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Large scale density modes are difficult to measure because they are sensitive to systematic observational
errors in galaxy surveys, but we can study them indirectly by observing their impact on small scale
perturbations. Cosmological perturbation theory predicts that second-order density inhomogeneities are a
convolution of a short- and a long-wavelength mode. This arises physically because small scale structures
grow at different rates depending on the large scale environment in which they reside. This induces an off
diagonal term in the two-point statistics in Fourier space that we use as the basis for a quadratic estimator
for the large scale field. We demonstrate that this quadratic estimator works well on an N-body simulation
of size ð2.5 h−1 GpcÞ3. In particular, the quadratic estimator successfully reconstructs the long-wavelength
modes using only small-scale information. This opens up novel opportunities to study structure on the
largest observable scales.
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I. INTRODUCTION

Measuring the distribution of matter on large scales is
one of the goals of cosmological surveys [1,2]. The
information contained on large scales may provide infor-
mation about issues ranging from the turnover in the power
spectrum (and therefore the total matter density) to the
accelerated universe to anomalies observed in the cosmic
microwave background to primordial non-Gaussianity.
In [3], a method of using delensing with intensity mapping
has been proposed to directly measure large scale modes.
But generally speaking, direct measurements are difficult
because of observational systematic effects, so indirect
approaches have been considered. As pointed out by [4],
21 cm intensity mapping is one area where due to fore-
grounds, large-scale (line of sight) modes will be impos-
sible to measure directly.
Small scale structure grows differently in the presence of

an large-scale overdensity: it is as if the mean background
density is larger than on average. This relation between long-
and short-wavelength modes has been discussed in recent
years [5–16]. The method of using the small scale position-
dependent power spectrum to compute the squeezed-limit
bispectrum also indicates that small scale perturbations can
be used to infer large scale information [17,18]. In order to
fully achieve this goal, here we construct a quadratic
estimator to measure long-wavelength modes indirectly.
Standard perturbation theory (SPT) [19–21] identifies the

second-order contribution to a short-wavelength mode as a
convolution of a short- and a long-wavelength mode.
Abstractly, this is similar to cosmic microwave background
(CMB) lensing [22,23], where the CMB temperature field

has a second-order correction due to the gravitational field
along the line of sight. Similarly, in our case, the short-
wavelength mode’s nonlinear terms are related to its large
scale environment. The construction of a CMB lensing
quadratic estimator makes use of the fact that small scale
two-point correlations of CMB temperature modes have off
diagonal terms due to large scale perturbations caused by
gravitational lensing. The same statistical feature shows up
in our case as well—the off diagonal terms of the small scale
correlations are no longer zero, due to the effect of large scale
modes. Thus, we can create a quadratic estimator for long-
wavelength modes using exactly the same formalism.
We begin with a brief review of SPT up to second order,

build the quadratic estimator, and then assess its detect-
ability. We then apply the estimator to data from a large
N-body simulation and demonstrate that it successfully
extracts the large scale modes. We use a flat ΛCDM model
with Planck Collaboration XVI (2014) [24] cosmological
parameters in this work (to match the parameters of the
N-body simulation).

II. STANDARD PERTURBATION THEORY

Starting from a perfect pressureless fluid, the nonrela-
tivistic cosmological fluid equations are the continuity,
Euler and Poisson equations,

∂δðx⃗; τÞ
∂τ þ ∇⃗ · ½ð1þ δðx⃗; τÞÞv⃗ðx⃗; τÞ� ¼ 0 ð1Þ

� ∂
∂τ þ v⃗ðx⃗; τÞ · ∇⃗

�
v⃗ðx⃗; τÞ ¼ −

da
dτ

v⃗ðx⃗; τÞ
a

− ∇⃗Φ ð2Þ
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∇2Φ ¼ 4πGa2ρ̄mδðx⃗; τÞ: ð3Þ

Here, a is the cosmological scale factor, Φ is the 3D
gravitational potential, and ρ̄mðaÞ is the mean matter
density. These equations fully determine the time evolution
of the local density contrast δ and the peculiar velocity field
v⃗ ¼ dx⃗=dτ. We can solve these equations perturbatively in
Fourier space [25],

δðk⃗; τÞ ¼
X∞
n¼1

δðnÞðk⃗; τÞ ¼
X∞
n¼1

Dn
1ðτÞδnðk⃗Þ ð4Þ

θðk⃗; τÞ ¼
X∞
n¼1

θðnÞðk⃗; τÞ

¼ −
d lnD1ðτÞ

dτ

X∞
n¼1

Dn
1ðτÞθnðk⃗Þ; ð5Þ

where D1 is the linear growth factor. The first order term
δð1Þ corresponds to linear evolution. The linear power
spectrum is given by this first order term via averaging
over modes in Fourier space,

hδð1Þðk⃗; τÞδð1Þðk⃗0; τÞi ¼ ð2πÞ3δDðk⃗þ k⃗0ÞPlinðk; τÞ: ð6Þ

Here, δD is the Dirac delta function. Substituting the
perturbative series Eq. (4) and Eq. (5) into the Fourier
transformed fluid Eqs. (1)–(3) leads to an expression for the
second-order density contrast,

δð2Þðk⃗; τÞ ¼
Z

d3k⃗1
ð2πÞ3 F2ðk⃗1; k⃗ − k⃗1Þδð1Þðk⃗1; τÞδð1Þðk⃗ − k⃗1; τÞ

ð7Þ

with

F2ðk⃗1; k⃗2Þ ¼
5

7
þ 2

7

ðk⃗1 · k⃗2Þ2
k21k

2
2

þ k⃗1 · k⃗2
2k1k2

�
k1
k2

þ k2
k1

�
: ð8Þ

Note that Eqs. (4), (5), and (8) are completely accurate only
in an Einstein-de Sitter universe and also assuming the case
of a pressureless perfect fluid. Nonetheless, for related
calculations in a ΛCDM universe, the difference is found to
be negligible [26], and thus, we use the expressions from
Eqs. (4) and (8) throughout this work. Using this expres-
sion for δð2Þ, we can calculate the two-point correlation of
two short-wavelength modes k⃗s and k⃗s

0, in the squeezed
limit k⃗l ¼ k⃗s þ k⃗s

0 with k⃗s; k⃗s
0 ≫ k⃗l. Here, k⃗l corresponds

to a long-wavelength mode, and we suppress the time
dependence. To second order,

hδðk⃗sÞδðk⃗s0Þijk⃗sþk⃗s
0¼k⃗l

¼ hδð1Þðk⃗sÞδð2Þðk⃗s0Þi
þ hδð2Þðk⃗sÞδð1Þðk⃗s0Þi: ð9Þ

Substituting Eq. (7) into the first bracket, we get

hδð1Þðk⃗sÞδð2Þðk⃗s0Þi ¼
Z

d3k⃗
ð2πÞ3 F2ðk⃗; k⃗s0 − k⃗Þ

× hδð1Þðk⃗sÞδð1Þðk⃗s0 − k⃗Þδð1Þðk⃗Þi: ð10Þ

When one of the wavenumbers in the three-point function
in Eq. (10) is very small, that mode can be considered as a
background mode. The small scale modes evolve in the
presence of whatever long wavelength modes happen to be
present. Therefore, we can take the long-wavelength mode
out of the bracket,

hδð1Þðk⃗sÞδð1Þðk⃗s0 − k⃗Þδð1Þðk⃗Þi ¼ hδð1Þðk⃗sÞδð1Þðk⃗s0 − k⃗Þiδð1Þðk⃗Þ
þhδð1Þðk⃗sÞδð1Þðk⃗Þiδð1Þðk⃗s0 − k⃗Þ:

ð11Þ

The first term on the right occurs when k⃗ is small and the
second when k⃗s

0 − k⃗ is small, as shown in Fig. 1. Using
Eqs. (6), (10) then becomes

Z
d3k⃗
ð2πÞ3 F2ðk⃗; k⃗s0 − k⃗Þhδð1Þðk⃗sÞδð1Þðk⃗s0 − k⃗Þδð1Þðk⃗Þi

¼
Z

d3k⃗F2ðk⃗; k⃗s0 − k⃗ÞδDðk⃗s þ k⃗s
0 − k⃗ÞPlinðksÞδð1Þðk⃗Þ

þ
Z

d3k⃗F2ðk⃗; k⃗s0 − k⃗ÞδDðk⃗s þ k⃗ÞPlinðksÞδð1Þðk⃗s0 − k⃗Þ

¼ 2F2ð−k⃗s; k⃗s þ k⃗s
0ÞPlinðksÞδð1Þðk⃗s þ k⃗s

0Þ; ð12Þ

where we take advantage of the fact that F2 is a symmetric
function. Finally, we have

hδðk⃗sÞδðk⃗s0Þi ¼ fðk⃗s; k⃗s0Þδð1Þðk⃗lÞ ð13Þ

with

FIG. 1. Equation (11) occurs when k⃗ ≪ k⃗s, k⃗
0
s or k⃗

0
s − k⃗ ≪ k⃗s,

k⃗0s, which corresponds to the two terms shown in this figure.
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fðk⃗s; k⃗s0Þ ¼ 2F2ð−k⃗s; k⃗s þ k⃗s
0ÞPlinðksÞ

þ 2F2ð−k⃗s0; k⃗s þ k⃗s
0ÞPlinðk0sÞ: ð14Þ

This suggests that we can estimate long-wavelength modes
using short-wavelength modes since the left-hand side of
Eq. (13) has only short modes while the right-hand side of it
is sensitive to long modes.

III. QUADRATIC ESTIMATOR

We can now construct the quadratic estimator for long-
wavelength modes starting from Eq. (13) and summing
over as many pairs as possible with weights that maximize
the signal-to-noise. As with the case of CMB lensing, we
can write the general form of the estimator by averaging
over pairs of short-wavelength modes,

δ̂ð1Þðk⃗lÞ ¼ Aðk⃗lÞ
Z

d3k⃗s
ð2πÞ3 gðk⃗s; k⃗s

0Þδðk⃗sÞδðk⃗s0Þ; ð15Þ

with g being a weighting function, k⃗s
0 ¼ k⃗l − k⃗s and A is

the normalization prefactor defined by requiring that
hδ̂ð1Þðk⃗lÞi ¼ δð1Þðk⃗lÞ,

Aðk⃗lÞ ¼
�Z

d3k⃗s
ð2πÞ3 gðk⃗s; k⃗s

0Þfðk⃗s; k⃗s0Þ
�
−1
: ð16Þ

In the absence of shot noise, the Gaussian noise is given by

hδ̂ð1Þðk⃗lÞδ̂ð1Þ�ðk⃗l0Þi ¼ ð2πÞ3δDðk⃗l − k⃗l
0Þ½PlinðklÞ þ Nðk⃗lÞ�

ð17Þ
with

Nðk⃗lÞ ¼ 2A2ðk⃗lÞ

×
Z

d3k⃗s
ð2πÞ3 g

2ðk⃗s; k⃗l − k⃗sÞPnlðksÞPnlðjk⃗l − k⃗sjÞ;

ð18Þ
where Pnl is the nonlinear power spectrum. Minimizing the
noise term, we can fix the form of g to be

gðk⃗s; k⃗s0Þ

¼ fðk⃗s; k⃗s0Þ
2PnlðksÞPnlðk0sÞ

¼ F2ð−k⃗s; k⃗s þ k⃗s
0ÞPlinðksÞ þF2ð−k⃗s0; k⃗s þ k⃗s

0ÞPlinðk0sÞ
PnlðksÞPnlðk0sÞ

:

ð19Þ

The noise term reduces simply to Nðk⃗lÞ ¼ Aðk⃗lÞ. We find
by testing that the value of N is very insensitive to the

choice of the lower limit of the integration Eq. (16), since
most of the contribution comes from large ks.
Assuming Gaussian noise, the projected detectability of

a PðklÞ measurement using the quadratic estimator can be
expressed as

1

σ2ðklÞ
¼ Vk2lΔk

ð2πÞ2
�

PlinðklÞ
PlinðklÞ þ NðklÞ

�
2

; ð20Þ

where V is the volume of a survey and we compute the
detectability for a set of narrow kl bins each separated by
width Δk. In Fig. 2, we show the projected errors on the
long-wavelength power spectrum using this quadratic
estimator in a large survey. The current largest scale
published measurement of the three-dimensional power
spectrum is for the scale 0.02 hMpc−1, from [27]. And our
Fig. 2 shows that it should be possible to make measure-
ments using our method on scales of 0.002 hMpc−1, which
are ∼10 times larger. The upper limit of the k⃗s integration in
Eq. (16) is set to be 0.22 hMpc−1. We will see that this
choice of the upper limit is reasonable for our current
construction at z ¼ 0. Also notice that PlinðklÞ dominates
over NðklÞ in Eq. (20) for this upper limit; thus, the
projected error bars are only slightly wider than the cosmic
variance error bars (N ¼ 0).

IV. DEMONSTRATION WITH AN N-BODY
SIMULATION

We test the power of the quadratic estimator using data
from a cosmological N-body simulation. We use the z ¼ 0
snapshot from BigMPDL, one of the MultiDark cosmo-
logical simulations [28]. The cubical box side length of
BigMDPL is 2.5 h−1Gpc. We use the dark matter particle
data to compute the matter density field, leaving the effect

FIG. 2. Long-wavelength power spectrum and its error from
Eq. (20), which can be expressed as PðklÞσðklÞ. We assume a toy
survey of box size L ¼ 2.5 h−1 Gpc, thus, volume V ¼ L3 and
width Δk ¼ 2π=L. Moreover, we set the integration range for k⃗s
from 0.03 hMpc−1 to 0.22 hMpc−1.
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of using galaxies or halos to trace the field [29] to
future work.
We use the code NBODYKIT [30] to measure the Fourier

density modes, and Eq. (15) to estimate the long wave-
length modes from the measured short wavelength modes.
How well the estimator works can be seen from Fig. 3,
where we show histograms of the ratio of the estimated
mode amplitudes δ̂ðk⃗lÞ to their true amplitudes δðk⃗lÞ for
different values of k⃗l. The two panels show the dif-
ferences between a short wavelength mode cutoff of
ks ¼ 0.22 hMpc−1 and ks ¼ 0.37 hMpc−1. Notice that
second-order SPT becomes less accurate as shorter wave-
lengths are used and will produce a bias of our quadratic
estimator. The figure shows that individual mode ampli-
tudes are unbiased when ks;max ¼ 0.22 hMpc−1, while for
ks;max ¼ 0.37 hMpc−1, the results are biased [the center of
the ratio is ∼20% too high, and the histogram of the polar
angle of δ̂ðk⃗lÞ=δðk⃗lÞ is less peaked at 0].
Another way of examining the success of the quadratic

estimator is to transform the estimated density field back to
real space to form δ̂ðx⃗Þ and then compare with the actual

large scale density field δðx⃗Þ in the simulation. The
seven panels in the top two rows of Fig. 4 compare these
two fields; each panel is a slice of the full simulations. The
bottom panel shows the difference between the estimated
and true density fields. It is apparent that the differences are
much smaller than the overdensities; equivalently, the
estimator does an excellent job of extracting the large scale
density field.

V. CONCLUSION

In this paper, we have proposed a new and potentially
powerful method to measure long-wavelength modes with-
out having to actually measure large scale structure directly.
Similarly to this construction, kSZ velocities [31] might
also be a good tracer of large-scale modes. We can take the
advantage of its small scale information and potentially get
a better constraint of large-scale modes. We will leave this
part to future work.
The estimator works well on an N-body simulation, so

applying this estimator to survey data is the logical next
step. Among the issues that must be faced when dealing
with a spectroscopic galaxy survey are galaxy bias, redshift
space distortions [32], and light cone effects. We do not
expect any of these to be show-stoppers, so it is tempting to
speculate about the possibilities that will open up with this
estimate of the large scale density field.
First, we can hope to measure 3D clustering on scales

larger than the scale entering the horizon at matter-radiation
equality without worrying about large-scale systematic
effects. General relativistic effects are strongest on large
scales (e.g., [33]), and these could be detected. There is
evidence of large scale anomalies, in the CMB, that could be
confronted with maps of large scale structure obtained with
this estimator. One physical mechanism that has been
proposed as a possible explanation for the deficit in the
large-angle CMB temperature correlations is a suppression
of primordial power on ∼Gpc scales [34]. It would be very
useful to verify if this new physics is also present in other
probes of large-scale structure. Primordial non-Gaussianity
generated by inflation leaves an imprint on the largest scales.
There is even the possibility of cross-correlating the large-
scale matter field with the CMB itself to extract information
about the longest wavelength modes in the Universe. Since
the current epoch of acceleration is a large-scale, late-time
effect, there is the possibility of learning about the mecha-
nism responsible for acceleration. Although, as mentioned
above, challenges remain, there is also the possibility of
using even smaller wavelength modes in our estimator by
going to a higher order in perturbation theory.
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FIG. 4. Comparison of the true density field in the BigMPDL
simulation [δðx⃗Þ computed using the directly measured large-
scale modes, top row] and the density field from the quadratic
estimator [δ̂ðx⃗Þ, middle row]. The bottom row shows their
difference. Each panel represents a slice through the simulation
volume, 2.5 h−1 Gpc wide, and one cell (0.36 h−1 Gpc) thick.
The upper limit of k⃗s is 0.22 hMpc−1.
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