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ABSTRACT

Imprecision and noise in the time series data may result in
series with similar overall behaviors being recognized as being
dissimilar because of the accumulation of many small local
differences in noisy observations. While smoothing techniques
can be used for eliminating such noise, the degree of smooth-
ing that needs to be performed may vary significantly at
different parts of the given time series. In this paper, we pro-
pose a content-adaptive smoothing, CA-Smooth, technique
to reduce the impact of non-informative details and noise in
time series by means of a data-driven approach to smoothing.
The proposed smoothing process treats different parts of
the time series according to local information content. We
show the impact of different adaptive smoothing criteria on a
number of samples from different datasets, containing series
with diverse characteristics.

CCS CONCEPTS

e Information systems — Temporal data.

KEYWORDS

Time series, smoothing, salient features

*Research is supported by NSF1909555 “pCAR: Discovering and Lever-
aging Plausibly Causal (p-causal) Relationships to Understand Com-
plex Dynamic Systems”, NSF1827757 “Data-Driven Services for High
Performance and Sustainable Buildings”, NSF1610282 “DataStorm:
A Data Enabled System for End-to-End Disaster Planning and Re-
sponse”, NSF1633381 “BIGDATA: Discovering Context-Sensitive Im-
pact in Complex Systems”, and “FourCmodeling”: EU-H2020 Marie
Sklodowska-Curie grant agreement No 690817.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

MEDES 19, November 12—14, 2019, Limassol, Cyprus

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6238-2/19/11...$15.00
https://doi.org/10.1145/3297662.3365830

-36 -

Silvestro Poccia
Univ. of Torino
Torino, Italy
poccia@di.unito.it

Maria Luisa Sapino
Univ. of Torino
Torino, Italy
mlsapino@di.unito.it

ACM Reference Format:

Rosaria Rossini, Silvestro Poccia, K.Selcuk Candan, and Maria
Luisa Sapino. 2019. CA-Smooth: Content Adaptive Smoothing of
Time Series Leveraging Locally Salient Temporal Features . In 11th
International Conference on Management of Digital EcoSystems
(MEDES ’19), November 12-14, 2019, Limassol, Cyprus. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3297662.
3365830

1 INTRODUCTION

Filtering is a function that transforms one time series into an-
other by altering the values of its elements in a way that takes
into account their neighborhoods. The filtering operation can
smooth, dampen, or accentuate fluctuations contained in
the time series data [16]. Smoothing is performed through a
convolution function that takes as input a time-series and a
smoothing filter — the convolution operation slides the filter
over the time series and for each position the overlapping
values of the series and the kernel are multiplied and summed

up:

Definition 1.1 (Smoothing). Given a time series T
[t1,t2,...,Tn] of length n, and a smoothing filter ®

[f1, ..., ®m], the convolution T * ¢ is defined as:

tq*q>:z¢k *t,;,]ﬁL%,
k

Where * denotes the convolution operator and m is the length
of the filter.

In this paper, we assume that the smoothing filter, ®, is

defined through a Gaussian filter:
m 1 o

¢ = Gz — E,O’) = 5752 202

The degree of the smoothing process can be controlled by
varying the smoothing weights, determined by the standard
deviation, o, of the Gaussian — note that o also defines
the width of the Gaussian kernel (a kernel of length 6o
captures ~ 99.9% of the smoothing weights). In Figure 1,
we see four different smoothed versions of a given series,
differing in the value of ¢ and thus the size of the smoothing
neighborhood considered: in general, the bigger the size of the

smoothing filter, the more details are lost as each smoothed
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(a) original time-series (b) alternative smoothings

Figure 1: Alternative smoothings of time series

(a) fixed scale smoothing

(b) content-adaptive smoothing

Figure 2: Fixed scale vs. content-adaptive smoothing

20

Figure 3: Three sample salient temporal features of
a time series: In [4], authors recognized that salient
temporal features can represent salient events on a
time series; in this paper, we argue that they can
also help partition a series into fragments that show
different characteristics

value captures a weighted average of a larger fragment of the
time series.

1.1 Proposed Approach: Content
Adaptive Smoothing of Time Series,
CA-Smooth

While smoothing can be used for eliminating noise, in prac-

tice, it may be difficult to determine a priori the amount
of smoothing that needs to be applied: in fact, the amount
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of smoothing that needs to be performed may vary depend-
ing on what part of the time series is being considered. In
particular, we argue that different parts (fragments) of the
series potentially carry different amounts of redundancy and,
thus, we propose to localize the smoothing process by (a)
partitioning the series into fragments, (b) which are then
independently smoothed according to their individual local
information characteristics. Therefore, in this paper, we pro-
pose a content adaptive smoothing technique, CA-Smooth,
to reduce the impact of non-informative details and noise
in time series by means of a data-driven approach to local
filtering. The four-step smoothing process treats the different
parts of the time series differently, depending on the local
information content:

e Locally-salient feature detection: In the first step,
CA-Smooth identifies locally salient features appearing
in the time series, at different scales, by means of a
salient feature detection algorithm [4] (see Figure 3).
Fragment detection: In the second step, the algo-
rithm uses these locally salient features to partition
the input series into coherent fragments.

Fragment characterization: In the third step, these
fragments are analyzed to identify their key properties
relevant for the smoothing operation. More specifically,
we consider three properties to characterize time series
fragments: entropy and representativeness.
Content-adaptive filtering: Finally, the identified
properties of each fragment are used for associating to
each time instant t a locally appropriate smoothing pa-
rameter, o(t), which will help preserve the critical local
information, while dropping the non relevant details
around time instant, t.

As visualized in Figure 2, the proposed content-adaptive
CA-smooth algorithm treats different parts of the time series
according to local the content.

1.2 Organization of the Paper

The paper is organized as follows: In the next section we
discuss related works. In Section 3, we introduce the details
of the proposed content adaptive smoothing strategy, CA-
Smooth. In Section 4, we present experimental evaluations
and we conclude the paper in Section 5.

2 RELATED WORK

Imprecision and noise in the time series data may result
in series with similar overall behaviors being recognized as
being dissimilar because of the accumulation of many small
local differences in noisy observations. This potentially affects
the results of (similarity based) clustering and classification
algorithms. In general, the phase of noise reduction is a very
important preprocessing step in time series analysis; for this
reason, many techniques have been developed [5, 14, 15] to
reduce and remove the noise from the signal.

Although smoothing has been recognised as a technique
that can contribute to noise reduction [2], recent studies
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including [8] have shown that existing unsupervised smooth-
ing technique do not significantly contribute to clustering
and classification improvement. In [8] authors show that
the automated application of smoothing without domain
expertise does not, on average, improve the performance
of baseline classifiers. This “negative result” motivates our
research: we claim that this lack of improvement is due to
the fact that unsupervised smoothing does not take into
account the peculiarities of the different portions of the con-
sidered time series; we therefore propose content adaptive
(data driven) techniques to mediate between unsupervised
and data/domain aware smoothing techniques. Time series
smoothing techniques have also been proposed to prioritize
end users attention: [11] proposes to smooth time series visu-
alizations as much as possible to remove noise, while retaining
large-scale structure to highlight significant deviations, and
develop the ASAP analytical operator that automatically
smooths streaming time series by adaptively optimizing the
trade-off between noise reduction (i.e., variance) and trend
retention (i.e., kurtosis).

An adaptive denoising algorithm presented in [6] consists
of two steps: given a target length of 2n 4 1, the first step
partitions time series into segments of 2n + 1 points, in such
a way that each segment has an overlap of n 4+ 1 points with
the next one. Then, the second step fits the segments with
the best polynomial of order K. The two free parameters
(K and n) are determined by studying the variance of the
residual data. As opposed to our content adaptive method,
this approach adapts the denoising parameters to the data,
but it keeps them constant across the entire analysed time
series, while, as it will be clearer in the next sections, we
adapt the smoothing intensity to the local characteristics
of fragments, whose length itself is not common to all the
fragments but varies according to local characteristics.

3 CA-SMOOTH:
CONTENT-ADAPTIVE TIME
SERIES SMOOTHING

As described in the Introduction, in this paper, we argue
that different parts of a given time series may carry differ-
ent amounts of noise and redundancy and, thus, a content-
adaptive smoothing process which locally varies the degree
smoothing by (a) partitioning the series into fragments (b)
which are then independently smoothed according to their
individual local information characteristics, may lead to sig-
nificantly better smoothing results than an inflexible strategy
that applies the same smoothing filter across the entire time
series. In this section, we present a content-adaptive smooth-
ing algorithm, CA-Smooth. In particular, we describe the four
key steps of the algorithm: (a) locally-salient feature detec-
tion, (b) fragment detection, (c) fragment characterization,
and (d) content-adaptive filtering.

3.1 Locally-Salient Feature Detection

A series can be fragmented in different ways [4, 7, 9, 10]. A
fixed segmentation strategy would partition the series into
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fragments of the same size, while an adaptive data-driven
segmentation would identify fragment boundaries in a way
that represents characteristics and features of the time series.
Other techniques, such as CUTs [10], consider the curvature
of the series and create segments in such a way that each
segment has a minimal distance from the line connecting the
first and the last points of the segment.

In CA-Smooth, we use a feature based approach: the tem-
poral features used in the segmentation are identified using
a locally-salient robust feature detection algorithm from our
prior work [4]. Given a time series, T, of length n, the algo-
rithm returns a set, S of salient features, where each salient
feature, s; = (t;,04,descr;) € S, is a triple, where ¢; is the
center of the temporal feature, o; is the feature scale defining
the 60 temporal scope, (t; — 30;,t; +30;), of the feature, and
descr; is a histogram of 1D gradients describing the local
temporal structure. Intuitively, each of these features is signif-
icantly different from its neighborhood in the corresponding
scale and therefore can be used to characterize the “key”
events on the series. The algorithm uses a omin threshold
to control the sizes of the smallest features identified on the
series. A second parameter, 7, described in the next subsec-
tion, is used to control the lengths of the fragments. Since
the number of salient features will impact the number of
fragments (and thus their lengths), if the number of features
is greater than =, we prune lower-intensity features among
those that are temporally co-located.

3.2 Fragment Detection

As discussed above, the scope of a salient temporal feature
describes a characteristic region in which an important change
in the trend of the series happens. Our approach exploits
this property to determine the fragments of a time series. In
particular, we argue that a coherent data driven segmentation
should preserve the integrity of salient features: i.e., portions
of the series which can be associated to a given salient feature
should ideally fall within the same fragment. This would
ensure that a salient event would be represented in its entirety
within the same fragment. Let T be a given time series of
length n and S be the set of salient features. The algorithm
considers the set S and returns a set of time series fragments,
F', such that the features that cover the same region are
grouped to create a cluster in a way that preserves their
integrity.

It is easy to see that, one can order the interval boundaries
of the salient features in S to obtain an initial fragmentation
of the time series, where each fragment would be represented
by the set of overlapping salient features at that region of
the time series. This, however, may have two disadvantages:
firstly, (a) we may end up with a lot of small fragments and
(b) this process may partition the individual salient features,
negatively impacting their integrity. To avoid these, given
two consecutive interval boundaries, the algorithm checks
if they represent a fragment with length less than 7. If this
is the case, the smaller interval is merged with the biggest
nearest interval to create a new larger fragment. If the new
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Figure 4: Fragment aggregation

interval satisfies the threshold constraint, it is confirmed as
a fragment and the algorithm processes the next pair of
interval boundaries. This process leads to a set of fragments,
F ={fi1,..., fi}, where each fragment f; has a corresponding
scope (ts,s, te,i) such that

(1) the length of each fragment is greater than or equal to

the length lowerbound 7; i.e., te,; —ts,s > 73

(2) the number of the fragments is suitably bounded; i.e.,

1<% and

(3) the first and the last fragment boundaries are the

first and the last point of the series, respectively; i.e.,
zs1 =1 and z.; = n.

Figure 4 presents an example: Here, the black circles repre-
sent the temporal scopes of the features. As we can see, using
these features, we can potentially create up to 13 candidate
fragments. Ideally, however, we would seek to avoid overly
small fragments and therefore combine nearby intervals to
generate 7 larger and more coherent fragments.

3.3 Fragment Characterization

Let F' be the set of fragments of a time series, identified
as above. The next step analyzes each fragment to extract
characteristics to help compute the amount of smoothing
that will be applied during the final filtering phase. Naturally,
the degree of smoothing of a fragment will be a function of
its local content and its relationship relative to the rest of
the series. In this section, we consider two criteria:

e entropy: the information content of a fragment, mea-
sured using entropy, may indicate how much a fragment
should be smoothed;

e representativeness: the similarity of a given fragment
to the rest of the series may indicate how representa-
tive the fragment is and, therefore, may need to be
considered during smoothing.

3.3.1 Entropy. We compute the entropy, E(f;) of a given
fragment f; by first quantizing the fragment into a quanti-
zation alphabet and counting the number of occurrences of
each symbol:

Definition 3.1 (entropy). Let A be the quantization alpha-
bet and pr;; denotes the portion of times the symbol a;inA
occurs in fragment f;. The entropy [13], for the fragment f;
is defined as

E(fi)) ==Y prijlog(prij)-

a; €A

3.3.2 Representativeness. In addition to entropy and feature
scale, we also consider the similarity of a given fragment
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to the rest of the time series as a potential indicator of
how representative the fragment is and, therefore, how much
smoothing should be applied to the fragment. To compute the
representativeness of the fragment f; € F, we first compute
pairwise Dynamic Time Warping distances [12], Agew ([, f5),
between all pairs, f;, fj, of fragments in the series. We then
create a similarity matrix II, where the entry II[¢, j] represents
the similarity of fragment f; to fragment f;, defined as

Adtw(fi7fj)
maz s, e r{Aaww(fi, fr)}

We then row-normalize the similarity matrix II to obtain

(¥
> per A

Note that the transpose, 7 = II'", of the row-normalized
matrix II' can be considered as a random walk transition
graph, where each column j corresponds to a fragment, f;
and the entry Ti, ] indicates the probability of random
walk from fragment f; to fragment f;, such that the more
similar the fragment f; is to the fragment f; the higher the
probability of the random walk from f; to f;.

Given this transition matrix, 7, representing mutual simi-
larities among the fragments, CA-Smooth then applies the
well-known PageRank algorithm [3] to associate a degree of
representativeness to each fragment in the graph:

i, ] =1—

IT'li, j]

Definition 3.2 (Representativeness). Let F be the set of
all fragments and let 7 be the transition graph obtained as
described above. Then, for f; € F, we compute its degree of
representativeness, R(f;), as

R(f;) = PR(f:,T),

where PR(f;,T) is the PageRank of fragment f; based on
the transition graph 7 that captures fragment similarities.

3.3.3 Characteristics of a Fragment. Given the above, we
associate to each fragment f; € F' a combined characteristic,
C(fi), defined as

C(fi) = (E(f:), R(fi), E(f:), R(f:)),

where £ and R are the inverses of E and R respectively. In
this paper, the inverse E(f;) is defined as

maz;(E(f;)) — E(f:)
max;(E(f;)) —min; (E(f;))

if mazx;(E(f;)) # min; (E(f;)); and E(f;) = E(f:) otherwise.
Similarly for R.

E(f:) =

3.4 Content-Adaptive Filtering

Given a fragment f;, CA-Smooth associates an overall smooth-
ing scale to that fragment taking into account its character-
istics, C'(f;). More specifically, the smoothing scale o(f;)
corresponding to the fragment f; is computed as

Vyer o(fi) = 0(C(f:)),
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Figure 5: Adaptive smoothing of the series in Fig-
ure 2 revisited: here the thin green line indicates
the degree of smoothing for different fragments of
the time series; as we see in the figure, this is sub-
ject to abrupt changes — CA-Smooth, instead, adjusts
the degree of smoothing on a per-instant basis (thin
blue line)

where CA-Smooth uses the function © to adjust the degree
of smoothing local to each fragment taking into account the
fragments characteristics.®.

3.4.1 Computing Instantaneous Smoothing Degrees. Note
that, even though o(f;) captures the local characteristics
of f;, applying this smoothing scale to each and every instant
within the fragment would cause a significant problem at
the fragment boundaries: since the amount of smoothing
might change abruptly at the fragment boundaries, this can
potentially introduce undesirable artifacts in the smoothed
series. Therefore, CA-Smooth does not directly apply o(f;)
smoothing to each and every instant within the fragment, f;.
Instead, the algorithm varies the smoothing scale on a per-
time-instant basis rather than on a per-fragment basis: further
away from the fragment boundaries, the smoothing scale is
governed by C(f;), but closer to the fragment boundaries
(i-e., boundaries with f;—1 and f;+1), the smoothing scale
would be a combination of the smoothing scales of nearby
fragments, eliminating abrupt changes on the smoothing fil-
ter (Figure 5). Intuitively, the smoothing scales themselves
are smoothed to avoid smoothing artifacts at the fragment
boundaries:

Let F ={f1,..., fi} be the set of fragments identified on
the time series, T, f; € F' be a fragment, and let ¢5, be a time
instance in f;. Let also:

® w; =te; — ts,; denote the length of the frame f;,

° thl = th 7w¢71/2,

o tpT =th +wit1/2,

e f(t) denote a function that returns the fragment that

contains the time instance t.

Given these, CA-Smooth computes the instantaneous smooth-
ing scale, o(tn), to be applied at time instant ¢, as follows:
o if f(tn1) = f(tnT) = fi, then the time instance t,

is sufficiently away from the two boundaries of the

'We show the impact of different © functions in the experimental
evaluation section.
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fragment and we can apply the smoothing function
o(tn) = o(f.);

if thy < 1 or tpt > [, then t5 is closer to the start
or end of the time series than any other neighboring
fragments and, thus, we again have o(tn) = o(fi);

if, however, f(tp1) = fi—1, then the point is closer to
fragment f;_1 and, therefore, the smoothing scale will
be a weighted average of the smoothing scales of the
fragments f;—1 and f;:

ts i — t t - ts 7
altn) = ———— “o(fio1) + 7“1” =o(fi);
similarly, if f(t,T) = fit1, then the point is closer
to fragment f;11 and the smoothing scale will be a
weighted average of the smoothing scales of the frag-
ments f; and fit1:

thT — teyi tei —tho
o(tn) = B o(fi+1) + T w o(fi).

Intuitively, we are fitting a length-w window around each
time point tp, where w corresponds to the length of the frag-
ment f; that contains the time point t;. Given this window,
the degree of smoothing at time t; is computed based on
how much this window overlaps? with the frames that come
before or after the fragment f;.

3.4.2 Adjusting Instantaneous Smoothing. Note that, so far,
we have not considered the degree of smoothing, o4, global
for the entire series. Intuitively, given a target degree, o,
for the series, the average of all instantaneous smoothing
degrees should be o4. Therefore, in the final step, we adjust
instantaneous smoothing degrees to reflect oq:

o (tn)

o (tn) = <Zl§j§n U(t]’)> .

Once the scale o(tp) is computed for time instance, t5, we
apply a Gaussian filter with variance o(tp), centered around
tn. As we discussed earlier, this corresponds to a filtering
window (tp, — 30 (tn),tn + 30(tr)). At the very boundaries
of the time series, where the start or end of the smoothing
interval may fall beyond the boundaries, we suitably scale
o(tr) to ensure that smoothing filter always falls within the
time series.

4 EVALUATION

In this section, we present case studies to illustrate the im-
pact of different content-adaptive smoothing criteria. For
this purpose, we use six datasets 1 with different temporal
characteristics. These data sets, listed in Table 1, are publicly
available at [1].

2Note that the window can overlap with only one of the fragments
fi—1 or fi11 at a time, never both; note also that the only situation in
which the window does not overlap with either of the two neighboring
fragments is when ¢, is at the center of the fragment f;.
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Figure 6: Impact of different filtering strategies

4.1 Configurations

In Table 2, we report the configuration parameters we con-
sider. Here, o4 is the global smoothing parameter, which
would be used by a fixed smoothing strategy. The adaptive
methods considered in this paper adapt the instantaneous
degree of smoothing based on the characteristics of the data,
in such a way that the overall average smoothing across the
entire series is equal to oy.

As described in Section 3.2, the parameter 7 is the length
of the smallest fragment created and is a multiple, ¢, of the

-4 -

of the average smoothing window size, (6 X o). In this paper,
we rely on the process described in [4] for extracting locally-
salient robust features (Section 3.1) which are then used for
identifying the fragment boundaries (Section 3.2); o¢ and
O are two parameters used by this algorithm to control the
feature sizes. In particular, the size of the smallest feature
identified by the algorithm is 6 x oo, whereas the size of the
largest feature is 6 x oo x 2°. As we see in Table 2, the sizes
of these features are also a function of the target smoothing
rate, og4.
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Figure 7: Impact of different fragment length thresholds
Table 1: Datasets Characteristics Table 2: Experiments Configurations
| DataSet || F#series | | Parameter || Value |
Coffee2 286 Oy 2% of the series length
FaceFour 350 T e X (6% 0g)
Gun 150 c 1,2,3
ECG200 96 oo 5 *0g
synthetic_control 60 # of octaves (O) 2
Lighting2_TEST 638
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4.2 Results

In Figure 6 we present the smoothing samples for the six
data sets; in particular, figures labeled (a), (c), (e),(g),(i),
and (k) show the instantaneous smoothing degrees computed
by CA-Smooth under four entropy and representativeness
based smoothing criteria discussed in Section 3.3.3, whereas
figures labeled (b), (d), (f), (h), (j), and (1) show the resulting
content-adapted smoothed series.

Let us consider the Gun series presented in Figures 6(g)
and 6(h). As we see in Figures 6(g), the entropy based criteria
E (Ent+ in the figure) is active where there is major change
in the series and, as expected, the opposite criteria, £ (Ent- in
the figure), provides higher instantaneous smoothing weights
where the series are relatively flat. The figure also shows that
different regions of the series are associated with different
degrees of representativeness as described in Section 3.3.2. In
the figure Rep+ corresponds to the criterion R which applies
high smoothing on parts of the series with high representa-
tiveness, whereas Rep— corresponds to the opposite criterion,
R, which smooths primarily parts of the series that are not
representative. As we see in Figures 6(h), different criteria
lead to different degrees of smoothing especially at the parts
of the series with large change — the appropriate criteria to
select would be a function of the underlying task.

Finally, Figure 7 shows the impact of different values of c,
which controls the lowerbound, 7, of fragment sizes, on the
instantaneous smoothing. As we see in these figures, for lower
values of ¢, we obtain more fragments and the instantaneous
smoothing degrees becomes more impacted by the very local
characteristics of the series; on the other hand, as the value
of the ¢ increases, the number of fragments reduces and the
degree of instantaneous smoothing becomes impacted by the
characteristics of larger fragments.

5 CONCLUSIONS

Arguing that time series smoothing must be performed in
a way that is adaptive to the temporally-varying charac-
teristics of the input series, in this paper, we proposed a
content-adaptive smoothing strategy, CA-Smooth. The pro-
posed technique relies on a locally-robust feature extraction
approach to locate robust time series fragments and then
identify characteristics, such as entropy and representative-
ness, of these fragments. CA-Smooth treats different parts of
the time series according to the discovered fragment charac-
teristics and associates instantaneous smoothing weights to
each time instant in a way that represents both the user’s
global smoothing target and the local series characteristics.
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