. It cannot be accessed by an application
during its normal execution.

In this paper, we propose an NVMM-aware compiler-aided ap-

proach for application-level checkpointing. It is named NV-Checkpoint

and has three novel features. First, it replaces ephemeral data struc-
tures with crash-consistent multi-version data structures. Each
snapshot is mapped to a version of the data managed by the data
structures. At least one version will be stored in NVMM and im-
mutable during the execution of applications until a newer snapshot
becomes persistent. The persistent version can be used as a snapshot
for failure recovery. NV-Checkpoint allows the ephemeral versions
to be placed in both DRAM and NVMM together with its persistent
version in NVMM. Because of the byte-addressability of NVMM,
any versions can be accessed via memory interface supported by
operating systems/runtime. Furthermore, NV-Checkpoint allows
data sharing between the ephemeral versions and its corresponding
persistent version of the data. As a result, it does not need to store
duplicated data separately in DRAM and NVMM.

Second, it uses a compiler-aided technique to transform the data
structures automatically. End-users may annotate program vari-
ables that are vulnerable to data inconsistency upon failures. The
compiler can then generate NVMM-aware code from the annotated
version of the code. For annotations, NV-Checkpoint provides a
simple but flexible set of annotations to specify the ephemeral data
structures and provide application’s hints. After the code annota-
tions, NV-Checkpoint uses a source-to-source compiler to create
a data enclave structure that uses multi-version data structures
with persistent pointers allocated in NVMM to replace ephemeral
data structures. The transformed data structures provide the same
level of guarantee of failure recovery compared to the conventional
checkpointing approaches proposed for file systems. Compiler-
aided code annotation and transformation are general and can be ap-
plied to applications using various data structures. NV-Checkpoint
requires no expertise in software design using NVMM. It keeps the
baseline code structure for good readability and maintenance.

Third, its runtime system manages the checkpointing frequency
to reduce persistence overhead using machine learning models.
It also manages the layout of the data structures to reduce the
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number of writes to NVMM using the application’s hints specified
by end-users.

Many scientific applications will benefit from adopting NV-
Checkpoint, such as those that demand more memory, those that
require consistent checkpoints, and those that do not checkpoint
data but may benefit from NVMM for persistence. Specifically, we
made the following contributions.

e We propose a novel compiler-aided technique to automat-
ically transform an ephemeral data structure to its corre-
sponding crash-consistent multi-version data structures for
application-level checkpointing in NVMM systems. It signif-
icantly reduces the burden of programmers of using NVMM
models.

e In the runtime system of NV-Checkpoint, we use machine
learning models to automatically determine when to create
a persistent version of a data structure from its ephemeral
version which resides in both DRAM and NVMM considering
the cost of data persistence and the time of recomputing for
failure recovery.

e We implement a software prototype of NV-Checkpoint and
apply it to parallel programs (e.g., LU decomposition, adaptive-
mesh refinement, page ranking, and LAMMPS). Our experi-
mental results show that the programs using NV-Checkpoint
achieve similar performance and scalability compared to its
ephemeral version on the Titan supercomputer. It reduces
checkpointing overhead by up to 99% compared to that using
disk-based application-level checkpointing approaches.

The rest of the paper is organized as follows. Section 2 explains
why ephemeral data structures are not crash-consistent in NVMM
systems using examples. Section 3 describes how to build crash-
consistent multi-version data structures. Section 4 describes the
software architecture of NV-Checkpoint, presents the annotations
and source-to-source compiler, and describes its runtime system.
Section 5 discusses implementation issues and Section 6 describes
and analyzes experimental results. In Section 7 we introduce related
work. And Section 8 concludes the paper.

2 EPHEMERAL DATA STRUCTURES ARE NOT
CRASH-CONSISTENT IN NVMM SYSTEMS

Crash consistency is the recoverability of persistent data from mem-
ory in a consistent state after system failures. We studied the crash
consistency of three representative ephemeral data structures (i.e.,
arrays, quad/octrees, and graphs), which are widely used in sci-
entific simulations and analysis. We found none of them is crash-
consistent upon failures when its ephemeral version of the data
structures resides in NVMM.

Array objects are not crash-consistent because of partial up-
dates after failures. We use LU decomposition as an example. LU
decomposition factors a matrix A as the product of a lower triangu-
lar matrix L and an upper triangular matrix U [56]. The execution
of LU decomposition program typically consists of a sequence of
iterations. The normal output after iteration i is denoted as A’ in
Figure 1(a). All the elements in the shaded area are updated in
iteration i. If a failure happens before the completion of iteration
i or before a CPU cache flush to make A? persistent in NVMM,
the matrix A after failed LU decomposition (shown in Figure 1(b))
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Figure 1: Inconsistent matrix with partial updates. The shaded el-
ements are updated in the iteration i.
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Figure 2: Inconsistent octree with the pointer linking to incorrect
NVMM address.

may not match the normal output without failures (shown in Fig-
ure 1(a)). This will cause data inconsistency in NVMM concerning
array elements in the red block.

Quad/octree objects are not crash-consistent because of out-
of-order memory writes from CPU cache. Let’s use the quadtree in
Figure 2(a) as an example. If quadrant 9 needs to be refined, we can
initialize a new quadrant 11 and then write a pointer linking quad-
rant 9 to 11. Because CPU cache does not guarantee the order of
writing quadrant 11 (w;) and writing the pointer (w2) for optimiza-
tion of memory access [51], the pointer might be written to NVMM
before the new quadrant 11. A failure between wy and wy can cause
the pointer to link to an undefined region in NVMM (shown in
Figure 2(b)), thus resulting in data inconsistency in NVMM after
failed pointer writing.

Graph objects are not crash-consistent because of inconsistent
updates of correlated variables. The in-memory graph data structures
mainly consist of three parts: topology data (i.e., node tables and
edge tables), runtime states (e.g., activeness/inactiveness of nodes),
and application-defined data (e.g., page ranks of nodes). For a large
body of graph applications, every write access to a node in NVMM
consists of at least two separate write requests to NVMM. For
example, in page ranking, each write access to a node requires one
write (wg) to update its rank score and the other one (w},) to update
its activeness for determining the termination of the application. If
a system failure occurs after w, and before the completion of wy,
the memory controller would observe a stale activeness value upon
system recovery, introducing data inconsistency.

In summary, while current OS services supporting NVMM tech-
nologies are well developed, scientific simulations using these
ephemeral data structures are still vulnerable to data inconsistency
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Figure 3: An illustration of a three-versions quadtree (a) and a two-
version array (b).

upon failures in HPC systems. Thus, there is a need for efficient
application-level checkpointing approaches exploring both the per-
sistence and byte-addressability of NVMM.

3 MULTI-VERSION DATA STRUCTURES FOR
CHECKPOINTING IN NVMM SYSTEMS

In this paper, we assume scientific simulations and analytics consist
of multiple iterations (e.g., loop-based code). We also assume the
applications need to save the memory states of ephemeral data struc-
tures that are required for failure recovery at the end of an iteration
as a snapshot of the memory states. We assume that applications
themselves determine the checkpointing frequency. NV-Checkpoint
does not change their consistency models.

‘We map each snapshot of an ephemeral data structure to a unique
version managed by its corresponding multi-version data structure.
As a result, using NV-Checkpoint, creating a new snapshot is es-
sentially creating a new persistent version and storing it in NVMM.
Next, we illustrate the in-memory representation of multi-version
quad/octrees, arrays, and graphs and how to provide failure recov-
ery with them.

Multi-version quad/octrees. We use the quadtree data structure
as an example (shown in Figure 3(a)) to show the memory repre-
sentation of its corresponding multi-version quadtree. It has three
versions, denoted as Vj, V1, and Vs, each of which represents the
memory state of a quadtree at the end of its corresponding itera-
tion 0, 1, and 2 respectively. Vj consists of a unique header node
0, quadrants 1, 2, 3, and 4, and pointers (solid-arrow arrows). V;
has a unique header node 0, five additional quadrants 1/, 5, 6, 7,
and 8, and pointers (dashed blue arrows). V; has a header node 0/,
five more quadrants 2, 9, 10, 11, and 12, and pointers (dashed red
arrows).

Multi-version arrays. We may build multi-version arrays using
indirection tables. Each version of the array has its own indirection
table for indexing the reference address of each element in the array
in the specified version. A two-version array is shown in Figure 3(b).
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The ephemeral array is partitioned into three blocks, whose size
is 100 elements. Vj consists of Block 0 — 2 and V; consists of Block
0 — 1 and Block 2. Vj and V; share Block 0 and 1. Users can specify
the block size using NV-Checkpoint APL

Multi-version graphs. Because most of the graph data structures
may be implemented using arrays in compressed-sparserow (CSR)
format [38], we can use multi-version arrays to construct multi-
version graphs. A more detailed discussion of multi-version graphs
can be found in the prior work [28, 29].

Checkpointing using multi-version data structures in NVMM

systems: Using the conventional checkpointing approach, each
version of the data structure is saved in a checkpoint in file systems
for durability. In this project, we store such a snapshot as a persistent
version of the corresponding data structure in NVMM. Leveraging
the byte-addressability of NVMM, NV-Checkpoint uses the multi-
version data structure for both computing and in-memory storage.
Let’s use the quadtree in Figure 3(a) as an example. In iteration 0,
Vo is ephemeral initially. It can be placed across DRAM and NVMM.
At the end of iteration 0, checkpointing operation is executed by
writing all the quadrants in DRAM to NVMM to create a persistent
version of the quadtree. Then Vj becomes persistent in NVMM. In
iteration 1, it is immutable while V; is being updated. Any writes to
Vo will result in writes to V3. The root nodes (or indirection tables
for multi-version arrays) of the persistent version is recorded in
the pre-defined NVMM addresses. If a fail-stop failure happens in
iteration 1, NV-Checkpoint may use Vj to provide failure recovery.

4 NV-CHECKPOINT DESIGN

The objective of NV-Checkpoint is to automatically generate NVMM-
aware code from an annotated version of the code. We use a compiler-
aided technique to overcome the difficulties in manually trans-
forming data structures. This approach could disrupt system per-
formance if it were indiscriminately applied. To be effective, NV-
Checkpoint continuously evaluates the cost-effectiveness of data

persistence overhead in determining when to persistent them in

NVMM at runtime to improve checkpointing performance.

[ Source Code of Scientific Applications ]

* Annotation

[Annotated Source Code with NV—Check:point]

* Source-to-source Transformation
Instrumented Code using Persistent
[ Pointers in NVIMM ]
* Generic back-end compilers

Executable

NV-Checkpoint Statistics
runtime Collector

Figure 4: The software architecture of the NV-Checkpoint frame-
work.

Figure 4 illustrates the overall procedure of the NV-Checkpoint
framework. NV-Checkpoint consists of annotation functions, a source-
to-source compiler, and a runtime system. We assume programmers
have sufficient knowledge of the code to identify data structures and
variables in the source code that are required to save in NVMM for
checkpointing. They first annotate the code using the annotation
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functions described in Section 4.1. Then the compiler will trans-
form the annotated source into the one that uses multi-version
data structures with persistent pointers allocated in NVMM to
replace ephemeral data structures. The new data structure is crash-
consistent because at least one version of data will be stored in
NVMM and immutable until a newer version becomes persistent. Its
runtime system determines an optimal persistent interval using a
cost model taking into account data persistence overhead, which is
predicated by machine learning models, and recomputing time (dis-
cussed in Section 4.2). Finally, it hides NVMM latency through the
layout transformation of data structures considering applications’
hints (discussed in Section 5). NV-Checkpoint supports the same
consistency model as the conventional checkpointing approaches.
If the existing checkpointing functions in HPC applications requires
a synchronizing collection operation, the instrumented function
with NV-Checkpoint also implements the synchronizing operation
across compute nodes.

4.1 Source Code Annotations

The language interface is designed to be as simple as possible. It
comprises the following directives.

#pragma nvcp. It tells the compiler to generate a multi-version
data structure with persistent head pointers in NVMM for the
specified ephemeral data structures in the code.

#pragma nvcp init(ds_type, #version, [block_size]). It in-
structs the compiler to create a data enclave for managing the
related data and metadata stored in NVMM. First, NV-Checkpoint
creates persistent data structures (e.g., struct _nv_FttCell in Fig-
ure 5(b)) using the specified ephemeral data structures ((e.g., struct
_FttCell)) by replacing DRAM pointers with NVMM pointers (e.g.,
persistent_ptr<FttOct> * parent) which would then reference the
persistent version of the data stored in NVMM at runtime. Second,
it creates a head node structure (e.g., struct _FttCell_head) for man-
aging the data enclave. The structure includes a data field, a DRAM
pointer to the ephemeral data, and NVMM pointers to the persistent
data. The enclave head node manages at least two version pointers
Vi and V;_1 in NVMM. For the quad/octrees, they point to the re-
spective head nodes of the tree snapshots. For the arrays, they point
to the addresses of indirection tables. Third, it initializes the head
node (e.g., FTT_head * head) to track the memory that has been
allocated. The addresses of V; and V;_; are recorded at pre-defined
addresses and used to access all persistent data after a restore oper-
ation for failure recovery. Programmers use #version to specify the
number of versions in NVMM. Its default value is 2 and the maxi-
mum value is capped by the NVMM capacity. Currently, it supports
three types of general data structures: arrays, quad/octrees, and
graphs with the CSR representation [29]. block_size is only valid
for the array data structure.

#pragma nvcp add_head(). It links the ephemeral data struc-
ture to its corresponding head node of the data enclave. The head
node structure residents in both DRAM and NVMM via a memory
interface supported by operating systems/runtime'. We use an em-
ulated NVMM dynamic allocator and make sure it is compatible
with Intel Persistent Memory Programming Interface PMDK (2]

!We assume NVMM is attached to the CPU bus alongside DRAM as DIMM:s.
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1 #pragma nvep

2 typedef struct _ FttCell{

3 p<_gpointer> data;

4 FttOct *parent, *children;

5 ..
6 }FttCell;

7 #pragma nvep init(octree, 2)

9 new_oct(...){
10 FttCell *rootcell;

11 rootcell = g mallocO(...);
12 #pragma nvep add__head(rootcell);
13 1

14 ftt_cell in: 1t(1ootc(ll s
15 FttCell *celll;

snapshot(rootcell,

@)

pH
na nvep persiste: nt(ht ad, write_snapshot, FttCellRefineFunc);
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1 typedef struct _ FttCell{
4

5 }FttCell;
6 typedef struct _nv_ FttCell{
p<gpointer> data;

8 persistent_ ptr<FttOct
9

10 }nv FttCell;

11 typedef struct _FttCell head{
12 p ,,pmmu data;

13 FttCell *
14 nv_ FttC
15 }FttCell he
16 FttCell _heac
17

18 nv_new_oct(...){

19  FttCell * rootcell;

20 rootecell = g me tlloc(](,,.):,

*parent, *children;

version[2];

1;
* head = malloc(sizeof(FttCell _head));

21  head->next — rootcell;
22  rootcell->data = X;
25

26 persistent _oct(head, FttCellRefineFunc):
27 }

(b)

Figure 5: An example of code annotation. (a) Octree creation using NV-Checkpoint with annotations; (b) Automatically generated code for
the multi-version octree structure, the head structure, and the new_oct() function.

for dynamic allocation from NVMM in the development of NV-
Checkpoint because of its compatibility with the emerging 3D
XPoint DIMMs.

#pragma nvcp persistent(head, [ADDR(write_func)], [hints]).

It calls the NV-Checkpoint runtime to create a new persistent ver-
sion of the data structure referenced from the version pointer V;_j.
Specifically, the data in DRAM referenced using V; are copied to
NVMM referenced using the NVMM pointers. After the comple-
tion of the operation, we swap the addresses of V; and V;_; using
atomic CPU instructions. Then all the nodes in V; but not over-
lapped with V;_; are marked as ‘deleted’. The deleted data will be
freed by the garbage collector asynchronously. Finally, new data in
Vi may be partitioned across DRAM and NVMM for hiding NVMM
write latency. Users can provide hints for layout optimization in
data partitioning so that frequently-updated data can be stored in
DRAM while the rest of them are placed in NVMM. The annotation
function may replace the existing checkpoint write functions refer-
enced at ADDR(write_func()) which were developed for file I/Os
using POSIX or MPI-10 API, e.g., write_snapshot() in Figure 5(a).
#pragma nvcp restore(head, [ADDR(read_func)]). It calls
the NV-Checkpoint runtime to restore the persistent data refer-
enced using the version pointer V;_; to memory objects in DRAM.
The objects should be identical to the most recent consistent version
of the data structure. It may replace the existing checkpoint file read

function using POSIX I/Os with memory address at ADDR((read_func()).

Figure 5(a) presents an AMR code? with annotations after the
first pass of the code. This new version is almost identical to the
original code except for four embedded directives. The NVMM-
aware crash-consistent code appears in Figure 5(b) after the second
pass of the code transformer. It includes a head structure consisting
of two NVMM pointers referring to each of the two versions (V; and
Vi—1) in NVMM and one DRAM pointer to the data in DRAM. The
Vi and Vi1 components of the octree in NVMM can be referenced
at head— version[0] and head— version[1] respectively. V; and the
DRAM pointer are visible to users during normal execution. V;_;

2We use octrees in Gerris to illustrate concepts, but all techniques are designed and
applicable to other types of data structures.

is immutable and used for both computing with the data shared
between V; and V;_; and providing recovery upon failures.

4.2 Runtime System for Persistence
Management

1 void mpilu(array _head * head, double **a, ...){

2 /* The main loop */

3 for (k= 0;k < n; kvv)

4 /*ConlputL LU decomposition with partial pivoting™®/;
5 .

6 potvntiul71)(%1‘,\ist(*11t(hvzul);

7

8 }

10 void potential _persistent (head){

11 /* Calculate recomputing time. */

12 tilll(!71‘(‘,(7()1!)])llt(‘, = clock() - time_ persistent;
13 /* Compare to per ent cost */

14 if (time_recompute > persistent_ cost(head){
15 /* Persistent the data structure. */

16 persistent(head);

17 /* Record the time when a checkpoint is created. */
18 time _ persistent = clock();

19

20 }

Figure 6: Pseudocode of the LU decomposition code and
potential_persistent() function.

Scientific applications may use the persistent data stored in
NVMM to roll back to the most recent checkpoint where the state
of the simulations is known to be correct. If functions that write
checkpoint files to secondary storage exist in the legacy code, the
compiler of NV-Checkpoint can automatically replace them with
its corresponding persistent version provided in NV-Checkpoint
library. If they do not exist, NV-Checkpoint will insert a potential
persistent function potential_persistent() at the last line inside the
main loop. An example is shown in Figure 6. The LU composition
code? has a main loop which consists of n iterations. The time
required to establish a persistent checkpoint might be longer than

3Following the guidelines of double-blind review, we hide the code repository link
here. But it is available upon requests.
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Data Feature
Structure
ne: total number of array elements in DRAM
Arrays sizee: array element size
dim: array dimensions
no: total number of quadrants/octants in DRAM
sizeo: quadrant/octant size
Quad/octrees depth: depth of tree
fanout: tree fanout
nn: total number of nodes in DRAM
Graphs sizep: node size
degree: average degree per node

Table 1: Features collected from arrays, quad/octrees, and graphs.

the time of recomputing from the last checkpoint. This is because
the compute time varies across iterations.

To opportunistically create a checkpoint in NVMM, NV-Checkpoint
uses a greedy approach inside the potential functions. Specifically,
NV-Checkpoint calculates the recomputing time (T,.) which is
the duration from the time when the last persistent version of the
data structure is generated in NVMM to the time that the clock
is examined in potential_persistent(). Then it computes the time
(Tp) required to establish a new persistent version using a cost
model considering the amount of data that needs to be merged
from DRAM to NVMM. When the recomputing time is smaller than
the cost, NV-Checkpoint skips the persistent operations; otherwise,
a new persistent version of the data structure is created in NVMM
to replace the previous version. In Figure 6, T is produced by the
function persistent_cost(), which estimates the persistence cost
using a cost model.

Cost model: NV-Checkpoint partitions data structure across
DRAM and NVMM. We observed that the cost of merging data in
DRAM with data in NVMM or the time of executing the persistent ()
function primarily depends on the total size of objects in DRAM
and the type of data structures. Our approach is thus to monitor
the state of major data structures (e.g., arrays, quad/octrees, and
graphs) in simulations and analytics, collect statistics from them as
features, and use these features to build machine learning models to
predict the time of executing the persistent() function at runtime.

More specifically, NV-Checkpoint is designed to record statistics
of data structures. Table 1 lists the statistics that we collect for the
three data structures related to applications used in this paper. All
of these features affect memory consumption and consequently
the execution time of object persistent functions. Our experimental
results show that the overhead of obtaining the values of these
statistics is 1% on average.

With the statistics, we use the following steps to build a ma-
chine learning model. (1) To collect training datasets, we randomly
partition the data structures across DRAM and NVMM and then
run persistent() and measure its execution time T[’; in test runs,
where i is the sequence number of a test run. (2) After each test
run, we record the value of the data features as a vector FV; and
the execution time T;; as a pair. (3) To provide sufficient coverage
of potential layout partitioning schemes of data structures, we run
the test 70,000 times for each data structure offline. (4) We then
feed the pairs of (FV?, Tji) to M5P model [40, 55] from Weka [18]
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since it gives us the most accurate predictions overall. The detailed
results are shown in Section 6.4. (5) A trained model is deployed
in HPC systems to predict the cost of persistent operations (i.e.,
persistent_cost() in Figure 6). The decision is made by a centralized
master process.

In this paper, we train a model for each of the application, re-
spectively, because we found that an application-specific model
achieves higher accuracy than a universal model for all applications.
We train the model offline, thus not incurring execution overhead.

5 IMPLEMENTATION ISSUES AND
OPTIMIZATION

Latency-aware data placement. NVMM has longer read/write la-
tency than DRAM. At runtime, NV-Checkpoint dynamically changes
the layout of in-memory objects to hide the latency according to
applications’ hints. We found three hints that are particularly ef-
fective in partitioning data structures between NVMM and DRAM
for scientific applications using the following data structures. Ar-
rays: In the matrix-based applications, users can provide matrix
indices to inform NV-Checkpoint runtime which matrix regions
may be accessed in each iteration. Quad/octrees: We may parti-
tion quad/octrees using data features which are application-level
knowledge and realized as functions for quadrants or octants re-
finement/coarsening or solver functions traversing the tree in com-
putations. A similar approach was used in PMOctree [33]. Graphs:
We may partition the application-defined data and runtime states
of graphs according to network properties. For example, end-users
can use the network centrality [31] of nodes for data partition-
ing. Research has shown that the network centrality of nodes is
correlated to their memory access frequency [28].

Permanent node failures. In the scenario that the compute
nodes may be lost permanently after failures, NV-Checkpoint run-
time can be configured to add parity data in NVMM to tolerate
losing one or multiple compute nodes. The parity data is created
using erasure coding schemes [41]. Previous work has shown that
the overhead of parity data management is 19% on average for large-
scale simulations [32]. We may also leverage the staging nodes or
burst-buffer nodes on supercomputers to store the parity data.

Simplicity and generality. We would like to emphasize that
the main goal of building NV-Checkpoint is to demonstrate the
power of the compiler-aided approach. Although we use specific
data structures for illustration throughout the paper, the proposed
approach can be applied to other data structures with minor changes
(e.g., adding structure-specific functions for accessing data in DRAM
in the runtime system) leveraging the power of static analysis
tools and compilers. When an ephemeral data structure is designed
and implemented, developers and users only need to specify the
simple data-structure-specific knowledge (e.g., hints that direct
layout transformation) through the annotation functions in NV-
Checkpoint. During our evaluation, the time we spent on imple-
menting annotation API is little after understanding each data
structure. We believe the actual application developers will take
even less effort as they have a better understanding of the code as
they implement the applications.
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Integration with existing scientific workflows. Checkpoints
in real applications are used for more than just fault tolerance. For in-
tegration with existing scientific workflows requiring visualization
and data steering, NV-Checkpoint can be configured to maintain
multiple versions in NVMMs. The data of old versions in NVMMs
can be used for in-situ visualization and data steering. Furthermore,
NV-Checkpoint can be configured to write checkpoints to file sys-
tems when NVMM is full. Users may still read the checkpoint files
for visualization and data steering without changing the design of
existing workflows.

6 EVALUATION

We conduct an extensive performance study of NV-Checkpoint
to experimentally benchmark the performance and scalability of
NVMM-aware data structures compared to their corresponding
ephemeral data structures and hand-written code.

6.1 Experimental Setup

Computer clusters for NVMM emulation: We evaluated the
code annotated with NV-Checkpoint on the Titan supercomputer [49]
at Oak Ridge National Laboratory. Titan consists of 18,688 nodes,
each of which is configured with a 16-core AMD Opteron 6274 CPU
and 32 GB memory. Each node runs Cray Linux Environment oper-
ating system. All nodes were interconnected with a Gemini network.
They share a site-wide Lustre parallel file system Atlas [47]. Because
of the real NVMM hardware is not available on supercomputers
when we conducted this work, we model NVMM using DRAM on
Titan using an emulation based approach, which is similar to those
in other projects [23, 34, 53, 54]. The emulation approach makes
our work not depend on any specific NVMM implementation and
deployment.

We tried our best to ensure the emulation parameters resemble
realistic NVMM. Specifically, the emulated read and write latency
are 100 and 150 ns respectively. Our NVMM emulator introduces
extra latency for NVMM write and read through routines that
write to or read from DRAM. We create delays using a software
spin loop [34, 53] that uses the x86 RDTSP instruction to read the
processor timestamp counter and spins until the counter reaches
the intended delay. We also model NVMM bandwidth by inserting
a proper delay after the request sequence completes to limit the
effective bandwidth. Specifically, the bandwidth of NVMM is limited
to 10 GB/s for write and 35 GB/s for read in the experiments. A
similar approach was used in Mnemosyne [54].

Scientific applications. We use four applications with distinct
data structures in their compute kernels. They cover a wide range of
applications’ characteristics from array computation with regular
memory access to graph computation with irregular memory access,
and from simple matrix computation to complex multi-length-scale
fluid physics computation.

o LU-Decomposition (LU): This program is designed to factor
a matrix A as the product of a lower triangular matrix L
and an upper triangular matrix U. Multiplying the results of
the factored matrix (e.g., L * U) should return the original
matrix A. It is a C program, which duplicates the major
functionalities of its corresponding Fortran version in the
ScaLAPACK software [36]. All MPI processes of LU are used
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for computations. Specifically, LU generates a random matrix
in a 2d array named A. The data to be computed by all the
processes is distributed with cyclic distribution and uses
partial pivoting [52]. The maximum array size is 31,500 *
31,500 elements of double precision floating point number.
Adaptive Mesh Refinement with Octree (AMR): This AMR
code is designed to simulate droplet movement [22, 48] us-
ing MPL It uses the Cartesian mesh based finite method to
simulate the flow. The code consists of five major routines,
including creating a new octree on each processor, refining
and/or coarsening a domain, balancing the octree, partition-
ing and distributing octants among processors, and extract-
ing mesh structures for visualization. This is a C++ program
and developed based on the popular open-source Gerris flow
solver [44]. The maximum input size is 130 million elements
in a mesh and the maximum tree depth is 9.
Page Ranking (PR): The program outputs a probability dis-
tribution which represents the relative importance of web
pages in networks [37]. It executes a random walk which
jumps to a random node with a certain probability «, and
follows a randomly chosen outgoing edge of a node with
probability 1 — & from the current node. PR is a C program
and uses a master/slave MPI implementation, which is de-
scribed by Sangamuang et al. [42]. The master sends the
number of graph nodes to the slaves which will be respon-
sible for calculating the rank. The graph data is stored in
compressed sparse row (CSR) [29] format in memory. The
program continues to run until the difference between the
values of page ranks computed in consecutive iterations is
below a threshold of .000001 or the limit of the number of
iterations is reached. We use MAWI graph datasets which
were generated from packet trace data from the WIDE back-
bone maintained by the MAWI working group [12]. The
graph has 129 million vertices and 270 million edges. We
may use a subset of the graph data in experiments.

o LAMMPS: The program is designed as a large-scale atomic
and molecular massively parallel simulator [39] from Sandia
National Laboratories. It is written in C++ with MPI and
performs force and energy calculations on discrete atomic
particles. For checkpointing, the atoms arrays and their re-
lated metadata (i.e., array size, space boundaries, and time
steps) are written to persistent storage devices. In the exper-
iments, we use 2d crack simulation. The maximum number
of atoms is 253 million.

We evaluate the applications with five combinations of imple-
mentations of data structures and storage options. (1) Vanilla (DRAM):
it denotes that the program is implemented using ephemeral data
structures and executed using only DRAM. (2) Vanilla (NVMM):
it denotes that the program is implemented using ephemeral data
structures and executed using only NVMM. Both (1) and (2) may suf-
fer data inconsistency upon failures. (3) Atlas-FS: it denotes that the
program is executed using only DRAM with ephemeral data struc-
tures. To provide crash consistency its runtime states are written to
the Atlas parallel file system periodically using parallel I/Os. We use
the default setting of the file system, in which the files are striped
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over 4 object storage targets (OSTs) with 1 MB stripe size. (4) NVMM-
FS: it denotes that the program is executed using only DRAM with
ephemeral data structures. Its runtime states saved in the node-local
in-memory file system set up using NVMM. The checkpoints are
accessed via file-system interface. (5) NV-Checkpoint: we transform
the code using NV-Checkpoint and store a persistent version in
NVMM. (3), (4), and (5) enforce crash consistency. Besides these, we
also compare the performance of NV-Checkpoint to other state-of-
the-art checkpointing approaches [16, 24, 28, 33, 56] which require
manual instrumentation in the source code in Section 6.6.

6.2 Strong Scaling

Application Data Problem size
structures
LU Array 20,480 * 20,480 double float
AMR Octree 125 million elements in a mesh
PR Graph 5 million vertices and 69 million
edges
LAMMPS Array 18 million atoms

Table 2: Problem size of applications for strong scaling.
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Figure 7: The execution time of applications in the strong-scaling
experiments.

To study the strong scaling of the applications with NV-Checkpoint,
we keep the problem size constant and increase the number of pro-
cesses. On Titan, each node has 16 cores. We run one process on a
dedicated CPU core. Table 2 shows the problem size for LU, AMR,
PR, and LAMMPS respectively in the experiment. We have the fol-
lowing observations from the execution time shown in Figure 7.
First, the programs with NV-Checkpoint achieve similar strong
scaling as the code with the ephemeral data structures. Its aver-
age speedup with NV-Checkpoint is only 11.7% lower than that
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using only DRAM. This is because of the overhead of persistent
operations. Second, the program using the Atlas file systems for
checkpointing scales poorly when the file size of the snapshots
is significant. For example, AMR wrote 15.4 GB data to the Atlas
file system. Even though Atlas has very high storage bandwidth,
the average speedup of AMR is only 1.0 with Atlas-FS compared
to 3.3 with NV-Checkpoint. Third, the scalability of checkpointing
approaches using file systems is determined by whether the check-
pointing data can be buffered in the cache of file servers. Specifically,
when the file size of checkpoints is 38.78 MB for PR, we found that
it is small and can be effectively served in the cache. In contrast, the
file size of AMR checkpoints is 406X larger than that of PR, making
it difficult to hide the I/O latency using the cache.

6.3 Weak Scaling
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Figure 8: The execution time of applications in the weak-scaling
experiments. A logarithmic y-axis is used for plotting.

We study the weak scaling of the applications in this section.
We measure their execution time while increasing the problem
sizes and the number of processors. For LU, the dimensions of
arrays are increased from 2,750%2,750 to 31,500%31,500. For AMR,
the number of elements in a mesh is increased from 800K to 130M.
For PR, the number of nodes is increased from 282K to 129M. For
LAMMPS, the number of atoms is increased from 500K to 253M.
Figure 8 shows the execution time with NV-Checkpoint compared
to other implementations. We have three observations. (1) None of
them achieves optimal speedup. It is because of the communication
overhead in the programs using the MPI programming model. For
example, the ratio of communication time to the total execution
time of LU is increased from 0.3% to 21.6% when the number of
processes is increased from 6 to 1000. For LU, the MPI communi-
cation time is mostly spent on distributing blocks from master to
slave processes and collecting computed data from slave to master
processes. Similarly, we observe the same trend for other programs.
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Figure 9: Cost model accuracies on 10-fold cross-validation.

For example, AMR requires 51% of communication time for tree
partitioning when the number of processes is 1000. (2) The imple-
mentation using NVMM achieves similar weak scaling as that using
DRAM. All the implementations scale well except with the Atlas
file system. It scales poorly when the file size of checkpoints cannot
be effectively buffered in the cache of file servers. (3) The execution
time with NV-Checkpoint is 40% longer on average than that with
only DRAM, while NVMM write and read latency are 150% and
67% longer than DRAM write and read latency respectively. This
is because the dynamic layout transformation (discussed in Sec-
tion 5) supported by NV-Checkpoint runtime reduced the number
of DRAM writes by 50%, 39%, and 8% for LU, AMR, and PR, respec-
tively. We did not partition the arrays for LAMMPS because the
array elements have an equal access frequency.

6.4 Accuracy and Effectiveness of Cost Model

An important component of NV-Checkpoint runtime system is its
cost model to produce desired persistence intervals. We evaluate
its model in this section. For each application, we randomly par-
tition the data structures (e.g., octrees in AMR). We then trigger
the persistent() function and record its execution time Tz’; along

with its corresponding data features FV? (described in Table 1). We
collected a total of 70,000 tuples of FV and Tl’; for each application.
60,000 of them are used for training machine learning models and
the rest are used for testing. We studied the prediction accuracy
of the three models available in Weka for data classification [18],
including M5P, randomForrest, and REPTree. We measure their
accuracies using relative absolute error (RAE), which is defined

Y 16i-6:]

Zﬁli\ 0;—0;|
value. 0; is the mean value of 6). As shown in Figure 9, the RAE of
M5P is 89% smaller than that of randomForrest and REPTree. This
explains why we chose M5P in all the experiments.

With the cost model, we further evaluate its impact in determin-
ing a desired persistence interval at runtime. In the experiment, we
instrumented the programs to have better coverage of different CPU
burst lengths of computing phases in parallel programs. Specifically,
if the computing time of each iteration is Tcomp in the existing ap-
plications, we will inject additional computing time Tijecs, which
is randomly selected within the range of [0, 5 * Tcomp] in the in-
strumented programs. All results reported here are measured by
executing the instrumented programs.

We first run the instrumented programs without the cost models.
In this setup, the persistent() function is executed at the end of

(6; is the real value. 0; is corresponding predicted
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Figure 10: Execution time without and with using the cost
model to determine persistence interval.

every iteration even though the computing time might be smaller
than the time of persistent operations. Then we run the instru-
mented programs with the cost models which are trained offline.
The execution time of the programs is reduced by 15% on average
with the cost model as shown in Figure 10.

6.5 Fault Injection Experiments

In this section, we compare the time to restart the applications after
injected failures using NVMM and parallel file systems. Specifically,
for LAMMPS, we use 140 processes and 18 million atoms. For LU,
we use 240 processes and matrix size 20,480720,480. For AMR, we
use 220 processes and 125 million elements. For PR, we use 256
processes and 129 million vertices. In the experiments, we sent
a SIGTERM signal in the middle of iteration 10 and forced it to
execute failure recovery handlers in the programs. We implemented
three types of handlers. (1) NVMM (local): this handler recovers the
memory states from the persistent data stored in NVMM on the
same compute nodes. (2) NVMM (network): this handler recovers
the memory states from the persistent data stored in NVMM to
a new set of compute nodes with data being transferred via the
Gemini network on Titan. (3) Checkpoint: this handler recovers the
memory states from checkpoint files stored in the Atlas file system.
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Figure 11: Time to restore memory states using NVMM via mem-
ory bus and using checkpoint files in Atlas.

The time to restore memory states is shown in Figure 11. Com-
pared to Checkpoint, the restore time is reduced by 93%, 88%, 98%,
and 90% for LU, AMR, PR, and LAMMPS respectively via NVMM
on the same compute nodes. This is because Checkpoint needs to
read the data via slow I/O bus while NV-Checkpoint operates at
memory bandwidth. In addition, the restore time is reduced by
83%, 85%, 96%, and 81% for LU, AMR, PR, LAMMPS respectively
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Figure 12: The execution time with NV-Checkpoint compared to
those with the manual implementations.

via NVMM on a new set of compute nodes. The time of transferring
data to the new node accounts for 73% of the restore time. And it
becomes a dominant factor in the restore time when the size of
persistent data to transfer is larger than 1.6 GB. Finally, the restore
time using the Atlas file system is limited by I/O bandwidth.

6.6 Performance Compared to Manual
Implementations

All the state-of-the-art checkpointing approaches using NVMM
for scientific applications require substantial changes in the source
code. These are done manually. In this section, we compare the
performance of NV-Checkpoint to these manual implementations.
Because the hand-written code does not have a runtime system for
persistence management, NV-Checkpoint was instrumented to per-
form persist() as the hand-written code for every iteration. Specifi-
cally, we implement the checkpointing approaches using in-place
versioning [24, 56] in the applications (i.e., LU-decomposition and
LAMMPS) using the array data structure. We manually implement
multi-version PMOctree [33] and NVGRAPH data structures [28]
for checkpointing in the AMR and page ranking respectively. We
use the setting described in Table 2 in the experiment. We use 1000,
1000, 256, and 256 processes for the LU-decomposition, AMR, page
ranking, and LAMMPS respectively. As shown in Figure 12, the
execution time of the applications with NV-Checkpoint is 7% on
average longer than those with the hand-written code. The reason
is that NV-Checkpoint needs to track data features and execute
model inference at runtime for persistence management. It also
incurs additional communication overhead for making a decision
by the centralized master process. We also observe that the code
with NV-Checkpoint achieves similar scalability.

Next, we study the performance of NV-Checkpoint compared to
checkpointing using recompute for loop-based code [16]. We use
LU-decomposition with 1000 processes in this experiment. For the
checkpointing approach using recompute, the code runs only in
NVMM. The execution time is 108.2 sec and 49.1 sec for recompute
and NV-Checkpoint respectively. Checkpointing with recompute
spends 1.2X more time because it runs only in NVMM while NV-
Checkpoint places its ephemeral version in DRAM for computation
and its persistent version in NVMM for checkpoint.

Table 3 summarizes the total number of added directives (ex-
cluding #pragma nvcp) and total number of added lines by the
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Application Directives | Total line changes
LU-decomposition 4 101
AMR 4 538
PageRank 4 94
LAMMPS 12 317

Table 3: A summary of the application of NV-Checkpoint.

compiler to the source code. It clearly supports the claim that NV-
Checkpoint can easily transform the ephemeral data structures to
crash-consistent data structures with a small number of directives.

7 RELATED WORK

A wide range of systems and libraries have been developed to
provide checkpointing to address the resilience issues of HPC ap-
plications. The work closely related to NV-Checkpoint is discussed
below.

Checkpointing Approaches. System-level checkpointing ap-
proaches write the memory states of the entire memory systems
to storage systems [43] as snapshots. They are usually transparent
to end-users. For large-scale HPC systems, writing system-level
snapshots using parallel I/Os can easily overload a disk-based stor-
age system and become a severe performance bottleneck [3, 59, 60].
Snapshot files can be compressed to reduce checkpointing over-
head [25]. Moody et al. proposed a multi-level checkpointing sys-
tem, which can reduce the amount of checkpointing I/Os which are
directed to slow hard disks by temporarily storing them in DRAM
and flash on compute nodes [30]. GPU snapshot was designed to
reduce checkpointing cost using asynchronous checkpoint offload-
ing from GPUs to hosts [27]. Chakraborty et al. proposed EREINIT
to reduce checkpointing overhead for bulk-synchronous MPI appli-
cations [9] by implementing fault-tolerance in low-level software
layers. Application-level checkpointing approaches save only the
main data structures and their metadata for checkpointing [6]. For
example, the LAMMPS code saves the arrays which record the prop-
erties of atoms used in simulations [39] in snapshots. Its overhead is
much smaller than system-level approaches. Elnawawy et al. reduce
checkpointing overhead using recompute of loop-based code [16].
But this approach was only proposed for array data structures.

Algorithm-based fault tolerance can be used to detect and correct
errors for applications using matrix computations [56, 58]. But it is
difficult to extend them to other types of data structures.

Simply replacing disks with NVMM may reduce the checkpoint-
ing overhead because of its much lower read/write latency than
disks. Caulfield et al. studied the impact of non-volatile memory
on scientific applications [8]. Dong et al. proposed a hybrid lo-
cal/global checkpointing mechanism leveraging 3D PCRAM [13].
Kannan et al. designed a system-level checkpointing mechanism
using virtual memory of operating systems [26]. However, none
of them exploits the byte-addressability of NVMM. Most recently,
multi-version data structures have been used for application-level
checkpointing in NVMM systems. Wu et al. designed NVMM-aware
algorithms that store an additional persistent version of main data
structures as a checkpoint in NVMM along with its ephemeral ver-
sion in DRAM [24, 56]. The persistent version can be used for both
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checkpoints and computation leveraging the byte-addressability of
NVMM. PMOctree was designed as a crash-consistent multi-version
octree data structure for adaptive meshing [32, 33]. NVGRAPH was
designed as a multi-version graph data structure for NVMM-aware
evolving graph computation [28]. However, all of them focused on
manual transformation of main data structures and require pro-
grammers to have a deep understanding of NVMM memory models.
The changed code layout for exploring NVMM makes the source
code difficult to read and understand. In this paper, we design NV-
Checkpoint to serve two purposes: (1) automatically transforming
ephemeral data structures to its corresponding NVMM-aware crash-
consistent version with the aid of compilers, dramatically reducing
the burden of programmers; and (2) implementing a runtime sys-
tem which determines when to create a persistent version of a data
structure using machine learning models.

Compiler-Aided Data Structure Transformation. Compiler-
aided approaches have been widely used in automatically trans-
forming sequential data structures to concurrent data structures
that are aware of UMA [5, 57] or NUMA [7]. For example, the node
replication technique was proposed by Calciu et al. to produce
NUMA-aware concurrent data structures satisfying linearizability
using shared logs [7]. To the best of our knowledge, NV-Checkpoint
is the first compiler-aided approach that is designed to transform
ephemeral data structures to its corresponding crash-consistent
multi-version data structures in NVMM systems. To make persis-
tence very simple to use, SoftPM was proposed to provide orthogo-
nal persistence for sequential data structures [17]. It identifies struc-
tures of in-memory objects (e.g., linked lists) using static analysis
and persistent arbitrary data structures using containers on storage
devices. Compared to SoftPM, NV-Checkpoint uses multi-version
data structures as the container of ephemeral data structures and
targets on both sequential and parallel/distributed data structures.
In addition, NV-Checkpoint automatically tunes the performance
of NVMM-aware data structures at runtime by managing the per-
sistence interval and the layout of data structures placed in a hybrid
of DRAM and NVMM considering the characteristics of HPC appli-
cations and NVMMs.

Other Work in Context. NV-Checkpoint’s annotation API uses
C/C++ compiler front-end Clang [10] and Java parser for source-
to-source translation and source code analysis. Other compilers
have been designed for different programming languages. For ex-
ample, ROSE compiler infrastructure [11] offers analysis tools for
large-scale Fortran, C, OpenMP, and UPC applications. ROSE uses
a uniform abstract syntax tree (AST) to represent source code us-
ing a high-level intermediate code, while Clang uses a lower-level
representation to simplify the intermediate code.

8 CONCLUSION AND FUTURE WORK

We analyze the root causes of crash inconsistency of scientific appli-
cations using ephemeral data structures (i.e., arrays, quad/octrees,
and graphs) upon fail-stop failures in NVMM systems. We then
propose, implement, and evaluate a general framework, called NV-
Checkpoint, which can automatically transform source code for
enforcing crash consistency using multi-version data structures
with the aid of compilers. Its runtime system uses such data struc-
tures to provide crash consistency because at least one version of its
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data is immutable until a newer version becomes persistent. We use
a machine learning based approach to determine a desired persis-
tence interval considering persistence overhead and recomputing
time. For the evaluation of NV-Checkpoint, we use four representa-
tive real-world scientific applications: LU-Decomposition, adaptive
mesh refinement, page ranking, and molecular simulation using
LAMMPS. The experimental results show that the performance of
annotated programs using NV-Checkpoint is commensurate with
the version using the corresponding ephemeral data structures.
It scales well up to 1000 processes on Titan. It offers up to 121X
speedup of program execution time and 16X speedup of restore
time compared to those using parallel file systems on the Titan
supercomputer. Finally, NV-Checkpoint significantly reduces pro-
grammers’ burden of using NVMM in HPC systems.

Our work suggests several avenues for future research, including
(1) automatically identifying variables that may suffer from data
inconsistency upon failures using static analysis, (2) a richer set
of annotations, (3) characterizing different types of applications
and building uniform machine-learning models for persistence
management, and (4) evaluation of NV-Checkpoint with scientific
applications using other popular data structures (e.g., B-trees, hash
tables) on other HPC platforms, especially those with real NVMM
hardware.
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