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Abstract

Building occupancy, one of the most important consequences of occupant behaviors, is a driving
influencer for building energy consumption and has been receiving increasing attention in the
building energy modeling community. With the vast development of information technologies in
the era of the internet-of-things, occupant sensing and data acquisition are not limited to a single
node or traditional approaches. The prevalence of social networks provides a myriad of publically
available social media data that might contain occupancy information in the space for a given
time. In this paper, we explore two approaches to extract the typical occupancy schedules for the
input to the building energy simulation based on the data from social networks. The first approach
uses text classification algorithms to identify whether people are present in the space where they
are posting on social media. On top of that, the typical building occupancy schedules are extracted
with assumed people counting rules. The second approach utilizes the processed Global Positioning
System (GPS) tracking data provided by social networking service companies such as Facebook
and Google Maps. Web scraping techniques are used to obtain and post-process the raw data to
extract the typical building occupancy schedules. The results show that the extracted building
occupancy schedules from different data sources (Twitter, Facebook, and Google Maps) share a
similar trend but are slightly distinct from each other and hence may require further validation and
corrections. To further demonstrate the application of the extracted Typical Occupancy Schedules
from Social Media (TOSSM), data-driven models for predicting hourly energy usage prediction of a
university museum are developed with the integration of TOSSM. The results indicate that the
incorporation of TOSSM could improve the hourly energy usage prediction accuracy to a small
extent regarding the four adopted evaluation metrics for this museum building.

1 Introduction
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in buildings is a key component of the occupant-oriented

Occupant behaviors in buildings have become a hot topic
with building systems getting more sophisticated and people
spending significant time in buildings (Abergel et al. 2017).
Occupants and their behaviors are known as a driving factor
of the building energy consumption. They have a direct
impact on the accuracy of building energy modeling (Yu
et al. 2011; Muroni et al. 2019), operation and control of
intelligent building systems (Naylor et al. 2018; Park et al.
2019), as well as the design of the future building system
(Samuelson et al. 2016). Therefore, knowing the presence,
number, variation, and comfort requirements of occupants

E-mail: ZONeill@tamu.edu

research (Dong et al. 2019).

A large number of cases studies have been conducted
in the past decades to investigate both commercially and
computationally achievable ways to extract the occupancy
for the building energy applications. Among these, sensor
technology is a prevalent way to obtain occupancy infor-
mation in both academia and industry, mostly due to its easy
implementation and high feasibility. The most commonly
used sensing technique for the occupancy in buildings is a
passive infrared (PIR) sensor (Agarwal et al. 2010), which
falls into the category of movement-based sensors, including
ultrasonic doppler sensors, sound sensors, etc. (Dong et al.
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Nomenclature

AHU air handling unit

API application program interfaces

CHW chilled water

CV(RMSE) coefficient of variation of root-mean squared
error

FP false positives

FN false negatives

GPS Global Positioning System

HW hot water

IoT Internet of things

IP Internet Protocol

MAC media access control

MAE mean absolute error

NMBE normalized mean bias error

Occ occupancy

PCC Pearson correlation coefficient

PIR passive infrared

R R-squared

RGB red, green, blue

RF Random Forest

SVM support vector machine

TFIDF term frequency-inverse document frequency
TOSSM typical occupancy schedules from social media
TP true positives

TN true negatives

URL uniform resource locator

XGB XGBoost

2019). These sensors can generate an output value of one
or zero in each time step, which represents the binary data,
“occupied” and “unoccupied” status, of the space, respectively.
Despite their broad applications, the inherent issues with
such binary sensors are that they can only provide the
occupancy presence information instead of people counting.
Hence, they are not likely to be used in the load-oriented
control cases for modern intelligent building controls (Pang
et al. 2020). To address this limitation, some other occupancy
detection technologies, such as vision-based technologies
(e.g., RGB camera, infrared thermal camera) (Jazizadeh
and Jung 2018) and environment-based technologies
(CO; sensor, etc.) (Jin et al. 2018) are introduced. These
approaches, sometimes coupled with the movement-based
sensors, can assist in detecting the number of people in the
room (Jung and Jazizadeh 2019). Regardless of this fact, the
occupant detection approaches still have privacy concerns
(image-based) and delayed response issues (ambient-based).
Besides, initial costs are always a barrier for large-scale
adoption of both presence and counting sensing system.
Considering the initial investment, some studies proposed
to use the existing sub-metering and infrastructure systems
(like applicants and communication systems) in the buildings
to extract the occupancy information. For example, Newsham
et al. (2017) conducted a field study to test the accuracy of
various IoT data stream for detecting the occupancy in the
office. They discovered that a combination of keyboard/
mouse activity and pixel change in a webcam image could
provide a better occupancy detection than incumbent
commercial sensors, such as the PIR sensor. Another example
is that Christensen et al. (2014) extracted the occupancy
schedules of two buildings based on the existing IT
infrastructure (i.e., the Wi-Fi network). In detail, they

monitored and mapped the IP and MAC addresses of Wi-Fi
access points and routers to the occupants of each space
in the building, and therefore the occupancy schedules
are created. The existing infrastructure-based occupancy
extraction methods have the advantages of no additional
costs in terms of hardware and installation. However, they
are only suitable for those buildings in which the infrastructure
is well-functioned and available. Another communication
approach that does not depend on the building infrastructure
system is the Global Positioning System (GPS). An in-depth
analysis of the massive location data generated by the mobile
service users could also be used to create the occupancy
schedules at the building level. Pang et al. (2018) monitored
the occupancy variation of an office building in Shanghai,
China using the location data shared by the smartphone
users when they use online services such as food delivery,
carpooling, navigation, etc. Based on the monitored results,
an occupancy schedule was generated to facilitate a building
energy model calibration. Besides, Gu et al. (2018) extracted
the typical occupancy schedules for various building types
using the same data source. Despite its merits of no hardware
and installation costs, this method suffers from the issue
of privacy violation, because these raw data are all collected
from users’ private information.

The merits and demerits of the aforementioned
occupancy detection methods are summarized in Table 1.
Although these studies show promising potential to extract
the building occupancy information, their drawbacks are
also non-negligible, e.g., the sensor error, high cost, scalability,
and privacy issues, which hinder a broad implementation of
occupancy sensing in buildings. Therefore, alternative data
sources for building occupant behavior extraction should
be considered and explored.
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Table 1 The merits and demerits of the normal occupancy extraction methods

Occupancy
Methods Typical sensors information Merits Demerits
PIR sensor iny .the binary presence information
Movement-based . . . is available
Ultrasonic sensor Presence Easy installation and low costs .
technology Additional costs
Sound sensor .
Intrusion
RGB P y Privacy issues
Vision-based technology camera resen.ce The occupant number is available ~ High costs
Infrared thermal camera Counting .
Intrusion
Cco is indi
Environment-based > Sensor N Presence/ The occupant number is indirectly
Temperature/Humidity . obtained Delayed response
technology Counting
sensor Non-intrusive
Pri -
No additional costs for the hard- rlvac?f ,lssué
Keyboard/mouse Presence/ . . Scalability issue: complete and well-
IoT-based technology ) ) ware and installation. K B i
Pixel webcam Counting . . functioned building infrastructure is
Non-intrusive
needed
No additional costs for the hard- Pri .
rivacy issue
Communication-based Wi-Fi network Presence/ ware and installation Scal b?ll't . bile infrastruct
calability issue: mobile infrastructure
technology Mobile-GPS Counting Suitable for all buildings Y

. . is needed
Not intrusive

To fill this gap, this paper explored another occupancy
detection approach, which takes the advantage of the social
media data posted by the users voluntarily and publicly.
The prevalence of social networks provides a myriad of
publicly available social media data that contains occupancy
information in space and in time (Lu et al. 2019). However,
only a few existing studies were targeted at using this data
source to estimate the building occupancy. The Population
Density Tables (PDT) project by Oak Ridge National
Laboratory estimated the ranges for an average day and
night population density for over 50 building types using
the Bayesian learning model with different open source
data (Stewart et al. 2016). Stewart et al. (2017) proposed
a social network unit occupancy model to extract the social
media-based occupancy curve for a museum during its
operating hours. Sims et al. (2017) applied social media
data to conduct a high-resolution mapping of a special
event population. Twitter posts and Facebook check-ins were
calculated for the Game Day at the University of Tennessee
Knoxville. Population distributions for game hours and
nongame hours of the game day were modeled using social
media data. It is noted that it used a linear relationship to
describe the event population with social media activity.
Bentz et al. (2019) designed a thermostat in which the setpoint
could be adjusted based on the expected occupancy and the
social media activity. These studies indicate the feasibility
of extracting the building occupancy information from
social networks. However, none of these studies moved
further to explore its integration with the building energy
modeling, and research on its influence on the modeling
accuracy.

In this paper, we propose two different non-intrusive,
cost-free, low-privacy-sensitive approaches, based on the
data from social networks for extracting the typical occupancy
schedules. These schedules then act as inputs for the building
energy simulation. In the meanwhile, to demonstrate the
application of the extracted building occupancy schedules
and evaluate their values, data-driven building energy models
for a university museum are constructed to see whether
additional feature regarding the occupancy at the building
level will facilitate the improvement of the prediction accuracy
and the fidelity of the building energy model.

The paper is organized, as illustrated in Figure 1.
Section 2 described two proposed methods (i.e., approach 1
of text classification through Tweets and approach 2 of
web-scraping from Facebook/Google Maps) to extract typical
occupancy schedules from social media with a case study
using a public museum building. Section 3 demonstrates
the integration of the extracted typical occupancy schedules
through approach 2 into a data-driven building energy
prediction model of a university museum. Section 4 presents
the conclusions, limitations, and future work.

2 Extraction of typical occupancy schedules from social
media (TOSSM): case study 1 for a public museum
building

2.1 Overview

In this section, two different approaches for extracting the
typical building occupancy schedules at the building level
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Section 2.2 Approach 1
Text classification through Tweets

P othon

Tweetl: Visiting the Art Institute of Chicago
Tweet2: At the Art Institute of Chicago; Saw a
curator in full drag. Feeling enlightened!

Tweet3: Had a very cultured afternoon in the Art
Institute of Chicago. Saw many lovely and
remarkable pieces of art. Time very well spent.

Case Study 1

Occupancy Extraction

Section 2

Case Studies

Extraction of Typical Occupancy Schedules from
Social Media (TOSSM) with Both Approaches

Fig. 1 Schematics of paper organization and sections relationship

are explored based on the data from social networks. The
first approach is to use text classification algorithms to
identify whether people are present in space where they
are posting on social networks (e.g., Tweeter). To achieve
this, word embedding and machine learning algorithms for
classification are used. On top of that, the typical occupancy
schedules could be extracted by assuming certain people
counting rules. The second approach is to utilize the
processed GPS tracking data provided by social networking
service companies such as Facebook and Google Maps. Web
scraping techniques are used in this process to obtain the
raw data and extract the typical occupancy schedules at the
building level.

The Art Institute of Chicago, a public museum, is selected
as a case study building. The Art Institute of Chicago,
founded in 1879 and located in Chicago’s Grant Park, is
one of the oldest and largest art museums in the United
States. It opens daily from 10:30 to 17:00 except on Thursdays
until 20:00. The reason why we select a public museum
building in this study is that there is a higher chance of people

::::::

Social Media User 1
Had a very cultured afternoon in the Art
Institute of Chicago (featured in Ferris
Bueller's day off). Saw many lovely and

Social Media User 2

checked in td The Art Institute of Chicago.
April 12 at 11:28 AM - Chicago, IL - @

remarkable pieces of art. Time very well i tiset M,
spent. 1

The Art Institute of Chicago
ArtMusoum - Chicago, L

E@

(a) Gco-taggcd posts (b) Check-in posts

Section 2.3 Approach 2

Web-scraping from Facebook/Google Maps

Thu

Ad

Thursdays 3

(a) Facebook Popular Hours

ailllflln

(b) Google Maps Popular Times

Section 3 Case Study 2

Integration of TOSSM-Approach 2 with
Building Energy Modeling

creating posts about their visits to such a tourist attraction.
Besides, both Facebook and Google Maps provide popular
time information on their websites for this type of building.
Therefore, more datasets could be obtained to facilitate the
comparison of the two approaches.

2.2 Text classification of implicitly geo-tagged posts from
Tweets

Utilizing public application program interfaces (APIs)
provided by the social media services, it is possible to attain
the geographic information through either geo-tagged posts
from Twitter or Facebook check-in messages, which is
depicted in Figures 2 (a) and (b). These datasets explicitly
indicate the occupant presence and could be used to estimate
the occupancy. However, it is well known that most social
media users probably are not willing to disclose their location
information. Although the datasets from the explicitly
geo-tagged posts could be insufficient to represent the
occupancy information, the implicitly geo-tagged posts could

Follow ) v

Social Media User 3 Social Media User 4

at the art institute of chicago; saw a curator in
full drag-feeling enlightened

Visiting the Art Institute of Chicago

—=

—_—

(c) Implicit geotagged
posts example 1

(d) Implicit geotagged
posts example 2

Fig. 2 Explicit geo-tagged posts: (a) geo-tagged posts, (b) check-in posts; implicit geo-tagged posts: (c) example 1, (d) example 2
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be a workaround as another social media data source for
occupancy sensing. These geo-tagged posts are those that
could be inferred for the human occupancy, but the user
does not add his/her location to the posts. Figures 2 (c) and
(d) show two examples of the implicitly geo-tagged posts.
We could infer from the Tweet textual semantics that the
user is currently in the building, that is, the Art Institute of
Chicago. However, there are some cases that the users
mentioned the detailed location in the post, but they are
apparently not present at a certain location. For example,
in the following posts: “I've always wanted to go to the
Art Institute of Chicago. # bucketlist”; “Hotels near the
Art Institute of Chicago https://www.govisitchicago.com/
top-hotels-near-art-institute-chicago/.”

Text classification and semantic analysis could be utilized
to help us identify the right implicitly geo-tagged posts, which
contain the occupancy information. Text classification
problems have been widely used and addressed in many
real applications, such as information retrieval, sentiment
analysis, recommender systems, etc. (Kowsari et al. 2019).
To increase the volume of the social media datasets in the
building occupancy applications, we present a methodology
to detect the implicitly geo-tagged posts from the social
media that hold valuable occupancy information to sense
the occupancy in buildings at the building level.

This approach involves four essential procedures: data
collection and pre-processing, feature generation, classifier
formulation, and result evaluation, as illustrated in Figure 3.
Each of these four procedures will be described with details
in the following subsections.

2.2.1 Data collection and preprocessing

One way of collecting the data is through the official APIs
of social networking service providers. The U.S. social
media giants Twitter, Facebook, and Reddit all have their
proprietary APIs. However, this approach has some
limitations for free and standard users. Take the Twitter
Standard Search API as an example; the free standard tier

Data Collection and
Preprocessing

ﬁ python

Feature Engineering

Get Old Tweets Programatically

@ Donald J. Trump @

1 will be interviewed by|@TuckerCa
tonight at 8:00pm on @FoxNews!

Mentions Num
Posting time

1:905¢0:0%

Retweet Num. Fav Num.

8104 35874

allows the return of at maximum 100 relevant Tweets in
the seven days. The data fidelity is incomplete compared to
the paid categories. The paid access could allow the developer
access to the full-fidelity data from as early as 2006, along
with direct account management support, and dedicated
technical support to help on an integration strategy.
Another way of collecting data is through web-scraping. As
aforementioned, official APIs have the limitation of time
constraints; therefore, we cannot get tweets older than a
week. However, web-scraping tools such as GetOldTweets
(Henrique 2019) could provide us with history posts. The
basic underlying principle is summarized as follows. When
we enter a Twitter page, a scroll loader would automatically
start. If we scroll down, we will get more and more tweets
with the scroll loader. The GetOldTweets tool exactly mimics
this process. In this way, we could take the best advantage
of Twitter Search on browsers and deeply search the oldest
tweets.

All data needs to be cleaned before the feature extraction
and being fed to the classifier, which can help to reduce the
noise in text data. Most text data from social media contain
many unnecessary words such as stop words, misspelling,
slang, etc. Many text-processing techniques are suggested,
such as tokenization, stop word elimination, case lowering,
slang and abbreviation paraphrase, spelling correction,
stemming, lemmatization, etc.

We collected the history posts between April and
May 2019 using the Twitter official API approach and its
counterpart, the GetOldTweets approach. We searched the
relevant Tweets using the keywords “art,” “institute,” and
“Chicago.” We compared the data from the two data sources
and found that the data size is smaller for the second
approach. However, we also found that the data from
GetOldTweets neglected the retweet posts and the posts that
are existing in history. The others are the same for these
two methods. Considering that the retweet posts and the
existing posts in the history typically do not indicate the
presence of the people, it would be suggested to use the

‘Presence-or-not” Classifier Performance Evaluation

Actual Values

Positive (1) - Negative (0)

Positive (1) ™ FP

Predicted Values

Negative (0) N ™

A faise positive X false negative

How many detected
onsets are correct?

1
P £

Tt

How many annotated.
onsets aro defected?

p
R=—=
p+fn

Fig. 3 Schematics of the workflow of text classification and semantic analysis
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GetOldTweets approach since it is free of charge and also
have a similar amount of data compared with the official
API approach.

On top of that, we collected all the available history
posts from December 2016 to June 2019 (approximately
30,000 in total) using the GetOldTweets approach and
manually labeled the latest 3,000 history posts, which
indicated whether the user was present or not. It is found that
the positive (people-presence) data only occupies ~15% of
all the labeled data. To balance the proportion of the true
positives and true negatives, we use all the true positives.
The total number of the training and validation datasets
is 1,000. For the data pre-processing, we lower the case of
the posts, conduct the tokenization, and then remove the
stop words.

2.2.2  Feature engineering

In this step, the raw text data will be transformed and
processed into the feature vectors. Different categories of
features will be combined to help improve the accuracy of
the classifier, such as weighted words, word embedding, as
well as social media-based features. The first two methods
are typical feature extraction methods with the text data
while the third method is based on the characteristics of the
social media posts.

For the weighted words, the Bag-of-Words (BoW) model
(Wallach 2006) and Term Frequency-Inverse Document
Frequency (TF-IDF) (Wu et al. 2008; Wikipedia Contributors
2020) are two commonly used approaches. The BoW is
represented as the bag of its known words where the
occurrence of each word is used as a feature. TF-IDF is a
statistical measure that weighs down the frequent words
and scales up the rare ones to reflect the word importance
in a corpus. Both methods are easy for the implementation.
However, they only produce the counting and importance
of the single word and do not capture the position and the
meaning in the text. Word embedding models could capture
the semantics of the word, and each word will be mapped to
an N dimension vector of real numbers. A word embedding
is a form of representing words using a dense vector
representation. Word2Vec (Mikolov et al. 2013), GloVe
(Pennington et al. 2014), and FastText (Bojanowski et al.
2017) are the three most common pre-trained models to keep
the syntactic and semantic information of each sentence.
Apart from the pre-trained word embedding, we could also
learn the word embedding layer as a part of fitting a machine
learning model. Social media-based features are statistical
features based on the characteristics of the social media
posts such as the presence of URLs, the presence of hashtags,
hashtag count, favorite count, repost count, etc. Different
combinations of these features will be fed into a classifier.

For the feature selection, we generated the word
embeddings using Word2Vec, where each word is presented
by a high dimension vector. Word2Vec is a pretrained
statistical model for efficiently learning a standalone word
embedding from a text corpus. It was developed by Google
(Mikolov et al. 2013) and has become the de facto standard
for developing pre-trained word embedding. The advantage
of leveraging this model is that it was built using billions of
words with a vast corpus of language that captures word
meanings in a statistically robust manner. The dimension
of the vector space is 300. For each Tweet, the aggregated
vector is weighted by the value of the TE-IDF.

In addition, we also considered social media content-based
features. The posted time is a critical feature because the
valid “presence” posts must be made within the range of
opening time. Many Tweets are synchronized from other
applications such as Facebook, Swarmapp, Artic, Foursquare,
etc. The domain name with the check-in app “Swarmapp”
could have more probability for the people presence rather
than art institutes application such as “artic.” Therefore,
whether the domain name is a check-in application name
could be an important feature. The counts of favorites,
retweets, hashtags, and mentions could also be essential
features for identifying the features. When visiting and making
a post in a museum, people may mention some official
accounts and persons of significance to share the joy and
findings. In addition to the aforementioned features, the
username of the users could also be a critical feature. For
example, some users are official accounts, and they would
not normally make a check-in post. Therefore, we check if
the usernames have strings such as “art,” “archeo,” “Chicago,”
“museum,” etc. Finally, combining the word embeddings
and the other selected Tweet-content-based features, we
select 309-dimension vectors for each data point. Table 2
shows a summary of the selected features.

2.2.3 Classifier formulation and performance evaluation

In this step, we tested the performance of different categories
of classifiers. We selected a traditional classifier, i.e., Support
Vector Machine (SVM), an ensemble classifier of the Random
Forest, and the shallow neural network (that contains three
types of layers). The training/testing data ratio is 8:2.

The evaluation metrics of the text classifiers measure
the performance of making the right classification decision
from different methods. Generally, four metrics are widely
used: accuracy, precision, recall, Fl1-score based on the
number of true positives (TP), false positives (FP), false
negatives (FN), and true negatives (TN), as illustrated in
Eqgs. (1)-(4). The significance of these four elements may
vary based on the classification application. It is noted that
compared to the accuracy, the last three metrics are more
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Table 2 Summary of the selected features

Dimension
Categories Selected features Type num.
Worq 30(?-d1men510n word embeddings Float 300
embedding weighted by the TF-IDF
Whether the posted time is within .
. Binary 1
opening hours
Whether the username of users .
. a4k m Binary 1
contain the keywords like “art
Whether the domain name in the Binar 1
URL contains check-in apps Y
Tweet-
content  Hashtags in the Tweet count Integer 1
Mentions in the Tweet count Integer 1
Favorite/like count Integer 1
Retweet count Integer 1
Posted hour Integer 1
Posted day of the week Integer 1

meaningful in terms of the effectiveness of the text classifiers
because the accuracy is insensitive to variations in the
number of correct decisions due to the large value of the
numerator (TP+TN) (Kowsari et al. 2019).

TP+ TN
Accuracy = (1)
TP+ FP+ FN + TN
Precision = L (2)
TP + FP
TP
Recall = —— 3
T TP EN 3)
2TP
Fl-score = ——————— (4)
2TP 4+ FP + FN

The performance metrics of different classifiers from
this case study are listed in Table 3 in terms of accuracy,
precision, recall, and Fl-score. It can be seen that the
accuracy of the different classifiers is in a similar range, with
the Random Forest and the neural network slightly being
higher. This is as expected because we have a large number of
true negatives when calculating the accuracy using Eq. (1).

As mentioned in the last section, the precision and recall
are more meaningful in the evaluation of the effectiveness

Table 3 Summary of the performance metrics of different
classifiers

Performance Random Shallow neural
metric SVM Forest network
Accuracy 0.8485 0.9091 0.9091
Precision 0.6000 0.8333 0.7500
Recall 0.8571 0.7143 0.8571
F1-score 0.7059 0.7692 0.8000

of the text classifiers. Although the Random Forest has a
relatively high score of precision, it has a lower score of the
recall score. This means the classification algorithm could
not recognize the “presence” of the user and label it as the
“not present.” Since we need to know the number of the
valid presence of the people in buildings, it is desirable to see
a higher recall score. In terms of the Fl-score, the neural
network performs the best with a score of 0.8. F1-score is
an overall metric combining the precision and the recall. It
can be seen that the neural network performs slightly better
than the other two classifiers.

In Table 4, the detailed classification results of the testing
sets are presented using the shallow neural network. The
labels “1” and “0” represent the status of the people-present
(positive) and people-not-present (negative). Majorities of
the labels belong to be “0” (i.e., people not present). For the
labels “1”, the results show that the method could basically
distinguish them from most of the “0” labels (not-present
labels). Indexes 59 and 168 were mislabeled, but their
prediction scores are above 0.1. In addition, Index 96
was mislabeled to be “1” although they should be “0”. The
Tweets that are easy to be semantically differentiated, such
as Indexes 198 and 30, have a high prediction score.

2.2.4 Typical occupancy schedule extraction results from
Tweeter

We need to translate the count of classified “presence”
Tweet to the building occupancy information. There exist
sources of uncertainties in this translation. For example, we
might not know how many hours people will stay there if
they only have one valid “presence” post. Even if they have
several posts, we are still not confident about how long
he/she will stay. Therefore, we propose the following rules
to extract the building occupancy pattern:

e Use one hour as a time slot.

o Count one person if the posts indicate the presence from
the classifier.

o Assume probability > 0.5 as presence.

e Assume every person’s average duration in the place
from Google Maps statistical information. For example,
we get the information from Google Maps that normally
people will stay in the Art Institute of Chicago for up to
three hours. A Monte Carlo simulation could be conducted
to allow for the uncertainty of the people stay time in the
place. However, for this feasibility study, we use the fixed
average stay duration, as suggested by the Google Maps.

e If a person has two valid posts within several hours, we
assume his/her presence in these several hours.

On top of that, we add up the count of the classified
presence tweet in the same time slot in each weekday for
all the historical data. The extracted occupancy pattern is
aggregated time series curves for different weekdays. In this



Lu et al. / Building Simulation

Table 4 Demonstration of the classification results using the shallow neural network

Index Posted Time Tweets Label Prediction Score
136 4/1/2019 3:20 Art Institute of Chicago will be hosting Gregg... 0 0 0.00257
139 3/19/2019 4:03 The Art Institute of Chicago is hosting Every... 0 0 0.02752
198 2/8/2019 11:27 I'm at The Art Institute of Chicago - @ artins... 1 1 0.60308
59 3/12/2019 15:38 Art Institute was amazing! # rembrandt # beaut... 1 0 0.16830
96 3/30/2019 16:43 Cut Piece, de Djanira. Performance, Art Instit... 0 1 0.63309
23 3/27/2019 10:48 Hopper @The Art Institute of Chicago https://w... 1 1 0.50097
30 3/28/2019 13:38 I'm at The Art Institute of Chicago - @ artins... 1 1 0.73036
54 3/20/2019 5:10 Can’t wait to see this babe in May. # wew # tr... 0 0 0.00174
39 4/7/2019 16:01 Got to spend an afternoon this weekend with Va... 1 1 0.70794
66 4/4/2019 21:00 Criticized for Failing to Consult Indigenous G... 0 0 0.02370
67 3/28/2019 8:21 Thanks so much for this Art Institute of Chica... 0 0 0.05156
88 3/25/2019 14:43 Wall-Floor Positions, de Gustave Klimt. Video... 0 0 0.04427
63 4/12/2019 8:10 School of the Art Institute of Chicago has nam... 0 0 0.27143
168 3/14/2019 15:15 A. Lincoln # artinstituteofchicago # chicago #... 1 0 0.48824
86 3/24/2019 9:43 Autorretrato aos 13, de Giotto. Desenho, ArtI... 0 0 0.04016
184 3/23/2019 1:00 The Art of Reading at the Art Institute of Chi... 0 0 0.01482
55 4/4/2019 10:16 Art Institute of Chicago delayed exhibition of... 0 0 0.00174
25 3/27/2019 11:33 Art museum I'm ready to come home tbh. Work to... 1 1 0.65585
72 3/13/2019 0:13 I Like America and America Likes Me, de Alexan... 0 0 0.00103
158 4/9/2019 21:12 Art Institute of Chicago where Swami Ji delive... 0 0 0.01881
60 4/3/2019 14:40 In a move museum leadership is calling unprec... 0 0 0.07430
110 4/9/2019 20:13 I'm too sad to tell you, de Joseph Beuys. Vide... 0 0 0.03527
199 3/18/2019 11:22 @ JohnMu Just about every result page for the ... 0 0 0.03667

way, we obtained the weekly typical occupancy schedules
at the building level to be used as inputs for the building
energy models, as shown in Figure 4, which shows two
different types of typical occupancy daily schedules. It is
noted that the opening hour is 10:30 to 20:00 on Thursday
while 10:30 to 17:00 on Friday.

2.3 Web scraping from Facebook and Google Maps

The second approach is to utilize the processed GPS location
tracking data provided by social network makers such as
Facebook and Google Maps. Web scraping techniques are

Thursday

used to obtain the data and extract the typical occupancy
schedules at the building level.

Figure 5 shows the sample of “Popular Times” by Google
Maps and “Popular Hours” by Facebook. The principle
behind these types of data lies in that these social network
giants use aggregated and anonymized data from users who
have opted in to share their real-time location. These com-
panies also have Points-of-Interest (POI) building footprints
(polygons), which determine the location, shape, and size
of a place. Based on these data, machine-learning algorithms
are used to join the GPS data against the building footprints
to derive the occupancy information.

Friday

Normalnized occupancy fraction

11 12 13 14 15 16 17 18 19
Hour

Normalnized occupancy fraction

11 12 13 14 15 16
Hour

Fig. 4 Typical occupancy schedules for two day types extracted from social media data
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Fig. 5 The sample of “Popular Times” by Google Maps and “Popular Hour” by Facebook

Please note that the data from Facebook and Google
Maps are relative occupancy information (i.e. normalized
occupancy fraction for a given day) that is depicted as the
height of the bar as shown in Figure 5. Therefore, we directly
scraped the data from their websites. Figure 6 depicts the
bar chart of the extracted typical building occupancy schedules
for the Art Institute of Chicago from Facebook and Google
Maps. The extracted occupancy schedules from Facebook and
Twitter have a similar trend, but there still exist deviations.
The deviations lie in that there might be several users who
would be visiting who do not have Google Maps or location
history enabled.

2.4 Results and discussion

It can be seen from Figure 7 that the extracted building
occupancy schedules from different data sources (Twitter,

Thursday

I
=}

7 === Facebook
== Google

o o o
> o ®

o
N

Normalnized occupancy fraction

11

12

13 14 15

Hour

16 17 18 19

Facebook, and Google Maps) share a similar trend but
slightly distinct from each other. Figure 8 further calculates
the Pearson correlation coefficient (PCC), which measures
the strength and direction of the relationship between two
variables, for these occupancy schedules extracted from
two given approaches. The PCC has a value between +1
and —1, where 1 represents a total positive linear correlation,
0 indicates that there is no linear correlation, and —1 gives
a total negative linear correlation. All PCCs between —0.8
and +0.8 are considered not significant. The correlation
coefficients between Facebook and Google Maps achieve
a high score (~0.95), while the value between Twitter and
Facebook/Google Maps is slightly lower. This observation
requires further validation and corrections to consider the
underlying uncertainties. For the approach 1 (i.e., text
classification from Tweets) in Section 2.2, it is believed to
have more uncertainties associated with algorithms used

Friday

.
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== Facebook
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Fig. 6 Comparisons of typical occupancy schedules for two days extracted from Facebook and Google Maps
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Fig. 7 Comparisons of typical occupancy schedules for two days extracted from two approaches
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Fig. 8 Heat map of Pearson correlation coefficient for schedules extracted from two approaches (left map: Thursday; right map: Friday)

during the entire procedure. For example, the Twitter posts
may occur within the normal hours of operation but not
occur at the time of occupancy, which results in inaccurate
timestamp data. For the approach 2 (i.e., web-scraping from
Facebook/Google Maps) in Section 2.3, the uncertainty
arises from the fact that users who would be visiting
might not have Google Maps or location history enabled.
Furthermore, the ratio of users to non-user of social media
should be acknowledged due to the age bracket of the social
media users. Such uncertainty will lead to inaccurate extracted
occupancy schedules for both approaches.

3 Integration TOSSM with building energy modeling:
case study 2 for a university museum

In this section, a case study for a university museum is
presented to demonstrate the application of the extracted
TOSSM into building energy models. Another objective of
this case study is to verify whether the additional occupancy
features from social media could improve the prediction
performance of the building energy model. Therefore,
data-driven building energy models are established for the
hourly cooling and heating energy prediction with or without
the social media extracted occupancy features. Section 3.1
discusses the data preprocessing and Section 3.2 describes
the feature selection process. Section 3.3 details the
construction of the data-driven models. In Section 3.4, the
results and discussion are presented.

3.1 Data preprocessing

Alabama Museum of Natural History, the case study building
in this section, is located in Smith Hall at the University of
Alabama campus in Tuscaloosa, AL. This building is selected
as the case study building because we have detailed and
sufficient data for the model development and validation
(e.g., the building floor plan, building system configuration,
energy usage data, etc.), as well as the actual meteorological
data from an onsite weather station. The floor plans of the

museum and the location of the air handling unit (AHU)
are depicted in Figure 9. The chilled water and hot water
are from a campus energy plant through a district network.
The weather data for this case study is collected from an
onsite weather station on the campus, which is about 120
meters southeast of the Smith Hall, to accurately capture
relevant microclimate variation. The weather data is logged
in a two-minute time step and it is further resampled to an
hourly mean time series. As Table 5 exemplifies, the weather
data has the attributes of dry bulb temperature, relative
humidity, dew point temperature, wind speed, gust speed,
wind direction, and global solar radiation. The typical
occupancy schedules at the building level are extracted
using approach 2 (i.e., web-scraping from Google Maps)
described in Section 2.3, as depicted in Figure 10. The
chilled water (CHW) usage and hot water (HW) usage are
metered in a 15-minute interval. We select the data at a
time frame from March 28", 2018 to May 23, 2019,
and further process these data into an hourly time series.
Figure 11 depicts a weekly example of the energy usage data
for both chilled water and hot water consumption. Both
temperatures and humidity need to be controlled in this
building, and a traditional cool-reheat approach was used
for dehumidification. This explains the relatively high hot
water consumption in August in a humid climate zone.

3.2 Filter-method-based feature selection

Selecting a set of correlated input features is critical for
building a data-driven building energy prediction model.
The input features can be categorized into exterior factors
such as meteorological data, internal factors such as occupancy,
HVAC operation data from building automation systems,
and time-lag history data, etc. (Zhang and Wen 2019).
Based on the aforementioned factors and the input data
availability for this case study, the raw input features we
consider include the meteorological data such as dry bulb
temperature, relative humidity, dew point temperature,
solar radiation, wind speed, gust speed, wind direction; the
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Fig. 9 Floor plan and AHU location of Alabama Museum of Natural History

Table 5 Example of weather station data set used in an hourly basis

Dry bulb Dew Solar

temperature Relative temperature Wind speed Gust speed Wind radiation

Time (CDT) (°F) humidity (%) (°F) (mph) (mph) direction (°) (W/m?)
3/29/2018 11:00 67.64 80.69 61.34 3.55 9.37 143.77 81.63
3/29/2018 12:00 59.92 94.34 58.32 1.74 5.67 214.93 50.17
3/29/2018 13:00 60.09 95.32 58.78 0.38 2.18 220.17 56.97
3/29/2018 14:00 60.20 95.06 58.82 0.23 2.09 261.27 48.23
3/29/2018 15:00 59.49 95.38 58.21 1.53 4.02 264.57 35.27
3/29/2018 16:00 59.57 96.30 58.54 4.22 7.67 210.27 29.57
3/29/2018 17:00 60.05 96.26 59.02 0.63 2.00 160.30 34.73

calendar features such as hour of day, day of week, day type,
and month of year; the occupancy information such as the
extracted building occupancy schedules from social media.
It is noted that calendar features such as the hour of the day
and day type could also indicate the occupancy condition
and pattern (Wang and Srinivasan 2017; Wang et al. 2019)
and may have a correlation with the occupancy features we
extracted.

To determine the prominent features and improve the
performance of the data-driven models, a filter-method-
based feature selection approach reported in Ref. (Zhang
and Wen 2019) is adopted. In this approach, the Pearson
correlation coefficients (PCC) are calculated between each

Normalized typical occupancy schedules from Google map
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Fig. 10 Normalized typical occupancy schedules through web-
scrapping from Google Maps for Smith Hall
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Fig. 11 WeeKkly time series for chilled water usage and hot water usage in Smith Hall

input feature and the output of interest to filter out the
weakly correlated features. Table 6 lists the results from
this feature selection method. It can be seen that dry bulb
temperature, dew point temperature, solar radiation,
occupancy, and relative humidity are the top five correlated
features with the outputs. In comparison, the day of the
week, gust speed, wind speed, and wind direction are the
least four uncorrelated features with the output. The cut-off
thresholds need to be carefully determined since the feature
that has a low correlation with the output by itself can still
provide a significant performance improvement when being
combined with other features. From our domain knowledge,
we keep the feature Day of Week since it may improve the
prediction performance when being combined with other
calendar features. However, the feature Wind Direction is
eliminated in this step based on the feature selection results
and our domain knowledge. On top of that, the Pearson
correlation coefficients between the input features are also
calculated to eliminate the features that are closely co-related.
The results show that the features Wind Speed and Gust
Speed are closely correlated (PCC>0.95). Since the feature

Table 6 Pearson correlation coefficients between each input
feature and the output of interest

Pearson correlation coefficient

Input features CHW usage HW usage
Dry bulb temperature 0.7658 -0.2507
Dew point temperature 0.6644 -0.332
Solar radiation 0.4579 0.1913
Occupancy 0.2576 0.1990
Relative humidity -0.2069 -0.1437
Hour of day 0.13 0.0376
Month of year 0.142 -0.0207
Day of week -0.0268 -0.0659
Gust speed 0.0886 0.157
Wind speed 0.0497 0.1237
Wind direction —0.0469 0.0265

Gust Speed shows a closer correlation with the output, this
feature is kept, and the feature Wind Speed is eliminated.

Therefore, the input feature sets after the feature
selection are composed of dry bulb temperature, dew point
temperature, solar radiation, occupancy, relative humidity,
hour of day, month of year, day of week, gust speed. It is
noted that the occupancy feature might serve as a critical
factor that contributes to the prediction improvement from
the result in this section. To further investigate the efficacy
of the occupancy feature extracted from social media,
feature assessment of feature “Occupancy” is conducted in
the next section.

3.3 Feature for feature

“Occupancy”

importance assessment

In this section, two feature input sets are compared by two
different machine-learning algorithms to evaluate the
feature importance of feature “Occupancy”. As Table 7
shows, the features in feature input set 1 are derived from
the result in Section 3.3, while the feature input set 2 has
the same features with the feature “Occupancy” removed.
Based on that, eight data-driven models are constructed
with different feature input sets, different machine-learning
algorithms, and different outputs of interest, as shown in
Table 8.

Two well-used machine-learning algorithms, Random
Forest (RF) (Liaw and Wiener 2002) and XGBoost (XGB)

Table 7 Two feature sets for evaluating feature “Occupancy”

Set Features

Dry bulb temperature, dew point temperature,
Feature inputset 1 ~ solar radiation, relative humidity, hour of day,

month of year, day of week, gust speed

Dry bulb temperature, dew point temperature,
solar radiation, occupancy, relative humidity,
hour of day, month of year, day of week, gust
speed

Feature input set 2
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Table 8 Description of eight constructed models

Case number & name Features

Machine learning algorithms

Output

Case 1: CHW-RF-w/Occ
Case 2: CHW-RF-w/0Occ
Case 3: CHW-XGB-w/Occ
Case 4: CHW- XGB -w/0Occ

Feature input set 1
Feature input set 2
Feature input set 1

Feature input set 2

Random Forest (RF)
Random Forest
XGBoost (XGB)
XGBoost

Hourly Chilled Water Usage
Hourly Chilled Water Usage
Hourly Chilled Water Usage
Hourly Chilled Water Usage

Case 5: HW-RF-w/Occ Feature input set 1 Random Forest Hourly Hot Water Usage
Case 6: HW-RF-w/0Occ Feature input set 2 Random Forest Hourly Hot Water Usage
Case 7: HW- XGB-w/Occ Feature input set 1 XGBoost Hourly Hot Water Usage
Case 8: HW- XGB -w/0Occ Feature input set 2 XGBoost Hourly Hot Water Usage

(Chen et al. 2015), are adopted as the prediction models.
Random forest regression model utilizes an ensemble learning
method that operates by constructing a multitude of decision
trees at training time and outputting the mean prediction
of the individual trees (Wang et al. 2018), which achieves a
significant improvement in terms of accuracy and stability
compared to the basic decision trees. XGBoost, proposed in
2014, is an implementation of gradient boosted decision
trees designed for speed and performance (Chen and Guestrin
2016). This algorithm has recently been dominating applied
machine learning and Kaggle competitions for structured
or tabular data. To form an optimal model architecture,
a set of hyperparameters needs to be learned and tuned
(Duan et al. 2003). The main parameters affecting the RF
performance include number of trees (NT), the maximum
depth of the tree (MDT), the maximum number of features
(MNE), the minimum number of samples required to split
a node (MSS), and the minimum number of samples required
at each leaf node (MSL). Likewise, XGBoost has critical
parameters such as number of trees (NT), the maximum
depth of decision trees (MDT), learning rate, subsample
number, etc.

Regarding the evaluation of the constructed prediction
model, various performance indicators are used, as shown
in Eq. (5)-Eq. (8). They are mean absolute error (MAE),
R-squared (R?), the coefficient of variation of root-mean-
squared error (CV (RMSE)), and normalized mean bias
error (NMBE).

MAE reflects the average over the test sample of the
absolute differences between prediction and actual obser-
vations where all individual differences have equal weight.
R* and CV(RMSE) both indicate the goodness of fit for the
prediction results with respect to the real data. It is noted
that R* focuses more on the error observed over individual
data points while CV(RMSE) quantifies the average error.
The metric of NMBE indicates the error bias (positive or
negative). Though NMBE could be a misleading metric for
the prediction alone since the positive bias and negative
bias may cancel out, it helps to present the relative position

of the simulated data with respect to the measured data.
In ASHRAE Guideline 14 (ASHRAE 2018), it suggests the
error tolerance limits for building energy prediction, the
CV(RMSE) and NMBE should be within 30% and +10%
for the hourly prediction data, respectively.

MaE = 2=l H] 5)
n
n N 2
RZZI,ZiZI(y"iy") ©6)
S (n=y)
=y
\/127:1()’1' — ¥ )2
CV(RMSE) = 2 > x100% (7)
NMBE = 22 «100% (8)

(n—1)y

where 7,, y;, and ¥ represent the measured data, predicted
data, and mean of the measured data, respectively; n is the
total number of the data samples.

3.4 Results and discussion

In this case study, these two data-driven models are
implemented using the sklearn module in Python (v3.7).
The training and testing datasets are hourly data from Mar
28™, 2018 to May 23, 2019, as described in Section 3.1.
The ratio between the training and testing datasets is 9:1 for
both the chilled water and hot water usage prediction. For
the hyperparameter tuning, the grid search, random search
(Bergstra and Bengio 2012), and Bayesian optimization
algorithms (Klein et al. 2016) are commonly used methods.
In this study, the random search approach is used with
3-fold cross-validation. Table 9 details the hyperparameter
setting of the models to ensure them well-configured.

Table 10 compares the model performance for cases
1-4 with chilled water usage predictions. It can be seen that
both CV (RMSE) and NMBE are bounded within 30% and
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Table 9 Hyperparameter setting of the models

Case number & name

Hyper-parameters setting

Case 1: CHW-RF-w/Occ

n_estimators=1400, max_depth=90, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, bootstrap=False

Case 2: CHW-RF-w/0Occ

n_estimators=1400, max_depth=90, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, bootstrap=False

Case 3: CHW-XGB-w/Occ

learning_rate=0.1, n_estimators=300, max_depth=7, min_child_weight=9, gamma=0, subsample=0.9,
colsample_bytree=0.9

Case 4: CHW- XGB -w/00Occ

learning_rate=0.1, n_estimators=300, max_depth=7, min_child_weight=1, gamma=0, subsample=0.8,
colsample_bytree=0.8

Case 5: HW-RF-w/Occ

n_estimators=1400, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, max_depth=,60 bootstrap=False

Case 6: HW-RF-w/00Occ

n_estimators=1400, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, max_depth=60, bootstrap=False

Case 7: HW- XGB-w/Occ

learning_rate=0.1, n_estimators=350, max_depth=13, min_child_weight=5, gamma=0, subsample=0.9,
colsample_bytree=0.7

Case 8: HW- XGB -w/0Occ

learning_rate=0.1, n_estimators=400, max_depth=7, min_child_weight=7, gamma=0, subsample=0.9,
colsample_bytree=0.7

Table 10 Comparison of cases 1-4 for chilled water usage prediction in Smith Hall

Case 1 Case 2 Improvement Case 3 Case 4 Improvement
CHW-RF-w/Occ CHW-RF-w/00cc ratio (%) CHW-XGB-w/Occ CHW-XGB-w/00cc ratio (%)
MAE (MMBTU) 0.0263 0.0275 4.36 0.0256 0.0278 7.91
R? 0.9155 0.909 0.72 0.9192 0.9111 0.89
CV(RMSE) (%) 4.64 4.81 3.53 4.53 4.76 4.83
NMBE (%) -0.96 -1.04 7.74 0.4267 1.0268 58.44

+10% for all the four cases, which indicates a good prediction
performance. Comparing case 1 & case 2 and case 3 & case 4,
it is evident that the model prediction performance is slightly
enhanced for both machine-learning algorithms with
occupancy information extracted from social media. MAE
and CV (RMSE) increase by ~5%, which is modest. The
improvement of R? is limited, probably due to the co-linearity
between the feature “Occupancy” and the three calendar
features (hour of day, day of week, and month of year).
Table 11 shows the model performance comparison of
cases 5-8 with hot water usage predictions. Similar results
can be found. Both CV(RMSE) and NMBE are bounded
within 30% and £10% for all the four cases. Comparing
case 5 & case 6 and case 7 & case 8, the model prediction
performance is slightly enhanced for both machine-learning
algorithms except that the NMBE decreases slightly using
RF (the absolute values of RF for both bases are small although
the relative improvement ratio is high). MAE increase by ~5%

for both algorithm and CV (RMSE) increases by 1.87%
and 4.12% for RF and XGB, respectively. The improvement
of R* is also limited.

Figure 12 depicts the comparison of predicted data and
measured data in the testing set (first 200 data points) for
chilled water usage and hot water usage considering the
occupancy feature. Overall, the incorporation of the Feature
“Occupancy” could improve the hourly energy usage
prediction to a small extent regarding the four evaluation
metrics. In other words, from an engineering perspective,
the data-driven models without the integration of the
TOSSM but with calendar features have already achieved
a high prediction performance in this building type. The
model performance improvement is rather modest probably,
due to the following justifications. First, the case study
building is a school museum. The number of occupants is
normally lesser than its design value and will have less impact
on the building loads. Furthermore, the HVAC control for

Table 11 Comparison of cases 5-8 for hot water usage prediction in Smith Hall

Case 5 Case 6 Improvement Case 7 Case 8 Improvement
HW-RF-w/Occ HW-RF-w/0Occ ratio (%) HW-XGB-w/Occ HW-XGB-w/00cc ratio (%)
MAE (MMBTU) 0.0236 0.0248 4.84 0.0244 0.0256 4.69
R? 0.8883 0.8838 0.51 0.9001 0.8912 1.00
CV(RMSE) (%) 4.19 4.27 1.87 3.96 4.13 4.12
NMBE (%) 0.29 0.23 -26.09 0.3538 0.5632 37.18
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Fig. 12 Prediction performance comparison for chilled water usage and hot water usage considering occupancy feature

this 110-year old building with a typical schedule-based
operation is not heavily occupant-centric. Therefore, the
influence of the occupancy might not be as considerable as
that in a modern large office building with occupant-centric
controls. Secondly, the Feature “Occupancy” has a strong
correlation to the calendar features. It is evident from cases
2, 4, 6, and 8 that using calendar features as the indictor
of occupancy has already achieved a sufficient accuracy for
this type of building.

4 Conclusions, limitations, and future work

In this paper, we presented two approaches to extract the
typical occupancy schedules for the input to the building
energy simulation using social media data. The first approach
formulates a semantic classifier to identify whether people
are present in the space where they are posting from Twitter.
With assumed people counting rules, the typical occupancy
schedules are then extracted. In the second approach, web
scraping techniques are used to extract the building typical
occupancy schedules based on the processed GPS tracking
data provided by social network makers such as Facebook
and Google Maps. The quantitative results show that the

extracted building occupancy schedules from three data
sources (Twitter, Facebook, and Google Maps) share a similar
trend but slightly distinct from each other, which requires
further validation and corrections.

To further demonstrate the application of the extracted
typical occupancy schedules from social media (TOSSM),
data-driven models for hourly energy usage prediction of a
university museum are developed using Random Forest
and XGBoost, with the integration of the TOSSM. For the
chilled water usage prediction, MAE and CV(RMSE) increase
by ~5% while the improvement of R? is limited. NMBE
increases by 58.44% for XGBoost, but the absolute increase
value is small. Similar results can be observed for the hot
water usage prediction. By comparing the models with and
without the occupancy schedule features, the incorporation
of the TOSSM could improve the hourly energy usage
prediction to a certain extent regarding the four adopted
evaluation metrics.

The future work includes improving, validating, and
correcting the occupancy schedule estimation from two
proposed approaches using the visitor counting (e.g., ticket
information, people counting data from occupancy sensors,
etc.) from the museum. We will investigate some uncertainties
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that mentioned in Section 2.4:

o The inaccurate timestamp issue, the fake account issue,
etc., for approach 1 (text classification through Tweets)
in Section 2.2.

o The fact that users who would be visiting might not have
Google Maps or location history enabled for approach 2
(web-scraping from Facebook/Google Maps) in Section 2.3.

o Considering the non-user of social media for both
approaches.

We would also like to implement the evaluation of the
value proposition of using the TOSSM for building energy
modeling, as described in Section 3, for different types of
buildings, such as office buildings, school buildings, hotel
buildings, etc. It is anticipated that building energy
consumption in some of these building types will be more
correlated with occupancy schedules. Furthermore, such
occupancy information at the building level will be in-
corporated with the urban-scale community and city energy
modeling.
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