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Abstract—Joint communication and radar (JCR) waveforms
with fully digital baseband generation and processing can now
be realized at the millimeter-wave (mmWave) band. Prior work
has developed a mmWave wireless local area network (WLAN)-
based JCR that exploits the WLAN preamble for radars. The
performance of target velocity estimation, however, was limited.
In this paper, we propose a virtual waveform design for an
adaptive mmWave JCR. The proposed system transmits a few
non-uniformly placed preambles to construct several receive
virtual preambles for enhancing velocity estimation accuracy, at
the cost of only a small reduction in the communication data
rate. We evaluate JCR performance trade-offs using the Cramér-
Rao Bound (CRB) metric for radar estimation and a novel
distortion minimum mean square error (MMSE) metric for data
communication. Additionally, we develop three different MMSE-
based optimization problems for the adaptive JCR waveform
design. Simulations show that an optimal virtual (non-uniform)
waveform achieves a significant performance improvement as
compared to a uniform waveform. For a radar CRB constrained
optimization, the optimal radar range of operation and the opti-
mal communication distortion MMSE (DMMSE) are improved.
For a communication DMMSE constrained optimization with a
high DMMSE constraint, the optimal radar CRB is enhanced.
For a weighted MMSE average optimization, the advantage of the
virtual waveform over the uniform waveform is increased with
decreased communication weighting. Comparison of MMSE-
based optimization with traditional virtual preamble count-based
optimization indicated that the conventional solution converges
to the MMSE-based one only for a small number of targets and
a high signal-to-noise ratio.

I. INTRODUCTION

Millimeter-wave (mmWave) spectrum is an enabling tech-
nology to realize high data rate communication and high reso-
lution radar sensing for many demanding applications, such as
autonomous driving [3]. Traditional mmWave radars employ
heavy analog pre-processing due to the use of low-speed
analog-to-digital converters (ADC) and frequency-modulated
continuous-wave (FMCW) technology [4]. While effective
for initial implementations, analog designs are restrictive and
limit the performance as well as flexibility for futuristic radar
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designs [5]. To address these concerns, mmWave communi-
cations hardware with high-speed ADCs can be leveraged
to realize a mmWave radar system with fully digital time-
domain baseband processing [6]. Further improvements can
be achieved by combining radar and communication into a
single joint mmWave system that uses a common waveform to
enable hardware reuse. These new joint mmWave waveforms
will provide advantages in terms of cost, size, power consump-
tion, spectrum usage, and adoption of communication-capable
vehicles.

The prior approaches on joint systems are mainly classified
as either joint radar-communication (JRC) waveforms (i.e.,
radar-centric) or joint communication-radar (JCR) waveforms
(i.e., communication-centric) [7]. With JRC waveforms, the
communication messages are modulated on top of the radar
waveforms, such as pulse position modulation in [8], phase
modulation in [9], or continuous phase modulation in [10]. Ad-
ditionally, the JRC waveforms have been realized by embed-
ding communication information in the transmit beamforming
vectors [11]. These waveforms, however, do not support high
data rates as the communication signal must be spread to
avoid disturbing the radar required properties. To achieve high
spectral efficiency without complex equalization filters, most
of the JCR systems at sub-6 GHz frequencies use orthogo-
nal frequency-division multiplexing (OFDM) waveforms. The
communication and radar performances are, however, limited
due to the bandwidth available.

Recently, a number of mmWave wideband JCR waveforms
have been proposed that leverages consumer wireless technolo-
gies [12]-[16]. In [12], a full-duplex IEEE 802.11ad-based
radar was proposed that exploits the preamble of a single-
carrier (SC) physical (PHY) layer frame to simultaneously
achieve cm-level range resolution and Gbps data rates. A major
limitation in [12] is that the performance of the velocity esti-
mator was poor due to the short length of the preamble. In [13],
an opportunistic radar was developed using an IEEE 802.11ad
control PHY packet, which contains a longer preamble than
SC PHY, for a single target scenario. Unfortunately, the
probing signal duration is still small leading to poor velocity
estimation, the data rate supported is at most 27.5 Mbps, and
the update rate is very low. To enhance velocity estimation
resolution, [14] investigated the possibility of increasing radar
integration time by developing velocity estimation algorithms
that exploit multiple fixed-length IEEE 802.11ad SC PHY
frames. Similar velocity enhancement techniques were used
in [15] that proposed an IEEE 802.11ad media access control
configuration to accommodate radar operations for vehicle-
to-infrastructure applications. In [16], an OFDM mmWave



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, XXX 2019

waveform was proposed for a bi-static automotive JCR system
that also exploited preambles from multiple frames at a con-
stant spacing for enhancing velocity estimation performance.
The approaches in [14]-[16], however, require increasing the
total preamble duration to achieve desirable high-accuracy
velocity estimation, which would incur degradation in the
communication data rate.

In this paper, we use sparse sensing techniques in the time
domain to optimize the trade-off between communication and
radar performance for the waveform design of a JCR system.
We exploit the preamble of a communication frame as a
radar pulse. The radar pulses are placed in a non-uniform
fashion by varying the frame lengths, and their locations form
a restricted difference basis [17]. Then, we use a few non-
uniformly placed pulses in a coherent processing interval (CPI)
to construct a virtual difference co-waveform with several
uniform virtual preambles. This virtual increase in the radar
pulse integration time enables enhanced velocity estimation
at a given communication rate as compared to a uniform
waveform [14]. The virtual pulse approach is conceptually
similar to the staggered pulse repetition intervals (PRI) used
in the classical long-range radar [18, Ch. 17] and sparse sam-
pling/arrays used in the undersampled frequency/angle/channel
estimation [17], [19], [20]. Most of the existing sparse sensing
approaches are focused on optimizing the sparse antenna array
configurations by maximizing the antenna aperture for a given
number of antenna elements. In this paper, however, we design
a virtual JCR waveform using a novel minimum mean square
error (MMSE)-based optimization that accurately quantifies
the trade-off between communication and radar performance.

We make the following key assumptions in our proposed
mmWave JCR waveform design. First, we assume that the
location and relative velocity of a target remain constant during
a CPL This is justified by the small enough acceleration and
velocity of a target relative to the radar sensor, as found in
automotive applications [21]. Second, we assume full-duplex
radar operation due to the recent development of systems
with sufficient isolation and self-interference cancellation [22],
[23]. Third, we assume perfect data interference cancellation
on the training part of the received JCR waveform because
the transmitted data is known at the radar receiver. These
assumptions are explained in more detail in Section II.

The main contributions of this paper are summarized as
follows.

« We propose a novel formulation for a wideband JCR sys-
tem that transmits virtual waveform at the mmWave band.
This formulation captures the nuances of the frequency-
selective sparse mmWave channel description for both
communication and radar systems. Additionally, we de-
velop a generic virtual JCR waveform structure in the
system model that can be further tuned to achieve optimal
JCR performance using sparse sensing techniques.

« We develop a novel effective distortion minimum mean
square error (DMMSE) metric for communication that
is comparable with the radar Cramér-Rao bound (CRB)
metric for velocity estimation. The MMSE-based metrics
enable us to accurately quantify the trade-off between
communication and radar systems.

« We formulate three different optimization problems for
designing an adaptive JCR waveform that meets the
Pareto-optimal bound. The first one minimizes the radar
CRB under the constraint of a minimum communication
DMMSE. The second one minimizes the communication
DMMSE for a given minimum radar CRB. The third one
considers a more flexible weighted average of communi-
cation and radar performance for the JCR system.

« We solve the proposed JCR optimization problems for a
uniform waveform and for virtual waveforms that can be
represented in closed-form and contain no holes in their
corresponding difference co-waveforms, such as nested
virtual waveforms or Wichmann virtual waveforms. The
use of specific virtual waveform configurations reduces
the computational complexity for finding the optimal JCR
waveform design.

o We carry out simulations to study the performance trade-
offs in the JCR waveform design and compare the op-
timal performances achieved by different JCR waveform
solutions. We explore the effects of signal-to-noise ratio
(SNR), the number of preambles used, and the number of
radar targets on the virtual waveform design. The simula-
tion parameters are based on automotive applications and
the IEEE 802.11ad-based standard. The results suggest
that virtual waveforms are highly desirable at high SNR
with low target density (i.e., a small ratio of target count
to the number of preambles) and at low SNR with high
communication DMMSE. Comparison of MMSE-based
optimization with more traditional virtual preamble (VP)
count-based optimization indicates that the traditional
solution converges to the MMSE-based one only at low
target density and high SNR.

The work in this paper is a significant extension of our
previous conference contributions [1], [2]. In addition to a
detailed exposition on the adaptive JCR waveform design, we
have included a multi-target radar model and a frequency-
selective communication channel model for demonstrating
the superiority of virtually placed preambles as compared to
uniformly placed preambles.

The rest of the paper is organized as follows. We for-
mulate an integrated model for our proposed JCR system
in Section II. For the proposed system, we develop a radar
processing technique in Section III. Then, we describe the
performance metrics and the associated trade-off for the JCR
waveform design in Section IV. In Section V, we develop three
optimization problems for the adaptive JCR waveform design.
In Section VI, we outline the main idea of virtual waveform
design and different specific solution approaches for waveform
optimization. We describe the simulation results and perfor-
mance evaluations in Section VII. Finally, we conclude our
work and provide directions for future work in Section VIIIL.

Notation: We use the following notation throughout the
paper: The notation N¢ (u, 02) is used for a complex Gaussian
random variable with mean u and variance o2. The projec-
tion matrix onto the null space of matrix A is defined as
Iy =I—- A(A*A)"'A*. The operators | - | represents the
cardinality of a matrix, Conv (-) denotes the convex hull, and

Tr [-] indicates the trace of a square matrix. The notation (-)T,
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Communication Range (p.)
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Fig. 1. The source sends a mmWave waveform to the destination receiver
and uses the echoes from multlple moving targets (mcludm% the destmatlon)
to estimate their ranges {pg}z o and velocities {vg, k}e 0k -

(\)*, and (-)¢ stand for transpose, Hermitian transpose, and
conjugate of a matrix/vector, while (-)~! represent the inverse
of a square full-rank matrix. Additionally, vec(-) vectorizes a
matrix to a long vector, diag(-) forms a vector into a diagonal
matrix, while ® and ® represent Khatri-Rao and Kronecker
product of matrices.

II. SYSTEM MODEL

In this section, we formulate transmit (TX) and receive
(RX) signal models for the proposed adaptive mmWave JCR
system, as illustrated in Fig. 1. We consider the case where
a full-duplex source transmits the JCR waveform at a carrier
wavelength A to a destination receiver at a distance p. moving
with a relative velocity v, while simultaneously receiving
echoes from the surrounding moving targets. First, we propose
an adaptive single-carrier mmWave waveform structure that
serves as the TX signal at the source for both communication
and radar systems simultaneously. Then, we develop RX signal
models for the communication receiver at the destination and
the radar receiver at the source for the frequency-selective
channels.

A. Transmit signal model

Frame Pregmble IFS

T T BT T

1 1 1 1 | Time
0 qiTo Au-2To au-1To T

Fig. 2. A CPI of T" seconds duration with M JCR frames. Each frame contains
a fixed-length preamble of P symbols, a varying length data segment, and an
inter-frame space (IFS) of constant duration. The length of each frame is an
integer multiple, g, of the Nyquist sampling interval in the Doppler domain,
Tp.

We consider a generic TX waveform structure with p
fraction of communication symbols and (1 — u) fraction of
preamble symbols in a CPI of T' seconds with M frames.
Each frame consists of a fixed preamble duration, PT;, and
a variable data length, which leads to a varying frame length
as shown in Fig. 2. The IEEE 802.11ad standard can realize
this multi-frame approach using the block/no acknowledgment
policy during the communication between a dedicated pair
of nodes in the data transmission interval [24, Ch. 9]. To
unambiguously estimate a maximum relative target velocity
Umax in a CPIL, the m'™ frame is considered to be located
at an integer multiple, ¢,,, of the Doppler Nyquist sampling
interval, Tp < A/ (4vmax)-

We denote the unit energy TX pulse-shaping filter as
grx(t), the signaling bandwidth as W, and the symbol period
as Ty ~ 1/W. The transmitted symbol sequence correspond-
ing to the m'™ frame with NV,,, symbols is denoted by s,,[n],
which satisfies the average power constraint E [|s,,[n]|?] =
&s. Then, the generic complex-baseband continuous-time rep-
resentation of the single-carrier TX waveform in a CPI is given

as
M—1 Ny, —

Z Z Sm gTX t—?’LT

m=0 n=0

QmTD)- (1)

The generic TX waveform parameters, such as the location
and size of the m®" frame, can be further optimized to achieve
desirable JCR performance as described in Section V.

In this paper, we consider a single data stream model
that supports analog beamforming with frequency flat TX/RX
beam steering vectors [14]. We assume that the source and
destination align their beams toward each other with line-
of-sight (LoS) frequency-selective communication and radar
channel. The insights and analysis of this work can also be
extended to mmWave multiple-input-multiple-output (MIMO)
radar research using low-resolution ADCs [25] by focusing
on the signal model for a given angular bin. We will now
formulate the JCR received signal model after the TX/RX
beamforming for multiple frames in a CPL

B. Receive signal models

We consider a dwell time consisting of Ncpr coherent
processing intervals. During the dwell time, we assume that
the acceleration and the relative velocity of a moving target
is small enough to assume constant velocity and that the
target is quasi-stationarity (constant location parameters). We
assume a frequency-selective Rayleigh fading model for both
communication and radar channels during the dwell time for
simplicity. This work can also be extended for a general
Ricean fading mmWave channel model with block sparsity
by deriving corresponding CRB bounds for different Ricean
fading factors that lies between zero (Rayleigh fading) and
infinity (no fading). In each of the CPIs with M frames, we
consider a block fading model that assumes a constant channel
gain for each delay tap.

1) Communication received signal model: For evaluating
the trade-off between communication and radar performance,
we model the communication signal received at a distance p.
Assuming a highly directional mmWave LoS communication
link is established between the source and destination, the
large-scale path-loss G, is given as [26]

GrxGrx A’

(4m)2pPt
where PL is the path-loss exponent, Grx is the TX array gain,
and Grx is the RX array gain.

After TX/RX beamforming, symbol synchronization, and
frequency synchronization, the received communication signal
is a sum of the contributions from L. delayed and attenuated
copies of the transmitted signals as well as the additive white
Gaussian noise (AWGN) with zero mean and variance o' . The
small-scale complex gain of the ¢! channel delay path, a[/],

G. = 2
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is assumed to be independently and identically distributed
(IID) N¢(0,02[¢]), where o2[¢] represents the average tap

C

power normalized such that 7" 02[¢] = 1. Therefore, the
communication RX signal ¥ ,,[n] corresponding to the n'®

symbol in the m'" frame with noise we ,,[n] is
Lo—1
Yem[n] =V Ge Z aclllsmn — € + wem[n].  3)
=0

The communication SNR is defined as (. £ &G. Jo2.

2) Radar received signal model: We represent the dou-
bly selective (time- and frequency-selective) mmWave radar
channel obtained after TX/RX beamforming using the virtual
representation obtained by uniformly sampling in the range
dimension [14]. We assume that there are L range bins. The
¢*" range bin is assumed to consist of a few, K[(], virtual
scattering centers with different velocities. Each of the (£, k)"
virtual scattering center is characterized by its distance p[/],
delay 7[¢], velocity wvi[¢], Doppler shift vy [¢] = 2vi[l]/A,
and radar cross-section ogcs i[¢]. The channel gain, Bx[¢],
corresponding to the (¢, k)™ virtual target scattering center is
(as used extensively in previous work, e.g., [27])

_ GrxGrxA\oreskl/]
Brll] = 3 4
6473 p4[¢)

and is assumed IID AN¢ (0, Gg[£]).

After matched filtering (MF) with the RX pulse shaping
filter grx(f) and symbol rate sampling, the received radar
signal is a sum of the contributions from the attenuated,
delayed, Doppler-shifted, and sampled MF echoes as well as
the AWGN with zero mean and variance o2. Therefore, the
radar received signal model corresponding to the m'™ frame
with the net TX-RX pulse shaping filter g(¢t) = grx(t) *
grx (t), delayed and sampled MF echo from the ‘! range
bin e,[n, €] = SNt s, ig((n — i) Te — T — 7[¢]) and
noise wym,[n] is given as

“4)

K[f)-1

Z Bk [ﬂe*j%”é,k(nTerquD)
k=0

L—-1
Ym [n} = ;em [nv ﬁ] (5)

+ Wy m [0

The received echo y,,[n] is comprised of reflections corre-
sponding to the TX symbol s,,[n] as well as an intersymbol
interference from the other TX symbols that depends on the
choice of the TX/RX pulse shaping filters and the doubly-
selective radar channel parameters.

We use the training sequences for radar parameter estima-
tion due to to their good correlation properties. The training
part might incur some interference from the data part because
of the larger delay spread observed in the two-way radar chan-
nel as compared to the guard interval employed between the
preamble and the data part in a typical communication system.
Motivated by the recent development of non-orthogonal multi-
ple access techniques with successive interference cancellation
[28], we assume perfect cancellation of the data part on the
received training signal. Developing and evaluating algorithms
to cancel the communication data interfence while receiving
the radar segment reflection is a subject of future work.

We assume the channel to be time invariant within the
preamble duration of a single frame due to slow enough
velocity and small enough preamble duration. Therefore, the
received signal model corresponding to the training part with
g¢[n, £] as the preamble/training part of £[n, ] that remains
same for each frame is

L—-1

Y [n] =
£=0

K[f]—1

e¢[n, £ Z V Bi[fe 2 llanTo 1oy ).
k=0

(6)
Note that the virtual channel model with 37— ' K[f] scattering
centers is used in (6).

III. PROPOSED RADAR PROCESSING

In this section, we propose a radar processing technique for
estimating target velocities using the proposed JCR frames of
the same or varying lengths. The radar processing technique
exploits the preamble part of the JCR frame that consists
of training sequences with good auto-correlation properties,
such as Golay complementary sequences used in the IEEE
802.11ad-based automotive radar applications [13], [14]. First,
we estimate the channel using a typical communication-based
preamble processing algorithm that exploits the correlation
properties of the training sequences [14]. Then, we calculate
the target velocities from the estimated channel using super-
resolution velocity estimation algorithms.

Denoting bx[f] = v+/EBk[f] as signal amplitude in the
channel, ~ as the integration gain due to the correlation-based
channel estimation, w,,[¢] as the noise in the channel, and
ux[f] = v [0)Tp as the discrete Doppler frequency, the channel
corresponding to the detected target in the /" range bin that
is derived using the m'" frame received in (6) is given as

K[f]—1

SO blePrllan L[, (D)
k=0

hml€] =

where w,,,[{] is distributed as N¢(0,02). The channel vector
corresponding to the ¢** range bin for a CPI of M frames is
h(f] £ [ho[], mn[€], -+ P a[d]"

The focus of this paper is on target velocity estimation.
Therefore, we describe algorithms for estimating the velocity
of a single target in a specific range bin, say ¢y, which can
be similarly performed for other range bins. To simplify the
expressions, we henceforth omit the notation ¢ denoting the
range bin (e.g., by [¢] becomes just by).

Denoting the channel signal amplitude vector
b = [bo, b1, ,b_1]T, the channel Doppler
vector corresponding to the k'™ velocity, d(vy) =
[1,ed2mukar ... ei2murani—1]T " the channel Doppler matrix

D = [d(vg),d(v1), - ,d(vik_1)], and the channel noise
A T
vector w = [wg, w1, - ,wk_1] , the channel vector
corresponding to the range bin ¢y with K > 0 detected
targets is given by
h=Db+w. (8)

This channel vector is used for target velocity estimation.
Due to space limitations and for simplicity of our basic
study here, we focus on subspace methods, in particular on
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the class of multiple signal classification (MUSIC) techniques,
for velocity estimation algorithms among many possible ap-
proaches [29]-[31]. The velocity resolution obtained by the
subspace methods is not constrained by the duration of the CPI
as in the fast Fourier transform (FFT)-based technique used in
[14]. Therefore, a subspace method can provide higher reso-
lution in the mobile environment with limited CPI. Subspace-
based velocity estimation using multiple preambles in a CPI
can be performed by exploiting sample covariance matrix of
the channel in (8) [29]-[31]. The covariance matrix of the
channel with pj, = E [by.b}] as the power of the k" target and
P £ diag(po,p1,--- ,pKr—_1) as the target covariance/power
matrix is given by

R = DPD* + ¢°1. 9)

We define the SNR of the received radar signal at the source
vehicle corresponding to the k" target as ¢, [k] = py/02.

We evaluate the CRB performance metric for the velocity
estimation performance of the subspace method using the
channel covariance matrix in (9), as described in Section IV.
In Section VI, we further illustrate the MUSIC-based velocity
estimation algorithms for specific waveform design solutions
that exploits the finite snapshot version of (9).

I'V. PERFORMANCE METRICS

In this section, we first describe the spectral efficiency
performance metric for communication systems and the CRB
performance metric for radar systems. Then, we describe a
novel metric for assessing the system trade-off between radar
and communication for a joint waveform design.

A. Communication performance metric

The channel capacity for the received communication signal
in (3) with eigenvalues of the channel matrix as {\.[n]}Y_;,
fraction of data symbols = 1, data power coefficients
{¢[n]}N_, satisfying & >, &[n] = 1, data symbol s[n] ~
Nc(0,€[n]€s), and noise we[n] ~ N¢(0,02) is obtained by
allocating optimum power based on the vector coding among
a block of N — oo symbols of the single-carrier waveform
[32, Ch. 4]. The maximum communication spectral efficiency
achieved using vector coding transmission for N — oo is
expressed as

N
= ;}; logy (1 + CAe[n]é[n]) bitsisHz — (10)

and the channel capacity in bits per second (bps) is given as
C = Wr. Note that the achievable spectral efficiency of a
communication system depends on the implemented precoder
and equalizer [33], [34], and are all upper bounded by (10)
for N = oc.

When g < 1 fraction of communication symbols are
transmitted in a CPI with the channel capacity C, we define
the effective communication data rate as Cog = puC, as
in [32, Ch. 7]. Additionally, we can define the effective
communication spectral efficiency for 4 < 1 as

N
Toff = T = % nz::l logy (1 + CcAc[n]€[n]) bits/s/Hz, (11)

which satisfies Ceg = Wreg bps when N — oo.

B. Radar performance metric

The CRB is a lower bound on the variance of an unbiased
estimator, and is widely employed as a performance criterion
for direction-of-arrival and velocity estimations [35]-[38]. The
aperture is another commonly employed metric for evaluating
the performance of the sparse sensor array/sampling configu-
rations for a given number of antenna elements/samples [17],
[19], [39]. In contrast to the aperture metric or the equivalent
VP count for virtual waveform design, the multi-target CRB
takes into account both the mainlobe and sidelobes of the
ambiguity function. It also captures the saturation effects ob-
served in virtual waveforms at high SNR. In addition, it reflects
the conditions for the nonexistence of unbiased estimators
with finite variance, while other above mentioned commonly
used metrics do not have such advantages. Additionally, the
closed-form expression for the radar CRB metric is known in
the existing literature [31], [37], [40], which offers analytical
insights into the design of JCR waveforms. For white Gaussian
noise, the CRB is also a lower bound on the MMSE for radar
parameter estimation and is used for asymptotic analysis.

To express the CRB corresponding to (9) with 1 snapshots,
we denote the derivative of the channel Doppler matrix D
with respect to the K velocity parameters {Uk}szl as D, the
co-waveform Doppler matrix D £ D°®D, the derivative of
the co-waveform Doppler matrix as D, 2 D*©D+D* 6D,
identity vector i £ vec(I). Then, the CRB matrix for the K
estimated velocities with E 2 (RT ® R)~'/?D,P and F £
RT@R)"V2D, i]is[31]

CRB = % (ETILE) .

(12)
Note that when the Fisher information matrix is necessarily
singular, the CRB does not exist implying that no unbiased
estimator with finite variance exists [41]. Additionally, the
use of multiple snapshots can be achieved by using multiple
CPIs within a dwell time. The number of available snap-
shots for estimating target velocities within a given range
bin depends on the dwell time, where the quasi-stationarity
(constant location and velocity parameters) assumption holds.
It also depends on the latency desired for radar parameter
estimation. The maximum number of available snapshots,
however, can be increased by incorporating a range drift
correction algorithm using tracking or technique similar to
the range cell migration correction algorithm used in synthetic
aperture radar systems [42, Ch. 6].

C. Joint communication-radar performance metric

In this section, we develop a novel JCR metric to quantify
the trade-off between the radar and the communication per-
formance. In [43], a range estimation rate metric for radar
was proposed and is analogous to the data rate used in
communication systems. The radar estimation, however, is
not drawn from a countable distribution similar to commu-
nication data symbols. Therefore, the estimation rate metric
is not an accurate representation of radar performance. The
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derivation of estimation rate for radar round-trip delay is
also not easily extendable to other radar parameters because
several underlying simplifications made in [43], [44] may
become invalid for the estimation of these other parameters
[45]. Additionally, the number of radar performance metrics
(e.g., range/velocity/direction of multiple targets, number of
detectable targets, probability of detection and false alarm,
range/velocity/angular resolution) that depend on p is much
larger than the few performance metrics used in communica-
tion. Therefore, instead of deriving equivalent estimation or in-
formation rates for each of these radar parameters in different
scenarios, as in [45], we propose an effective communication
DMMSE metric similar to a radar CRB performance metric.

To formulate an effective scalar communication metric,
which parallels the concept of the radar CRB for JCR
waveform design optimization, we propose an MMSE-based
communication metric analogous to the distortion metric in
the rate-distortion theory [46, Ch. 10]. The MMSE of a
communication system with net spectral efficiency r, p = 1,
and n'" spectral efficiency r,, = logy(1+ (. Ac[n]€[n]) in (11)
is given as [47]

MMSE, £ E[(s — $)((s — 8))"]
— diag(277, -, 277Y),
where s = [s[1], s[2],. - - s[N]]" is the true TX symbol vector
and S is the MMSE estimated vector of s.

Using (10) and (13), the relationship between MMSE,. and
r becomes

(13)

1
7T [log, MMSE(] = —r. (14)

Therefore, the effective communication DMMSE that satisfies

1
N'I‘r [logo DMMSE] = —regg = —pi - 1 (15)

is given as

DMMSE = MMSEY. (16)

The effective DMMSE derived for a single-target scenario
in [1] also follows relations similar to (15) and (16). Note
that determinant and largest eigenvalues could be used instead
of trace in (15). Indeed, the determinant is a volume, the
largest eigenvalue is the length along the longest axis, and the
trace is a sum of all the eigenvalues. Therefore, the trace is
a reasonable selection for a MMSE-based JCR performance
metric. The performance trade-off between communication
and radar can then be quantified in terms of the follow-
ing scalar quantities: - Tr [log DMMSE] and +Tr [log CRB].
Since the communication DMMSE and the radar CRB values
are usually substantially different, the log-scale is used to
achieve proportional fairness (PF) similar to the problem of
resource allocation in multi-user communication [32, Ch. 7].

V. ADAPTIVE WAVEFORM DESIGN PROBLEM
FORMULATION

In this section, we formulate an adaptive JCR waveform
design to optimize the number of preambles M and the pream-
ble locations {g,,}2—. The JCR performance optimization
problem is a multi-objective (two-objective) problem of si-

multaneously optimizing both the radar performance, in terms

of, for example, minimizing the velocity CRB, and the com-
munication performance, in terms of minimizing the effective
communication DMMSE. We can see from (15) that the com-
munication MMSE metric denoted as + Tr [log DMMSE] is
linear with respect to optimization variables M and {¢, %:_11
The radar MMSE metric denoted as +Tr [log CRB] in (12),
however, can be non-convex with respect to the optimization
variables, as illustrated later in Section VII. Therefore, the
region of achievable JCR objective values with the radar
CRB and communication DMMSE pairs corresponding to
the feasible values of preamble count and locations can be
non-convex. Then, the optimal JCR performance is achieved
by using the Pareto set of the minimum convex set (termed
the convex hull) of the feasible non-convex JCR achievable
objective values region, thereby enhancing at least radar CRB
metric without degrading the communication DMMSE metric,
similar to multi-user communication rate optimization [46,
Ch. 15]. Additionally, the convex solution is achievable by
using time-sharing or probabilistic occurrence techniques on
the extreme points of the convex hull [48].

The scalarization approach is known to achieve a Pareto op-
timal point for multiple convex objectives [49, Ch. 4]. There-
fore, the JCR performance optimization can be formulated
as the weighted average of a convex hull of communication
and radar MMSE-based performance metrics. Denoting the
scalar communication DMMSE metric as ¢.(DMMSE) £
+Tr [logDMMSE] and the scalar radar CRB metric as
©:(CRB) £ Conv (4 Tr [log CRB]), which incorporates the
convex hull operation with respect to the optimization vari-
ables, the JCR performance optimization problem can be
formulated as

minimize  w,¢;(CRB) + wep.(DMMSE)
M {qm} =}
subject to  {T, K, p} = constants,

O<q1 <--<gqu-1<T/Tp, A7)

where w, > 0 and w, > 0 are the normalizing and weighting
factors assigning the priorities for radar and communication
tasks, respectively. Note that the weights can be adjusted adap-
tively with respect to the requirements imposed by different
scenarios, such as varying radar SNR.

Alternatively, problem (17) can be modified as a minimiza-
tion of one of the objectives with the second one written as
a constraint that would guarantee an acceptable performance
for one of the tasks. The radar CRB constrained formulation
with a minimum required CRB Y, can be expressed as

minimize . (DMMSE)
M!{qWL}ﬁ{:_ll
subject to ¢, (CRB) < T,

{T, K, p} = constants,

0<q <---<qu-1<T/Tp. (18)

The optimization in (18) simplifies to finding the minimum
number of frames M that meets the required radar CRB
value, whenever a specific sparse pulse configuration, such
as coprime pulses, is assumed.
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Fig. 3. Different virtual waveforms: (a) Uniform one, where a CPI consists
of My equi-spaced frames of duration 7. (b) Coprime one, where a CPI
consists of non-uniformly placed My = My + Mz frames.

The communication DMMSE-constrained formulation with
minimum required DMMSE 7T is given by

minimize ¢, (CRB)
]V[){Qm}f\yf:_ll
subject to  p.(DMMSE) < T,

{T, K, p} = constants,

O<qr < <qu-o1 <T/Ip. (19)

The optimization in (19) for a constant predefined number
of frames M for a large enough CPI T simplifies to the
optimization of frame locations.

VI. ADAPTIVE WAVEFORM DESIGN SOLUTIONS

Finding optimal virtual waveform designs as the solutions
of the JCR optimization problems proposed in Section V is
computationally difficult (generally has combinatorial com-
plexity). To ensure polynomial complexity for solving the JCR
optimization problems and for mathematical tractability, we
use specific configurations of preamble locations that have
good ambiguity functions. It helps to dramatically reduce
the optimization complexity and problem size to only a few
variables depending on the specific configurations used. In this
section, we present different adaptive single-carrier waveform
designs based on the JCR optimization problem formulations
along with their associated algorithms. These solutions are
mainly classified as uniform or non-uniform (virtual) wave-
form designs. In the uniform waveform (UW) design, the
preambles are placed at a Doppler Nyquist rate 1/7p, whereas
in the non-uniform waveform design, the preambles are placed
at a Doppler sub-Nyquist rate 1/(g,,Tp) with integer ¢, > 1.

A. Uniform waveform design

In this approach, multiple frames, My, are placed at a
constant Doppler Nyquist sampling interval, 7p, in a CPI of
T > MyTp seconds [14], as shown in Fig. 3(a). The mth
frame in a CPl is located at g,,, = m and the set of all preamble
locations in a CPI is My = {1,2,---, My}. Therefore, the
weighted average formulation in (17) can be modified after
incorporating the UW structure into the problem formulation
as:

mil}é}nize wrpr (CRB) + wep. (DMMSE)
U

subject to  {T, K, p} = constants,
g =m < T/Tp Ym=1,2,..., My.(20)

The other constrained optimization formulations in (18) and
in (19) can be similarly modified by incorporating the uniform
waveform structure into the formulations.

For the uniform waveform design, the CRB expression in
(12) can be further simplified as [50]

2 -1

CRB = 277 {Re(D*HﬁD) ® (PD*RDP)T} . @D
where CRB exists when the target count K is smaller than the
number of preambles My. As SNR goes to infinity, CRB in
(21) reduces to zero [50]. Additionally, the radar CRB metric
©r(CRB) is convex with respect to My for uniform waveform,
as illustrated later in Section VII. We use the standard MUSIC
algorithms, which is asymptotically efficient, for estimating
velocity using uniform waveforms when K < My [S1].

The feasibility and behavior of optimal solutions in the
waveform design problem formulations in (17), (18), and
(19) depends on the velocity CRB in (12) as well as the
communication DMMSE in (16). Since the CRB in (12)
monotonically reduces with the increasing SNR, the optimal
solutions for uniform waveform designs in (17), (18), and
(19) will continuously improve with the decrease in the
target distance p. Additionally, with decreasing p, the optimal
number of preambles, M, in (18) will decrease, M in (19)
will be constant, and the change in M} will be adapted based
on the rate of decrease in the radar CRB with p for weighted
average optimization-based design in (17). With an increase
in K in JCR problem formulations, the CRB in (12) degrades
and its existence depends on My. Therefore, with growing K,
the optimal solutions for uniform waveform designs in (17)
as well as in (18) will rapidly degrade with a steep increase
in My;, while the feasibility of optimal waveform design in
(17), (18), and (19) will be severely limited. Additionally, the
optimal solutions achieved by adaptive JCR waveform designs
for all three problems are limited. This is because the use of
multiple frames placed at the Nyquist rate in a CPI will lead
to a large physical increase in the preamble duration, thereby
significantly decreasing the communication spectral efficiency.
These insights are further explained in Section VII.

B. Non-uniform waveform design

For non-uniform waveform designs, My frames are non-
uniformly placed in a CPI of T > M~yTp, as shown in
Fig. 3(b). Therefore, the preambles are placed in a sub-Nyquist
fashion with varying N,, Ty > Tp spacing between them.
Here, the m'™ frame is located at q¢m > m and the set of all
preamble locations in a CPI My = {¢m,1 < m < My} is
a sparse subset of the contiguous set M = {1,2,--- ,T/Tp}
that guarantees the desirable velocity estimation performance.
The location of preambles in a CPI can be chosen randomly
or in a determined fashion.

The VP locations for the non-uniform waveform is obtained
using the following difference co-waveform of My

Cv = {gm — qn, 0 <m,n < (My — 1)} (22)

Vectorizing R yields the co-waveform signal model expressed
as

r = vec(R) = Dyp + o2i, (23)
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where D, £ D¢ ® D and p £ [p1,pa, -, pr). The matrix
D, also represents the steering matrix of Cy [39].

For tractable analysis, we use deterministic non-uniform
waveforms that can be represented in closed-form and contain
no holes in their corresponding difference co-waveforms.
MUSIC-like algorithms can then be applied on the full con-
tiguous stretch of |Cy| elements in the hole-free difference
co-waveforms. The approach developed in this paper can also
be extended to other sparse waveforms.

The CRB expression in (12) is valid under the condition
that 2K < |Cy| for hole-free difference co-waveforms [40].
The cardinality of the difference co-waveform Cy depends
on the placements of non-uniform preambles My and can
be used to identify O(MZ) sources. For K << My and
My = My = M, the CRB for non-uniform waveforms
also decreases much faster than for uniform waveforms as
M increases [31]. At K > My, however, the CRB for the
non-uniform waveform design may not reduce to zero when
SNR goes to infinity. Additionally, the CRB metric can be
non-convex with respect to My for non-uniform waveform,
as illustrated later in Section VII.

Since the non-uniform waveform design usually needs a
lower My to achieve a given radar CRB and a much higher
My, to achieve a valid CRB for a given K than a uniform
waveform design, a non-uniform waveform design allows a
larger set of feasible solutions for the JCR waveform optimiza-
tion problems in (17), (18), and (19). Additionally, the lower
the cardinality of the sparse set M+, the smaller the overhead
on the effective communication spectral efficiency. Therefore,
non-uniform waveform design allows a reduced trade-off be-
tween the radar CRB and the communication DMMSE for
low target density, thereby resulting in an enhanced optimal
JCR waveform design. The saturation effect observed in non-
uniform waveform design at high SNR, however, reduces the
advantage of non-uniform JCR waveform design over uniform
JCR waveform design at small radar distances.

Among several redundancy waveforms with no holes [52],
Wichmann and nested waveforms are relevant. The Wichmann
virtual waveform (WVW) is known to yield the largest aperture
co-waveform for all redundancy waveforms with more than 8
elements [17]. The inter-preamble spacings of the WVW is
[53]

AMw={11", a1 + 1, (201 + 1)1, (4ay +3)(*2),

(2@1 + 2) a1+1) 1 al)} (24)

where aq,a3 € N and the notation ag@) represents as

repetitions of a;. The VP count |Cy| of the WVW is
‘Cw| = 4@1(0,1 + ag + 2) + 3(0,2 + ].) (25)

Therefore, the weighted average formulation in (17) can be
modified after incorporating the WVW structure into the

problem formulation as:

mini]{/[nize wror (CRB) + wep.(DMMSE)
ay,Mw

subject to {7, K, p} = constants,

4a1 + as + 3 = My ST/TD, (26)
{qm - mel}%:l = dMW;
ap,az €N, 27)

where the radar CRB for the WVW exists when 2K < |Cyy|.
The other constrained optimization formulations in (18) and
in (19) can be similarly modified by incorporating the WVW
structure into the formulations.

In most of the prior work in sparse array optimization,
ICy| is maximized for a given |My/|. Using this tradi-
tional optimization criteria, optimum aj is the closest non-
negative integer solution to (|My| — 4)/6 and optimum
ay = |[My| —4aj — 3 [52]. The fraction of communication
data symbols 1 — 35, for the WVW in a CPI is

" (4a3 + a% + 3)PT, + My, Tirs
L—pw =1~ T ’

(28)

where My, is the optimal minimum |My;| for the WVW
and Tipg is the interframe spacing. In Section VII, we will
compare aj and a3 values obtained using the VP count-based
optimization and the CRB-based optimization.

The Nested virtual waveform (NVW) is widely used in
MIMO radar for direction-of-arrival estimation [39]. It is
obtained by nesting two uniform waveforms with different
inter-element spacing. The inter-preamble spacing in the two-
level NVW is

dMy = {1 (M 4 1)M) (29)

where M; is the number of preambles in the first uniform
waveform and M5 is the number of preambles in the second
uniform waveform. The VP count of the NVW is

ICn| = Ma(M; +1) — 1. (30)

Therefore, the weighted average formulation in (17) can
be modified after incorporating the NVW structure into the
problem formulation is given as:

minimize  w,¢,(CRB) + wep.(DMMSE)
My, My
subject to  {T, K, p} = constants,
M, + My = My < T/Tp, 31)
{Q'rn - Qm—l}mzl = {1 Ml), (Ml =+ 1)(M2)}’
0< M, < My, (32)

where the radar CRB for the NVW exists when 2K < |Cx].
Similarly the other two constrained formulations in (18) and
in (19) can be modified by incorporating the NVW structure
into the formulations.

Based on VP count optimization, the optimal values for
even |[Mxy| is M{ = Mj = | Mxy|/2 and for odd |My|/2 is
My = My+1 = (JMn]|—1)/2. The fraction of communication
data symbols, 1 — puy;, for the NVW in a CPI is

(M + M3)PT, + M Tips
T b

l—py=1- (33)



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, XXX 2019

where M is the optimal minimum |[My/| for the NVW. In
Section VII, we will compare M| and M, values obtained
using the VP count-based optimization and the MMSE-based
optimization.

Considering only the class of MUSIC-type algorithms for
velocity estimation using non-uniform waveform design, we
adopt the following velocity estimation methods: direct aug-
mentation based MUSIC (DA-MUSIC) [54], spatial smoothing
based MUSIC (SS-MUSIC) [39], and direct-MUSIC [55].
Since DA-MUSIC and SS-MUSIC share the same asymptotic
first- and second- order error statistics [31] and DA-MUSIC
has reduced computational complexity, this paper only focuses
on DA-MUSIC. The DA-MUSIC technique is applied on the
virtual preambles in the co-waveform domain, whereas direct-
MUSIC is applied directly on the physical non-uniformly
spaced preambles. DA-MUSIC can be applied for K < My,
and K > My, whereas direct-MUSIC is applicable only for
K < M~ under certain conditions (namely that no two sources
can be separated by multiples of 27/Q where @ is an integer
which depends on the non-uniform preambles placement).
Direct-MUSIC, however, is sometimes more accurate than
DA-MUSIC for K < My, as shown in Section VII.

VII. SIMULATION RESULTS

In this section, we evaluate the performance of non-uniform
virtual waveform design as compared to the uniform waveform
design for different target and SNR scenarios. For illustration
purposes, we consider simulation parameters based on the
IEEE 802.11ad standard [24] in application to automotive
scenarios [4]. In particular, we consider a carrier frequency
of 60 GHz, a sampling rate of 1.76 GHz, K target velocities
that are equally spaced between -45 m/s and 50 m/s, a radar
cross-section of 10 dBsm, a communication receiver distance
of 50 m and a radar target distance up to 100 m. We use a
coherent processing interval of 1 ms with M varying between
1 and 40.

A. Performance trade-off

First, the system design trade-off between radar and com-
munication MMSE performance metrics for different virtual
waveform designs is studied for various target and SNR pa-
rameters. Then, the convex approximation of the design trade-
off curve for improved JCR performance is described. Lastly,
MMSE achievable by non-uniform designs are explored. In
particular, sparse (K/M << 1) and dense (K/M = 1 or
K/M >> 1) target scenarios as well as low and high SNR
use cases are investigated.

Figs. 4(a) and 4(b) depict the trade-off between the radar
CRB and the communication DMMSE metrics with respect to
the number of frames, M, for uniform, nested, and Wichmann
waveforms. In particular, radar target distances of 5 m, 20 m,
and 100 m are considered for target count X = 1 in Fig. 4(a)
and for K = 30 in Fig. 4(b). For M frames in a CPI, the
optimal VP count-based nested waveform with parameters M
and M5, as well as Wichmann waveform with parameters
a7 and a3 are considered for simplicity in Figs. 4(a) and
4(b). Fig. 4(c), however, shows the 2-D JCR objective region
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Fig. 4. The radar CRB and the communication DMMSE pairs in the JCR
trade-off region with respect to the optimization variable M along with their
respective convex hulls at different target counts and distances. (a) Trade-off
curves are approximately convex for small target count K for both uniform
and non-uniform waveforms. (b) At large K, however, the non-convexity
increases for non-uniform waveforms. (¢c) MMSE-based achievable 2-D JCR
objective values region and its convex hull for the nested virtual waveform
with varying M and different configuration parameters M.

achievable by nested virtual waveform for varying M as well
as different configuration parameters of 1 < M; < |[M/2]
with My = M — My at K = 1 and K = 30 for radar
target distance of 5 m. The number of possible combinations
of different configuration parameters {Mj, Ms} for a given
M scales almost linearly with M. Later, in Fig. 11, the CRB-
based optimization is compared with the optimization based
on the VP count of virtual waveforms.

Figs. 4(a) and 4(b) indicate that the radar CRB for a given
communication DMMSE is the lowest in case of Wichmann
virtual waveform, followed by nested virtual waveform and
lastly uniform waveform. For a single target scenario in
Fig. 4(a), we can see that the advantage of virtual waveforms
over uniform one is more significant as the communication
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DMMSE (higher M) worsens. In a multi-target scenario in
Fig. 4(b), the radar CRB for uniform waveform exists only for
high communication DMMSE with M > K, whereas the radar
CRBs for virtual waveforms exist even for low communication
DMMSE with M < K. At low communication DMMSE,
we also observe that the radar CRBs achieved by virtual
waveforms saturate at high SNR and large K/M ratio. In
Fig. 4(c), we can see that the variation of the radar CRB
with the number of targets increases at low communication
DMMSE (or, small M).

Figs. 4(a) and 4(b) explore the convexity aspect of the JCR
trade-off curve with respect to the number of frames M for
different waveforms, whereas Fig. 4(c) illustrates the non-
convexity aspect of the achievable 2-D JCR objective values
region for nested waveform with varying M and configuration
parameter 1 < M; < |M/2]. In a sparse target scenario
with K = 1, the trade-off curves appear convex. In the
case of a dense target scenario with K = 30, however, the
trade-off curves deviate farther from convexity as the radar
target distance decreases. The trade-off curve for a uniform
waveform is more visibly convex than that for the non-uniform
waveforms. Although the communication DMMSE is linear
with respect to M (as can be seen from (15)), the achievable
JCR objective values region/trade-off curve are non-convex
due to the non-convexity of radar CRB with respect to M.
The non-convexity of radar CRB over M is either because of
the occurrence of non-decreasing CRB points with increasing
M or due to the saturation effect observed for M < K at
small target distances.

Fig. 4(a)-(c) also illustrate the convex hull of the achievable
JCR objective values region, which is the smallest convex set
containing the achievable JCR objective values region and can
be obtained using computational geometry algorithms [56]. In
Fig. 4, we use ‘convhull’ function of MATLAB to obtain the
convex hull. Then, we find the optimal solutions for CRB-
based optimization by choosing the lower envelope of the
convex hull. The use of the lower envelope of the convex hull
enabled us to discard the not so beneficial trade-off points
(M), such as the non-decreasing CRB points or the points in
the saturation region. Additionally, the convex hull solution is
achievable by using time-sharing or probabilistic occurrence
techniques on the extreme points of the convex hull, similar to
multi-user communication rate optimization [48]. Therefore,
the convex hull approach will lead to enhanced optimal
solutions for JCR waveform designs by achieving lower radar
CRB for a given communication DMMSE.

We evaluate the estimation performance achieved by
MUSIC-based algorithms using the mean square error (MSE)
metric defined as

MSE, 2 E[(v — V)(v — ¥)*], (34)

where v £ [vg, vy, ,vx_1] is the true velocity vector
and v is the velocity vector estimated using the MUSIC-
based algorithms. Fig. 5 compares the scalar MSE metric,
¢:(MSE) £ L Tr [log MSE,], with the corresponding scalar
radar CRB metric ¢,(CRB) £ £Tr[log CRB] for all three
waveforms tested in a two-target scenario with A/ = 20 and

varying number of snapshots and target distances. It can be
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Fig. 5. Comparison between MSE of MUSIC-based algorithms with the CRB
for the two-target scenario at different target distances. The MUSIC-based

algorithms with a small number of snapshots achieve the CRB at high SNR,
while they need a higher number of snapshots at low SNR.

seen from Fig. 5(a) that direct-MUSIC, in general, achieves
CRB more efficiently than DA-MUSIC at high SNR and is
very close to the CRB values even with a small number of
snapshots. For the low SNR scenario in Fig. 5(b), however,
DA-MUSIC performs more efficiently than direct-MUSIC and
it takes fewer snapshots to approach the CRB. MUSIC-based
algorithms perform closer to the CRB for low SNR in the
case of the uniform waveform as compared to the virtual
waveforms.

The MSE curves of MUSIC-based algorithms suggest that
the applicability of the CRB-based optimization for joint
waveform design depends on the number of available snap-
shots, which are limited as described in Section IV-B. The
MUSIC-based algorithms are used here for illustrating the
average approachability of the CRB, but of course in the
case of a small number of snapshots it can be enhanced by
using other algorithms, such as greedy single-snapshot grid-
based algorithms [57] and nuclear norm minimization [58],
or by exploiting waveforms with holes in their difference co-
waveforms, such as Golomb and coprime waveforms. This is,
however, out-of-scope of this paper and is left for future work.

B. Optimal waveform designs

In this subsection, we investigate the optimal solutions for
three MMSE-based waveform design formulations proposed
in Section V. We also compare our MMSE-based waveform
optimization formulation with the more traditional VP count-
based formulation.

1) Weighted average optimization-based design: In this
example, we explore the optimal communication DMMSE and
radar CRB via weighted average problem formulation (17).
First, we study the effect of weighting on the optimal solutions,
followed by the effect of target count and SNR on the optimal
solutions for all three tested waveforms.

Figs. 6(a) and 6(b) show the optimal number of frames M
for uniform and nested waveforms with different normalized
communication weightings 0.5 < w. < 1 at target counts
K = {1,10,30} for target distance p = 5 m, as well as at
target distances p = {5, 100} meters for K = 10. Additionally,
the radar CRB is first normalized by a factor of 0.5 to achieve
value comparable to the communication DMMSE, and then
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Fig. 6. Optimal number of frames M and weighted average for uniform
and nested waveforms with different normalized communication weightings.
(a) The optimal M decreases with varying step-size as the communication
weighting increases. (b) The advantage of the nested waveform over the
uniform one decreases as the communication weighting approaches 1.

further scaled with normalized radar weighting 0.5 < 2w, <1
to obtain the optimal solutions for weighted average opti-
mization. The optimal M for different waveforms decreases
from highest possible M = 40 used in a CPI for w. = 0.5
to the lowest feasible M = 1 for w, = 1. In simulations
for Fig. 6, we use an upper limit on M because using a
very high M would increase the computational complexity
and might not be supported by the communication protocol.
Additionally the upper limit on M is chosen to sufficiently
meet the requirement of the application scenario — automotive,
in our case, with velocity accuracy requirement of -10 dB [59].
At w, = 1, the optimal JCR waveform will be a pure
communication waveform with a DMMSE of -3.2 dB. The
optimal JCR performance at w. = 0, however, will be a
pure radar performance with CRB of -86 dB at a radar target
distance of 5 m and of -34 dB at a radar target distance of
100 m.

In Fig. 6(a), the optimal M varies significantly with K be-
cause of the CRB existence and the saturation effect observed
at high SNR and high K /M ratio. The rate of decrease in the
optimal M with respect to the communication weighting for
a sparse target scenario is larger for non-uniform waveforms
as compared to uniform waveform because a higher rate
of decrease in the radar CRB is achieved by non-uniform
waveforms with an increase in the communication DMMSE.
The step size of the decrease in the optimal M with increas-
ing communication weighting for a dense target scenario at
high radar SNR is generally small for uniform waveform as
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Fig. 7. Optimal M and corresponding weighted average JCR MMSE with
communication weighting of 0.96. The legend in (a) and (b) is the same, as
well as in (c) and (d) is the same. The advantage of non-uniform waveform
over uniform one increases with the target count, whereas it reduces with
radar SNR at high target count due to the saturation effect.

compared to non-uniform waveforms due to the approximate
convexity of the weighted average JCR performance metric
for the uniform waveform. The step-size also depends on the
presence of non-decreasing radar CRB points with increasing
communication DMMSE in the corresponding trade-off curve.

Fig. 6(b) shows the optimal weighted average of the com-
munication DMMSE and the radar CRB for different normal-
ized communication weightings 0.5 < w, < 1 at K =1, 10,
and 30 for p = 5 m, as well as at p = 5 m and 100 m
for K = 10. The advantage of the nested waveform over
uniform for a given K and p decreases as communication
weight w. approaches 1. The performance of all waveforms
tested converge exactly for w, — 1 at K = 1, because the
lowest possible M is used in this case. At w. — 1, the
gap between the optimal performance of uniform and non-
uniform waveforms increases with K due to higher M needed
for the CRB to exist, while it remains constant with p at
K = 10. At w, = 1, the JCR waveform converges to a
pure communication waveform. For most of the scenarios,
nested waveform performs the best and uniform one performs
the worst. The insights derived for nested waveform similarly
can be extended for Wichmann waveform, and Wichmann
waveform generally performs better than nested as can be seen
in Figs. 7(a)-(d).

Figs. 7(a) and 7(b) show the variation of optimal M and
corresponding weighted average JCR MMSE-based metrics
with K for communication weighting of 0.96. The optimal
M increases with target count in most of the cases, except
for the nested waveform at high SNR and large K that suffers
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Fig. 8. Optimal communication DMMSE (and corresponding optimal M)
for a given minimum radar CRB constraint Y, = 1.5 cm?/s2. The advantage

of virtual waveforms over uniform one increases with target count at small
target distance and also with distance at low target count.

from saturation effect. The choice of optimal M in the case of
Wichmann waveform as compared to uniform one increases
with target count, and the optimal M for all three waveforms
tested converges to the same value at low target count.
The optimal weighted average for uniform waveform is the
worst (largest) in all the cases. The optimal weighted average
degrades with increasing target count, and the advantage of
non-uniform waveform over uniform one increases with K,
whereas it reduces with radar SNR at high K due to the
saturation effect.

Figs. 7(c) and 7(d) depict the variation of optimal M and
corresponding weighted average JCR MMSE-based metrics
with p for communication weighting of 0.96. Fig. 7(c) shows
that the optimal M increases with distance at low target count
and decreases with distance at high target count. This effect
is due to the radar CRB degradation that happens because
of pathloss increasing at large distances for low target count
and saturation effect increasing at small distances for high
target count. Fig. 7(d) demonstrates that the optimal weighted
average for uniform waveform is the worst in all the cases.
The optimal weighted average for all three waveforms tested
generally improves with decreasing distance. For K = 30,
however, the saturation effect can be seen for nested and
Wichmann waveforms. The rate of improvement in optimal
weighted average with increasing radar SNR reduces with
growing K for non-uniform waveforms, whereas it remains
constant for uniform waveform.

2) Radar CRB constrained optimization-based design: In
this example, we investigate optimal communication DMMSE

Uniform

) 108, I Nested
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0
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log(DMMSE)
Variation with K and DMMSE for p = 20 m.
Fig. 9. The mesh plot of the optimal radar CRB for various minimum

communication DMMSE constraints at different K scenarios for a radar target
distance of 20 m. The gap between the performances of all the three tested
waveforms improve with increasing target count and communication DMMSE.

(and corresponding optimal M) for a given minimum radar
CRB constrained problem formulation (18) in different target
density and SNR scenarios. Fig. 8 shows the optimal DMMSE
solution for a minimum radar CRB of -18 dB. Wichmann
waveform performs the best, followed by nested waveform.
The advantage of virtual waveforms over uniform one in-
creases with target count at high SNR and also with distance
at low target density. Performances of all three waveforms
tested (Wichmann, nested, and uniform) converge at low target
count and small target distance. The optimal communication
DMMSE increases with growing target count and decreasing
radar SNR. Optimal communication DMMSE, however, is less
effected by target count at small distances, as compared to the
large distances. Additionally, the rate of increase of optimal
communication DMMSE with increasing target distance is
faster at lower K. These effects can be explained using the
saturation effect at high K/M ratio and high SNR. The effect
of the preamble count can also be seen on the feasibility of
uniform solutions. The insights for optimal M are similar due
to its linear relation with communication DMMSE.

3) Communication DMMSE constrained optimization-
based design: In this example, we examine the optimal radar
CRB achieved by all three waveforms tested for a given
minimum communication DMMSE constrained problem for-
mulation (19). First, we study the effect of different DMMSE
constraints and target count on the optimal radar CRB at a
given target distance. Then, we explore the effect of varying
target count and distance on the optimal radar CRB for a given
DMMSE constraint.

Fig. 9 depicts the lower envelope of the optimal radar
CRB convex hull with respect to the target count K and
communication DMMSE constraint Y. at a radar target dis-
tance p = 20 m, where the convex hull of the JCR trade-
off region is obtained similar to Fig. 4. The existence of the
optimal radar CRB solution depends on the target count. For
2K < |Cy|, where |Cy| is the VP count of the given waveform
design, the optimal M that minimizes the radar CRB for a
given communication DMMSE may exist and it corresponds
to the maximum M that satisfies the communication DMMSE
bound Y. on the convex hull of the JCR trade-off curve
for a given CPIL. Therefore, the existence of optimal radar
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Fig. 10. Optimal radar CRB for a communication DMMSE of -31.3 dB and

-27.6 dB. The advantage of virtual waveforms over the uniform one is more
than 10 dB at high communication DMMSE.

CRB solution for a given communication DMMSE and K
is the least restricted for the Wichmann waveform, whereas
it is the most restricted for the uniform one. Additionally,
the optimal CRB obtained for the Wichmann waveform is
better than the nested one, followed by the uniform one.
The gaps between the optimal radar CRB values found for
all the three tested waveforms improve with increasing target
count and communication DMMSE. Additionally, the optimal
radar CRBs for all three waveforms tested converge at low
communication DMMSE.

Fig. 10 shows the optimal radar CRB for all three wave-
forms tested with communication DMMSE bounds Y. =
—31.3 dB and Y. = —27.6 dB at target counts K = 1 and
K = 30 and radar target distances p = 5 m and 100 m.
The solutions to the DMMSE-constrained formulation in (19)
simplifies to finding the maximum number of frames M that
meets the required DMMSE constraint using (15), and then to
finding the optimal radar CRB corresponding to the obtained
optimal M on the convex hull of the JCR trade-off curve. For
DMMSE of -31.3 dB, the optimal M is 6, while for DMMSE
of —27.6 dB, the optimal M is 40 for all those scenarios where
the radar CRB solution exists.

For all three waveforms tested, Fig. 10(a) depicts that the
optimal radar CRB degrades with increasing target count and
Fig. 10(b) shows the optimal radar CRB grows with increas-
ing radar distance. In most cases, the Wichmann waveform
performs the best and uniform one performs the worst. At
high communication DMMSE with the optimal M = 40, the
Wichmann waveform achieved more than 10 dB improvement
in the velocity estimation CRB as compared to the uniform
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Fig. 11. Comparison between the VP count-based optimization and the

CRB-based optimization for nested waveform. The gap between the optimal
solutions of both the optimizations grows with increasing target count and
decreasing target distance.

one. Fig. 10(a) shows that the performances of all three
waveforms tested converge at low communication DMMSE
and high SNR (p = 5 m) with high target density K/M (K =
5 and M = 6), if the CRB exist for all three tested waveforms.
Fig. 10(b) shows the saturation effect at high SNR (small
p) with high K/M (K = 10 and M = 6) ratio for nested
and Wichmann waveforms, while the uniform waveform is
not feasible due to K > M. The radar CRB achieved for
virtual waveforms at low communication DMMSE with the
optimal M = 6 is effected by the change in target count K for
small target distances, whereas the optimal radar CRB is only
slightly effected at long distances. At high communication
DMMSE, however, this saturation effect is not observed.

4) Comparison with VP count optimization-based design:
Fig. 11(a) and Fig. 11(b) explore the optimal configura-
tion parameter M7 and radar CRB that maximizes the VP
count (or, equivalently degrees of freedom (DoF)) using
nested waveform for a given M. The figures also com-
pare the virtual preamble count-based optimization with its
respective CRB-based communication DMMSE constrained
optimization-based design, which was formulated in (18) and
illustrated in the previous subsection, for different K and radar
SNR. For odd M, the unique optimal M solution using the
VP count-based optimization is (M — 1)/2 and for even M
there are two solutions M /2 and M — 1/2. Fig. 11 uses the
smallest optimal M; as VP count optimization-based one and
we see that this optimal M; increases step-wise linearly with
M.

For K = 1, the optimal M; for both the optimizations
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match at small M and start deviating a little for higher M.
Fig. 11(a) demonstrates that for K = 1, the radar CRB for
both problem formulations are very close to each other at high
SNR. The solutions, however, start to deviate for high target
count and high radar SNR. Similar insights can be drawn for
Wichmann waveform with configuration parameters a; and
q, but this study is excluded from the paper due to space
constraint. Fig. 11 suggests that the VP count optimization-
based design can be used as a coarse estimate for the CRB-
based communication DMMSE constrained solution.

VIII. CONCLUSION AND DISCUSSION

In this paper, we proposed an adaptive virtual waveform de-
sign for a millimeter-wave joint communication-radar system
that enjoys the benefit of a fully-digital baseband processing in
the time-domain and a high available bandwidth. Our proposed
waveform exploits only a few non-uniform preambles in a
CPI and sparse sensing techniques to achieve high velocity
estimation accuracy without reducing communication data rate
much. We developed a novel communication DMMSE metric
to accurately quantify the trade-off with radar CRB for a JCR
waveform design.

The performance trade-off curve between the radar CRB and
communication DMMSE contained some non-convex points
due to the occurrence of non-decreasing CRB points with
increasing communication DMMSE or due to the radar CRB
saturation at high SNR. To improve the optimal JCR per-
formance, we discarded these undesirable non-convex points
by using a convex hull approximation of the trade-off curve.
Then, we formulated three different MMSE-based problems
to optimize the trade-off between communication and radar:
a minimum communication DMMSE constrained formulation,
a minimum radar CRB constrained formulation, as well as a
weighted MMSE average formulation. To reduce the compu-
tation complexity for finding optimal waveform solutions, we
used specific waveform configurations — the uniform wave-
form, the nested virtual waveform, and the Wichmann virtual
waveform. Numerical results demonstrated that, in most cases,
non-uniform waveforms perform much better than uniform
waveforms, especially at low SNR and high target density.
Additionally, we observed that the traditional virtual preamble
count-based solution can be used as a coarse estimate of the
optimal solution for our MMSE-based optimization problems.

The results in this paper can be taken into account to design
an adaptive virtual waveform that achieves simultaneous high
communication data rate and super-resolution radar estima-
tion for next-generation mmWave devices. For future work,
the proposed framework can be extended to other virtual
waveforms, such as the Golomb waveform and the coprime
waveform. The achievability of their CRBs can be investigated
using more advanced estimation algorithms, such as nuclear
norm minimization. This may lead to better performance at a
low number of snapshots. This work can also be extended for
a more general Ricean fading mmWave channel model with
a small number of scattering clusters. It would be interesting
to see how the Ricean fading factor and the additional block
sparse structure will impact the advantage of the virtual

waveforms that exploit compressive sensing techniques on the
channel covariance matrix.

Additionally, the work in this paper can be extended to
investigate the effect of relative spacing between target ve-
locities on the MMSE-based virtual JCR waveform design.
When the target velocities are well-spaced beyond the mini-
mum resolution of the virtual waveform, the CRB metric is
not dependent on the relative spacing as illustrated in [55].
This can be realized using low communication weighting in
the weighted average optimization-based design, using low
radar CRB in the radar CRB constrained optimization-based
design, and using high communication DMMSE constraint in
the communication DMMSE constrained optimization-based
design, which will allow only those feasible values of optimal
M that achieve accuracy higher than the minimum velocity
resolution. The DMMSE will not be effected by the target
spacing either because the two-way multi-target radar channel
and the one-way frequency-selective communication channel
are assumed to be independent in our paper. In future work,
the effect on DMMSE can be analyzed either by incorporating
stochastic geometry or by real experiments. Currently, there is
no known real automotive data available for wide-band JCR
at the mmWave band as per our knowledge that can be used
to proceed in this line of research.
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