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Abstract

Deep architectures are trained on massive amounts of la-

beled data to guarantee the performance of classification.

In the absence of labeled data, domain adaptation often

provides an attractive option given that labeled data of a

similar nature but from a different domain is available. Pre-

vious work has chiefly focused on learning domain invariant

representations but overlooked the issues of label imbalance

in a single domain or across domains, which are common

in many machine learning applications such as fake news

detection. In this paper, we study a new cross-domain clas-

sification problem where data in each domain can be im-

balanced (data imbalance), i.e., the classes are not evenly

distributed, and the ratio of the number of positive over

negative samples varies across domains (domain imbalance).

This cross-domain problem is challenging as it entails covari-

ate bias in the input feature space and representation bias

in the latent space where domain invariant representations

are learned. To address the challenge, in this paper, we pro-

pose an effective approach that leverages a doubly balancing

strategy to simultaneously control these two types of bias

and learn domain invariant representations. To this end, the

proposed method aims to learn representations that are (i)

robust to data and domain imbalance, (ii) discriminative be-

tween classes, and (iii) invariant across domains. Extensive

evaluations of two important real-world applications corrob-

orate the effectiveness of the proposed framework.

Keywords:Unsupervised Domain Adaptation, Data Imbal-

ance, Domain Imbalance, Representation Learning

1 Introduction

Learning a transferable classifier in the presence of a
covariate shift between training and test data is known
as domain adaptation (DA). When applied to cross-
domain classification tasks where both data and domain
are imbalanced, the performance of this classifier can be
further aggravated by covariate bias and representation
bias. These biases result in distorted estimations of as-
sociation between features and labels as well as associ-
ation between representations and labels.

Imbalanced data in classification typically refers to
the problems where class distributions are not even.

∗Computer Science and Engineering, Arizona State University,
Tempe. {lcheng35, rguo12, candan, huanliu}@asu.edu

Figure 1: Problem Illustration. The orange dots and the
green triangles represent different classes. During training,
the cross-domain classifier can access to the imbalanced and
labeled data in Domain A and unlabeled data in Domain
B. In the test phase, the imbalanced labels in Domain B
are available. The covariate shift can be aggravated by the
imbalanced domains and data.

Data Imbalance can make cross-domain classification
tasks more challenging. Take the cross-domain cyber-
bullying detection task as an example, it is often im-
possible to train standard classifiers using data from one
social media platform (e.g., Twitter1) to accurately pre-
dict bullying instances on another platform, say Form-
spring2, given the number of positive samples (i.e., bul-
lying instances) is limited [6, 5]. As data labeling is
often time-consuming, expensive and sometimes even
impossible due to data privacy issues, we may have to
rely on other domains that have sufficiently large labeled
data for training. In addition, cross-domain classifica-
tion also commonly confronts a domain imbalance issue.
For instance, the ratio of number of bullying over num-
ber of non-bullying samples can differ across various so-
cial media platforms. Fig. 1 illustrates a cross-domain
classification problem where data in both domains are
not balanced (data imbalance) and the ratio of positive
and negative classes in the two domains are also differ-
ent (domain imbalance).

Among the many DA methods, feature mapping has
shown tremendous success with the superior advantages
of deep neural architectures [24]. The underlying prin-
ciple is to map features from different domains to a
common space and enforce the emergence of domain-

1https://twitter.com/
2https://spring.me/
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invariant representations that reduce domain discrep-
ancy [2]. Previous work on DA shows satisfactory per-
formance in tasks such as cross-domain image classifi-
cation [10, 17], however, these models are not robust to
data imbalance and domain imbalance that often occur
between different domains with extremely skewed data.
Consequently, domain invariant representations learned
using standard DA methods can suffer from covariate
bias and representation bias, resulting in low-quality
representation that is neither aligned well between do-
mains nor discriminated effectively between classes.

To address these challenges, we introduce a simple
doubly balancing framework that consists of a covariate
balancing (CB) [14] component and a representation
balancing (RB) component. On one hand, CB is
commonly used in observational studies to produce
balanced data via sample re-weighing [14]. Hence, we
use CB to deal with covariate bias in the input feature
space. On the other hand, as DA aims to learn domain
invariant representations, it is also necessary to account
for the representation bias in the latent space via RB.
Standard CB methods may not be ablel to handle
the representation bias due to the noise induced by
transforming features from the input space to latent
space. The doubly balancing strategy, therefore, seeks
to jointly learn an optimal re-weighing strategy via CB
and RB to account for both covariate and representation
bias.

In this paper, we propose a novel Robust Domain
Invariant Representation Larning (RIRL) model that
leverages the doubly balancing strategy to learn rep-
resentations for the imbalanced cross-domain classifica-
tion task. In essence, RIRL seeks to find a trade-off be-
tween the predictive accuracy within the source domain
and the imbalance error induced by CB and RB across
different domains. In this work, we use text classifica-
tion for illustration because textual data is imbalanced
in nature [18], but our model is generic and can be used
in other applications. The main contributions of this
paper are as follows:

• Problem Formulation: We formally define the
problem of representation learning for imbalanced
cross-domain classification. To the best of our
knowledge, this is the first work in DA that con-
siders both covariate bias and representation bias
induced by domain imbalance and data imbalance.

• Algorithms: We propose a new domain invari-
ant representation learning framework, RIRL, that
leverages a new doubly balancing strategy. This
framework mainly consists of three components:
(i) a main component that minimizes the predic-
tion error in the source domain; (ii) a CB compo-

nent that aims to re-weigh and balance the skewed
data distributions; and (iii) an RB component that
makes the representation distribution in the target
domain mimic the distribution in the source do-
main.

• Evaluation: We perform empirical evaluation on
two real-world applications, where data is typically
imbalanced. Experimental results show that the
proposed framework often outperforms the state-
of-the-art methods.

2 Related Work

Most methods for learning domain invariant represen-
tations are feature-based. This includes asymmetric
[15, 9] and symmetric feature-based methods [10, 24].
One such method seeks to minimize maximum mean
discrepancy (MMD) [12] metric between distributions
of the source and target domains in the shared space.
For example, the deep domain confusion (DDC) method
[29] tries to integrate MMD in the last fully connected
layer. Correlation alignment (CORAL) method [26, 27]
is proposed to align the second order statistics of the
source and target domains with a linear transformation.
It is then extended to a deep CORAL which learns a
nonlinear transformation that aligns the correlations of
layer activation in deep neural network [28]. Domain
adversarial neural network (DANN) [1, 11] learns do-
main invariant features by a minimax game between
the domain classifier and the feature extractor. Differ-
ent from the previous asymmetric feature-based meth-
ods, the Wasserstein Distance Guided Representation
Learning (WDGRL) model [24] is a symmetric approach
that projects both domains to a common latent space to
learn domain invariant representations. Besides learn-
ing shared representations, domain separation network
(DSN) [3] attempts to explicitly separate private repre-
sentations for each domain and shared ones between the
source and target domains.

Causal feature selection targets at a similar prob-
lem regarding feature transportability/generalizability
[20, 4]. Causal feature selection differs from standard
feature selection in that it attempts to learn causal as-
sociations between features and labels rather than cor-
related relationship. Causal feature selection gets closer
to the causal mechanisms and reveal a more refined no-
tion of relevance, i.e. causes [13]. In [4], the author pro-
poses a propensity score matching technique for learn-
ing causal associations between word features and class
labels in document classification task. The proposed
causal text classifier seeks to identify generalizable fea-
tures that make valid predictions when applied to out-
of-domain data [4].
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Data imbalance and domain imbalance often occur
in many machine learning applications, nevertheless, ex-
isting DA approaches fail to address this problem. Co-
variate and representation bias brought by data and do-
main imbalance can lead to systematic differences be-
tween the distributions over domains, thus can severely
affect the quality of the learned representations.

3 Problem Definition

We use a binary text classification task (e.g., cyberbul-
lying and fake news detection) as an example for prob-
lem illustration. Suppose that a corpus of text is from
the input space X, each x ∈ X is represented as a d-
dimensional vector, i.e., x ∈ Rd. The associated labels
(output) y ∈ {0, 1} are from the label space Y with
number of instances of one category substantially larger
than that of the other. We further assume that there
exist two distributions S(x, y) and T (x, y) on X ⊗ Y ,
which are referred as the source and target distributions.
S is assumed to be “shifted” from T by some covariate
shift [10] and both distributions are assumed to be un-
known, imbalanced. In addition, the ratio of classes in
these two domains can be different.

Let NS , NT be the number of instances in S, T .
Consequently, we can access to NS +NT training sam-
ples {xS1, xS2, ..., xSNS , xT 1, xT 2, ..., xTNT } from both
source and target domains distributed according to the
marginal distributions S(x) and T (x). Labels of sam-
ples from the source distribution {yS1, yS2, ..., ySNS}
are known while those of the target distribution
{yT 1, yT 2, ..., yTNT } are not available during training.
Suppose we have PS(QS) positive(negative) samples in
S, and PT (QT ) positive(negative) samples in T . Let
D be the dimension of learned representations, the pro-
posed imbalanced cross-domain classification problem
can then be defined as

Definition 1 (Imbalanced Cross-Domain Classifica-
tion). Given labeled samples (xSi, ySi) from the source
domain and unlabeled samples xT j from the target do-
main, PS

QS
6= 1 and PT

QT
6= 1. In addition, PS

QS
6= PT

QT
; we

seek a representation learning model Φ : X → RD and
a hypothesis h : RD → {0, 1} to minimize the expected
classification error Ej∈T [L(ŷT j , yT j)] over the instance
j in the target domain.

4 RIRL: The Framework

In this section, we describe the details of the proposed
RIRL framework, that for each input x from the target
domain, predicts its label y ∈ Y using the classifier
trained on the labeled data in the source domain.
The proposed deep feed-forward framework consists of
three components: (1) a label predictor that minimizes

the prediction error in the source domain; (2) a CB
component that aims to resolve covariate bias in the
input space; and (3) an RB component that is designed
to reduce representation bias in the latent space. The
RIRL workflow can be viewed in Fig. 2.

4.1 A Näıve Classifier for Imbalanced Data
RIRL builds upon a näıve classifier that accounts for
data imbalance by re-weighing training samples in the
source domain. First, we project the input x ∈ Rd
in the source domain to a D-dimensional latent space
by the representation functions of the form Φ : X →
RD, where RD denotes the representation space. The
feature mapping may include several hidden layers and
we denote the vector of parameters of all layers as
θΦ. Then to perform the classification task, we seek
a hypothesis h with parameters θh which transfers the
latent representations to the label space Y . Now,
an imbalanced classifier can be learned through the
following objective function:

min
θΦ,θh

1

NS

NS∑
i=1

vi · L(h(Φ(xSi, θΦ), θh), ySi),

with vi =

{
PS+QS
PS

, ySi = 1
PS+QS
QS

, ySi = 0.

(4.1)

Here, L(·, ·) is the loss function for binary label predic-
tion (e.g. logistic loss, cross-entropy loss) and the weight
vi compensates for the imbalanced count of positive and
negative samples in the source domain. It is computed
by the inverse proportion of class sample i belongs to.

To generalize the classifier to make better predic-
tions for unseen data in the target domain, we further
add a squared `2-norm for model parameters to prevent
the model from overfitting.

min
θΦ,θh

1

Ns

Ns∑
i=1

vi · L(h(Φ(xsi, θΦ), θh), ySi) + αC(h),

(4.2)

where α is the parameter that controls the model
complexity C(h).

4.2 Covariate Balancing between Domains CB
has been widely used to reduce covariate bias in obser-
vational studies [14]. A common approach is to re-weigh
the instances in one of two groups with sample weights
W ∈ RNT ×1 so that the data distributions of these two
groups are closer [17]. Formally, the objective to learn
the sample weights W is defined as:

(4.3) min
W
‖x̄t − Σj:Tj=0wj · xj‖22,
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Figure 2: The proposed RIRL framework includes a feature extractor (dark green), a deep feature mapping component
(orange) and a deep label predictor (green), which together form a standard deep feed-forward framework for the
classification task. Robust cross-domain classification is achieved by leveraging CB for the input data and RB for the
learned representations over the source and target domains. Best viewed in colors.

where Tj ∈ {0, 1} represents the group sample j belongs
to. x̄t denotes the average value of variables in group
with Tj = 1. Solutions to Eq. 4.3 can be used to
produce more balanced samples for both groups under
the following assumption:

Assumption 1 (Neglect Assumption). For all x in the
support of Xi,

P (Ri = r|Xi = x) > 0, Pr(x), Qr(x) > 0, r ∈ {S, T },

where Ri denotes the domain to which sample i belongs.
This assumption states that number of positive and
negative samples in both domains should be larger than
zero. Here, we adapt Eq. 4.3 to a more flexible
model that later can be used to reweigh the non-linear
relationship in RB. Given a mapping function l that
projects data in the target domain to the sample weights
space, we introduce the objective function for CB below:

min
θw
‖x̄s − Σj∈T wj · xj‖22,

s.t. 1TW = 1, W ≥ 0,
(4.4)

where wj = l(θw, xj), θw ∈ Rd denotes the mapping
parameters of l and x̄s ∈ Rd is a vector with entries
equal to the mean of each variable in the source domain.
The term 1TW = 1 normalizes the sample weights in
the target domain to add up to one. W ≥ 0 ensures the
sample weights are non-negative. We then incorporate
Eq. 4.4 to the classifier in Sec. 4.1 and the objective

function for the cross-domain classification is

min
θΦ,θh,θw

1

NS

NS∑
i=1

vi · L(h(Φ(xSi, θΦ), θh), ySi)

+αC(h) + β‖x̄s − Σj∈T wj · xT j‖22,
s.t. 1TW = 1, W ≥ 0,

(4.5)

where β controls the contribution of CB. To resolve the
representation bias and enforce the similarities between
the representations across domains, we next introduce
the RB component.

4.3 Robust Domain Invariant Representation
via Doubly Balancing Standard DA approaches may
fail to learn high-quality representations when applied
to scenarios with data and domain imbalance due to
the representation bias. In this section, we propose
to incorporate an RB component that seeks to reduce
representation bias and the domain discrepancies via
the enforcement of similarity between source and target
representations. Together with CB, RIRL jointly learns
an optimal re-weighing strategy and the representation
function Φ to simultaneously account for covariate and
representation biases.

The goal of Φ is to push the distributions of source
and target domains into a new common space R. This
is traditionally achieved by minimizing the distance be-
tween the representation distributions of source and tar-
get domains. However, this method may not be effective
when the learned representations are polluted by repre-
sentation bias along with covairate bias. Consequently,
here, we introduce a doubly balancing technique that
leverages both CB and RB. Similar to CB, the core idea
of RB is to re-weigh the representation distribution in
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the target domain with sample weights W and make the
re-weighted representation distribution in the target do-
main mimic the distribution in the source domain.

Let pSΦ, pTΦ be the representation distributions of
source and target domains induced over R such that
they satisfy Assumption 1. We measure the distance
between pSΦ and pTΦ using Integral Probability Metrics
(IPMs) [19]. Following previous work [24, 8, 23], we
use family of norm-1 reproducing kernel Hilbet space
(RKHS) functions, particularly, the maximum mean
discrepancy (MMD) [12]. RIRL adopts MMD with a
linear kernel and a mixture of RBF kernels because they
are sufficiently rich to uniquely identify the distance
between pSΦ, pTΦ and also easy to implement. The
squared linear MMD for pSΦ, p

T
Φ on the samples XS , XT

can then be calculated by the following equation:

(4.6) IPMLinear(p
S
Φ, p
T
Φ ) =

D∑
i=1

(x̄Si − x̄T i)2.

MMD with RBF kernels is computed by

IPMRBF (pSΦ, p
T
Φ ) =

1

NS(NS − 1)

∑NS

i,j=1
i6=j

k(xSi, xSj)+

1

NT (NT − 1)

NT∑
i,j=1
i6=j

k(xT i, xT j)−
2

NSNT

NS ,NT∑
i,j=1

k(xSi, xT j),

(4.7)

where k(·, ·) is the RBF kernels of the form

(4.8) k(x, y) = exp

(
− ‖x− y‖

2

2σ2

)
, x ∈ XS , y ∈ XT .

We then formulate RB as

(4.9) IPMF
(
{Φ(xSi)}i∈S , {wjΦ(xT j)}j∈T

)
.

This leads to the following optimization problem:

min
θΦ,θh,θw

1

NS

NS∑
i=1

vi · L(h(Φ(xSi, θΦ), θh), ySi)

+ αC(h) + β‖x̄S − Σj∈T wj · xT j‖22
+ γIPMF

(
{Φ(xSi)}i∈S , {wjΦ(xT j)}j∈T

)
,

s.t. 1TW = 1, W ≥ 0,

(4.10)

where γ, together with α and β, controls the trade-off
between predictive accuracy and imbalance error from
CB and RB. Essentially, the sample weight W is jointly
optimized through CB and RB, therefore, accounts for
both covariate and representation bias. We normalize
Φ through either projection or batch-normalization with

Table 1: Dataset Statistics

Dataset #Neg #Pos #Total Ratio

Formspring 12,036 1,126 13,162 10.7:1

Twitter 11,335 3,645 14,980 3.1:1

Gossip 3,728 934 4,662 4.0:1

Fake 2,118 869 2,987 2.4:1

fixed scale. Prediction of samples in the target domain
is then computed by ŷt = h(Φ(xt, θΦ), θh), t ∈ T .

We train the models by minimizing Eq. 4.10 using
the Adam optimization algorithm [16], where the error
is backpropagated through the hypothesis, CB and
representation networks with one mini-batch at a time.
After each iteration, we further normalize the updated
W and Φ, and keep W non-negative to satisfy the
constraints. As we see in the next section, the learned
representations are domain invariant, discriminative,
and robust to both data and domain imbalance.

5 Experiments

For evaluations, we seek to answer the following research
questions: (1) How effective is the proposed framework
RIRL compared to the following three types of methods:
(i) existing DA algorithms, (ii) text classification models
which aim at learning more generalizable features and
(iii) common classification models that account for data
imbalance? (2) How does each module, i.e., CB and
RB, affects the performance of RIRL in cross-domain
imbalanced text classification tasks? (3) How does
the performance of RIRL vary as the classes ratio
(QS/PS) changes in the source domain? (4) How
robust is RIRL to different settings of hyperparamters?
To answer these research questions, we test RIRL on
cross-domain cyberbullying detection and fake news
detection, and compare our model with various baseline
models. We also exam the robustness of RIRL via
parameters sensitivity analysis.

5.1 Dataset Descriptions. We first provide details
of the four real-world datasets used in fake news and
cyberbullying detection, respectively.
Fake News Datasets. The first dataset for fake news
detection is the Gossip dataset [25] crawled from Gos-
sipCop3, a website for fact-checking entertainment sto-
ries aggregated from various media outlets. The sec-
ond dataset is a kaggle4 dataset which includes the fake
and real news crawled from multiple news organizations.
The original kaggle dataset has approximate 1:1 ratio of

3https://www.gossipcop.com/
4https://www.kaggle.com/jruvika/fake-news-detection
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Table 2: Performance comparisons of various methods w.r.t the cyberbullying detection task.

Models S-LR S-NN CTC CORAL DANN WDGRL RIL RIRL-C RIRL-L RIRL-R

Twitter →
Formspring

F1 0.227 0.213 0.255 0.212 0.258 0.243 0.259 0.267 0.279 0.283
AUC 0.632 0.620 0.615 0.587 0.637 0.613 0.625 0.699 0.703 0.712

Twitter ←
Formspring

F1 0.496 0.500 0.462 0.383 0.362 0.125 0.430 0.496 0.457 0.508
AUC 0.669 0.673 0.648 0.604 0.602 0.513 0.631 0.713 0.757 0.778

Table 3: Performance comparisons of various methods w.r.t the fake news detection task.

Models S-LR S-NN CTC CORAL DANN WDGRL RIL RIRL-C RIRL-L RIRL-R

Fake →
Gossip

F1 0.128 0.124 0.259 0.173 0.206 0.183 0.182 0.191 0.218 0.244
AUC 0.394 0.425 0.468 0.487 0.477 0.496 0.430 0.451 0.504 0.497

Fake ←
Gossip

F1 0.264 0.264 0.173 0.259 0.240 0.040 0.217 0.264 0.275 0.299
AUC 0.414 0.415 0.475 0.479 0.499 0.505 0.387 0.447 0.511 0.454

#real news over #fake news, which is not common in
practice [25]. Therefore, we randomly sample half of
the positive samples and together with all the negative
samples to form a new dataset Fake.
Cyberbullying Datasets. For cyberbullying detec-
tion task, we use two real-world datasets crawled from
Twitter and Formspring. These two social media plat-
forms are often reported with the most occurrences
of cyberbullying instances. Formspring and Twitter
datasets have been collected and used in [21] and [7],
respectively. Basic statistics of the four datasets used
for experiments can be seen in Table 1.

5.2 Experimental Settings To test the effective-
ness of the proposed model, we compare RIRL with
the following baselines:
SMOTE This is a common approach to constructing
classifiers from imbalanced datasets. It combines
the method of oversampling the minority class and
undersampling the majority class to generate a bal-
anced dataset. We apply SMOTE to two common
classification models: Logistic Regression (S-LR) and
Multi-layer Perceptron classifier (S-NN).
CORAL This is the correlation alignment that mini-
mizes domain discrepancy by aligning the second-order
statistics of the source and target distributions and can
be applied to the layer activation in neural networks.
DANN This is an adversarial representation learning
approach with a domain classifier aimed at distinguish-
ing the learned source/target features while a feature
extractor attempts to confuse the domain classifier.
WDGRL This model utilizes a neural network to
estimate empirical Wasserstein distance between the
source and target samples and optimizes the feature
network to minimize the estimated Wasserstein dis-
tance in an adversarial manner.
CTC A text classifier that accounts for covariate bias

and seeks to learn causal relationships between word
features and document labels. This model applies a
propensity score matching method [22] to identify fea-
tures that are more generalizable to different domains.
RIL The variant of RIRL without CB term.
RIRL-C The variant of RIRL without RB terms, i.e.
the näıve text classifier (CB does not have effects on
the prediction without RB).
RIRL-L RIRL using MMD with linear kernel.
RIRL-R RIRL using MMD with RBF kernel.

Note that we decided not to perform sampling
methods on the input data to make it balanced for
the domain adaptation models among baselines because
preliminary experimental results showed that it can, in
fact, harm the F1 scores of most of these models. For
data preprocessing, we perform standard text prepro-
cessing procedures such as stop-words removal, stem-
ming for all datasets and extract the Bag of Words fea-
tures as the model input. RIRL is implemented as a
feed-forward neural network with two hidden layers for
the feature mapping and one hidden layer for the label
prediction. The mapping function l is a linear func-
tion followed by ReLU activation. The batch size is set
to 128 and the layer size is set to 100 for all the mod-
els. We perform sensitivity analyses for hyperparamters
α, β, γ (Sec. 5.5) and selected the parameters that give
the best performance. Specifically, we set α = 0.01, 0.1;
β = 1e− 3, 0.1 and γ = 1e− 7, 1e− 3 in the cyberbully-
ing and fake news detection tasks, respectively. We use
the recommended parameters setting for the baseline
models. The evaluation methods include two widely
used metrics - AUC and F1 score. Different from ac-
curacy, AUC provides an aggregate measure of perfor-
mance across all possible classification thresholds, there-
fore, is a more appropriate metric to evaluate models
with imbalanced data [7].
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5.3 Quantitative Evaluation Results To answer
the first two research questions, we run experiments
on the two cross-domain imbalanced classification tasks
and present the results in Table 2-3. We highlight
the best performance with bold text and underline the
second best results. We list the following findings:

• The proposed models mostly achieve the best per-
formance regarding all evaluation metrics. Specif-
ically, for the cyberbullying detection datasets,
RIRL-L/RIRL-R presents the highest or second
highest F1 and AUC scores. The improvement
is significant, especially for AUC. For instance, in
Twitter → Formspring task, RIRL-R improves
AUC score by 11.8% compared to the best baseline
DANN.

• Compared to its variants RIRL-C and RIL, RIRL
achieves the best AUC and F1 scores in both tasks.
This result sheds light on the effectiveness of the
proposed doubly balancing strategy. Surprisingly,
the näıve classifier RIRL-C often shows better per-
formance than RIL as well as other domain invari-
ant representation learning methods. It manifests
the importance of re-weighing samples for imbal-
anced classification.

• Comparing the results of RIRL-L with that of
RIRL-R, we can observe that the two IPM distance
metrics, i.e., MMD with linear and with RBF
kernels, have similar influence on learning domain
invariant representations. We can choose either one
when applied in real-world applications.

To answer the third question, we further perform
experiments on the cyberbullying datasets5 to investi-
gate the influence of various class ratios r = QS/PS in
the source data on AUC score. We randomly sample
data from source domain to vary r among the range
{r − 2, r − 1, ..., r + 4} for training and keep the ratio
in test data fixed. We present the results in Fig. 3.
A larger QS/PS implies a more imbalanced dataset in
the source domain. We can observe from the results
that the proposed models consistently achieve the best
AUC scores when varying the class ratio from close to
1 to a relatively large value. It corroborates the effec-
tiveness of the doubly balancing strategy in dealing with
extremely imbalanced as well as more balanced datasets.

5.4 Qualitative Examination via Visualization
To further investigate the quality of these domain in-
variant representations learned by various models, we

5Similar results from fake news detection are omitted here for

space limitation.
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(a) AUC vs QS/PS : Twitter → Formspring.
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(b) AUC vs QS/PS : Formspring → Twitter.

Figure 3: Performance evaluation w.r.t. different ratios
QS/PS in the source domain. Best viewed in colors.

randomly choose the task Formspring → Twitter and
plot in Fig. 4 the t-SNE visualization following [24].
In these figures, red and blue dots represent positive
(bullying) and negative (normal) samples of the source
domain, purple and green dots denote positive and neg-
ative samples of the target domain. An effective trans-
ferable feature mapping should cluster together the red
(blue) and purple (green) dots, meanwhile classification
can be effectively conducted between purple and green
points. As we can observe from the results of t-SNE
embeddings, RIRL-L and RIRL-R can discriminate bet-
ter between the positive (purple) and negative (green)
classes in the target domain meanwhile the categories
between source and target domains are aligned much
better (red → purple, blue → green) compared to base-
line models. These observations further validate the ad-
vantages of the doubly balancing strategy in learning
transferable and robust representations.

5.5 Parameter Analysis The RIRL framework has
mainly three parameters, α, β, and γ that control the
trade-off between the prediction accuracy and imbal-
ance error. To answer the last research question, we
randomly select the task Twitter → Formspring and
run a set of experiments regarding different values of
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(a) t-SNE of WDGRL features. (b) t-SNE of DANN features. (c) t-SNE of CORAL features. (d) t-SNE of CTC features.

(e) t-SNE of RIL features. (f) t-SNE of RIRL-C features. (g) t-SNE of RIRL-L features. (h) t-SNE of RIRL-R features.

Figure 4: Feature visualization of the Twitter → Formspring task. Best viewed in colors.
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(a) Effect on AUC score
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(b) Effect on F1 score

Figure 5: Parameter analyses for α, β, γ. The x-axis denotes
different parameter values. Best viewed in colors.

each parameter. In particular, α, β, γ are set to {1e-7,
1e-5, 1e-3, 0.01, 1, 10} and we vary one parameter at a
time and fix the other two. Results presented in Fig. 5
indicate that RIRL is robust to α and β. Specifically,
performance of RIRL presents an increasing trend as β
becomes larger, i.e., when the model pays more atten-
tion to the CB term. RIRL is robust to large β because
it is also balanced by the RB term. For model com-
plexity, the best performance is achieved when α is set
around 0.01 and as it gets larger, classification perfor-
mance of RIRL on the target domain tends to degrade
due to the over-emphasis on the sparsity of the model
parameters. RIRL is robust to γ in a certain range, an
extremely large value of γ can considerably aggravate
the prediction performance.

6 Conclusions & Future Work

In this paper, we study a novel problem of cross-domain
classification where data and domains are imbalanced.
We propose an effective doubly balancing strategy (CB
and RB) that accounts for both covariate and represen-
tation biases induced by the imbalanced cross-domain
classification task. RIRL learns high-quality domain in-
variant representations because the feature alignment is
conducted in both input data space and latent repre-
sentation space. Extensive experimental results on two
text classification tasks show that RIRL can learn in-
variant representations that are robust to both domain
and data imbalance.

Our work opens several future directions. First,
given that imbalanced data are ubiquitous in real-world
applications, it is expected to apply our model to other
machine learning tasks such as spam detection and im-
age classification. Second, RIRL is currently designed
for binary classification tasks, additional constraints
and potential issues of multi-class cross-domain classifi-
cation tasks need to be further investigated. Lastly, it
is also interesting to explore other CB methods such as
entropy balancing [14] and Inverse Probability Weight-
ing [22], and exam the influence of different CB and RB
methods for addressing data and domain imbalance.
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