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Abstract 
Building occupancy, one of the most important consequences of occupant behaviors, is a driving 
influencer for building energy consumption and has been receiving increasing attention in the 
building energy modeling community. With the vast development of information technologies in 
the era of the internet-of-things, occupant sensing and data acquisition are not limited to a single 
node or traditional approaches. The prevalence of social networks provides a myriad of publically 
available social media data that might contain occupancy information in the space for a given 
time. In this paper, we explore two approaches to extract the typical occupancy schedules for the 
input to the building energy simulation based on the data from social networks. The first approach 
uses text classification algorithms to identify whether people are present in the space where they 
are posting on social media. On top of that, the typical building occupancy schedules are extracted 
with assumed people counting rules. The second approach utilizes the processed Global Positioning 
System (GPS) tracking data provided by social networking service companies such as Facebook 
and Google Maps. Web scraping techniques are used to obtain and post-process the raw data to 
extract the typical building occupancy schedules. The results show that the extracted building 
occupancy schedules from different data sources (Twitter, Facebook, and Google Maps) share a 
similar trend but are slightly distinct from each other and hence may require further validation and 
corrections. To further demonstrate the application of the extracted Typical Occupancy Schedules 
from Social Media (TOSSM), data-driven models for predicting hourly energy usage prediction of a 
university museum are developed with the integration of TOSSM. The results indicate that the 
incorporation of TOSSM could improve the hourly energy usage prediction accuracy to a small 
extent regarding the four adopted evaluation metrics for this museum building. 
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1 Introduction 

Occupant behaviors in buildings have become a hot topic 
with building systems getting more sophisticated and people 
spending significant time in buildings (Abergel et al. 2017). 
Occupants and their behaviors are known as a driving factor 
of the building energy consumption. They have a direct 
impact on the accuracy of building energy modeling (Yu  
et al. 2011; Muroni et al. 2019), operation and control of 
intelligent building systems (Naylor et al. 2018; Park et al. 
2019), as well as the design of the future building system 
(Samuelson et al. 2016). Therefore, knowing the presence, 
number, variation, and comfort requirements of occupants 

in buildings is a key component of the occupant-oriented 
research (Dong et al. 2019). 

A large number of cases studies have been conducted  
in the past decades to investigate both commercially and 
computationally achievable ways to extract the occupancy 
for the building energy applications. Among these, sensor 
technology is a prevalent way to obtain occupancy infor-
mation in both academia and industry, mostly due to its easy 
implementation and high feasibility. The most commonly 
used sensing technique for the occupancy in buildings is a 
passive infrared (PIR) sensor (Agarwal et al. 2010), which 
falls into the category of movement-based sensors, including 
ultrasonic doppler sensors, sound sensors, etc. (Dong et al. 
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Nomenclature 

AHU    air handling unit 
API      application program interfaces  
CHW    chilled water 
CV(RMSE)   coefficient of variation of root-mean squared  
     error 
FP      false positives 
FN      false negatives  
GPS      Global Positioning System 
HW      hot water 
IoT      Internet of things 
IP      Internet Protocol 
MAC    media access control 
MAE    mean absolute error 
NMBE    normalized mean bias error  

Occ     occupancy 
PCC     Pearson correlation coefficient 
PIR     passive infrared 
R2    R-squared  
RGB    red, green, blue 
RF    Random Forest 
SVM    support vector machine 
TFIDF   term frequency-inverse document frequency
TOSSM   typical occupancy schedules from social media 
TP     true positives  
TN     true negatives 
URL     uniform resource locator 
XGB     XGBoost 

  
 
2019). These sensors can generate an output value of one 
or zero in each time step, which represents the binary data, 
“occupied” and “unoccupied” status, of the space, respectively. 
Despite their broad applications, the inherent issues with 
such binary sensors are that they can only provide the 
occupancy presence information instead of people counting. 
Hence, they are not likely to be used in the load-oriented 
control cases for modern intelligent building controls (Pang 
et al. 2020). To address this limitation, some other occupancy 
detection technologies, such as vision-based technologies 
(e.g., RGB camera, infrared thermal camera) (Jazizadeh 
and Jung 2018) and environment-based technologies 
(CO2 sensor, etc.) (Jin et al. 2018) are introduced. These 
approaches, sometimes coupled with the movement-based 
sensors, can assist in detecting the number of people in the 
room (Jung and Jazizadeh 2019). Regardless of this fact, the 
occupant detection approaches still have privacy concerns 
(image-based) and delayed response issues (ambient-based). 
Besides, initial costs are always a barrier for large-scale 
adoption of both presence and counting sensing system. 

Considering the initial investment, some studies proposed 
to use the existing sub-metering and infrastructure systems 
(like applicants and communication systems) in the buildings 
to extract the occupancy information. For example, Newsham 
et al. (2017) conducted a field study to test the accuracy of 
various IoT data stream for detecting the occupancy in the 
office. They discovered that a combination of keyboard/ 
mouse activity and pixel change in a webcam image could 
provide a better occupancy detection than incumbent 
commercial sensors, such as the PIR sensor. Another example 
is that Christensen et al. (2014) extracted the occupancy 
schedules of two buildings based on the existing IT 
infrastructure (i.e., the Wi-Fi network). In detail, they 

monitored and mapped the IP and MAC addresses of Wi-Fi 
access points and routers to the occupants of each space  
in the building, and therefore the occupancy schedules  
are created. The existing infrastructure-based occupancy 
extraction methods have the advantages of no additional 
costs in terms of hardware and installation. However, they 
are only suitable for those buildings in which the infrastructure 
is well-functioned and available. Another communication 
approach that does not depend on the building infrastructure 
system is the Global Positioning System (GPS). An in-depth 
analysis of the massive location data generated by the mobile 
service users could also be used to create the occupancy 
schedules at the building level. Pang et al. (2018) monitored 
the occupancy variation of an office building in Shanghai, 
China using the location data shared by the smartphone 
users when they use online services such as food delivery, 
carpooling, navigation, etc. Based on the monitored results, 
an occupancy schedule was generated to facilitate a building 
energy model calibration. Besides, Gu et al. (2018) extracted 
the typical occupancy schedules for various building types 
using the same data source. Despite its merits of no hardware 
and installation costs, this method suffers from the issue 
of privacy violation, because these raw data are all collected 
from users’ private information.  

The merits and demerits of the aforementioned 
occupancy detection methods are summarized in Table 1. 
Although these studies show promising potential to extract 
the building occupancy information, their drawbacks are 
also non-negligible, e.g., the sensor error, high cost, scalability, 
and privacy issues, which hinder a broad implementation of 
occupancy sensing in buildings. Therefore, alternative data 
sources for building occupant behavior extraction should 
be considered and explored. 
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To fill this gap, this paper explored another occupancy 
detection approach, which takes the advantage of the social 
media data posted by the users voluntarily and publicly. 
The prevalence of social networks provides a myriad of 
publicly available social media data that contains occupancy 
information in space and in time (Lu et al. 2019). However, 
only a few existing studies were targeted at using this data 
source to estimate the building occupancy. The Population 
Density Tables (PDT) project by Oak Ridge National 
Laboratory estimated the ranges for an average day and 
night population density for over 50 building types using 
the Bayesian learning model with different open source 
data (Stewart et al. 2016). Stewart et al. (2017) proposed   
a social network unit occupancy model to extract the social 
media-based occupancy curve for a museum during its 
operating hours. Sims et al. (2017) applied social media 
data to conduct a high-resolution mapping of a special 
event population. Twitter posts and Facebook check-ins were 
calculated for the Game Day at the University of Tennessee 
Knoxville. Population distributions for game hours and 
nongame hours of the game day were modeled using social 
media data. It is noted that it used a linear relationship to 
describe the event population with social media activity. 
Bentz et al. (2019) designed a thermostat in which the setpoint 
could be adjusted based on the expected occupancy and the 
social media activity. These studies indicate the feasibility 
of extracting the building occupancy information from 
social networks. However, none of these studies moved 
further to explore its integration with the building energy 
modeling, and research on its influence on the modeling 
accuracy. 

In this paper, we propose two different non-intrusive, 
cost-free, low-privacy-sensitive approaches, based on the 
data from social networks for extracting the typical occupancy 
schedules. These schedules then act as inputs for the building 
energy simulation. In the meanwhile, to demonstrate the 
application of the extracted building occupancy schedules 
and evaluate their values, data-driven building energy models 
for a university museum are constructed to see whether 
additional feature regarding the occupancy at the building 
level will facilitate the improvement of the prediction accuracy 
and the fidelity of the building energy model.  

The paper is organized, as illustrated in Figure 1. 
Section 2 described two proposed methods (i.e., approach 1 
of text classification through Tweets and approach 2 of 
web-scraping from Facebook/Google Maps) to extract typical 
occupancy schedules from social media with a case study 
using a public museum building. Section 3 demonstrates 
the integration of the extracted typical occupancy schedules 
through approach 2 into a data-driven building energy 
prediction model of a university museum. Section 4 presents 
the conclusions, limitations, and future work. 
 

2 Extraction of typical occupancy schedules from social 
media (TOSSM): case study 1 for a public museum 
building 

2.1 Overview 

In this section, two different approaches for extracting the 
typical building occupancy schedules at the building level 

Table 1 The merits and demerits of the normal occupancy extraction methods 

Methods Typical sensors 
Occupancy 
information Merits Demerits 

Movement-based 
technology 

PIR sensor 
Ultrasonic sensor 
Sound sensor 

Presence Easy installation and low costs 

Only the binary presence information 
is available 
Additional costs 
Intrusion 

Vision-based technology 
RGB camera 
Infrared thermal camera 

Presence/ 
Counting 

The occupant number is available 
Privacy issues 
High costs 
Intrusion 

Environment-based 
technology 

CO2 sensor 
Temperature/Humidity 
sensor 

Presence/ 
Counting 

The occupant number is indirectly 
obtained 
Non-intrusive 

Delayed response 

IoT-based technology 
Keyboard/mouse 
Pixel webcam 

Presence/ 
Counting 

No additional costs for the hard-
ware and installation. 
Non-intrusive 

Privacy issue  
Scalability issue: complete and well- 
functioned building infrastructure is 
needed 

Communication-based 
technology 

Wi-Fi network 
Mobile-GPS 

Presence/ 
Counting 

No additional costs for the hard-
ware and installation 
Suitable for all buildings 
Not intrusive 

Privacy issue 
Scalability issue: mobile infrastructure 
is needed 
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are explored based on the data from social networks. The 
first approach is to use text classification algorithms to 
identify whether people are present in space where they 
are posting on social networks (e.g., Tweeter). To achieve 
this, word embedding and machine learning algorithms for 
classification are used. On top of that, the typical occupancy 
schedules could be extracted by assuming certain people 
counting rules. The second approach is to utilize the 
processed GPS tracking data provided by social networking 
service companies such as Facebook and Google Maps. Web 
scraping techniques are used in this process to obtain the 
raw data and extract the typical occupancy schedules at the 
building level. 

The Art Institute of Chicago, a public museum, is selected 
as a case study building. The Art Institute of Chicago, 
founded in 1879 and located in Chicago’s Grant Park, is 
one of the oldest and largest art museums in the United 
States. It opens daily from 10:30 to 17:00 except on Thursdays 
until 20:00. The reason why we select a public museum 
building in this study is that there is a higher chance of people 

creating posts about their visits to such a tourist attraction. 
Besides, both Facebook and Google Maps provide popular 
time information on their websites for this type of building. 
Therefore, more datasets could be obtained to facilitate the 
comparison of the two approaches. 

2.2 Text classification of implicitly geo-tagged posts from 
Tweets 

Utilizing public application program interfaces (APIs) 
provided by the social media services, it is possible to attain 
the geographic information through either geo-tagged posts 
from Twitter or Facebook check-in messages, which is 
depicted in Figures 2 (a) and (b). These datasets explicitly 
indicate the occupant presence and could be used to estimate 
the occupancy. However, it is well known that most social 
media users probably are not willing to disclose their location 
information. Although the datasets from the explicitly 
geo-tagged posts could be insufficient to represent the 
occupancy information, the implicitly geo-tagged posts could  

 
Fig. 1 Schematics of paper organization and sections relationship 

Fig. 2 Explicit geo-tagged posts: (a) geo-tagged posts, (b) check-in posts; implicit geo-tagged posts: (c) example 1, (d) example 2 
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be a workaround as another social media data source for 
occupancy sensing. These geo-tagged posts are those that 
could be inferred for the human occupancy, but the user 
does not add his/her location to the posts. Figures 2 (c) and 
(d) show two examples of the implicitly geo-tagged posts. 
We could infer from the Tweet textual semantics that the 
user is currently in the building, that is, the Art Institute of 
Chicago. However, there are some cases that the users 
mentioned the detailed location in the post, but they are 
apparently not present at a certain location. For example, 
in the following posts: “I’ve always wanted to go to the 
Art Institute of Chicago. # bucketlist”; “Hotels near the 
Art Institute of Chicago https://www.govisitchicago.com/ 
top-hotels-near-art-institute-chicago/.” 

Text classification and semantic analysis could be utilized 
to help us identify the right implicitly geo-tagged posts, which 
contain the occupancy information. Text classification 
problems have been widely used and addressed in many 
real applications, such as information retrieval, sentiment 
analysis, recommender systems, etc. (Kowsari et al. 2019). 
To increase the volume of the social media datasets in the 
building occupancy applications, we present a methodology 
to detect the implicitly geo-tagged posts from the social 
media that hold valuable occupancy information to sense 
the occupancy in buildings at the building level. 

This approach involves four essential procedures: data 
collection and pre-processing, feature generation, classifier 
formulation, and result evaluation, as illustrated in Figure 3. 
Each of these four procedures will be described with details 
in the following subsections.  

2.2.1 Data collection and preprocessing 

One way of collecting the data is through the official APIs 
of social networking service providers. The U.S. social 
media giants Twitter, Facebook, and Reddit all have their 
proprietary APIs. However, this approach has some 
limitations for free and standard users. Take the Twitter 
Standard Search API as an example; the free standard tier 

allows the return of at maximum 100 relevant Tweets in 
the seven days. The data fidelity is incomplete compared to 
the paid categories. The paid access could allow the developer 
access to the full-fidelity data from as early as 2006, along 
with direct account management support, and dedicated 
technical support to help on an integration strategy. 
Another way of collecting data is through web-scraping. As 
aforementioned, official APIs have the limitation of time 
constraints; therefore, we cannot get tweets older than a 
week. However, web-scraping tools such as GetOldTweets 
(Henrique 2019) could provide us with history posts. The 
basic underlying principle is summarized as follows. When 
we enter a Twitter page, a scroll loader would automatically 
start. If we scroll down, we will get more and more tweets 
with the scroll loader. The GetOldTweets tool exactly mimics 
this process. In this way, we could take the best advantage 
of Twitter Search on browsers and deeply search the oldest 
tweets.  

All data needs to be cleaned before the feature extraction 
and being fed to the classifier, which can help to reduce the 
noise in text data. Most text data from social media contain 
many unnecessary words such as stop words, misspelling, 
slang, etc. Many text-processing techniques are suggested, 
such as tokenization, stop word elimination, case lowering, 
slang and abbreviation paraphrase, spelling correction, 
stemming, lemmatization, etc.  

We collected the history posts between April and 
May 2019 using the Twitter official API approach and its 
counterpart, the GetOldTweets approach. We searched the 
relevant Tweets using the keywords “art,” “institute,” and 
“Chicago.” We compared the data from the two data sources 
and found that the data size is smaller for the second 
approach. However, we also found that the data from 
GetOldTweets neglected the retweet posts and the posts that 
are existing in history. The others are the same for these 
two methods. Considering that the retweet posts and the 
existing posts in the history typically do not indicate the 
presence of the people, it would be suggested to use the 

Fig. 3 Schematics of the workflow of text classification and semantic analysis 
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GetOldTweets approach since it is free of charge and also 
have a similar amount of data compared with the official 
API approach.  

On top of that, we collected all the available history 
posts from December 2016 to June 2019 (approximately 
30,000 in total) using the GetOldTweets approach and 
manually labeled the latest 3,000 history posts, which 
indicated whether the user was present or not. It is found that 
the positive (people-presence) data only occupies ~15% of 
all the labeled data. To balance the proportion of the true 
positives and true negatives, we use all the true positives. 
The total number of the training and validation datasets 
is 1,000. For the data pre-processing, we lower the case of 
the posts, conduct the tokenization, and then remove the 
stop words. 

2.2.2 Feature engineering 

In this step, the raw text data will be transformed and 
processed into the feature vectors. Different categories of 
features will be combined to help improve the accuracy of 
the classifier, such as weighted words, word embedding, as 
well as social media-based features. The first two methods 
are typical feature extraction methods with the text data 
while the third method is based on the characteristics of the 
social media posts. 

For the weighted words, the Bag-of-Words (BoW) model 
(Wallach 2006) and Term Frequency-Inverse Document 
Frequency (TF-IDF) (Wu et al. 2008; Wikipedia Contributors 
2020) are two commonly used approaches. The BoW is 
represented as the bag of its known words where the 
occurrence of each word is used as a feature. TF-IDF is a 
statistical measure that weighs down the frequent words 
and scales up the rare ones to reflect the word importance 
in a corpus. Both methods are easy for the implementation. 
However, they only produce the counting and importance 
of the single word and do not capture the position and the 
meaning in the text. Word embedding models could capture 
the semantics of the word, and each word will be mapped to 
an N dimension vector of real numbers. A word embedding 
is a form of representing words using a dense vector 
representation. Word2Vec (Mikolov et al. 2013), GloVe 
(Pennington et al. 2014), and FastText (Bojanowski et al. 
2017) are the three most common pre-trained models to keep 
the syntactic and semantic information of each sentence. 
Apart from the pre-trained word embedding, we could also 
learn the word embedding layer as a part of fitting a machine 
learning model. Social media-based features are statistical 
features based on the characteristics of the social media 
posts such as the presence of URLs, the presence of hashtags, 
hashtag count, favorite count, repost count, etc. Different 
combinations of these features will be fed into a classifier. 

For the feature selection, we generated the word 
embeddings using Word2Vec, where each word is presented 
by a high dimension vector. Word2Vec is a pretrained 
statistical model for efficiently learning a standalone word 
embedding from a text corpus. It was developed by Google 
(Mikolov et al. 2013) and has become the de facto standard 
for developing pre-trained word embedding. The advantage 
of leveraging this model is that it was built using billions of 
words with a vast corpus of language that captures word 
meanings in a statistically robust manner. The dimension 
of the vector space is 300. For each Tweet, the aggregated 
vector is weighted by the value of the TF-IDF.  

In addition, we also considered social media content-based 
features. The posted time is a critical feature because the 
valid “presence” posts must be made within the range of 
opening time. Many Tweets are synchronized from other 
applications such as Facebook, Swarmapp, Artic, Foursquare, 
etc. The domain name with the check-in app “Swarmapp” 
could have more probability for the people presence rather 
than art institutes application such as “artic.” Therefore, 
whether the domain name is a check-in application name 
could be an important feature. The counts of favorites, 
retweets, hashtags, and mentions could also be essential 
features for identifying the features. When visiting and making 
a post in a museum, people may mention some official 
accounts and persons of significance to share the joy and 
findings. In addition to the aforementioned features, the 
username of the users could also be a critical feature. For 
example, some users are official accounts, and they would 
not normally make a check-in post. Therefore, we check if 
the usernames have strings such as “art,” “archeo,” “Chicago,” 
“museum,” etc. Finally, combining the word embeddings 
and the other selected Tweet-content-based features, we 
select 309-dimension vectors for each data point. Table 2 
shows a summary of the selected features. 

2.2.3 Classifier formulation and performance evaluation 

In this step, we tested the performance of different categories 
of classifiers. We selected a traditional classifier, i.e., Support 
Vector Machine (SVM), an ensemble classifier of the Random 
Forest, and the shallow neural network (that contains three 
types of layers). The training/testing data ratio is 8:2. 

The evaluation metrics of the text classifiers measure 
the performance of making the right classification decision 
from different methods. Generally, four metrics are widely 
used: accuracy, precision, recall, F1-score based on the 
number of true positives (TP), false positives (FP), false 
negatives (FN), and true negatives (TN), as illustrated in 
Eqs. (1)–(4). The significance of these four elements may 
vary based on the classification application. It is noted that 
compared to the accuracy, the last three metrics are more  
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Table 2 Summary of the selected features 
 

Categories 
 

Selected features 
 

Type 
Dimension 

num. 

Word 
embedding 

300-dimension word embeddings 
weighted by the TF-IDF Float 300 

Whether the posted time is within 
opening hours Binary 1 

Whether the username of users 
contain the keywords like “art” Binary 1 

Whether the domain name in the 
URL contains check-in apps Binary 1 

Hashtags in the Tweet count Integer 1 

Mentions in the Tweet count Integer 1 

Favorite/like count Integer 1 

Retweet count Integer 1 

Posted hour Integer 1 

Tweet- 
content 

Posted day of the week Integer 1 

 
meaningful in terms of the effectiveness of the text classifiers 
because the accuracy is insensitive to variations in the 
number of correct decisions due to the large value of the 
numerator (TP+TN) (Kowsari et al. 2019).  

TP TNAccuracy
TP FP FN TN

+
=

+ + +
                   (1) 

TPPrecision
TP FP

=
+

                             (2) 

TPRecall
TP FN

=
+

                                (3) 

2TPF1-score
2TP FP FN

=
+ +

                         (4) 

The performance metrics of different classifiers from 
this case study are listed in Table 3 in terms of accuracy, 
precision, recall, and F1-score. It can be seen that the 
accuracy of the different classifiers is in a similar range, with 
the Random Forest and the neural network slightly being 
higher. This is as expected because we have a large number of 
true negatives when calculating the accuracy using Eq. (1). 

As mentioned in the last section, the precision and recall 
are more meaningful in the evaluation of the effectiveness 

Table 3 Summary of the performance metrics of different 
classifiers 

Performance 
metric 

 
SVM 

Random 
Forest 

Shallow neural 
network 

Accuracy 0.8485 0.9091 0.9091 

Precision 0.6000 0.8333 0.7500 

Recall 0.8571 0.7143 0.8571 

F1-score 0.7059 0.7692 0.8000 

of the text classifiers. Although the Random Forest has a 
relatively high score of precision, it has a lower score of the 
recall score. This means the classification algorithm could 
not recognize the “presence” of the user and label it as the 
“not present.” Since we need to know the number of the 
valid presence of the people in buildings, it is desirable to see 
a higher recall score. In terms of the F1-score, the neural 
network performs the best with a score of 0.8. F1-score is 
an overall metric combining the precision and the recall. It 
can be seen that the neural network performs slightly better 
than the other two classifiers. 

In Table 4, the detailed classification results of the testing 
sets are presented using the shallow neural network. The 
labels “1” and “0” represent the status of the people-present 
(positive) and people-not-present (negative). Majorities of 
the labels belong to be “0” (i.e., people not present). For the 
labels “1”, the results show that the method could basically 
distinguish them from most of the “0” labels (not-present 
labels). Indexes 59 and 168 were mislabeled, but their 
prediction scores are above 0.1. In addition, Index 96 
was mislabeled to be “1” although they should be “0”. The 
Tweets that are easy to be semantically differentiated, such 
as Indexes 198 and 30, have a high prediction score.  

2.2.4 Typical occupancy schedule extraction results from 
Tweeter 

We need to translate the count of classified “presence” 
Tweet to the building occupancy information. There exist 
sources of uncertainties in this translation. For example, we 
might not know how many hours people will stay there if 
they only have one valid “presence” post. Even if they have 
several posts, we are still not confident about how long 
he/she will stay. Therefore, we propose the following rules 
to extract the building occupancy pattern: 
 Use one hour as a time slot. 
 Count one person if the posts indicate the presence from 

the classifier. 
 Assume probability > 0.5 as presence. 
 Assume every person’s average duration in the place 

from Google Maps statistical information. For example, 
we get the information from Google Maps that normally 
people will stay in the Art Institute of Chicago for up to 
three hours. A Monte Carlo simulation could be conducted 
to allow for the uncertainty of the people stay time in the 
place. However, for this feasibility study, we use the fixed 
average stay duration, as suggested by the Google Maps. 

 If a person has two valid posts within several hours, we 
assume his/her presence in these several hours. 

On top of that, we add up the count of the classified 
presence tweet in the same time slot in each weekday for  
all the historical data. The extracted occupancy pattern is 
aggregated time series curves for different weekdays. In this 
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way, we obtained the weekly typical occupancy schedules 
at the building level to be used as inputs for the building 
energy models, as shown in Figure 4, which shows two 
different types of typical occupancy daily schedules. It is 
noted that the opening hour is 10:30 to 20:00 on Thursday 
while 10:30 to 17:00 on Friday.  

2.3 Web scraping from Facebook and Google Maps 

The second approach is to utilize the processed GPS location 
tracking data provided by social network makers such as 
Facebook and Google Maps. Web scraping techniques are 

used to obtain the data and extract the typical occupancy 
schedules at the building level.  

Figure 5 shows the sample of “Popular Times” by Google 
Maps and “Popular Hours” by Facebook. The principle 
behind these types of data lies in that these social network 
giants use aggregated and anonymized data from users who 
have opted in to share their real-time location. These com-
panies also have Points-of-Interest (POI) building footprints 
(polygons), which determine the location, shape, and size 
of a place. Based on these data, machine-learning algorithms 
are used to join the GPS data against the building footprints 
to derive the occupancy information. 

Table 4 Demonstration of the classification results using the shallow neural network 
Index Posted Time Tweets Label Prediction Score 

136 4/1/2019 3:20 Art Institute of Chicago will be hosting Gregg... 0 0 0.00257 

139 3/19/2019 4:03 The Art Institute of Chicago is hosting Every... 0 0 0.02752 

198 2/8/2019 11:27 I’m at The Art Institute of Chicago - @ artins... 1 1 0.60308 

59 3/12/2019 15:38 Art Institute was amazing! # rembrandt # beaut... 1 0 0.16830 

96 3/30/2019 16:43 Cut Piece, de Djanira. Performance, Art Instit... 0 1 0.63309 

23 3/27/2019 10:48 Hopper @The Art Institute of Chicago https://w... 1 1 0.50097 

30 3/28/2019 13:38 I’m at The Art Institute of Chicago - @ artins... 1 1 0.73036 

54 3/20/2019 5:10 Can’t wait to see this babe in May. # wcw # tr... 0 0 0.00174 

39 4/7/2019 16:01 Got to spend an afternoon this weekend with Va... 1 1 0.70794 

66 4/4/2019 21:00 Criticized for Failing to Consult Indigenous G... 0 0 0.02370 

67 3/28/2019 8:21 Thanks so much for this Art Institute of Chica... 0 0 0.05156 

88 3/25/2019 14:43 Wall-Floor Positions, de Gustave Klimt. Video... 0 0 0.04427 

63 4/12/2019 8:10 School of the Art Institute of Chicago has nam... 0 0 0.27143 

168 3/14/2019 15:15 A. Lincoln # artinstituteofchicago # chicago #... 1 0 0.48824 

86 3/24/2019 9:43 Autorretrato aos 13, de Giotto. Desenho, Art I... 0 0 0.04016 

184 3/23/2019 1:00 The Art of Reading at the Art Institute of Chi... 0 0 0.01482 

55 4/4/2019 10:16 Art Institute of Chicago delayed exhibition of... 0 0 0.00174 

25 3/27/2019 11:33 Art museum I’m ready to come home tbh. Work to... 1 1 0.65585 

72 3/13/2019 0:13 I Like America and America Likes Me, de Alexan... 0 0 0.00103 

158 4/9/2019 21:12 Art Institute of Chicago where Swami Ji delive... 0 0 0.01881 

60 4/3/2019 14:40 In a move museum leadership is calling unprec... 0 0 0.07430 

110 4/9/2019 20:13 I’m too sad to tell you, de Joseph Beuys. Vide... 0 0 0.03527 

199 3/18/2019 11:22 @ JohnMu Just about every result page for the ... 0 0 0.03667 

 

 
Fig. 4 Typical occupancy schedules for two day types extracted from social media data 
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Please note that the data from Facebook and Google 
Maps are relative occupancy information (i.e. normalized 
occupancy fraction for a given day) that is depicted as the 
height of the bar as shown in Figure 5. Therefore, we directly 
scraped the data from their websites. Figure 6 depicts the 
bar chart of the extracted typical building occupancy schedules 
for the Art Institute of Chicago from Facebook and Google 
Maps. The extracted occupancy schedules from Facebook and 
Twitter have a similar trend, but there still exist deviations. 
The deviations lie in that there might be several users who 
would be visiting who do not have Google Maps or location 
history enabled. 

2.4 Results and discussion 

It can be seen from Figure 7 that the extracted building 
occupancy schedules from different data sources (Twitter, 

Facebook, and Google Maps) share a similar trend but 
slightly distinct from each other. Figure 8 further calculates 
the Pearson correlation coefficient (PCC), which measures 
the strength and direction of the relationship between two 
variables, for these occupancy schedules extracted from 
two given approaches. The PCC has a value between +1 
and −1, where 1 represents a total positive linear correlation, 
0 indicates that there is no linear correlation, and −1 gives  
a total negative linear correlation. All PCCs between −0.8 
and +0.8 are considered not significant. The correlation 
coefficients between Facebook and Google Maps achieve 
a high score (~0.95), while the value between Twitter and 
Facebook/Google Maps is slightly lower. This observation 
requires further validation and corrections to consider the 
underlying uncertainties. For the approach 1 (i.e., text 
classification from Tweets) in Section 2.2, it is believed to 
have more uncertainties associated with algorithms used 

 
Fig. 5 The sample of “Popular Times” by Google Maps and “Popular Hour” by Facebook 

 
Fig. 6 Comparisons of typical occupancy schedules for two days extracted from Facebook and Google Maps 

 
Fig. 7 Comparisons of typical occupancy schedules for two days extracted from two approaches 
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during the entire procedure. For example, the Twitter posts 
may occur within the normal hours of operation but not 
occur at the time of occupancy, which results in inaccurate 
timestamp data. For the approach 2 (i.e., web-scraping from 
Facebook/Google Maps) in Section 2.3, the uncertainty 
arises from the fact that users who would be visiting  
might not have Google Maps or location history enabled. 
Furthermore, the ratio of users to non-user of social media 
should be acknowledged due to the age bracket of the social 
media users. Such uncertainty will lead to inaccurate extracted 
occupancy schedules for both approaches.  

3 Integration TOSSM with building energy modeling: 
case study 2 for a university museum 

In this section, a case study for a university museum is 
presented to demonstrate the application of the extracted 
TOSSM into building energy models. Another objective of 
this case study is to verify whether the additional occupancy 
features from social media could improve the prediction 
performance of the building energy model. Therefore, 
data-driven building energy models are established for the 
hourly cooling and heating energy prediction with or without 
the social media extracted occupancy features. Section 3.1 
discusses the data preprocessing and Section 3.2 describes 
the feature selection process. Section 3.3 details the 
construction of the data-driven models. In Section 3.4, the 
results and discussion are presented. 

3.1 Data preprocessing  

Alabama Museum of Natural History, the case study building 
in this section, is located in Smith Hall at the University of 
Alabama campus in Tuscaloosa, AL. This building is selected 
as the case study building because we have detailed and 
sufficient data for the model development and validation 
(e.g., the building floor plan, building system configuration, 
energy usage data, etc.), as well as the actual meteorological 
data from an onsite weather station. The floor plans of the 

museum and the location of the air handling unit (AHU) 
are depicted in Figure 9. The chilled water and hot water 
are from a campus energy plant through a district network. 
The weather data for this case study is collected from an 
onsite weather station on the campus, which is about 120 
meters southeast of the Smith Hall, to accurately capture 
relevant microclimate variation. The weather data is logged 
in a two-minute time step and it is further resampled to an 
hourly mean time series. As Table 5 exemplifies, the weather 
data has the attributes of dry bulb temperature, relative 
humidity, dew point temperature, wind speed, gust speed, 
wind direction, and global solar radiation. The typical 
occupancy schedules at the building level are extracted 
using approach 2 (i.e., web-scraping from Google Maps) 
described in Section 2.3, as depicted in Figure 10. The 
chilled water (CHW) usage and hot water (HW) usage are 
metered in a 15-minute interval. We select the data at a 
time frame from March 28th, 2018 to May 23rd, 2019,   
and further process these data into an hourly time series. 
Figure 11 depicts a weekly example of the energy usage data 
for both chilled water and hot water consumption. Both 
temperatures and humidity need to be controlled in this 
building, and a traditional cool-reheat approach was used 
for dehumidification. This explains the relatively high hot 
water consumption in August in a humid climate zone. 

3.2 Filter-method-based feature selection 

Selecting a set of correlated input features is critical for 
building a data-driven building energy prediction model. 
The input features can be categorized into exterior factors 
such as meteorological data, internal factors such as occupancy, 
HVAC operation data from building automation systems, 
and time-lag history data, etc. (Zhang and Wen 2019). 
Based on the aforementioned factors and the input data 
availability for this case study, the raw input features we 
consider include the meteorological data such as dry bulb 
temperature, relative humidity, dew point temperature, 
solar radiation, wind speed, gust speed, wind direction; the 

 
Fig. 8 Heat map of Pearson correlation coefficient for schedules extracted from two approaches (left map: Thursday; right map: Friday)
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calendar features such as hour of day, day of week, day type, 
and month of year; the occupancy information such as the 
extracted building occupancy schedules from social media. 
It is noted that calendar features such as the hour of the day 
and day type could also indicate the occupancy condition 
and pattern (Wang and Srinivasan 2017; Wang et al. 2019) 
and may have a correlation with the occupancy features we 
extracted.  

To determine the prominent features and improve the 
performance of the data-driven models, a filter-method- 
based feature selection approach reported in Ref. (Zhang 
and Wen 2019) is adopted. In this approach, the Pearson 
correlation coefficients (PCC) are calculated between each  

 
Fig. 10 Normalized typical occupancy schedules through web- 
scrapping from Google Maps for Smith Hall 

Fig. 9 Floor plan and AHU location of Alabama Museum of Natural History 

Table 5 Example of weather station data set used in an hourly basis 

Time (CDT) 

Dry bulb 
temperature 

(°F) 
Relative 

humidity (%) 

Dew 
temperature 

(°F) 
Wind speed 

(mph) 
Gust speed 

(mph) 
Wind 

direction (°) 

Solar 
radiation 
(W/m2) 

3/29/2018 11:00 67.64 80.69 61.34 3.55 9.37 143.77 81.63 

3/29/2018 12:00 59.92 94.34 58.32 1.74 5.67 214.93 50.17 

3/29/2018 13:00 60.09 95.32 58.78 0.38 2.18 220.17 56.97 

3/29/2018 14:00 60.20 95.06 58.82 0.23 2.09 261.27 48.23 

3/29/2018 15:00 59.49 95.38 58.21 1.53 4.02 264.57 35.27 

3/29/2018 16:00 59.57 96.30 58.54 4.22 7.67 210.27 29.57 

3/29/2018 17:00 60.05 96.26 59.02 0.63 2.00 160.30 34.73 
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input feature and the output of interest to filter out the 
weakly correlated features. Table 6 lists the results from  
this feature selection method. It can be seen that dry bulb 
temperature, dew point temperature, solar radiation, 
occupancy, and relative humidity are the top five correlated 
features with the outputs. In comparison, the day of the 
week, gust speed, wind speed, and wind direction are the 
least four uncorrelated features with the output. The cut-off 
thresholds need to be carefully determined since the feature 
that has a low correlation with the output by itself can still 
provide a significant performance improvement when being 
combined with other features. From our domain knowledge, 
we keep the feature Day of Week since it may improve the 
prediction performance when being combined with other 
calendar features. However, the feature Wind Direction is 
eliminated in this step based on the feature selection results 
and our domain knowledge. On top of that, the Pearson 
correlation coefficients between the input features are also 
calculated to eliminate the features that are closely co-related. 
The results show that the features Wind Speed and Gust 
Speed are closely correlated (PCC>0.95). Since the feature 

Table 6 Pearson correlation coefficients between each input 
feature and the output of interest 

 
Pearson correlation coefficient 

Input features CHW usage HW usage  
Dry bulb temperature 0.7658 −0.2507 

Dew point temperature 0.6644 −0.332 
Solar radiation 0.4579 0.1913 

Occupancy 0.2576 0.1990 
Relative humidity −0.2069 −0.1437 

Hour of day 0.13 0.0376 
Month of year 0.142 −0.0207 
Day of week −0.0268 −0.0659 
Gust speed 0.0886 0.157 
Wind speed 0.0497 0.1237 

Wind direction −0.0469 0.0265  

Gust Speed shows a closer correlation with the output, this 
feature is kept, and the feature Wind Speed is eliminated. 

Therefore, the input feature sets after the feature 
selection are composed of dry bulb temperature, dew point 
temperature, solar radiation, occupancy, relative humidity, 
hour of day, month of year, day of week, gust speed. It is 
noted that the occupancy feature might serve as a critical 
factor that contributes to the prediction improvement from 
the result in this section. To further investigate the efficacy 
of the occupancy feature extracted from social media, 
feature assessment of feature “Occupancy” is conducted in 
the next section. 

3.3 Feature importance assessment for feature 
“Occupancy” 

In this section, two feature input sets are compared by two 
different machine-learning algorithms to evaluate the 
feature importance of feature “Occupancy”. As Table 7 
shows, the features in feature input set 1 are derived from 
the result in Section 3.3, while the feature input set 2 has 
the same features with the feature “Occupancy” removed. 
Based on that, eight data-driven models are constructed 
with different feature input sets, different machine-learning 
algorithms, and different outputs of interest, as shown in 
Table 8.  

Two well-used machine-learning algorithms, Random 
Forest (RF) (Liaw and Wiener 2002) and XGBoost (XGB) 

Table 7 Two feature sets for evaluating feature “Occupancy” 

Set Features 

Feature input set 1
Dry bulb temperature, dew point temperature, 
solar radiation, relative humidity, hour of day, 
month of year, day of week, gust speed 

Feature input set 2

Dry bulb temperature, dew point temperature, 
solar radiation, occupancy, relative humidity, 
hour of day, month of year, day of week, gust 
speed  

 
Fig. 11 Weekly time series for chilled water usage and hot water usage in Smith Hall 
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(Chen et al. 2015), are adopted as the prediction models. 
Random forest regression model utilizes an ensemble learning 
method that operates by constructing a multitude of decision 
trees at training time and outputting the mean prediction 
of the individual trees (Wang et al. 2018), which achieves a 
significant improvement in terms of accuracy and stability 
compared to the basic decision trees. XGBoost, proposed in 
2014, is an implementation of gradient boosted decision 
trees designed for speed and performance (Chen and Guestrin 
2016). This algorithm has recently been dominating applied 
machine learning and Kaggle competitions for structured 
or tabular data. To form an optimal model architecture,   
a set of hyperparameters needs to be learned and tuned 
(Duan et al. 2003). The main parameters affecting the RF 
performance include number of trees (NT), the maximum 
depth of the tree (MDT), the maximum number of features 
(MNF), the minimum number of samples required to split 
a node (MSS), and the minimum number of samples required 
at each leaf node (MSL). Likewise, XGBoost has critical 
parameters such as number of trees (NT), the maximum 
depth of decision trees (MDT), learning rate, subsample 
number, etc.  

Regarding the evaluation of the constructed prediction 
model, various performance indicators are used, as shown 
in Eq. (5)–Eq. (8). They are mean absolute error (MAE), 
R-squared (R2), the coefficient of variation of root-mean- 
squared error (CV (RMSE)), and normalized mean bias 
error (NMBE). 

MAE reflects the average over the test sample of the 
absolute differences between prediction and actual obser-
vations where all individual differences have equal weight. 
R2 and CV(RMSE) both indicate the goodness of fit for the 
prediction results with respect to the real data. It is noted 
that R2 focuses more on the error observed over individual 
data points while CV(RMSE) quantifies the average error. 
The metric of NMBE indicates the error bias (positive or 
negative). Though NMBE could be a misleading metric for 
the prediction alone since the positive bias and negative 
bias may cancel out, it helps to present the relative position 

of the simulated data with respect to the measured data.  
In ASHRAE Guideline 14 (ASHRAE 2018), it suggests the 
error tolerance limits for building energy prediction, the 
CV(RMSE) and NMBE should be within 30% and ±10% 
for the hourly prediction data, respectively. 
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where ˆiy , yi, and y  represent the measured data, predicted 
data, and mean of the measured data, respectively; n is the 
total number of the data samples. 

3.4 Results and discussion 

In this case study, these two data-driven models are 
implemented using the sklearn module in Python (v3.7). 
The training and testing datasets are hourly data from Mar 
28th, 2018 to May 23rd, 2019, as described in Section 3.1. 
The ratio between the training and testing datasets is 9:1 for 
both the chilled water and hot water usage prediction. For 
the hyperparameter tuning, the grid search, random search 
(Bergstra and Bengio 2012), and Bayesian optimization 
algorithms (Klein et al. 2016) are commonly used methods. 
In this study, the random search approach is used with 
3-fold cross-validation. Table 9 details the hyperparameter 
setting of the models to ensure them well-configured.   

Table 10 compares the model performance for cases 
1–4 with chilled water usage predictions. It can be seen that 
both CV (RMSE) and NMBE are bounded within 30% and 

Table 8 Description of eight constructed models  

Case number & name Features Machine learning algorithms Output 

Case 1: CHW-RF-w/Occ Feature input set 1 Random Forest (RF) Hourly Chilled Water Usage 

Case 2: CHW-RF-w/oOcc Feature input set 2 Random Forest Hourly Chilled Water Usage 

Case 3: CHW-XGB-w/Occ Feature input set 1 XGBoost (XGB) Hourly Chilled Water Usage 

Case 4: CHW- XGB -w/oOcc Feature input set 2 XGBoost Hourly Chilled Water Usage 

Case 5: HW-RF-w/Occ Feature input set 1 Random Forest Hourly Hot Water Usage 

Case 6: HW-RF-w/oOcc Feature input set 2 Random Forest Hourly Hot Water Usage 

Case 7: HW- XGB-w/Occ Feature input set 1 XGBoost Hourly Hot Water Usage 

Case 8: HW- XGB -w/oOcc Feature input set 2 XGBoost Hourly Hot Water Usage 

 



Lu et al. / Building Simulation 

 

14 

±10% for all the four cases, which indicates a good prediction 
performance. Comparing case 1 & case 2 and case 3 & case 4, 
it is evident that the model prediction performance is slightly 
enhanced for both machine-learning algorithms with 
occupancy information extracted from social media. MAE 
and CV (RMSE) increase by ~5%, which is modest. The 
improvement of R2 is limited, probably due to the co-linearity 
between the feature “Occupancy” and the three calendar 
features (hour of day, day of week, and month of year). 
Table 11 shows the model performance comparison of 
cases 5–8 with hot water usage predictions. Similar results 
can be found. Both CV(RMSE) and NMBE are bounded 
within 30% and ±10% for all the four cases. Comparing 
case 5 & case 6 and case 7 & case 8, the model prediction 
performance is slightly enhanced for both machine-learning 
algorithms except that the NMBE decreases slightly using 
RF (the absolute values of RF for both bases are small although 
the relative improvement ratio is high). MAE increase by ~5% 

for both algorithm and CV (RMSE) increases by 1.87% 
and 4.12% for RF and XGB, respectively. The improvement 
of R2 is also limited.  

Figure 12 depicts the comparison of predicted data and 
measured data in the testing set (first 200 data points) for 
chilled water usage and hot water usage considering the 
occupancy feature. Overall, the incorporation of the Feature 
“Occupancy” could improve the hourly energy usage 
prediction to a small extent regarding the four evaluation 
metrics. In other words, from an engineering perspective, 
the data-driven models without the integration of the 
TOSSM but with calendar features have already achieved  
a high prediction performance in this building type. The 
model performance improvement is rather modest probably, 
due to the following justifications. First, the case study 
building is a school museum. The number of occupants is 
normally lesser than its design value and will have less impact 
on the building loads. Furthermore, the HVAC control for 

Table 9 Hyperparameter setting of the models 

Case number & name Hyper-parameters setting 

Case 1: CHW-RF-w/Occ n_estimators=1400, max_depth=90, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, bootstrap=False 

Case 2: CHW-RF-w/oOcc n_estimators=1400, max_depth=90, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, bootstrap=False 

Case 3: CHW-XGB-w/Occ learning_rate=0.1, n_estimators=300, max_depth=7, min_child_weight=9, gamma=0, subsample=0.9, 
colsample_bytree=0.9 

Case 4: CHW- XGB -w/oOcc learning_rate=0.1, n_estimators=300, max_depth=7, min_child_weight=1, gamma=0, subsample=0.8, 
colsample_bytree=0.8 

Case 5: HW-RF-w/Occ n_estimators=1400, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, max_depth=,60 bootstrap=False 

Case 6: HW-RF-w/oOcc n_estimators=1400, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, max_depth=60, bootstrap=False 

Case 7: HW- XGB-w/Occ learning_rate=0.1, n_estimators=350, max_depth=13, min_child_weight=5, gamma=0, subsample=0.9, 
colsample_bytree=0.7 

Case 8: HW- XGB -w/oOcc learning_rate=0.1, n_estimators=400, max_depth=7, min_child_weight=7, gamma=0, subsample=0.9, 
colsample_bytree=0.7 

Table 10 Comparison of cases 1–4 for chilled water usage prediction in Smith Hall 

 Case 1 
CHW-RF-w/Occ 

Case 2 
CHW-RF-w/oOcc 

Improvement 
ratio (%) 

Case 3 
CHW-XGB-w/Occ 

Case 4 
CHW-XGB-w/oOcc 

Improvement 
ratio (%) 

MAE (MMBTU) 0.0263 0.0275 4.36 0.0256 0.0278 7.91 

R2 0.9155 0.909 0.72 0.9192 0.9111 0.89 

CV(RMSE) (%) 4.64 4.81 3.53 4.53 4.76 4.83 

NMBE (%) −0.96 −1.04 7.74 0.4267 1.0268 58.44 

 

Table 11 Comparison of cases 5–8 for hot water usage prediction in Smith Hall  

 Case 5 
HW-RF-w/Occ 

Case 6 
HW-RF-w/oOcc 

Improvement 
ratio (%) 

Case 7 
HW-XGB-w/Occ 

Case 8 
HW-XGB-w/oOcc 

Improvement 
ratio (%) 

MAE (MMBTU) 0.0236 0.0248 4.84 0.0244 0.0256 4.69 

R2 0.8883 0.8838 0.51 0.9001 0.8912 1.00 

CV(RMSE) (%) 4.19 4.27 1.87 3.96 4.13 4.12 

NMBE (%) 0.29 0.23 −26.09 0.3538 0.5632 37.18 
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this 110-year old building with a typical schedule-based 
operation is not heavily occupant-centric. Therefore, the 
influence of the occupancy might not be as considerable as 
that in a modern large office building with occupant-centric 
controls. Secondly, the Feature “Occupancy” has a strong 
correlation to the calendar features. It is evident from cases 
2, 4, 6, and 8 that using calendar features as the indictor 
of occupancy has already achieved a sufficient accuracy for 
this type of building.  

4 Conclusions, limitations, and future work 

In this paper, we presented two approaches to extract the 
typical occupancy schedules for the input to the building 
energy simulation using social media data. The first approach 
formulates a semantic classifier to identify whether people 
are present in the space where they are posting from Twitter. 
With assumed people counting rules, the typical occupancy 
schedules are then extracted. In the second approach, web 
scraping techniques are used to extract the building typical 
occupancy schedules based on the processed GPS tracking 
data provided by social network makers such as Facebook 
and Google Maps. The quantitative results show that the 

extracted building occupancy schedules from three data 
sources (Twitter, Facebook, and Google Maps) share a similar 
trend but slightly distinct from each other, which requires 
further validation and corrections.  

To further demonstrate the application of the extracted 
typical occupancy schedules from social media (TOSSM), 
data-driven models for hourly energy usage prediction of a 
university museum are developed using Random Forest 
and XGBoost, with the integration of the TOSSM. For the 
chilled water usage prediction, MAE and CV(RMSE) increase 
by ~5% while the improvement of R2 is limited. NMBE 
increases by 58.44% for XGBoost, but the absolute increase 
value is small. Similar results can be observed for the hot 
water usage prediction. By comparing the models with and 
without the occupancy schedule features, the incorporation 
of the TOSSM could improve the hourly energy usage 
prediction to a certain extent regarding the four adopted 
evaluation metrics. 

The future work includes improving, validating, and 
correcting the occupancy schedule estimation from two 
proposed approaches using the visitor counting (e.g., ticket 
information, people counting data from occupancy sensors, 
etc.) from the museum. We will investigate some uncertainties 

 
Fig. 12 Prediction performance comparison for chilled water usage and hot water usage considering occupancy feature 
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that mentioned in Section 2.4:  
 The inaccurate timestamp issue, the fake account issue, 

etc., for approach 1 (text classification through Tweets) 
in Section 2.2. 

 The fact that users who would be visiting might not have 
Google Maps or location history enabled for approach 2 
(web-scraping from Facebook/Google Maps) in Section 2.3. 

 Considering the non-user of social media for both 
approaches.  

We would also like to implement the evaluation of the 
value proposition of using the TOSSM for building energy 
modeling, as described in Section 3, for different types of 
buildings, such as office buildings, school buildings, hotel 
buildings, etc. It is anticipated that building energy 
consumption in some of these building types will be more 
correlated with occupancy schedules. Furthermore, such 
occupancy information at the building level will be in-
corporated with the urban-scale community and city energy 
modeling.  
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