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Abstract—Deep neural networks (DNNSs), especially convolu-
tional neural networks (CNNs), have been effective in various
data-driven applications. Yet, DNNs suffer from several major
challenges; in particular, in many applications where the input
data is relatively sparse, DNNs face the problems of overfitting to
the input data and poor generalizability. This brings up several
critical questions: “Are all inputs equally important?” “Can we
selectively focus on parts of the input data in a way that re-
duces overfitting to irrelevant observations?”” Recently, attention
networks showed some success in helping the overall process
focus onto parts of the data that carry higher importance in the
current context. Yet, we note that the current attention network
design approaches are not sufficiently informed about the key
data characteristics in identifying salient regions in the data. We
propose an innovative robust feature learning framework, scale-
invariant attention networks (SAN), that identifies salient regions
in the input data for the CNN to focus on. Unlike the existing
attention networks, SAN concentrates attention on parts of the
data where there is major change across space and scale. We
argue, and experimentally show, that the salient regions identified
by SAN lead to better network performance compared to state-of-
the-art (attentioned and non-attentioned) approaches, including
architectures such as LeNet, VGG, ResNet, and LSTM, with com-
mon benchmark datasets, MNIST, FMNIST, CIFAR10/20/100,
GTSRB, ImageNet, Mocap, Aviage, and GTSDB for tasks such
as image/time series classification, time series forecasting and
object detection in images.

Index Terms—attention module, attention networks, convolu-
tional neural networks

I. INTRODUCTION

Deep neural networks (DNNs), including convolutional
neural networks (CNNs) have seen successful applications in
many data engineering domains, such as text processing [1],
[2], data alignment [3], recommender systems [4], time series
search and processing [5]-[7], and media search and analysis
[8]-[12]. More recently, CNNs’ successful application in a
variety of data-intensive domains has led to a shift away from
feature-driven algorithms into the design of CNN architectures
crafted for specific datasets and applications.

DNNs owe their success to large depth and width: this
introduces a large number of trainable parameters (from tens
of thousands [13] to hundreds of millions [14]) and enables
learning of a rich and discriminating representation of the
data [13]-[17]. However, as [18] points out, “increase in
the depth of the network can lead to model saturation or
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Fig. 1: Overview of conventional attention module

even degradation in accuracy”. More specifically, in many
applications where the input data is relatively sparse, DNNs
face the problems of overfitting to the input data and poor
generalizability. This brings up several critical questions: “Are
all inputs equally important?” “Can we selectively focus on
parts of the input data in a way that reduces overfitting
to irrelevant observations?” Works such as [19]-[21] has
shown that salient information can help improve the model
performance, both deep learning and machine learning models.

A. Attention Networks

The need for working with a limited number of trainable
parameters to learn high performing network architectures
necessitates techniques to help focus on the most relevant parts
of the data. One way to achieve this is through fusion of multi-
modal data characteristics, such as channel (i.e. latent) and
spatial relationships in images, where information transferred
from different modalities help strengthen and weaken their
individual impacts [17]. Another common approach is to learn
multi-scale features [16] to capture a rich representation of
data. More recently, attention networks gained popularity as
a more effective way to tackle this challenge [22]. Com-
monly, networks with attention modules have two, feature
and attention, branches (see Figure 1). The feature branch
is analogous to the conventional networks where the neural
structure extracts features from data, whereas, in the attention
branch, the network aims to quantify the importance of the
input features to focus on. The attention mechanism, on
the other hand, enables the network to focus on a specific,
contextually-relevant, subset of the features [23].
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Attention mechanisms have been developed for different
types of data. For instance, the original attention network
(proposed by Bahdanau in [22]) was designed to recover
attention to help identify a subset of input features important
to a given state in a recurrent neural network (RNN) used for
analyzing sequence data. In image analysis, on the other hand,
the attention branch may aim to translate the spatial and chan-
nel level contextual relationship into an attention mask [17].
Since the introduction of the attention mechanism, there has
been significant amount of work done that has enabled state-
of-the-art networks, enriched with attention mechanisms, to
outperform their predecessors [17], [23]-[26]. While these and
other works, some of which discussed in Section II, have
provided strong evidence regarding the promise of the atten-
tion mechanisms in reducing overfit and improving accuracy,
we note that the current approaches suffer from a shared
shortcoming: While the existing mechanisms leverage multi-
modal information, they fail to consider information that a
cross-scale examination of the latent features may reveal.

B. Contributions: Scale-Space Attention Networks (SAN)

In a recent work, [21] has shown that scale-space based
approaches can be used to inform the design of CNNs — in
particular, even though localized features, like SIFT, may not
lead to very accurate classifiers themselves, the information
these features capture at different scales might nevertheless
be used to inform the design of the hyper-parameters (e.g.
number of layers, number of kernels per layer) of CNNs. In
this paper, we build on a similar observation and argue that a
scale-space driven technique can also be used to design better
attention mechanisms that can help focus attention of the deep
neural network to parts of the data that are most critical.

Fundamentally, a CNN architecture extracts increasingly
complex (multi-scale) features through layers of interleaved
convolutional and pooling layers, coupled with non-linearity
enablers, such as ReLU and tanh functions. In this paper, we
show that we can adapt the CNN architecture to implement
a robust scale-space based attention mechanism that focuses
processing onto contextually salient aspects of the data. In
particular, we propose a novel scale-space attention network,
SAN, which brings together the following key ideas:
Identifying salient changes in scale-space: Traditional
attention mechanism consider layers in isolation when
generating attention. In this paper, we argue that com-
paring and contrasting latent features from two adjacent
layers, to locate salient changes in scale-space, is a more
effective attention strategy.

Attention to extrema: Given that a neighborhood in the
input is likely to have changes in varying amplitudes,
we argue that the attention should be given to extrema,
where the changes in scale-space are local maxima.
Attention region extraction through smoothed ex-
trema: We translate these extrema into attention masks
by applying a convolutional operation around the ex-
trema — this helps avoid noisy artifacts in the latent rep-
resentation which could adversely affect performance.
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As we experimentally validate in Section IV, the proposed
SAN framework has the following advantages: (a) SAN detects
and describes salient changes in the latent features to identify
detailed and diverse attention masks that help boost network
performance while retaining finer details of the patterns. (b)
SAN consistently performs better than the competitors in both
bottleneck and full attention scenarios (see details in Section
IV-C). (c) SAN framework is able to learn a high-performing
network architecture with minimal computational overhead.

C. Organization of Paper

The following sections are organized as follow: Section II
discusses current state-of-the-art approaches and their short-
comings, Section III presents the proposed framework, in
Section IV we evaluate SAN, and in Section V we conclude.

II. RELATED WORK

Successful application of DNNs in diverse domains [6]-
[12], [27], [28] has motivated the community to devise novel
network architectures that outperform the prior art.

A. Design of DNNs

A common approach to design DNNs is to hand-craft
specialized network architecture for specific domain and data.
As early as 1998, Lecun [29], proposed a five layer convo-
Iutional network to detect hand-written digits. The increas-
ing prevalence of more complex datasets, such as ImageNet
[30], led to more complex design of the hand-crafted net-
works [14]-[16], [31], [32]. These span from 10s to 100s
of layers with hundreds of millions of trainable parameters.
While these networks have different architectures, they often
leverage common design optimizations that have been shown
to improve the network performance. For instance, batch-
normalization [33] is used to address the problem of co-
variate shift in the network by normalizing individual batch
output of the layers to facilitate early convergence of the
network; ReLLU [34] is used to handle the problem of vanishing
gradients by eliminating the negative gradient in the feed
forward phase of the network. To help with the design of
new architectures or for improving existing ones, recently
several hyper-parameter search strategies have been proposed:
these include, grid-search [35] and random search [36]. Both
strategies perform principled hyper-parameter search and have
shown to determine an optimal hyper-parameter configuration,
however, they heavily rely on domain expert input to hand-
craft hyper-parameter search space. In a recent work, [21]
has shown that scale-space based approaches can be used to
inform the design of the hyper-parameters (e.g. number of
layers, number of kernels per layer) of CNNs.

B. Attention Networks

Despite these advances, traditional DNNs are still faced
with the problem of performance degradation with the increase
in the depth [18]: these networks tend to saturate after a
certain depth and networks suffer from limited generalization
of input data into a fixed-length encoding [22]. Attention



mechanisms [17], [22], [24], [25] aim to address this issue.
In [22], attention is used for improving thesequence translation
task, from English to German, using recurrent neural nets
(RNNs). This work highlighted that not every input feature
(word) in a sequence is equally important, rather focusing on
a different subset of input features may be more appropriate
at different stages of the translation process. Building on this
observation, attention has been applied to different applications
(image captioning [1], recommender systems [4], multi-task
learning [5], question generation [2]) and different network
architectures, including CNNs [37] and LSTMs [38]. [17] was
one of the early efforts in attentioned image understanding;
the authors proposed a residual attention mechanism which
emulates residual learning by introducing the attention module
as a residual connection comprising of an autoencoder module.
Convolutional block attention module [24] and bottleneck
attention module [25] proposed to leverage spatial and channel
relationships in an image dataset to learn attention masks that
summarize the importance of channels in the images and locate
where the most information resides spatially. In this paper, we
argue that these works suffer from global (rather than local)
summarization and from the fact that they do not leverage
cross-layer information for discovering attention. To address
this shortcoming, we propose an informed attention network
that leverages salient changes in latent features and transform
them into rich (diverse and detailed) attention masks.

III. SAN: SCALE-SPACE ATTENTION NETWORKS

As discussed in Section I, the success of deep neural
networks can be credited to the increase in their depths and
widths thanks to modern hardware. This increase has enabled
these networks to learn sufficiently complex patterns contained
in the dataset. Convolution Neural Networks (CNNs), which
seek multi-scale features, have proven especially successful in
image and time series understanding. However, not every part
of the data is of equal importance for extracting features and
avoiding overfitting, especially in the presence of sparse data,
necessitates the network to learn the importance (attention) of
different parts of the data. In this section, we present a novel
scale-space attention network (SAN) framework that identifies
salient changes in latent features across scales and translates
them into robust (detailed and diverse) attention (Figure 3).

A. Convolutional Neural Networks and Attention Modules

A convolutional neural network (CNN [37]) is a type of
neural network that works by leveraging the local spatial
arrangements by establishing connections among small spatial
regions across adjacent layers (Figure 2).

1) Convolutional Neural Architectures: A CNN consists of
several complementary components organized into layers:

o Each convolution layer links local-spatial data (i.e., pixels
at the lowest layer) through a set of channels (or kernels)
that represent the local spatial features.

o Since each convolution layer operates on the output of
the previous convolution layer, higher layers correspond
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Fig. 2: Outline of a convolutional neural network [21]: a
sequential arrangement of layers with localized spatial connec-
tions interleaved with pooling operations that scale the features
extracted from the image. In this paper, we consider two
positions for integrating the attention branches: in bottleneck
(b) attention, we only attach attention modules right before
subsampling (marked with 4 in the figure); in full (f) attention,
the attention modules are applied at each and every trainable
layer (marked with A in the figure)

to increasingly complex features obtained by combining
lower-complexity features.

Since relevant features of interest can be of different
sizes, pooling/subsampling layers are introduced among
convolution layers: these pooling layers carry out down-
sampling of the output of a convolution layer, thereby
(given a fixed kernel size) effectively doubling the size
of the feature extracted by the corresponding filter.

Intuitively, a CNN searches for increasingly complex local
features that can be used for understanding (and interpreting)
the content of a dataset. Such latent features (deep represen-
tations) are fundamental to the success of the deep neural
networks, as each layer in the network sequentially feeds on
the latent features (output) of the previous layers to learn rich
and abstract features. More formally, a neural network (N) is
a sequential arrangement of layers (£), mainly convolutional
and dense layers, to map the input X to output Y as follows:

Y = N(X)=Lo(Lo1(... Lo(L1(X)): (D)

here, X € RY*D and Y € RV*9 where N is the number
of samples, D is the dimensionality of the sample, O is the
number of class labels, and L is the number of layers. Any
given layer £; can be generalized (perceptron) as,

Li(X;) = (Wi X, + By), 2

where X (the output of layer [—1, s.t. X; = Y;_1) is the input
to the layer [ (for [ = 1, X; = X) and o;, W}, and B are
the layer’s activation function, weight, and bias respectively.
Note that, if the {*" layer has m; neurons and the (i- l)th
layer has n; neurons, then Y; € R™*! X; € Rmux1
W, € R™*™ aqnd B € R"™*1,

2) Attention Masks: As discussed in Sections I-A and II,
several researchers noticed that significant amount of waste in
learning and inference effort can be avoided if the attention
is directed towards parts of a data that are likely to contain
interesting patterns. This is achieved by attaching so called
attention modules to this neural architecture, where the output
of the attention module is used to weight the features learned
in the CNN [17], [23], [24]. Such attention mechanisms have
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Fig. 3: Abstract overview of the proposed attention module

shown to help improve the network performance by facilitating
the network with the ability to learn to highlight important and
suppress unimportant features.

In CNNS, attention is achieved through the introduction of
attention masks. As visualized in Figure 1, the layer contains
an additional component called attention mask (M}'):

L =L, 0 MMY). 3)

Here, M;* highlights the important local regions in the image,
and/or suppresses the unimportant regions. However, conven-
tional attention mechanisms fail to consider information that
a cross-scale examination of the latent features may reveal,
and, in this paper, we argue that salient changes in the scale-
space can be identified through a cross-scale examination of
the latent features and the extrema in these changes can be
leveraged for more effective attention masks.

B. Feature Search in Scale-Space

In the literature, there are several localized feature extraction
algorithms for images: these include SURF [39], HOG [40],
and SIFT [41]. In particular, SIFT has been the de facto
representation strategy for content-based image retrieval as
these features have shown robustness against rotation, scaling,
and various distortions. Intuitively, each feature corresponds to
a region in a given image that is different from its neighbor-
hood, also in different image scales. These stable patterns are
extracted through a multi-step approach, including (a)scale-
space construction, (b) candidate key-point identification, (c)
pruning of poorly localized, non-robust features, and (d)
descriptor extraction.

The scale-space used for feature search is constructed
through an iterative smoothing process, which uses Gaussian
convolutions to create different versions of the input data,
each with different amount of detail. Robust localized features
are then located where the differences between neighboring
regions (possibly in different scales) are large — in other words,
these keypoints are located at the local extrema of the scale
space defined by the difference-of-Gaussian (DoG) of the input
image. More specifically, an [-layer state space of an input
image, I, is defined as a set of data matrices {Io,...,I.},
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where I; = I{oy x k'}, is a smoothed version of the input
image for some smoothing parameter o and a scaling param-
eter £ > 1. Given this, a DoG, G, is created by considering
a sequence of difference matrices {Dy,...,Dr_1}, where
D; = |I;11 — I;| and feature candidates are sought at the
local maxima and minima of the resulting DoG: each D[z, y]
(where x and y are the rows and columns, respectively) is
compared against its 26 (= 33—1) neighbors (spatial neighbors
in the scale [ and neighboring scales [ — 1 and [ + 1) and the
triplet (I, z,y) is selected as a candidate only if it is close to
being an extremum among these neighbors!.

C. Scale-Space Attention Networks (SAN)

Despite their success in object recognition and image search,
SIFT features described above have recently been overshad-
owed by CNNs in many image recognition tasks [10]-[12],
[27], [28]. Yet, as discussed earlier, this advantage of CNNs
are subject to several constraints: most importantly, due to the
large number of parameters that need to be learned from data,
CNNs require a lot of data objects for training. Features likes
SIFT, on the other hand, are (a) relatively cheaper to obtain
and (b) since they encode the key domain knowledge “a robust
feature is one that is maximally different from its immediate
neighborhood both in space and scale” algorithmically, they do
not require training data. In this section, we construct a novel
attention module for CNNs based on a similar observation:
“the CNN should pay special attention to latent features that
are maximally different from their immediate neighborhood
both in space and scale”. In particular, unlike conventional
attention mechanisms (Equation 3), we propose to leverage
outputs from two adjacent layers when constructing the atten-
tion module:

L} =L oM Y,Y 1) “4)

As discussed in the rest of this section, here M € [0, 1], is
a soft-attention mask obtained by identifying and augmenting
the salient local regions within the latent features based on

I'The number of neighboring triplets may be less than 26 if the triplet is at
the boundary of the image or scale space.
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Fig. 4: Sample outputs of the various components of SAN—
these samples are taken at the first bottleneck position in VGG-
16, implementing attention on the outputs from conv_1 (Y;_1)
and conv_2 (Y)), with 64 channels (kernels) represented here
using an 8 x 8 grid. (4a) shows the output from conv_I; (4b)
shows the output observed at conv_2; (4c) shows the DoC
extracted from these two layers; (4d) highlights the detected
extrema; and (4e) shows the output of the extrema smoothing
step; finally, (4f) shows the 64 detailed and diverse attention
masks learned by the proposed SAN module

informative local changes. More specifically, we propose to
compare latent features (outputs) from two adjacent layers,
I — 1 and [ to help identify the robust salient region, as
opposed to relying only an individual layer output, L;, as
in conventional attention networks. We detail the process,
visualized in Figure 5, next:

1) Difference-of-Convolutions (DoC) Construction: Fig-
ures 4a and 4b show sample kernels learned in two consecutive
layers. In this paper, we argue (and experimentally show in
Section IV) that we can learn diverse attention masks by
considering these two adjacent layers together. In order to
extract salient regions in layer [, we first construct a difference-
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Fig. 5: Overview of the difference-of-convolutions (DoC)
construction module in SAN: the module takes latent features
(Y) from two consecutive layers (! — 1 and [) and transforms
the latent features Y;_; into the same basis space as Y; by
taking average along the channel axis (Y;_;), followed by
the expansion of the channel dimension through replication to
obtain Yll_l; finally, we take the absolute difference (AY; =
|Y; — Y, ,|) to obtain the DoC

of-convolutions (DoC) representation, which helps facilitate
localization of scale-space changes that are prominent in
an image. Note that unlike SIFT [41], where the DoG is
constructed by performing a pixel-by-pixel subtraction of two
Gaussian smoothed images, in SAN, we seek the difference
among the latent features Y;_; and Y;, where the convolution
kernels themselves are learned from the data. Therefore, the
DoC is computed from the outputs of the two consecutive
convolution layers, [ — 1 and [, as follows:

AY, =Y =Y (&)

As we experimentally show in Section IV, taking the absolute
difference (as opposed to simple difference) has significant
positive impact on the attention performance — this is because
attention needs to be given to, not only maxima, but extrema of
the difference of Gaussians. In addition, taking a non-absolute
difference might cause multiple counter-intuitive effects in the
network: first, the introduction of negative gradients may lead
vanishing gradient problem as positive and negative gradients
might cancel each other; secondly, the negative difference
to sigmoid function will push the attention towards “0”, as
sigmoid(z) € [0,0.5], ¥ z <O0.

Note, however, that there is a significant problem with the
Equation 5: the latent features from the two layers do not have
one-to-one correspondence, therefore the difference operation
is not well defined: Y; € REXW*C and v, ; € REXWxC"
where H and W is height and width of the input image and
C and C’ are the number of channels/kernels in the layers, |
and [ — 1, respectively. Therefore, the set of channels (kernels)
C and C’ where C' = |C| and C" = |C’| potentially represent
two different sets of basis vectors. Therefore, to implement
DoC over these different sets of basis vectors, we propose to
take average along the channel dimension, s.t.

C

— 1

Yl—l[hawal] = azm—l[hawacl (6)
c=1

Vh=1..Hw=1...W



where Y;_; € REXWXL represents the channel average of
Y, 1. We, then, expand the channel dimension of Y;_; as

Y, | = stack(Y,_1,C"), ()

where C’ is the number of channels of Y; and the “stack”
operation allows for stacking C’ many replicas of Y; along
the channel dimension to obtain Y; | € RT*W*C" Conse-
quently, the representative Yl/ is now comparable to Y; and
the proposed attention mechanism, SAN, can be applied on
two adjacent convolutional layers with different number of
channels without a padding operation to align the dimensions.

Given the above, we define the salient change across the
latent features (updating the Equation 5) as follows:

AY; =Y - Y. 8)
Here, AY; represents the change in latent features defined
in terms of the absolute difference between the two latent
features. We present sample results in Figure 4c: as we see in
the figure, the DoCs discovered using two consecutive CNN
layers retain large degrees of detail.

2) Extrema Detection: The SAN attention mechanism
leverages the computed values of AY; to learn the attention
mask M}; but, we cannot use DoC directly as an attention
mechanism: One reason for this is that the DoC itself can be
subject to noise. This problem can be resolved by using the
extrema of DoC rather than the DoC itself. However, simply
detecting an extremum by exploring the neighborhood and
marking it as “1” if it is a local extremum and “0” if not, might
lead to a salt-and-pepper noise in attention, severely limiting
the network’s learning ability. Since our goal is to focus on
the changes that are robust and prominent, we instead propose
a weighted extrema detection mechanism, as follows:

Vh=1..Hw=1.. Wec=1...C

9
Yelhwd=onwe x A¥ilhyw,d, )
where
vh' € {h—1,h,h +1}, w' € {w—1,w,w+ 1}
_ #ofAYi[h,w,c] > AY R, w', (] (10)

Ahw,c = 9 .

Here, o € (0,1] is the weighing parameter representing the
portion of the DoC neighborhood (3 x 3 region around the
coordinates (h,w)) for channel ¢ in layer | smaller than the
DoC value AY;[h,w,c|]. As we see in the degree of contrast
present in the sample results in Figure 4d, this step helps
highlight the salient points in the DoC while suppressing non-
informative regions — the use of localized weighing suppresses
noisy perturbations and retains more salient latent changes.

3) Extrema Smoothing: While the soft extrema detection
mechanism on AY] proposed above allows for highlighting
salient changes and suppressing the noise through localized
weighing, this operation can still leak certain amount of noise
and artifacts in the weighed output, Y, [, w, c|. Therefore, we
further propose to leverage trainable convolutional layers, with
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kernels the same size as the kernels (k) of the feature extrac-
tion branch of the network, to smooth away such artifacts:

an

The application of this additional convolutional layer acts
as a blurring operation that smooths the unintended extrema
artifacts, thus enabling the learning of a more robust attention
mask. Sample results are presented in Figure 4e — note that,
the smoothing operation, not only eliminates artifacts, but
also boosts diversity relative to the pre-smoothed version of
the extrema. The validity of this observation and the positive
impact of this additional smoothing step are validated in the
experimental evaluation section (Section IV, Table IX).

4) Attention Mask Recovery: In the final step of SAN, we
pass the convolved output, Y%, through the sigmoid function
to learn the final attention mask, M, highlighting the salient
attention regions:

Y=o (Y W+ 1)

M} = sigmoid(Y;*). (12)

Intuitively, the sigmoid function takes a real-valued vector of
attentions and maps them to values in the range [0, 1] such
that entries in the vector that are away from 0 are saturated to
0 or 1 depending on whether they are negative or positive,
respectively, and entries ~ 0 take a non-boundary value
between 0 and 1 following a sigmoid shape. Consequently,
M serves as a soft attention mask s.t. M/ [h,w,c] € [0,1]
for layer [.

Figure 4f illustrates the rich (detailed and diverse) attention
masks learned by the proposed scale-space attention network,
SAN, as it intelligently uses the outputs of two adjacent
convolutional layers to discover salient local regions to focus
the attention.

IV. EXPERIMENTS

In this section, we experimentally evaluate of the proposed
SAN framework and compare it against the baseline, non-
attentioned networks (LeNet-5 [29], VGG [14] and ResNet
[15] - see Section IV-B) as well as the major competitors
(CBAM [24], BAM [25], and RAN [23] (see Section IV-D
for more details) in bottleneck and full positions (IV-C).

We implemented SAN in Python environment (3.5.2) using
Keras Deep Learning Library (2.2.4-tf) [42] with TensorFlow
Backend (1.14.0) [43]. All experiments were performed on
an Intel Xeon E5-2670 2.3 GHz Quad-Core Processor with
32GB RAM equipped with Nvidia Tesla P100 GPU with 16
GiB GDDR5 RAM with CUDA-10.0 and cuDNN v7.6.4%.

A. Datasets
o For the simpler LeNet network, we consider data sets
recorded in controlled environments:

— MNIST contains 60k and 10k training and testing
handwritten digit images of 28 x 28 resolution [13].

2Results presented in this paper were obtained using NSF testbed:
“Chameleon: A Large-Scale Re-configurable Experimental Environment for
Cloud Research”
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— FMNIST contains 60k and 10k training and testing
images of 28 x 28 resolution with 10 classes [44].

o For the more complex VGG/ResNet Network, we con-
sider data sets recorded in real-world settings:

CIFAR10/20/100 contains 50k training and 10k test-
ing images, respectively, with 32 x 32 resolution and
the dataset contains 10, 20, and 100 labels [45].
GTSRB dataset contains 39,209 and 12,630 training
and testing images for 43 unique traffic sign [46].
GTSDB is an object detection dataset with bounding
boxes representing the positions of signs [47].
ImageNet contains ~1.23 million images for 1K
real-world entities, with ~1K images per entity [30].

e For recurrent networks, we consider multi-variate time
series data sets:

— Mocap: contains sensor (62) recording for 184 sub-
jects for 8 gestures [48].

— FFC: constains flight statistics for fuel usage, includ-
ing temperature and wing position for 500 flights.

B. Baseline (Non-Attentioned) Architectures

1) LeNet-5: Designed for recognizing handwritten dig-
its [29], LeNet-5 is a relatively simple network with 5 train-
able (2 convolution and 3 dense) and 2 non-trainable layers
using average pooling (Figure 6a). LeNet demonstrated that
localized image features (handcrafts) can be substituted by
deep features through the use of back-propagation of the
classification error. The two convolution layers contain 6
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256: 3x3/2
256:3x3/1
256: 3x3/1
256:3x3/1
512:3x3/2
512:3x3/1
512:3x3/1
512:3x3/1
Global Pool

(attention applied before pooling layers)

and 16 kernels and dense layers have 120 and 84 kernels.
Hidden layers are tanh and the final layer is softmax. LeNet’s
simplicity has made it the benchmark architecture for datasets
recorded in constrained environments, such as MNIST, and
FMNIST, in many works [33], [49], [50].

2) VGG: With the increase in complexity of data [30],
a deeper and more complex architecture was required. An
answer to this requirement was the VGG network [14] (Figure
6b), a 16 and 19 layer networks with 13 and 16 convolution
layers respectively and 3 dense layers, with interleaved 5 max-
pooling layers. VGG demonstrated that small kernel sizes (e.g.
3 x 3) can achieve better accuracies than using large kernels
(e.g. 5 x 5 or 11 x 11). Furthermore, VGG leverages ReLU
as the hidden activation to overcome the problem of vanishing
gradient, as opposed to tanh. Furthermore, the network uses
a convolutional layer with kernel size 1 x 1 as 7th 10" and
13" layers in the network to introduce additional non-linearity
and uses rectification operation. In addition to the kernel size,
VGG proposed to slide the convolution kernel by 1 unit in
each spatial direction and pooling kernel by 2 units along
each spatial dimension. Given the ability of VGG network
to learn the complex pattern in the real-world dataset, we use
the network on datasets, such as CIFAR10/20/100, GTSRB,
and ImageNet that contains complex, real-world objects.

3) ResNet: As seen in Section I, much of the success of
neural networks lies in their depth and width, however, as [18]
shows, the network saturates, and may even degrade, after a
certain depth is reached. ResNet [15] demonstrated that the
problem of accuracy saturation/degradation might be alleviated
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Fig. 8: Attention masks learned by CBAM, BAM and SAN module for GTSRB dataset when placed at the first bottleneck
position in VGG-16: SAN masks are more diverse and retain finer details from the input images

by the use of residual connections (Figure 6¢). We consider
ResNet architecture for two depths: 18 and 50. For instance,
ResNet-18 consists of 17 convolutional layers with varying
(64, 128, 256, and 512) number of convolutional kernels, a 2D
maxpooling layer, a global average layer, and a fully connected
layer. First convolutional layer uses a kernel size of 7 x 7 and
the remainder use 3 x 3 as kernel size. Each convolutional
layer is followed by batch-normalization [33] and ReL.U [34].

4) LSTM-4: We used a 4 layers LSTM architecture com-
prised of 64 LSTM units each, with average pooling following
every two recurrent layer, and final dense layer with softmax
(classification) and linear (forecasting) as output activation.
We compare SAN to recurrent attention network (RAN) [23].

C. Positioning the Attention Modules

As noted in Equation 1, and seen in Figure 6, a neural
network is a sequence of layers interleaved by sub-sampling
(pooling) layers. This means that there are multiple locations
in the network where the latent features are being generated
and transfered forward. As we have discussed in Section III-A,
in this paper, we consider two alternative attention strategies:

— Bottleneck placement strategy: attention modules are
applied before the data is down-size at pooling layers.
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— Full placement strategy: in this case, attention modules
are placed for every trainable layer in the network.

Figure 7 shows the version of the ReSNet-18 networks ex-
tended with attention modules, under bottleneck strategy.

D. Competitors
In this section, we consider the following competitors:

— Non-Attentioned Baselines: As the basic baseline, we
consider the networks without any attention module. In
particular, we explore four types of baseline architec-
tures: LeNet-5, VGG, RESNet, LSTM-4 (see Section
IV-B for more details).

— Convolutional Block Attention Network (CBAM): CBAM
is an attention module [24] that is designed to leverage
contextual relationships among channel and spatial latent
features to learn the attention mask. This is achieved
by sequentially considering channel attention followed
by spatial attention. Intuitively, the channel attention
helps learn “meaningfulness” of the image, followed
by spatial attention to learn “where” this meaningful
information lies in the image. [24] suggested that the
CBAM modules are placed after convolutional layers.

— Bottleneck Attention Module (BAM): In contrast to the
CBAM'’s sequential approach towards learning channel



Training Time vs Attention Mechanism and Position (VGG-16)

Training Time

CIFAR10 CIFAR20 CIFAR100 CIFAR10 CIFAR20 CIFAR100

Bottleneck

m BASE MODEL  m CBAM BAM mSAN-c mSAN-d

(a) VGG-16 model architecture

Training Time vs Attention Mechanism and Psotion (RESNet-18)

Training Time

CIFAR10 CIFAR20 CIFAR100 GTSRB CIFAR10 CIFAR20 CIFAR100

Full

Bottleneck

m BASE MODEL  m CBAM BAM mSAN-c mSAN-d

(b) RESNet-18 model architecture

Fig. 9: Model training time (in seconds)

and spatial attention, BAM [25] computes channel and
spatial attention simultaneously, similar to inception net-
works [16]. BAM creates three branches in the network,
1) feature branch, 2) channel branch, and 3) spatial
branch. In the feature branch, the latent features are
propagated forward, similar to the conventional net-
works, whereas channel and spatial branch learn the
respective attention masks. Note that unlike CBAM
(which relied on conventional convolution layers), BAM
used dilated convolution layers. BAM recommended that
the attention modules be placed before the bottleneck.

— Recurrent Attention Network (RAN) [23]aims at learning
the subset of input feature at t while relying on the model
output at time #-1.

As described above, CBAM and BAM use different (full vs.
bottleneck) attention module placement strategies. In this pa-
per, we consider both strategies when comparing SAN against
the competitors. Figure 8 displays bottleneck attention for
three sample images under CBAM, BAM, and the proposed
SAN attention mechanisms.

Note also that CBAM and BAM rely on different (conven-
tional and dilated) types of convolution layers. We, therefore,
trained two different versions of the proposed attention mod-
ules: SAN-c with conventional convolution layers and SAN-d
with dilated convolutional kernels.

E. Experimental Results

1) Classification Accuracy: To evaluate the effectiveness
of SAN framework, and demonstrate its robustness to the
network architecture, in this section we measure classification
accuracies on three network architectures (LeNet-5, VGG-16,
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Training Time vs Attention Mechanism (LeNet-5)

Training Time

MNIST FMNIST

m BASE MODEL = CBAM BAM mSAN-c mSAN-d

Fig. 10: Model training time (seconds) for LeNet-5

and RESNet-18) and on seven benchmark datasets (MNIST,
FMNIST, CIFAR10/20/100, GTSRB and ImageNet)3‘ Top-
1 ans Top-5 Classification accuracy results are presented in
Tables I, IV, II, and III. We define top-k accuracy as the ratio
of the experiments in which the true class label is observed
among top-k candidate class labels.

Figure I shows top-1 and top-5 classification results for
the complex ImageNet dataset for VGG-16 and RESNet-18
network architectures. As we see in this figure, SAN-c and
SAN-d consistently outperform the baselines and the attention
competitors, CBAM and BAM. We see in the figure that
the results are relatively comparable for bottleneck and full
strategies and also that the version of SAN which uses dilated
convolutional kernels provides the overall highest accuracy
gains under all scenarios. On the average, the accuracy gains
provided by SAN-d is 4.91x the accuracy gains provided
by CBAM and 1.68x the accuracy gains provided by BAM
over the baseline. BAM’s inception-style approach of having
independent parallel branch allows for better summarization of
contextual information into attention mask than CBAM, how-
ever, the approach of taking the global average and maximum
to summarize entire spatial information into single value limits
the performance gains. SAN leverages the salient changes in
latent features to identify points of attention to outperform
both of these competitors.

In Table IV, we evaluate the classification performance of
different architectures on MNIST and FMNIST datasets with
LeNet-5 architecture. Note that the LeNet-5 architecture is a
special case, where the same architecture with SAN attention
module represents both bottleneck and full attention model, as
LeNet has only 2 convolution layers and each layer is followed
by a down-sampling layer thus making it both bottleneck and
full attention architecture simultaneously. Therefore, Table IV
does not present full and bottleneck results separately. As we
see in the figure, thanks to the simplicity of the data, the
baseline architecture has 98.37% (for MNIST) and 89.43%
(for FMNIST) classification accuracy without any attention.
Even in this scenario where there is very limited room for
improvement, SAN-d improved the accuracy to 98.7% (for
MNIST) and 89.94% (for FMNIST). In contrast, CBAM
resulted in a drop in accuracy to 97.88% (for MNIST) and

3We train two types of SAN models, first with conventional convolutions
(CBAM) and SAN d with dilated convolutional kernels (BAM).



TABLE I: Model classification accuracies (top-1 and top-5) for ImageNet data for VGG-16/RESNet-18 model architecture

VGG-16 RESNet-18
Bottleneck Full Bottleneck Full
Datasets Top-1 [ Top-5 [| Top-1 [ Top-5 [| Top-1 [ Top-5 [| Top-1 [ Top-5
[Base Model || 71.90 | 90.6 ]| 71.90 | 90.60 || 7040 | 89.45 ]| 70.40 | 89.45 |

CBAM 72.40 | 90.97 7243 | 91.25 70.95 | 89.63 70.73 | 89.91

BAM 72.89 | 92.46 73.06 | 92.96 71.12 | 89.99 71.35 | 90.45

SAN-c 73.01 93.24 73.87 | 93.58 71.64 | 91.45 71.88 | 91.53

SAN-d 73.57 | 93.97 74.26 | 94.07 72.01 92.87 72.38 | 92.93

TABLE II: Model classification accuracies (top-1 and top-5) for VGG-16 model architecture
Bottleneck Full
Datasets CIFAR10 ‘ CIFAR20 ‘ CIFAR100 ‘ GTSRB CIFAR10 ‘ CIFAR20 ‘ CIFAR100 ‘ GTSRB
Accuracy Top-1 [ Top-5 | Top-1 [ Top-5 | Top-1 [ Top-5 | Top-1 [ Top-5 [[ Top-1 [ Top-5 [ Top-1 | Top-5 | Top-1 | Top-5 | Top-I | Top-5
[ Base Model [[ 72.70 [ 93.12 | 45.17 [ 7001 [ 31.07 | 5301 | 9621 | 99.84 [[ 72.70 | 93.12 | 45.17 | 70.01 | 31.07 | 5301 [ 9621 | 99.84 |
[CBAM __ [[ 7657 [ 9523 | 46.14 [ 72.56 | 32.17 | 54.02 | 9638 | 99.06 [| 74.65 | 94.26 | 45.74 | 72.16 | 3251 | 5467 [ 97.45 | 100.00 |
[ BAM [[76.15 | 9485 | 4895 | 7689 | 3296 | 5565 | 96.85 | 100.00 || 76.42 | 95.63 | 46.79 | 73.68 | 3596 | 6145 | 97.73 | 100.00 |
[ SAN-c [[ 7842 | 97.86 | 50.23 | 78.99 | 3458 | 5899 [ 97.96 [ 100.00 || 79.89 | 97.99 | 5114 | 82.99 | 37.59 | 6348 | 98.31 | 100.00 |
[ SAN-d [[ 7901 | 99.50 | 52.84 | 82.03 | 36.14 | 61.23 | 98.25 | 100.00 || 81.24 | 99.98 | 54.88 | 86.48 | 39.03 | 68.45 | 98.95 | 100.00 |
TABLE III: Model classification accuracies (top-1 and top-5) for RESNet-18 model architecture
Bottleneck Full
Datasets CIFAR10 ‘ CIFAR20 ‘ CIFAR100 ‘ GTSRB CIFAR10 ‘ CIFAR20 ‘ CIFAR100 ‘ GTSRB
Accuracy Top-1 [ Top-5 | Top-1 | Top-5 | Top-1 [ Top-5 | Top-1 [ Top-5 |[ Top-1 [ Top-5 | Top-1 [ Top-5 | Top-1 | Top-5 [ Top-1 [ Top-5

[ Base Model || 6855 | 9051 [ 49.32 | 73.00 | 37.83 | 6295 | 97.85 | 99.08 || 68.55 | 9051 | 4932 [ 73.00 | 37.83 | 6295 | 97.85 | 99.98 |
[CBAM || 73.76 | 9640 [ 53.39 | 80.34 | 40.95 | 6565 | O8.11 [ 99.09 || 7440 | 9742 | 51.73 [ 75.89 | 40.74 | 67.97 | 9852 | 100.00 |
[ BAM [[ 7342 | 9342 | 5353 | SLI3 | 40.72 | 6539 | 9842 | 100.00 || 72.67 | 96,71 | 5477 | 82.64 | 40.49 | 67.01 | 9895 | 100.00 |
[ SAN=c [[ 7482 [ 97.86 [ 5523 [ 85.82 | 4174 | 67.10 | 99.24 [ 100.00 || 75.03 | 9899 | 52.74 [ 78.95 | 44.14 | 7243 | 99.53 | 100.00 |
[ SaN-d [ 7889 | 99.97 | 5653 | 87.26 | 4149 | 66.95 | 99.76 | 100.00 || 79.67 | 100.00 | 54.94 | 8398 | 47.06 | 7442 | 99.85 | 100.00 |

TABLE 1V: Model classification
for LeNet-5 model architecture

accuracies (top-1 and top-5)

Datasets MNIST FMNIST
Accuracy Top-1 [ Top-5 [| Top-1 [ Top-5
[ Base Model [| 9837 | 9998 || 8943 | 99.87 |
CBAM 97.88 99.98 89.27 99.85
BAM 98.52 99.99 89.64 99.90
SAN-c 98.56 99.99 89.75 99.92
SAN-d 98.70 | 100.00 89.94 99.96

89.27% (for FMNIST). Attention using BAM, on the other
hand, provides some gains (98.52% for MNIST) and 89.64%
for FMNIST), but lower than the gains provided by SAN-d.
In Tables II and III, we evaluate the application of different
attention modules on VGG-16 and RESNet-18 architectures
and evaluate their performance on relatively complex CI-
FAR10/20/100 and GTSRB datasets, under bottleneck and full
attention placement strategies. These two figures reconfirm
that, overall, SAN-d is the best attention strategy, providing
significant up to 9.71% accuracy gains over the baseline.
Figure 8 provides sample attention masks to explain the
key reasons behind the accuracy gains of SAN. As we see in
this figure, SAN is able to learn rich (diverse and detailed)
and robust attention masks. In stark contrast, CBAM learns
only a single attention mask shared across all channels in the
convolutional layer, severely limiting its ability to learn rich
attention. While BAM does learn an explicit attention mask
for each individual channel, it is able to retain coarser details
- adding only limited richness to the network. In short, SAN’s
ability to account for the differences between two consecutive
convolutional layers enables rich and robust attention masks
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leading to significant boost in network performance.

Table V demonstrates that SAN is able to outperform
CBAM and BAM for deeper networks as well. SAN’s ability
to learn salient changes across layers proves beneficial, also
when the level of abstraction increases in deeper networks.

2) Model Training Time: In Figures 9 and 10, we compare
the computational cost (training time) of SAN framework
against the competitors. The figures show that the proposed
SAN mechanism introduces much smaller training overhead
than the competitors, CBAM and BAM. While SAN-d, with
dilated convolutional kernels, requires more training time than
SAN-c, the difference is slight, and higher accuracy gains
of SAN-d makes that difference worthwhile. One important
observation comparing Figures 9a and 9b, is that on the same
data, SAN provides significantly higher training execution
gains over CBAM and BAM on (residual connection-based)
RESNet-18 than on VGG-16. In fact, while the training cost
for SAN strategies are similar for both networks, CBAM
and BAM’s training costs doubles when residual connections
are introduced. This indicates that the scale-invariant robust
attention generated through DoC extrema lead to a much more
effective use of the residual connections. Overall, SAN pro-
vides models with higher classification accuracies compared
to CBAM and BAM, at a significantly lower training cost.

3) Time Series Classification and Forecasting: In Table VI
and VII, we see that SAN outperforms the base model as well
as RAN for both classification and forecasting of multi-variate
time series. For the classification task (Table VI), we observe
that, while all three models are able to reach 100% model
accuracy, SAN leads to 43% drop in model loss compares to



TABLE V: Classification accuracy for deeper models - CI-
FAR10 (VGG-19 and ResNet-50) - Bottleneck

Network VGG-19 ResNet-50
Accuracy || Top-1 [ Top-5 || Top-1 [ Top-5
[Base || 6948 [ 8695 || 67.79 [ 90.86 |
CBAM 70.24 89.85 65.82 89.74
BAM 71.41 94.01 68.76 94.51
SAN-c 77.14 | 96.21 71.36 | 96.89
SAN-d 77.36 | 96.88 72.73 | 97.25

TABLE VI: Model classification accuracy and loss for Mocap
dataset for LSTM model*

Metric Accuracy Loss (MAE)
Position Bottleneck Full Bottleneck Full
[ Base Model || 100.00  100.00 ] 0.1118  0.1118 ]
\ RAN H 100.00  100.00 H 0.1055  0.0751 \
[ SAN I 100.00  100.00 ] 0.0641  0.0084 |

TABLE VII: Model forecasting accuracy for flight fuel con-
sumption dataset for LSTM model*

Metric Accuracy (cos. sim.) Loss (MAE)
Position Bottleneck Full Bottleneck Full
| Base Model H 0.9672  0.9672 H 40.88  40.88 |
\ RAN H 0.9526  0.9745 H 37.04 3340 \
\ SAN H 0.9745  0.9773 H 3340 31.48 \

TABLE VIII: Model object detection accuracy for GTSDB
dataset for VGG-16 architecture

[ Position [[ Bottleneck [ Full |
[ Base Model || 86.79 |
CBAM 88.25 | 90.67
BAM 89.87 | 91.71
SAN-c 9245 | 93.01
SAN-d 93.88 | 95.63

Base model and 39% for RAN attention module for bottleneck
positions, and for full attention position, SAN leads to 92%
drop in loss against Base model and 89% against RAN, this
demonstrated that the importance of input features learned
(attention mask) by SAN is more informed and robust than the
mask learned by RAN. For the forecasting task, SAN leads to
maximum accuracy and minimum forecasting error®.

4) Object Detection: In Table VIII, we observe that for both
bottleneck and full positions, SAN can better learn to detect
objects of interest in an image. This highlights the importance
of leveraging the salient changes across layers(while using
only a single trainable layer in the attention module) as
opposed to CBAM and BAM which rely on more than one
trainable layers in each module.

5) Ablation Studies: We finally present, in Table IX, abla-
tion studies that validate the three key hypotheses underlying
the SAN attention framework:

— Cross-layer channel alignment: As discussed in Section
III-C1, the latent features from layers I — 1** and [**

“In Section IV-E3, we present both model accuracy and loss. As in
classification results, all models reach 100% accuracy, therefore, we leverage
model loss as a measure to compare the models and for forecasting, loss is
used to measure the divergence of the forecasting results from ground truth.
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layer are not represented on the same basis; therefore,
we propose an efficient transformation that maps these
two layers onto a common basis, without padding. In
Table IX, w CCA refers to case where channel alignment
is used as described, whereas w/o CCA refers to the case
where channels are not aligned.

— Absolute difference for extrema DoC construction: As
discussed in Section III-C1, we seek attention at the
extrema of the DoC — not only maxima — in order to
prevent the “sigmoid” operation on the latent features to
wipe-out heavily negative values, we define DoC using
absolute difference. In Table IX, w Abs refers to case
where absolute differences are used to construct DoC,
whereas w/o Abs refers to the case where simple (non-
absolute) difference is used.

— Attention to the extrema of DoC: As mentioned above, to

seek points of attention, we look at the extrema of DoC.

In Table IX, w Extrema refers to case where an extrema

search step is applied on the DoC, whereas w/o Extrema

refers to the case where the DoC is used directly without
seeking its extrema.

Extrema smoothing: As discussed in section III-C3,

while extrema help identify the salient points in the

latent features, smoothing of these extrema can help

eliminate noise and improve robustness. In Table IX, w

Smoothing refers to case where a final smoothing step is

applied, whereas w/o Smoothing refers to the case where

the smoothing step is omitted.

As we see in the table, the highest accuracies are obtained
when all four steps are combined. It is especially interesting to
see that, alone, extrema detection does not improve accuracy
— results with extrema detection, but without smoothing (#4)
are not better than results without extrema detection (#3);
however, when combined with the final smoothing step (#5)
to eliminate artifacts, extrema detection is very effective in
boosting the overall accuracy.

V. CONCLUSION

In this work, we presented a robust and model-independent
attention module that aims to guide the attention of the
network architecture to salient localized regions in the im-
age to boost the network accuracy, with minimal training
overhead. To achieve this goal, we propose an innovative
robust feature learning framework with novel scale-invariant
attention networks (SAN) that identify salient regions in the
input data using extrema of the difference of Gaussians. Unlike
the existing attention networks, SAN primarily concentrates
attention on parts of the data where there is major change
across space and scale. We experimentally evaluated and
showed that the proposed attention module, SAN, can be
successfully applied to various state-of-the-art architectures,
such as LeNet-5, VGG-16, and RESNet-18, as an add-on to
significantly boost the effectiveness, including for benchmark
datasets . Experiments further showed that, SAN leads to
minimal training overhead in comparison to the attention
modules, such as CBAM, BAM, and RAN.



TABLE IX: Model classification accuracy vs model architecture and dataset summarizing the performance of different blocks

involved in devising SAN module (

THELR

: incompatible configuration when two layers have different channel counts)

[ Architectures I LeNet-5 [ VGG-16 [ RESNet-18 |

[ Datasets || MNIST | FMNIST | CIFARI0 | CIFAR20 | CIFARIO0 | GTSRB | CIFARI0 | CIFAR20 | CIFARI00 | GTSRB |

[0 | Base Model [ 9837 | 8943 | 727 | 45.07 | 3107 | 9621 | 6855 | 4932 | 37.83 | 96.21 |

I| no-Abs, no-CCA, - - 68.83 39.48 207 | 9325 65.82 46.36 4153 | 9351
no-Extrema, no-Smoothing
2 | Absno-CCA, . - - 70.45 42.17 30.99 93.96 68.83 48.42 423 94.01
no-Extrema, no-Smoothing
3 | Abs,CCA, . 98.34 89.55 73.95 40.19 3234 | 9598 71.53 49.17 4286 | 9623
no-Extrema, no-Smoothing
4| abs CCA, . 98.17 89.28 72.79 423 2921 | 94.96 70.59 48.62 217 | 9634
xtrema, no-Smoothing
S| absceA 98.56 89.75 78.42 50.23 3458 | 97.96 74.82 55.23 4414 | 9831
xtrema, Smoothing
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