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Matrix Factorization with Interval-Valued Data

Mao-Lin Li, Francesco Di Mauro, K Selçuk Candan, and Maria Luisa Sapino

Abstract—With many applications relying on multi-dimensional datasets for decision making, matrix factorization (or decomposition) is

becoming the basis for many knowledge discoveries and machine learning tasks, from clustering, trend detection, anomaly detection,

to correlation analysis. Unfortunately, a major shortcoming of matrix analysis operations is that, despite their effectiveness when the

data is scalar, these operations become difficult to apply in the presence of non-scalar data, as they are not designed for data that

include non-scalar observations, such as intervals. Yet, in many applications, the available data are inherently non-scalar for various

reasons, including imprecision in data collection, conflicts in aggregated data, data summarization, or privacy issues, where one is

provided with a reduced, clustered, or intentionally noisy and obfuscated version of the data to hide information. In this paper, we

propose matrix decomposition techniques that consider the existence of interval-valued data. We show that naive ways to deal with

such imperfect data may introduce errors in analysis and present factorization techniques that are especially effective when the amount

of imprecise information is large.

Index Terms—Matrix factorization, Interval valued data.

✦

1 INTRODUCTION

W ITH many machine-learning applications requiring
latent semantics underlying the data sets, matrix fac-

torization has emerged as a successful tool for discovering
latent patterns in data [1], [2]: matrices are used to encode
relationships among pairs of entities and data are analyzed
for their latent semantics through matrix decomposition
operations, such as singular value decomposition, SVD [3]
or principal component analysis, PCA [4].

1.1 Challenge: Interval-Valued Data

In many applications, data need to be represented as ranges
or intervals of possible values, as opposed to scalar data:

• Summarized data. Analyzing reduced or summarized
data sets can be more efficient, especially for imple-
menting interactive applications [5], [6]. When several
observations are grouped and collapsed into a single
observation, data may need to be represented as value
ranges. While it may sometimes be possible to asso-
ciate statistical meanings to the intervals and (assuming
that appropriate generative models, probability distri-
butions, and conditioning strategies are found) it might
be possible to leverage probabilistic matrix factorization
techniques, such as [7], this approach may be infeasible
or ineffective due to the lack of appropriate statistical
representations and/or the cost.

• Data with conflicts. When a data set reflects knowledge
integrated from different data sources, it might not
be possible to assign a single scalar weight to each
observation and an interval of possible values might
be a more appropriate representations [6]. Moreover,
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when analyzing such integrated data, the resulting in-
tervals may not have a statistical interpretation, beyond
presenting the spread (i.e., minimum and maximum
values) of the data.

• Anonymized data. Various privacy-preserving data pub-
lishing algorithms, such as recoding techniques [8],
replace precise scalar values with less precise value
ranges or intervals (such as those obtained through
value generalization [8]). The resulting intervals (inten-
tionally) do not represent any specific data distribution;
consequently, associating a statistical interpretation to
the interval is not necessarily appropriate. This means
that probabilistic techniques for data analysis are not
appropriate for anonymized data sets. In Section 6, we
see that the proposed approach is highly effective for
interval-valued data generated through generalization.

• Imprecise data. Data imprecision may be caused by vari-
ous reasons, including limitations in measurement. For
example, minute variations in multiple facial images
from a single individual may be represented using
interval-valued data (see [9] and Section 6.1.2). As we
further discuss in Section 6.1.3, ambiguities in users’
ratings in a collaborating filtering application may also
be captured using interval-valued data [10], [11].

The key challenge in performing decompositions over
interval-valued matrices is that definitions of basic algebraic
operations, such as multiplication and inversion (needed to
implement factorization operations), are not as straightfor-
ward for intervals as they are for scalars (see Section 2.1).
Also, unlike scalars which are totally ordered, intervals
are often partially ordered. Furthermore, a naive approach
(which would exhaustively enumerate all possible decom-
positions) would significantly increase the computational
complexity of the problem (which is already high for the
case with scalar weights). Therefore, many basic operations
need to be redefined to accommodate such non-scalar data
and these need to be implemented in ways that avoid
increases in computational costs.
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1.2 Contributions of this Paper

In this paper, we study the problem of obtaining decompo-
sitions of interval-valued matrices:

• We present the decomposition problem for interval val-
ued data sets. We introduce interval-valued algebra and
discuss the core challenges presented by the decompo-
sition of interval-valued data.

• We propose an interval-valued latent semantics align-
ment scheme and, relying on this, we develop algo-
rithms for obtaining eigenvalue-based (such as SVD [3])
or probabilistic (such as PMF [7]) decomposition for
interval-valued data matrices.

• We finally study the effectiveness of the proposed
schemes in several applications, including face image
analysis and collaborative filtering.

1.3 Organization of the Paper

The paper is organized as follows: We introduce the back-
ground and review the related work in Section 2. Section 3
introduces the problem and presents the key observations
and mathematical formulations regarding interval-valued
latent spaces. Section 4 presents the proposed interval sin-
gular value decomposition (ISVD) algorithm to obtain SVD
decompositions in the presence of interval-valued data.
Section 5 shows that the proposed semantic alignment tech-
nique can also be used in probabilistic matrix factorization
scenarios. Section 6 reports our experimental results under
diverse scenarios. We conclude the paper in Section 7.

2 BACKGROUND AND RELATED WORKS

2.1 Interval Algebra

We first formalize the definitions for interval-valued data
and its algebraic operations:

Definition 1 (Interval representation). An interval a† is a pair
a† = [a∗, a

∗], a∗ ≤ a∗,
where a∗ is the minimum value and a∗ is the maximum value of
the interval a†. If a∗ = a∗, then a† is scalar.

Definition 2 (Interval span). Given an interval a†, the corre-
sponding span is computed by:

span(a†) = span([a∗, a
∗]) = (a∗ − a∗) ∈ R

Definition 3 (Interval algebraic operations). Given two in-
tervals, [a∗, a

∗] and [b∗, b
∗], we adopt the following interval

algebraic operations on them [12]:

• addition: [a∗, a
∗] + [b∗, b

∗] = [a∗ + b∗, a
∗ + b∗],

• subtraction: [a∗, a
∗]− [b∗, b

∗] = [a∗ − b∗, a∗ − b∗],
• multiplication: [a∗, a

∗]× [b∗, b
∗] =

[min(a∗×b∗, a∗×b∗, a∗×b∗, a∗×b∗), max(a∗×b∗, a∗×
b∗, a∗ × b∗, a

∗ × b∗)].

When one of the values, say a, is scalar, the multipli-
cation [a, a] × [b∗, b

∗] can be written as [min(a × b∗, a ×
b∗),max(a× b∗, a× b∗)] and the corresponding value of the
span is span(a× [b∗, b

∗]) = a× span([b∗, b
∗]).

Note that given the above definition of interval alge-
braic operations, more complex interval-valued operations,
such as interval-valued matrix algebra, can be defined by
replacing scalar addition, subtraction, and multiplication
operations, with their interval-valued counterparts.

2.2 Matrix Factorization

Feature selection and dimensionality reduction tech-
niques [13] usually involve some (often linear) transforma-
tion of the vector space containing the data to help focus
on a few features (or combinations of features) that best
discriminate the data in a given corpus. Among these trans-
formations, Karhunen-Loeve Transform, KLT (also known
as the principal component analysis, PCA [14]), and singular
value decomposition, SVD [3] have the key property that
the vectors selected as the dimensions of the space are
mutually orthogonal and, hence, linearly independent (i.e.,
there is no redundancy among the dimensions). The result-
ing basis vectors are referred to as the latent variables [15] or
the latent semantics of the data [3]. While KLT and SVD may
result in negative values, in non-negative matrix factoriza-
tion (NMF) [16], [17], factor matrices are non-negative and
enable probabilistic interpretation of the results and discov-
ery of generative models. Below, we outline three common
matrix factorization schemes: singular value decomposition
(SVD [3]), non-negative matrix factorization (NMF [16],
[17]), and probabilistic matrix factorization (PMF [7]).

2.2.1 Singular Value Decomposition (SVD)

Let M ∈ R
n×m represent the input matrix. Let the rank,

r, be a positive integer r ≤ min(n,m). In this paper, we
denote the value of ith row and jth column of M as M [i, j].
The jth column vector of M is similarly denoted as M [j].
M can be decomposed into M = UΣV T through singular
value decomposition (SVD), where

• U ∈ R
n×r, and UUT = In;

• Σ ∈ diag(Rr
+);

• V T = transpose(V ), V ∈ R
m×r , and V V T = Im.

The columns of U , also called the left singular vectors of
matrix M , are the eigenvectors of the n × n matrix, MMT .
The columns of V , or the right singular vectors of M , are
the eigenvectors of the m×m matrix, MTM . Note that both
columns of U and columns of V are mutually orthogonal.

2.2.2 Non-negative Matrix Factorization (NMF)

Given a non-negative matrix M ∈ R
n×m
+ , NMF factorizes M

into two non-negative matrices U ∈ R
n×r
+ and V ∈ R

m×r
+

with target rank r, which minimize the L2 loss function

LNMF = ‖M − UV T ‖2F ,

where U ≥ 0, V ≥ 0 and ‖.‖2F denotes the Frobenius norm.
The approximated solutions for U and V are commonly
found by iterative update rules, such as [17]

U [i, j]← U [i, j]
(MV )[i, j]

(UV TV )[i, j]

V T [i, j]← V T [i, j]
(UTM)[i, j]

(UTUV T )[i, j]
.
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[9] extended these to interval-valued matrices as follows:

LI−NMF = ‖M∗ − UV T
∗ ‖

2
F + ‖M∗ − UV ∗T ‖2F

U [i, j]← U [i, j]
(MV )[i, j]

(UV TV )[i, j]

V T
∗ [i, j]← V T

∗ [i, j]
(UTM∗)[i, j]

(UTUV T
∗ )[i, j]

V ∗T [i, j]← V ∗T [i, j]
(UTM∗)[i, j]

(UTUV ∗T )[i, j]
.

Note that this scheme, called I-NMF, factorizes the matrix
into a scalar-valued U and an interval-valued V† = [V∗, V

∗].

2.2.3 Probabilistic Matrix Factorization (PMF)

Probabilistic matrix factorization (PMF) [7] assumes matrix
entries are drawn from Gaussian distribution. In particular,
given a matrix M ∈ R

n×m, the conditional distribution over
the observed values is defined as

p(M [i, j]|U, V, σ2) =
n∑

i=1

m∑
j=1

[N (M [i, j]|U[i,:]V[j,:]
T , σ2)]Iij ,

where N is the probability density function of Gaussian
distribution with mean μ and variance σ2, Iij is the indi-
cator function that is equal to 1 if M [i, j] is not null and 0
otherwise. Above, U[i,:] and V[j,:] are row vectors1 in U and

V , such that M [i, j] � U[i,:]V[j,:]
T , and they place zero-mean

spherical Gaussian priors on latent semantics2. The factors,
U and V , are computed via the loss function

LPMF = ‖M − UV T ‖2F + λU‖U‖
2
F + λV ‖V

T ‖2F ,

where λU=σ2/σ2
U , λV =σ2/σ2

V , and ‖.‖2F denotes the Frobe-
nius norm. A local minimum of loss function LPMF can be
found via gradient descent in U[i,:] and V[j,:]

T

∂LPMF

∂U[i,:]
=

m∑
j=1

(U[i,:]V[j,:]
T −M [i, j])V[j,:] + λU[i,:]

∂LPMF

∂V[j,:]
T

=
n∑

i=1

(U[i,:]V[j,:]
T −M [i, j])U[i,:]

T + λV[j,:]
T .

2.3 Analysis of Symbolic and Interval-valued Data

In the real world, data rarely comes in simple scalar
form. Often variables of interest may take complex, of-
ten symbolic, forms, including sets, histograms, vectors,
intervals, or probability distributions [18], [19], [20], [21].
This is especially true when data is aggregated [22] or
anonymized [8]. Consequently, several data analysis tools,
including regression [23], [24], canonical analysis [25], and
multi-dimensional scaling [26], have been developed for
symbolic and interval-valued data. Given the popularity
of PCA in data analysis, several interval-valued PCA al-
gorithms have also been proposed [27], [28], [29], [30],
most of which leverage the specific statistical and geometric
meanings of principal components of a system of variables.
As discussed above, interval NMF and PMF [9] also have

1. In this paper, we use X[i,:] to denote ith row vector and X[:,j] to

denote jth column vector of matrix X .
2. Note that here, and in the rest of the paper, we use � to denote

“approximately equal”

��

��

Fig. 1: Scalar latent semantic spaces
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(a) int.-valued latent space

����

����

(b) point in int.-valued latent space

Fig. 2: Interval-valued latent semantic spaces

been studied to resolve alignment approximation in face
analysis and rating approximation in collaborative filtering.
In contrast, we develop a more general interval-valued la-
tent semantic alignment algorithm which can be integrated
in common matrix factorization approaches that directly
leverages interval-valued properties.

3 INTERVAL-VALUED LATENT SPACES

In Section 2.2.1, we have seen that a scalar matrix can be
decomposed into factor matrices (U and V ) and core matrix
(Σ). The columns in the factor matrices are referred to as
latent semantics (LS) and, preferably, they are mutually
orthogonal to serve as basis of the transformed space. Figure
1 shows a scalar-valued latent semantic space superimposed
on the original space; the figure also shows a scalar-valued
data point projected onto both original and latent spaces.
Unfortunately, scalar-valued latent spaces are not sufficient
to present interval-valued data.

3.1 Interval-Valued Decomposition

Here, we first extend the definition of singular valued
decomposition taking into account the presence of interval-
valued data.

Definition 4 (Interval-valued Decomposition). Given an
interval-valued matrix, M† ∈ R

n×m, and a target rank r ≤
min(n,m), interval-valued SVD would decompose M† into
M† � U†Σ†V

T
† , such that

• U† ∈ R
n×r and V† ∈ R

m×r (potentially interval-valued)
matrices, such that the columns of U† and V† are quasi-
orthonormal; i.e., given column indexes h and l,
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– U†[:,h] · U†[:,h] ≃ 1; V†[:,h] · V†[:,h] ≃ 1 and
– ∀h 6=l U†[:,h] · U†[:,l] ≃ 0;V†[:,h] · V†[:,l] ≃ 0.

In other words, U†U
T
† ≃ In and V†V

T
† ≃ Im.

• Σ† ∈ diag(Rr
+) and is potentially interval-valued.

As we see in Figure 2(a), an interval-valued data entry
has minimum and maximum values for each of the original
basis vectors and can be considered as a (high-dimensional)
box in the original space. As we also see in the figure, the
transformation obtained through the decomposition process
would represent each basis vector of the latent seman-
tic space with an interval-valued column vector, V†[:, h],
bounded with a minimum and a maximum. Given this
interval-valued latent space defined by the matrix V†, the
projection of the data entry, defined by the row M†[i, :], onto
the basis vector V†[:, h] would be represented as an interval
defined by U†[i, h] × Σ†[h, h], where × is an interval alge-
braic multiplication as defined in Section 2.1 (Figure 2(b)).

3.2 Imprecision of Interval-Valued Latent Spaces

Unlike in the basic SVD operation, we cannot seek for an
exact decomposition of the input matrix M†, nor we can
treat the constraint U†U

T
† = V†V

T
† = I as a hard constraint:

The reason for both of these relaxations is implicit in the def-
inition of interval-valued multiplication given in Section 2.1.

Theorem 1 (Scalar Theorem for ×). Let a = [a∗, a
∗] and

b = [b∗, b
∗] be two non-zero intervals. Let c = [c∗, c

∗] = a× b,
where × is interval-valued matrix multiplication. Then,

(c∗ = c∗)→ (a∗ = a∗) ∧ (b∗ = b∗).

Proof 1. As we have seen in Section 2.1, [a∗, a
∗] × [b∗, b

∗] =
[c∗, c

∗], where

c∗ = min(a∗ × b∗, a∗ × b∗, a∗ × b∗, a
∗ × b∗),

c∗ = max(a∗ × b∗, a∗ × b∗, a∗ × b∗, a
∗ × b∗)].

If, however, we are further given that c = a × b is scalar, this
implies that

min(a∗ × b∗, a∗ × b∗, a∗ × b∗, a
∗ × b∗) =

max(a∗ × b∗, a∗ × b∗, a∗ × b∗, a
∗ × b∗)],

which can only happen if either a or b is a zero interval or we have
(a∗ = a∗) and (b∗ = b∗). ♦

In other words, the only way the multiplication of two inter-
val values would return a scalar value is when both [a∗, a

∗]
and [b∗, b

∗] themselves are scalars; i.e., a∗ = a∗ and b∗ = b∗.
This further implies that the constraint U†U

T
† = V†V

T
† = I

cannot be exactly satisfied.

Theorem 2 (Scalar Theorem for Dot Product). Let x be a
k dimensional interval-valued vector. Then the dot product of x
with itself (i.e., x.x) is scalar-valued only if all the entries in x are
scalar-valued.

Proof 2. From the definition of dot product, we have

x.x =
∑

i=1...k

x[i]× x[i], where x ∈ R
k

which is, by definition of interval-valued matrix multiplication,

x.x =
∑

i=1...k

[min(x∗[i]
2, x∗[i]2),max(x∗[i]

2, x∗[i]2)].

Since both x∗[i]
2 and x∗[i]2 are non-negative, the only way the

equality∑
i=1...k

min(x∗[i]
2, x∗[i]2) =

∑
i=1...k

max(x∗[i]
2, x∗[i]2)

holds is if for all i, we have x∗[i] = x∗[i]. ♦

Note that, as a corollary of above theorem, we cannot have
XXT scalar-valued unless X is scalar-valued.

Corollary 1. Let X be an interval-valued matrix and let S be a
scalar-valued matrix. Then, the following is true:

(XXT = S)→ X∗ = X∗.

♦

This is because for S to be scalar-valued, the diagonal of
S should be scalar-valued. Since for all h, we also have
S[h] = X [h].X [h], then by Theorem 2, if S is scalar-valued
than each and every row, X [h] (and consequently the entire
matrix X) must also be scalar-valued.

Corollary 2. Corollary 1 further implies that U†U
T
† and V†V

T
†

cannot be equal to scalar-valued matrix, I , which means that an
exact decomposition of interval-valued matrices is not possible. ♦

Given the inherent imprecision in interval-valued latent
spaces, we define decomposition accuracy as follows:

Definition 5 (Decomposition Accuracy). Given the above, let
M† be an interval-valued matrix, decomposed into U†, Σ†, and

V T
† and M̃† be the interval-valued matrix obtained by

M̃† = U†Σ†V
T
† ,

recombining U†, Σ†, and V T
† using the dot product operation,

defined in terms of the interval algebraic operations introduced in
Section 2.1. Let M̃∗ and M̃∗be the scalar-valued matrices obtained
by considering the minimum and maximum values of the intervals
in M̃†, respectively. We measure the reconstruction accuracy in
terms of the Frobenius norms of the difference matrices:

∆(M∗, M̃∗) =

(

‖M∗ − M̃∗‖

‖M∗‖

)

;∆(M∗

, M̃
∗) =

(

‖M∗ − M̃∗‖

‖M∗‖

)

.

To obtain a single measure of accuracy, we con-
vert these into accuracies, Θ(M∗, M̃∗) = max(0, 1 −
∆(M∗, M̃∗)) and Θ(M∗, M̃∗) = max(0, 1 − ∆(M∗, M̃∗)),
and combine them using Harmonic mean: ΘHM (M, M̃) =
HarmonicMean(Θ(M∗, M̃∗),Θ(M∗, M̃∗)).

3.3 Interval-Valued Latent Semantic Alignment (ILSA)

Let V† be an interval-valued factor matrix representing the
latent semantics of the interval-valued data, M†. As we have
discussed in Section 3.1 (and visualized in Figure 2(a)) we
would expect that the columns of the V† will be quasi-
orthogonal (i.e., for all i 6= j, V†[:,i].V†[:,j] ≃ 0 and, for all i,
V†[:,i].V†[:,i] ≃ 1) even though, as we have seen in Section 3.2,
we cannot expect that V†[:,i].V†[:,j] = 0 or V†[:,i].V†[:,i] = 1. In
fact, since per Theorem 2, the only way the dot product of a
vector, x, with itself is scalar-valued is when this vector itself
is scalar-valued, the only way we can even approximate
the quasi-orthonormality constraint is when for all i, we
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Fig. 3: Cosine similarities among min and max vectors: the
higher the cosine similarity, the more similar the minimum
and maximum factor matrices are, indicating higher pre-
cision in the decomposition (averaged for 100 matrices as
described in Table 1, Section 6, default configuration)

have V∗[:,i] � V ∗
[:,i], where V∗[:,i] is the interval-valued vector

consisting of the minimum entries of the intervals in V†[:,i],
whereas V ∗

[:,i] consists of the maximums.

Given this observation, we can now present an inter-
val latent semantic alignment problem, which would op-
timally combine minimum and maximum vectors to form
an interval-valued latent space. In particular, since we have
seen above that the interval-valued vectors which define the
latent semantics of the data must be such that v∗ � v∗, we
can formulate this as a stable marriage (or stable matching)
problem between two equally sized sets of vectors:

Problem 1 (Stable Min-Max Vector Alignment). Let us be
given two sets of unit-length vectors, V1 = {�v∗1, . . . , �v∗r}
and V2 = {�v∗1 , . . . , �v

∗
r}. Let us also be given the preference

function between two vectors, x and y, as abs(cos(x, y)). Our
goal is to find pairing/mapping μ = {μ1, . . . , μr} (where
μi = 〈μl,i, μh,i〉) among the vectors from V1 and V2, such that
there are no two minimum and maximum vectors, va ∈ V1 and
vb ∈ V2, which would both align better with each other than their
current assignments.

While it is known that this problem has an O(r2) solution
[31], this does not guarantee that the solution is also optimal
in terms of maximizing overall alignments among the paired
minimum and maximum vectors. Therefore, we consider an
alternative formulation of the problem:

Problem 2 (Optimal Min-Max Vector Alignment). Let us
be given two sets of unit-length vectors, V1 = {�v∗1, . . . , �v∗r}
and V2 = {�v∗1 , . . . , �v

∗
r}. Let us also be given the preference

function between two vectors, x and y, as abs(cos(x, y)). Our
goal is to find pairing/mapping μ = {μ1, . . . , μr} (where

μi = 〈μl,i, μh,i〉) among the vectors from V1 and V2, such that∑
1≤i≤r abs(cos(�v∗μl,i

, �v∗μh,i
)) is maximum, where abs means

absolute value and cos means cosine similarity.

This is an instance of the linear assignment problem [32] and
can be solved using one of the many algorithms, such as the
Hungarian algorithm with O(r3) time complexity.

Once a mapping, μ, is identified, then for any 1 ≤ i ≤ r
such that cos(�v∗μl,i

, �v∗μh,i
) is negative, we can realign their

directions by multiplying �v∗i with −1 so that both �v∗i and
�v∗i are pointing in a similar direction. As we see in Figure 3,
the algorithm helps improve the alignment between the
minimum an maximum basis vectors, especially for low
rank entries which are often critical in many analysis and
recommendation applications.

3.4 Alternative Decomposition Strategies

We note that, given an interval-valued matrix, M†, different
applications may seek different types of factor matrices and
core matrix: some applications may need all of the result-
ing matrices be interval-valued, some others may need to
capture the underlying imprecision in the form of interval-
valued factor and/or core matrices, while others may re-
quire all matrices to be scalar. In particular, we consider
three distinct application semantics:

3.4.1 Decomp. Target (a): Interval-Valued U†, Σ†, and V†

In the most general decomposition strategy, which we refer
to as decomposition target-a (option-a), the application
captures the imprecision in the data and represents it in
terms of imprecise factor and core matrices. We construct
interval-valued U†, Σ†, and V† matrices by combining the
corresponding entries from U∗, Σ∗, V∗ and from U∗, Σ∗,
V ∗, respectively. More specifically, for all 1 ≤ i ≤ m and
1 ≤ j ≤ r, we have

U†[i, j] =

{
〈�u∗μl,j

[i], �u∗
μh,j

[i]〉, if �u∗μl,j
[i] ≤ �u∗

μh,j
[i]

avg(�u∗μl,j
[i], �u∗

μh,j
[i]), otherwise

In particular, when the minimum and maximum entries in
U∗ and U∗ do not lead to a valid interval, we replace the
entry with the mean of the values to represent the best
approximation we have for that entry. For all 1 ≤ j ≤ r,
Σ†[j, j] and, for all 1 ≤ i ≤ m and 1 ≤ j ≤ r, V†[i, j] are
computed similarly.

3.4.2 Decomp. Target (b): Scalar U and V ; Interval Σ†

One difficulty with the above construction is that the
columns of the U† and V† matrices are interval-valued and,
thus, it is difficult to interpret them as the alternative basis
of a vector space. In fact, while for all 1 ≤ j ≤ r, �u∗j and �u∗

j

are themselves unit length, the same cannot be said for the
interval-valued vector �uj since the norm operation is not de-
fined for interval-valued vectors. Therefore, in decomposi-
tion target b (option-b), the factors matrices are maintained
scalar-valued (i.e., precise), whereas the core which repre-
sents the relationships among the factors are interval-valued
to capture the underlying imprecision. We first obtain scalar
U by (a) first constructing an X matrix, such that, for all
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1 ≤ i ≤ n and 1 ≤ j ≤ r, X [i, j] = avg(~u∗µl,j
[i], ~u∗

µh,j
[i])

and then (b) renormalizing the columns of the X matrix:

U [i, j] =
X [i, j]

2

√∑
1≤h≤n X [h, j]2

.

Similarly, the scalar V matrix is obtained by first con-
structing a Y matrix and renormalizing the columns of Y .
Intuitively, U and V matrices are scalar-valued matrices,
both consisting of unit length columns. Given these, we then
obtain the core matrix Σ†[j, j] for 1 ≤ j ≤ r as



ρj × 〈Σ∗[µl,j , µl,j],Σ
∗[µh,j, µh,j ]〉,

if Σ∗[µl,j , µl,j ] ≤ Σ∗[µh,j , µh,j]
ρj × avg(Σ∗[µl,j , µl,j ],Σ

∗[µh,j , µh,j]),
otherwise

where ρj =
(∑

1≤h≤n X [i, j]
)
×

(∑
1≤h≤m Y [i, j]

)
. Intu-

itively, we rescale the non-zero values of the interval-valued
core matrix Σ† to account for the renormalization factors of
the corresponding columns of U and V .

Option-b leads to scalar-valued factor matrices, U and
V , and an interval-valued core matrix, Σ†. Intuitively, this
provides alternative basis vectors for the rows and columns
of the input matrix M and an interval-valued strength for
each basis vector (captured by the corresponding entries of
the diagonal matrix, Σ†).

3.4.3 Decomp. Target (c): Scalar U , Σ, and V

As a third option, we can obtain scalar-valued approxima-
tion for Σ by (a) first renormalizing U and V in L2-Norm as
in Section 3.4.2 and, then, (b) replacing each diagonal entry
of Σ with the mean value of the corresponding interval.
This approach, which we refer to as decomposition target-
c (option-c), leads to a scalar-valued core matrix, Σ, along
with scalar-valued factor matrices, U and V . In this case,
despite the imprecision in the input matrix, the application
requires scalar-valued factors and core (e.g. to be compatible
with algorithms and tools that assume scalar-valued factor
and core matrices to support recommendations).

4 INTERVAL SVD (ISVD)

In this section, we will introduce alternative decomposition
strategies to obtain SVD of interval-valued matrices, as
defined in Section 3.1. We start with a naive approach.

4.1 Naive Approach (ISVD0): Average and Decompose

As we discussed in Section 3.2, we are not seeking an exact
decomposition of interval-valued matrices, but only an ap-
proximation. Therefore, the very first approach to consider
for solving the decomposition problem is to simplify the
input matrix into a simple scalar matrix by representing
each interval by its average (see the column labeled ISVD0

in Figure 4): Let M [i, j] be an interval-valued entry [a∗, a
∗]

in M and let the corresponding entry in the average matrix

be Mavg[i, j] =
a∗+a∗

2 . We approximate the singular value
decomposition of M with rank r as

ISV D0(M, r) ≃ SV Davg(M, r) = SV D(Mavg, r).

This approach results in U and V matrices that are scalar
and orthonormal and a Σ core matrix that is also scalar-
valued (i.e., it is compatible only with the decomposition
target-c, discussed in Section 3.4).

4.2 ISVD1: Decompose and Align

In this section, we note that, in order to support a quasi-
orthogonal latent-semantics space visualized in Figure 2(a),
the vectors in each of V1 (and similarly in V2) must be as
mutually orthogonal as possible. Therefore, we can obtain
V1 and V2 by decomposing the minimum and maximum
matrices, M∗ and M∗, of the given interval-valued ma-
trix, M†, separately and aligning the resulting factor/core
matrices: Let us split M† into two scalar-valued matrices
M∗ and M∗ such that if M†[i, j] is an interval [a∗, a

∗],
then M∗[i, j] = a∗ and M∗[i, j] = a∗. Given these, we
can obtain two separate matrix decompositions of rank r,
SV D(M∗, r) = U∗Σ∗V

T
∗ and SVD(M∗, r) = U∗Σ∗V ∗T .

4.2.1 Latent Semantic Alignment

Once we obtain U† = [U∗, U
∗],Σ† = [Σ∗,Σ

∗],V† = [V∗, V
∗]

after decomposition, we then apply interval latent semantic
alignment (ILSA, Section 3.3) to align the eigenvectors in
matrix V† and adjust the rank-order of the rows of Σ† and
the rank-order and direction of the columns in U†. This is
visualized under the column labeled ISVD1 in Figure 4.

Note that in the discussion in Section 3.3, V† is taken
as an interval matrix, where entries in V∗ are smaller than
the corresponding entries in V ∗ (similarly for Σ†, and U†).
This, however, does not necessarily hold in practice since
SV D(M∗, r) = U∗Σ∗V

T
∗ and SVD(M∗, r) = U∗Σ∗V ∗T

can lead to situations where V∗[i, j] > V ∗[i, j]. This, how-
ever, does not impact the latent semantic alignment process
as the algorithm does not rely on V∗[i, j] being ≤ V ∗[i, j]
and only seeks an alignment where V∗[i, j] ≃ V ∗[i, j].

4.2.2 Construction of U†, Σ†, and V† Matrices

The final step is to construct the U†, Σ†, and V† matrices
corresponding to the singular value decomposition of the
interval-valued input matrix, M†, according to the decom-
position target described in Section 3.4: this leads to three
schemes, ISVD1-a, with interval-valued U†, Σ†, and V† ma-
trices, ISVD1-b, with scalar-valued U and V and interval-
valued Σ†, and ISVD1-c, with scalar-valued U , Σ, and V .

4.3 ISVD2: Decompose, Solve, Align

The ISVD1 algorithm described in the previous section
first splits the interval-valued input matrix, M†, into its
minimum and maximum valued components, M∗ and M∗,
decomposes them independently, and then aligns the result-
ing latent semantics before recomposing the resulting U†,
Σ†, and V† matrices. A potential problem with this strategy
is that M∗ and M∗ are decomposed independently and
this may introduce errors in the overall decomposition. An
alternative strategy would be to first finding left and/or
right singular vectors of the interval-valued matrix M† and
using these to seek for the final U†, Σ†, and V† matrices.

Let us remember from Section 2.2.1 that when M is a
scalar-valued matrix and M = UΣV T is its singular value
decomposition, then we have the following: (a) the columns
of U , also called the left singular vectors of matrix M , are the
eigenvectors of the m ×m matrix, MMT ; (b) the columns
of V , or the right singular vectors of M , are the eigenvectors
of the n × n matrix, MTM ; and (c) the diagonal entries of
Σ, also known as the singular values of M , are the square

Authorized licensed use limited to: Texas A M University. Downloaded on August 18,2020 at 05:59:53 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 4: ISVD decomposition strategies for interval-valued input data

roots of the eigenvalues of MMT and MTM . Therefore, a
more principled way to seek the SVD of an interval-valued
matrix would be to first compute an n × n square matrix,
A = MMT , through interval-valued matrix multiplication
(discussed in Section 2.1) and, then, seek the eigenvectors
and eigenvalues of this matrix.

4.3.1 Eigen-Decomposition of a Square Matrix

[33], [34] define the eigen-decomposition of an interval
valued matrix A† as a solution to the A† �v† = λ�v† problem,
where �v† is an interval-valued eigen-vector and λ is a scalar.
[33], [35] provide bounds and linear-programming based
solutions to solve this problem. In contrast, [36] reformu-
lates the problem as seeking interval eigen-values of scalar-
valued eigen-vectors. In this paper, we consider a more
general solution, where we seek interval-valued eigen-values,
corresponding to interval eigen-vectors: Let A† = MT

† M† be an
interval-valued square matrix. For simplicity, let us assume
that A† is a 3× 3 interval matrix:

A† =

⎡
⎣[a∗, a

∗] [b∗, b
∗] [c∗, c

∗]
[d∗, d

∗] [e∗, e
∗] [f∗, f

∗]
[g∗, g

∗] [h∗, h
∗] [i∗, i

∗]

⎤
⎦ .

Let Λ† = [λ∗, λ
∗] be an interval-valued eigenvalue of A

and �v = [x, y, z]T be the corresponding interval-valued
eigenvector. Since (by definition) A† �v† = λ† �v†, we have⎡

⎣[a∗, a
∗] [b∗, b

∗] [c∗, c
∗]

[d∗, d
∗] [e∗, e

∗] [f∗, f
∗]

[g∗, g
∗] [h∗, h

∗] [i∗, i
∗]

⎤
⎦
⎡
⎣xy
z

⎤
⎦ = [λ∗, λ

∗]

⎡
⎣xy
z

⎤
⎦ .

By applying interval-valued algebra and simple matrix al-
gebra, we can rewrite the above equality as⎡
⎣ [a∗x+ b∗y + c∗z, a

∗x+ b∗y + c∗z]
[d∗x+ e∗y + f∗z, d

∗x+ e∗y + f∗z]
[g∗x+ h∗y + i∗z, g

∗x+ h∗y + i∗z]

⎤
⎦ =

⎡
⎣[λ∗x, λ

∗x]
[λ∗y, λ

∗y]
[λ∗z, λ

∗z]

⎤
⎦ .

It is easy to see that the above equality can be split into a
minimum and maximum component:⎡

⎣a∗x+ b∗y + c∗z
d∗x+ e∗y + f∗z
g∗x+ h∗y + i∗z

⎤
⎦ =

⎡
⎣λ∗x
λ∗y
λ∗z

⎤
⎦

⎡
⎣a

∗x+ b∗y + c∗z
d∗x+ e∗y + f∗z
g∗x+ h∗y + i∗z

⎤
⎦ =

⎡
⎣λ

∗x
λ∗y
λ∗z

⎤
⎦ .

In other words, to obtain the eigen-decomposition of the
original interval-valued matrix, A†, we can instead seek the
eigen-decompositions of the matrices A∗ and A∗, where

A∗ =

⎡
⎣a∗ b∗ c∗
d∗ e∗ f∗
g∗ h∗ i∗

⎤
⎦ and A∗ =

⎡
⎣a

∗ b∗ c∗

d∗ e∗ f∗

g∗ h∗ i∗

⎤
⎦

to obtain IEigDec(A∗, r) = (V∗,Λ∗) and
IEigDec(A∗, r) = (V ∗,Λ∗), where the matrices V∗

and V ∗ capture the eigenvectors and the vectors Λ∗ and
Λ∗ are diagonal matrices encoding the square roots of the
eigenvalues of matrices, A∗ and A∗.

4.3.2 Recovery of the U∗ and U∗ Matrices

Given the eigen-decomposition of A† = MT
† M†, which

provides us V∗ and V ∗ and the Λ∗ and Λ∗, the next step of
the process involves computation of the U∗ and U∗ matrices
using V∗, V ∗, Λ∗(= Σ2

∗), and Λ∗(= Σ∗2) matrices. This can
be achieved by directly relying on the definition of SVD:
U∗ = M∗((V∗)

T )−1(Σ∗)
−1 and U∗ = M∗((V ∗)T )−1(Σ∗)−1.

4.3.3 Latent Semantic Alignment and Construction of U†,

Σ†, and V† Matrices

Once the U∗, U∗, V∗ and V ∗ are obtained, we can con-
struct the U†, Σ†, and V† matrices by following the same
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steps in Section 4.2.1. These steps are visualized under
the column labeled ISVD2 in Figure 4. Note that, as also
discussed in Section 4.2.1, the decompositions of A∗ and
A∗ can lead to situations where V∗[i, j] > V ∗[i, j] and/or
Σ∗[i, j] > Σ∗[i, j]. Similarly, U∗ and U∗ computed using
these matrices can contain cases where U∗[i, j] > U∗[i, j].
As before, these entries do not negatively impact the latent
semantic alignment process and, thus, are corrected as part
of the final step of the decomposition process (Section 3.4)
which returns (ISVD2-a) interval-valued U†, Σ†, and V†

matrices, (ISVD2-b) scalar-valued U and V and interval-
valued Σ†, or (ISVD2-c) scalar-valued U , Σ, and V .

4.4 ISVD3: Decompose, Align, Solve

In this section, we further consider an alternative approach
where, instead of obtaining U∗ and U∗ matrices indepen-
dently, we (a) first solve for the V† and Σ† matrices, (b) align
the V∗ and V ∗ matrices, and then (c) use these to compute
the U† matrix through interval-valued matrix inversion
(Figure 4). Let, as before, A† be an n × n square matrix,
A† = M†M

T
† , obtained through interval-valued matrix mul-

tiplication (Section 2.1). Let matrices V∗ and V ∗ capture the
eigenvectors and Σ∗ and Σ∗ be diagonal matrices encoding
the square roots of the eigenvalues of matrices A∗ and A∗,
respectively, as described in Section 4.3.1.

4.4.1 Latent Semantic Alignment

Given the V∗ and V ∗ matrices along with the corresponding
Σ∗ and Σ∗, we first seek the latent semantic alignment
through ILSA, as described in Section 3.3. Given the latent
alignment, we can next compute the interval-valued V†

matrix as in Section 3.4.1. The interval-valued core matrix
Σ† is also computed similarly, using the Λ∗ and Λ∗ matrices.

4.4.2 Recovery of the matrix U†

Given the interval valued matrices V† and Σ†, we can then
compute the interval-valued U† matrix relying on the def-
inition of SVD: U† = M†((V†)

T )−1(Σ†)
−1. This, however,

requires us to invert interval-valued matrices. We discuss
how to achieve this next.

4.4.2.1 Inverse of a Non-Negative Interval-Valued, Σ†:
Let S = Σ† be a r × r diagonal matrix, where the entries
in the diagonal may be interval values and the rest of the
entries are 0. The entries in the diagonal are non-negative
since they are obtained through square-roots of eigenvalues.
We seek an r×r diagonal matrix, S−1, such that S S−1 = Ĩ ,
where Ĩ is a k×k interval-valued matrix, approximately equal
to the identity matrix. More specifically, for all 1 ≤ i ≤ r,
we have Ĩ(i, i) = [1− ǫi, 1 + ǫi], where 0 ≤ ǫi ≤ 1.

Given the above, let S(i, i) = [si∗, s
∗
i ] and S−1(i, i) =

[σi∗, σ
∗
i ]. We seek σi∗ and σ∗

i values that minimize the value
of ǫi subject to the constraints (1) si∗ × σi∗ = 1 − ǫi, (2)
s∗i × σ∗

i = 1 + ǫi, (3) σi∗ ≤ σ∗
i , and (4) 0 ≤ ǫi ≤ 1. Note that

the first two constraints can be combined to obtain σi∗ =
1−ǫi
si∗

and σ∗
i = 1+ǫi

s∗i
, which, together with the third

constraint, lead to the inequality 0 ≤ s∗i −si∗
s∗i +si∗

≤ ǫi ≤ 1.

This constraint shows that ǫi is minimum when it is
equal to

s∗i −si∗
si∗+si∗

, and this case works when σi∗ = σ∗
i .

Therefore, elements in interval inverse matrix S−1 have
only scalar values, where σi∗ = σ∗

i . Additionally, when
σi∗ = σ∗

i = σi, the equations, si∗ × σi = 1 − ǫi and
s∗i × σi = 1 + ǫi, together can be used to get σi =

2
si∗+s∗

i

.

4.4.2.2 Inverse of an Interval-Valued Matrix, V†: Note
that the above inversion process is applicable to only square,
diagonal interval-valued matrices. Unfortunately, the factor
matrix, V†, is not a diagonal matrix. Therefore, its inverse
cannot be obtained using this method. We therefore, need to
approximate V −1

† , by (a) first computing Vavg by replacing
each interval in V† with its mean, (b) inverting Vavg , and (c)
returning V −1

avg as V −1
† . Note that, one difficulty with this

approach is that Vavg may not always be invertible. We,
therefore, first check whether Vavg is well-conditioned and,
if that is not the case, use Moore-Penrose pseudo-inverse
for V −1

avg (or alternatively, revert back to ISVD2). This can be
considered as a generalization of the inverse matrix – we
adapt SVD to compute pseudo-inverse and replace singular
values smaller than 0.1 with zero.

4.4.3 Construction of U†, Σ†, and V† Matrices

Given M† and the inverses of the factor matrix V† and the
core matrix Σ†, we compute the factor matrix U† using
the equation U† = M†((V†)

T )−1(Σ†)
−1. This is visualized

under the column labeled ISVD3 in Figure 4.
As discussed in Sections 4.2.1 and 4.3.3, the decomposi-

tions of A∗ and A∗ can lead to situations where V∗[i, j] >
V ∗[i, j] and/or Σ∗[i, j] > Σ∗[i, j]. These entries do not
negatively impact the latent semantic alignment process.
They, moreover, also do not impact the computation of
U† = M†((V†)

T )−1(Σ†)
−1, since (as described above) both

Σ†)
−1 and ((V†)

T )−1 involve averaging of the interval-
valued entries. Therefore, these misordered elements are
corrected as part of the final step of the decomposition
process described in Section 3.43, which returns, depending
on the decomposition target, (ISVD3-a) interval-valued U†,
Σ†, and V† matrices, (ISVD3-b) scalar-valued U and V and
interval-valued Σ†, or (ISVD3-c) scalar-valued U , Σ, and V .

4.5 ISVD4: Decompose, Align, Solve, Recompute

In this section, we consider a variant of ISVD3, which inher-
its its benefits, but further reduces the degree of imprecision
in the resulting interval-valued factor matrices.
4.5.1 Recomputation of the Left Singular Vectors

As we discussed in the previous sections, the decomposition
of interval-valued matrices potentially results in interval-
valued factor matrices – as discussed in Section 3.3, the
smaller are the sizes of the intervals in these factor matrices,
the more precise are the resulting factors. Therefore, as
discussed before, it is important to keep these intervals
smaller (or equivalently, keep the minimum and maximum
versions of the eigenvectors similar) as long as this does not
introduce inaccuracies in the overall decomposition.

The ISVD4 approach follows the same steps of ISVD3,
up to the computation of the left singular vectors matrix,
U†, using the (aligned) right singular-values, V†, obtained
through eigen-decomposition of minimum and maximum
matrices. At that point, instead of using the original V†

factor matrix, ISVD4 introduces an extra step to recompute
the right singular vector matrix relying on the definition of
SVD: V† = M(V T

† )−1Σ−1
† . Intuitively, this recomputation

step identifies minimum and maximum factor matrices, V∗

and V ∗, that are compatible with the U† factor, which itself
benefits from the alignment step for the left-singular vectors.

3. This also applies to ISVD4 described next.

Authorized licensed use limited to: Texas A M University. Downloaded on August 18,2020 at 05:59:53 UTC from IEEE Xplore.  Restrictions apply. 
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(b) cos(V∗[i], V
∗[i]) and cos(U∗[i], U

∗[i]) after the
recomputation of V s (the higher the better)

Fig. 5: Cosine similarities among min and max vectors: the
higher the cosine similarity, the more similar the minimum
and maximum factor matrices are, indicating higher pre-
cision in the decomposition (averaged for 100 matrices as
described in Table 1, Section 6, default configuration)

Figure 5 visualizes how matrix re-computation affects
eigenvectors’ alignment. In the figure, we plot cosine simi-
larities between the corresponding eigenvectors in V∗ and
V ∗, considered in increasing order of singular values –
note that, the more similar the minimum and maximum
versions of the eigenvectors is (i.e., the more precise the
factors are), the higher is the cosine similarity. The figure
reports the cosine similarity values before recomputation and
after recomputation. As we see in Figure 5, for all phases,
the first few eigenvectors (with the largest singular values)
have the highest cosine similarities (indicating that they
are more precise). On the other hand, Figure 5(a) shows
that the alignment between the corresponding vectors in
U∗ and U∗ (obtained in ISVD3 through the equation U† =
M†((V†)

T )−1(Σ†)
−1) is very high, despite using less precise

V† vectors in the construction: intuitively, the equation used
for the U∗ and U∗ matrices weigh the contribution of the
more precise entries in the V∗ and V ∗ matrices through
multiplication with the inverses of the singular values.

ISVD4 leverages this “corrective” behavior to re-obtain
the V∗ and V ∗ matrices using an extra step V† =
M(V T

† )−1Σ−1
† . The result is visualized in Figure 5(b): as

we see here, after the recomputation step, the V∗ and V ∗

matrices become much more similar, indicating more precise
factor matrices, an improvement which (as we detail in
Section 6) contributes to more accurate decompositions.

4.5.2 Construction of U†, Σ†, and V† Matrices

After re-computing interval-valued factor matrices V∗ and
V ∗, we can follow the same process described in the previ-
ous sections to reconstruct U†, Σ†, and V†. The steps are
visualized in the column labeled ISVD4 in Figure 4. As

before, depending on the decomposition target, this process
can lead to interval-valued matrices in ISVD4-a, scalar-
valued U , V and interval-valued Σ† in ISVD4-b, or scalar-
valued U , Σ and V in ISVD4-c.

5 INTERVAL-VALUED PMF (IPMF)

In the previous section, we discussed several techniques to
leverage latent semantic alignment to implement SVD on
interval-valued data. We now show that latent alignment of
minimum and maximum basis vectors can also be effective
in alternative factorization schemes, such as probabilistic
matrix factorization (PMF) introduced in Section 2.2.3.

We first consider interval-valued PMF (I-PMF) formu-
lation presented in [9], which takes as input an interval-
valued matrix M† ∈ R

n×m (of probabilities) and introduces
extra constraints, representing the minimum and maximum
terms, in the loss function presented in Section 2.2.3:

LI−PMF = ‖M∗ − UV T
∗ ‖

2
F + ‖M∗ − UV ∗T ‖2F

+λU‖U‖
2
F + λV (‖V∗‖

2
F + ‖V ∗‖2F ),

where V∗ and V ∗ represent the minimum and maximum
in interval matrix V†. Given this loss formulation, a local
minimum can be sought by applying a gradient decent in
U[i,:], V∗[j,:] and V ∗

[j,:] using the following partial derivatives:

∂LI−PMF

∂U[i,:]
=

m∑
j=1

[(U[i,:]V∗[j,:]
T −M∗[i, j])V∗[j,:]

+(U[i,:]V
∗
[j,:]

T −M∗[i, j])V ∗
[j,:]] + λUU[i,:]

∂LI−PMF

∂V∗[j,:]
T

=
n∑

i=1

(U[i,:]V∗[j,:]
T −M∗[i, j])U[i,:]

T + λV V∗[j,:]
T

∂LI−PMF

∂V ∗
[j,:]

T
=

n∑
i=1

(U[i,:]V
∗
[j,:]

T −M∗[i, j])U[i,:]
T + λV V

∗
[j,:]

T .

In this paper, we note that, while the above formula-
tion adopts extra constraints in loss function to capture
interval property of the data, it fails to consider the need
for alignment in interval-valued latent semantic spaces, as
discussed in Section 3.3. Hence, we propose semantically
aligned interval-valued PMF formulation (AI-PMF), which
adjusts the rank-order of eigen-vectors in V∗ and V ∗ in each
gradient descent iteration, after obtaining U , V∗ and V ∗

from the above equations:

V†aligned = [V∗aligned, V
∗
aligned] = ILSA(V∗, V

∗).

As we see in the next section, this latent semantic alignment
provides significant improvements in decomposition accu-
racy of interval-valued (probabilistic) data.

6 EXPERIMENTS

In this section, we evaluate the proposed techniques in the
presence of different distributions of interval-valued data.
We also demonstrate that the proposed approaches can be
applied to various real-world applications, including face
image analysis and collaborative filtering.

6.1 Datasets

We use both synthetic and real datasets to evaluate the
proposed matrix decomposition techniques in the context
of several data reconstruction and classification scenarios.
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TABLE 1: Experiment parameters for synthetic data (bold
values are defaults)

Parameter Values

Matrix
dimension

40× 250, 250 × 40, 25 × 400, 400 × 250,
250 × 400

Matrix
density

percentage of 0-values: 0%, 50%, 90%

Interval den-
sity

5%, 25%, 50%, 75%, 90%, 95%, 99%, 100%
(on non-zeros)

Interval inten-
sity

10%, 25%, 50%, 75%, 100%

Target rank uniform data: 5, 10, 20, 40, 100, full
anonymized and social media data:
5%; 50%; 100%

6.1.1 Synthetic Datasets

Table 1 provides an overview of the synthetic data scenarios
we have considered in this paper. As the table shows, we
have considered matrices of different sizes, dimensionali-
ties, densities, and intensities: interval-values are generated
by picking a cell in the matrix (based on the value of the
interval density parameter) and replacing the corresponding
scalar value by an interval whose size is determined by an
interval intensity parameter – given the intensity value X , the
scope of the interval is uniformly selected between 0% and
X% of the minimum value of the cell.

We considered two types of interval-valued data:

• uniform matrices do not have inherent structures –
the cells and interval-values are selected uniformly
randomly subject to constraints described in Table 1;

• anonymized matrices are obtained through general-
ization of random matrices; therefore, the resulting
interval-valued matrices represent the required de-
gree of anonymization. In particular, we consider 4
generalization levels: (a) L1 divides the domain into
100, (b) L2 into 50, (c) L3 into 20, and (d) L4 into
5 generalization intervals – note that the higher the
generalization level, the larger the corresponding inter-
vals and the more anonymized the data. Given these,
we generalize the input data to generate three matri-
ces with different mixtures of anonymization levels:
high anon. (L1:10%, L2:20%, L3:30%, L4:40%), medium
anon. (L1:25%, L2:25%, L3:25%, L4:25%), and low anon.
(L1:40%, L2:30%, L3:20%, L4:10%).

For each scenario, we created 100 random matrices and the
results presented are averages of the corresponding runs.

6.1.2 ORL Face Dataset

ORL face dataset [9] contains 32x32 pixels facial images
of the 40 individuals. The data set contains 10 images for
each individual. These 400 images are organized in the form
of a matrix M ∈ R

n×m, where n = 400, m = 1024;
i.e., each row represents a person’s face and each column
represents the pixel value at specific coordinates. We then
follow the strategy proposed in [9] to generate an interval-
valued matrix for the same data set and use these matrices
for the following applications:

• Reconstruction: In this task, we attempt to reconstruct
the original data matrix from the low-rank approxi-
mations and use root-mean square error to assess the
reconstruction accuracy.

(a) Accuracy

(b) Execution time breakdown

Fig. 6: Comparison of the alternative approaches for SVD
decomposition with interval-valued data (default configu-
ration, the higher the Harmonic mean, the better the result)

• NN-Classification: In this task, the goal is to use the
(scalar-valued) U factor for NMF based schemes and
U × S (more specifically [U∗ × S∗, U

∗ × S∗], since we
have interval valued matrices) factor for SVD based
schemes to identify an individual among the 40 that
are in the data set. For this purpose, we randomly select
50% rows per individual as training data and remaining
rows are used as test data. The classification is done
using 1-NN with Euclidean distance. When necessary,
for interval-valued data, we use the following interval-
valued Euclidean distance function:

dist(aint, bint) =
√
(a∗ − b∗)2 + (a∗ − b∗)2.

We evaluate accuracy using F1-score.
• Clustering-based Classification: With the ORL face data

set, we also consider classification through K-means
(where K = 40) clustering, using Euclidean dis-
tances as described above. Normalized mutual informa-
tion (NMI) [37] is used to assess cluster quality relative
to given class labels.

We repeated each task 100 times and are reporting averages.

6.1.3 Social Media Data Sets

6.1.3.1 Ciao and Epinions Datasets: We have per-
formed experiments with two ratings data sets: Epinions,
Ciao [11]. For both Epinions (22K users, 27 categories, ma-
trix density=0.26, interval density= 0.49, interval inten-
sity=2.44/4, full rank=27) and Ciao (7K users, 28 categories,
matrix density=0.28, interval density= 0.44, interval inten-
sity=2.20/4, full rank=28) data sets, we have considered
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TABLE 2: Comparison of the alternative approaches (for Option-b) with varying parameters
(the higher the Harmonic mean, the better the result)

Int. density ISVD0 ISVD1-b ISVD2-b ISVD3-b ISVD4-b

10% 0.702 0.689 0.689 0.702 0.702
25% 0.678 0.659 0.659 0.682 0.683
75% 0.641 0.657 0.657 0.681 0.681

100% 0.627 0.670 0.670 0.691 0.691

(a) Varying interval densities

Int. intensity ISVD0 ISVD1-b ISVD2-b ISVD3-b ISVD4-b

10% 0.708 0.709 0.709 0.709 0.696
25% 0.702 0.704 0.704 0.708 0.709
75% 0.658 0.681 0.681 0.698 0.698

100% 0.627 0.670 0.670 0.691 0.691

(b) Varying interval intensities

Mat. density ISVD0 ISVD1-b ISVD2-b ISVD3-b ISVD4-b

0% 0.627 0.670 0.670 0.691 0.691
50% 0.493 0.511 0.511 0.530 0.530
90% 0.425 0.431 0.431 0.451 0.451

(c) Varying matrix densities

Matrix conf. ISVD0 ISVD1-b ISVD2-b ISVD3-b ISVD4-b

25-by-400 0.697 0.758 0.758 0.789 0.789
40-by-250 0.627 0.670 0.670 0.691 0.691
250-by-40 0.627 0.670 0.670 0.691 0.691

400-by-250 0.503 0.535 0.535 0.541 0.542
250-by-400 0.503 0.535 0.535 0.541 0.542

(d) Varying matrix configurations
Rank ISVD0 ISVD1-b ISVD2-b ISVD3-b ISVD4-b

5 0.501 0.537 0.537 0.539 0.539
10 0.546 0.585 0.585 0.591 0.592
20 0.627 0.670 0.670 0.691 0.691
40 0.758 0.814 0.814 0.895 0.896

(e) Varying target ranks

For these data scenarios, the LP class of competitors return ≃
0.0 H-mean, indicating that they are not effective approaches for
interval-valued matrix decomposition.

user-category rating matrices, where each non-zero ma-
trix cell corresponds to a range of ratings a user provided
for items of a given category.

6.1.3.2 MovieLens Dataset: We use MovieLens-100K
dataset [10] for collaborative filtering evaluation. The data
set includes 19 genres, 100K ratings, 943 users (objects)
and 1682 movies (features). For this data set, we generate
a user-genre interval matrix, where each interval corre-
sponds to the range of ratings a user-provided for movies of
a given genre; consequently, the MovieLens data set has a
full rank 19. More specifically, we can consider these ratings
as a scalar matrix R ∈ R

n×m, where n = 943 and m = 1682,
and generate an interval matrix R† ∈ R

n×m from R:

δij := α× std({R[i
′

, j
′

]|(i
′

= i ∨ j
′

= j) ∧ (i
′

, j
′

) ∈ (i, j)})

R[i, j]† = [R[i, j]∗, R[i, j]∗] = [R[i, j]− δij , R[i, j] + δij ]

Above, α ∈ R
+ is a multiplicative scale coefficient. Given

this interval matrix R†, unknown ratings can be computed
by reconstructing the original matrix after low-rank approx-
imation. See [9] for more details. We use RMSE to evaluate
the accuracy of the reconstruction-based rating predictions.

6.2 Competitors

As we discussed in Section 4.3.1, [33], [35] proposed a linear-
programming based approach to solve this task. We have,
therefore, implemented and experimented also with their
proposed solution. We denote their linear-programming
based approaches as ”LPx”, where the subscript x denote
one of the three application semantics (or options), a, b or c.

As described in Section 6.1.2, we also compare proposed
ISVD approaches with NMF and I-NMF [9] for the face
analysis tasks: data reconstruction and classification. For
collaborative filtering with social media data, discussed in
Section 6.1.3, we used PMF and I-PMF [9] as competitors.

6.3 Results based on Synthetic Data Sets

6.3.1 Uniform Data

Figure 6 provides an overview of the accuracy and execution
time results for the default configuration:

• we obtain the highest accuracies using ISVD#-b class
of techniques (returning both scalar-valued factors and

interval-valued core) – highest overall accuracy is pro-
vided by ISVD4-b, which leverages both semantic align-
ment and latent space recomputation techniques;

• the ISVD#-c class of techniques (returning scalar val-
ued factor and core matrices) approximate the accuracy
of the ISVD0 technique – however, these include redun-
dant work;

• linear-programing based competitors [33], [35] have
poor accuracies and massive execution times; the rea-
son for this poor performance is that, as also acknowl-
edged by the authors, these approaches are effective
only when the interval ranges are very small, while
our proposed approaches are able to handle intervals
of varying sizes effectively.

Tables 2(a) through (e) show the accuracy results for ISVD#-
b class of techniques (which as we have seen above provide
the best overall accuracies) under various configurations re-
ported in Table 1. We also include ISVD0 as a fast alternative.
The results show that ISVD4-b provides the best accuracy
under all data scenarios considered and the faster alterna-
tive, ISVD0, is not able to provide competitive accuracy.

6.3.2 Anonymized Data

In Figure 7 (a)∼(c), we see decomposition results for interval
data generated through three privacy levels. The first thing
to note is that, once again, decomposition target ISVD#-b
(which has interval-valued core and scalar factor matrices)
provides the best overall accuracy, except for the very low-
rank (5%) decomposition under the low-privacy scenario
(with smaller number of large intervals). In that case, de-
composition target ISVD#-a, which maintains interval infor-
mation not only for the core, but also for the factor matrices,
leads to slightly better results. Once again, these results
confirm that ISVD4-b provides the overall best accuracy.

6.4 Results based on ORL Face Dataset

6.4.1 Reconstruction

Figure 8(a) shows reconstruction performance for target
ranks (10, 100, 200). As we see here, ISVD0, ISVD4-b, and
ISVD4-c provide best reconstruction accuracies. The com-
petitor techniques, NMF and I-NMF, provide significantly

Authorized licensed use limited to: Texas A M University. Downloaded on August 18,2020 at 05:59:53 UTC from IEEE Xplore.  Restrictions apply. 
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Anonymization 100% rank 50% rank 5% rank

High Privacy
H-mean Order H-mean Order H-mean Order

[10%, 20%, 30%, 40%]

Option a

ISVD1 0.749 13 0.652 12 0.512 5

ISVD2 0.751 12 0.653 11 0.512 5

ISVD3 0.770 10 0.654 10 0.501 12

ISVD4 0.769 11 0.634 13 0.470 13

Option b

ISVD1 0.869 6 0.691 3 0.512 3

ISVD2 0.869 6 0.691 3 0.512 3

ISVD3 0.935 1 0.703 2 0.513 1

ISVD4 0.935 1 0.703 1 0.513 1

Option c

ISVD0 0.878 3 0.685 5 0.501 7

ISVD1 0.832 8 0.673 8 0.501 10

ISVD2 0.832 8 0.673 8 0.501 10

ISVD3 0.876 4 0.685 7 0.501 9

ISVD4 0.876 4 0.685 6 0.501 8

(a) Anonymized data – high privacy

Anonymization 100% rank 50% rank 5% rank

Medium Privacy
H-mean Order H-mean Order H-mean Order

[25%, 25%, 25%, 25%]

Option a

ISVD1 0.740 13 0.650 13 0.513 5

ISVD2 0.742 12 0.652 12 0.513 5

ISVD3 0.773 11 0.659 11 0.507 12

ISVD4 0.814 10 0.661 10 0.490 13

Option b

ISVD1 0.867 6 0.691 6 0.514 3

ISVD2 0.867 6 0.691 6 0.514 3

ISVD3 0.934 2 0.703 2 0.514 1

ISVD4 0.934 1 0.703 1 0.514 1

Option c

ISVD0 0.900 3 0.693 3 0.508 7

ISVD1 0.846 8 0.681 8 0.508 10

ISVD2 0.846 8 0.681 8 0.508 10

ISVD3 0.898 5 0.693 5 0.508 8

ISVD4 0.898 4 0.693 4 0.508 8

(b) Anonymized data – medium privacy

Anonymization 100% rank 50% rank 5% rank

Low Privacy
H-mean Order H-mean Order H-mean Order

[40%, 30%, 20%, 10%]

Option a

ISVD1 0.583 11 0.479 10 0.247 1

ISVD2 0.602 10 0.489 9 0.247 1

ISVD3 0.546 12 0.446 13 0.238 7

ISVD4 0.546 12 0.456 12 0.218 13

Option b

ISVD1 0.765 3 0.479 10 0.245 3

ISVD2 0.765 3 0.583 3 0.245 3

ISVD3 0.805 1 0.599 1 0.245 5

ISVD4 0.805 1 0.599 1 0.245 5

Option c

ISVD0 0.763 5 0.578 4 0.236 11

ISVD1 0.734 8 0.565 7 0.236 8

ISVD2 0.734 8 0.565 7 0.236 8

ISVD3 0.763 5 0.578 6 0.236 10

ISVD4 0.763 5 0.578 5 0.236 11

(c) Anonymized data – low privacy

The LP class of competitors have ≤ 0.01 H-mean, indicating
that they are not effective approaches for interval-valued
matrix decomposition.

Fig. 7: Accuracy comparison for anonymized datasets for
different target ranks (the greener the cell, the better the
result – the tables are best viewed in color)

lower reconstruction accuracies. We note that, while the
relatively simpler ISVD0 appears to be competitive against
ISVD4-b in the reconstruction task, in the classification tasks
discussed next, performs less effectively.

6.4.2 NN-based Classification

Figure 8(b) shows classification performance for various
algorithms. As we see here, the best classification results are
obtained using ISVD1 and ISVD2 techniques, both of which
leverage latent semantic alignment, under low (20-30) rank
decomposition. Since classification task only relies on U
factors and the core matrix, the ISVD3 and ISVD4 techniques
(which attempt to further improve the latent space defined
by the V factor) do not provide additional benefits (and
in fact hurt the classification accuracies). It is important

(a) Reconstruction (the lower, the better)

(b) NN-based Classification (the higher, the better)

(c) Clustering-based Class. (the higher, the better)

Fig. 8: (a) Reconstruction and (b,c) classification results for
the ORL face data sets

to note that NMF and I-NMF competitors, both, provide
significantly lower accuracies than ISVD-based approaches.

6.4.3 Clustering-based Classification

The clustering results, shown in Figure 8(c), re-confirm
the NN-based classification results discussed above. Once
again, the best results are obtained using ISVD1 and ISVD2

techniques, both of which leverage latent semantic align-
ment, under low (�10) rank decomposition.

Finally, in Table 3 we consider the original face data
(scalar vectors) and processed interval-valued vectors and
compare them to ISVD2 based clustering for both accuracy
and execution time. As we see in this table, adding interval
information (scalar vectors vs. interval vectors) significantly
improves accuracy, but at a significant execution time cost.
The proposed interval-valued decomposition strategy cuts
down the clustering time significantly, while matching the
accuracy (at rank 20) provided by the interval vectors.
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TABLE 3: Accuracy and execution time for clustering-based
classification using original data vector, interval-valued data
vectors, and low-rank interval-value based data

Accuracy in terms of NMI; the higher,the better
res. scalar vectors interval vectors ISVD2-b (r = 20)

32 × 32 0.69 0.72 0.72
64 × 64 0.68 0.71 0.71

Exec.Time (decomp.+k-means) in seconds
res. scalar vectors interval vectors ISVD2-b (r = 20)

32 × 32 0.04 1.14 0.11 (0.08+0.03)
64 × 64 0.14 5.06 1.48 (1.44+0.04)

6.5 Results based on Social Media Data

6.5.1 Reconstruction Results

Figure 9 presents reconstruction accuracies for different
target ranks and decomposition semantics on three interval-
valued data sets, Ciao, Epinions, and MovieLens.

These results re-confirm that, in general, decomposition
target option-b (with interval-valued core and scalar fac-
tors) leads to best results, except for very low-rank decom-
positions, where option-a (with interval-valued core and
factors) becomes a better option.

For Ciao and Epinion data sets, we see that, as in the data
sets considered earlier, ISVD3 and ISVD4, which perform
latent alignment early, lead to better results. ISVD1 and
ISVD2, which perform late-alignment of the factors, are
more effective than ISVD3 and ISVD4 only for very low rank
decompositions. The MovieLens data set also has a similar
behavior: for relatively large decomposition ranks, ISVD3

and ISVD4, which perform latent alignment early, lead to
better results. For low rank decompositions (r ≤ 10) the
benefit of early alignment is lost and ISVD1 and ISVD2 are
(slightly) more effective.

6.5.2 Collaborative Filtering/Prediction Results

Figure 10 shows collaborative filtering performance in
RMSE with MovieLens-100K dataset for PMF, I-PMF and
AI-PMF. As the chart shows, the prediction accuracy of all
algorithms improves as we consider higher decomposition
ranks and the proposed latent semantic alignment based
approach, AI-PMF, leads to better prediction performance
than both PMF and I-PMF, for decomposition ranks > 60.
Most importantly, however, AI-PMF always performs better
than I-PMF indicating that, as expected, latent semantic
alignment helps achieve better handling of interval-valued
factors, also when considering factors with probabilistic in-
terpretations, rather than eigen-vector based interpretations
as considered in Section 3.3.

7 CONCLUSIONS

In this paper, we noted that many applications generate
interval-valued data, yet, existing data analysis tools (such
as matrix-decomposition operations) assume that all ob-
servations are scalar-valued. Building on this observation,
we presented eigen-vector based and probabilistic matrix-
decomposition techniques (interval singular value decomposi-
tion (ISVD) and aligned interval probability matrix factoriza-
tion (AI-PMF), respectively) that are designed for interval-
valued data sets. Experiments, under diverse data scenar-
ios and application semantics, showed that state-of-the-art

Ciao 
100% rank (=28) 50% rank (=14) 5% rank (=1)

H-mean Order H-mean Order H-mean Order

Option a

ISVD1 0.645 13 0.475 12 0.248 1

ISVD2 0.661 11 0.484 10 0.248 1

ISVD3 0.645 12 0.474 13 0.242 7

ISVD4 0.671 10 0.484 11 0.228 13

Option b

ISVD1 0.805 6 0.552 3 0.246 3

ISVD2 0.805 6 0.552 3 0.246 3

ISVD3 0.838 1 0.564 2 0.246 5

ISVD4 0.838 1 0.564 1 0.246 6

Option c

ISVD0 0.807 3 0.552 3 0.240 12

ISVD1 0.781 8 0.541 8 0.241 8

ISVD2 0.781 8 0.541 8 0.241 8

ISVD3 0.807 3 0.552 7 0.240 10

ISVD4 0.807 3 0.552 6 0.240 11

(a) Ciao data set

Epinion 
100% rank (=27) 50% rank (=14) 5% rank (=1)

H-mean Order H-mean Order H-mean Order

Option a

ISVD1 0.583 11 0.479 11 0.247 1

ISVD2 0.602 10 0.489 10 0.247 1

ISVD3 0.546 13 0.446 13 0.238 7

ISVD4 0.571 12 0.456 12 0.218 13

Option b

ISVD1 0.765 3 0.583 3 0.245 3

ISVD2 0.765 3 0.583 3 0.245 3

ISVD3 0.805 1 0.599 2 0.245 5

ISVD4 0.805 1 0.599 1 0.245 6

Option c

ISVD0 0.763 5 0.578 5 0.236 11

ISVD1 0.734 8 0.565 8 0.236 8

ISVD2 0.734 8 0.565 8 0.236 8

ISVD3 0.763 5 0.578 7 0.236 10

ISVD4 0.763 5 0.578 6 0.236 11

(b) Epinion data set

MovieLens-100k
100% rank (=19) 50% rank (=10) 5% rank (=1)

H-mean Order H-mean Order H-mean Order

Option a

ISVD1 0.633 6 0.616 6 0.547 1

ISVD2 0.737 5 0.720 5 0.547 1

ISVD3 0.527 12 0.537 12 0.445 7

ISVD4 0.215 13 0.267 13 0.242 13

Option b

ISVD1 0.765 3 0.730 1 0.536 3

ISVD2 0.765 3 0.730 1 0.536 3

ISVD3 0.768 1 0.728 4 0.533 5

ISVD4 0.768 1 0.729 3 0.532 6

Option c

ISVD0 0.581 9 0.553 10 0.400 11

ISVD1 0.589 7 0.564 7 0.412 8

ISVD2 0.589 7 0.564 7 0.412 8

ISVD3 0.581 9 0.554 9 0.405 10

ISVD4 0.581 9 0.553 11 0.399 12

(c) Movielens data set

The LP class of competitors have ≤ 0.01 H-mean, indicating
that they are not effective approaches for interval-valued
matrix decomposition.

Fig. 9: Accuracy comparison for social media datasets for
different target ranks (the greener the cell, the better the
result – the tables are best viewed in color)

linear-programming based eigen-decomposition techniques
are ineffective for interval-valued SVD. Results also showed
that by carefully combining interval- and matrix-algebra
operations, we can improve matrix decomposition accura-
cies and further improve the performance in image classi-
fication, images clustering and collaborative filtering in the
presence of interval-valued data.
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