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Abstract—Gait is the human’s natural walking style that is
a complex biological process unique to each person. This paper
aims to exploit millimeter wave (mmWave) to extract fine-grained
microdoppler signatures of human movements, which are used
as the mmWave gait biometric for user recognition. Towards
this goal, a deep microdoppler learning system is proposed,
which utilizes deep neural networks to automatically learn and
extract the discriminative features in the mmWave gait biometic
data to distinguish a large number of people from each other.
In particular, our system consists of two subsystems including
human target tracking and human target recognition. The
tracking subsystem is responsible for detecting the appearance of
a human subject, tracking his/her locations and estimating his/her
walking velocity. The recognition subsystem utilizes the tracking
data to generate the microdoppler signatures as the mmWave
biometrics, which are fed into a custom-designed residual deep
convolutional neural network (DCNN) for automatic feature
extractions. Finally, a softmax classifier utilizes the extracted
features for user identification. In a typical indoor environment,
a top-1 identification accuracy of 97.45% is achieved for a dataset
of 20 people.

Index Terms—Gait Recognition, mmWave Radar, Deep Learn-
ing

I. INTRODUCTION

Motivation. Human authentication is an ever challenging
problem being addressed for decades. Biometric-based user
recognition is once deemed to be a trustable solution for
authentication. Most commonly employed biometrics were
based on visible light solutions such as retina scan, fingerprint
analysis and facial recognition [4]-[6], [11]. Voice recognition
solutions are also widely adopted for user authentication.
However, all the above mentioned bio-signs require additional
efforts from the human subjects to perform authentication.
For example, the retina based authentication requires subjects
to keep their eyes close to an Iris scanner. Similarly, facial
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recognition needs the subject to keep their faces in front of
the high resolution multi-dimensional camera to recognize the
inherent facial signatures. Fingerprint authentication requires
the subject to swipe or keep their finger on a scanner for
scanning the ridges and valleys. Moreover, the aforementioned
solutions are all based on physiological biometrics, which
suffer spoofing attacks where an illegitimate user fools a
biometric recognition system by presenting a synthetic forged
version of the biometric trait of the genuine user [1]-[3],
[7]. To address these limitations, effortless and non-intrusive
authentication systems have been investigated by utilizing
behavioral biometrics, such as gait and keystroke. In particular,
existing study [8] shows that human gait is very hard to spoof
or mimic because our own gait works against us when we try
to imitate someone elses gait.

Challenges. Initial studies on capturing human gait signa-
tures were still based on visible light sources such as motion
capture cameras and 3D Depth sensor based cameras [9]—
[11]. These solutions become impractical with significantly
degraded performance when there are obstructions and occlu-
sions, lighting conditions are not ideal, or they are deployed
in challenging environmental conditions, such as fog and
rain. To counter these challenges, radar-based wireless sensing
solutions have been exploited to extract gait biometirc features
for user identification [19], [20]. However, these solutions can
only achieve limited identification accuracy for a small group
of people. For example, in [20], 80% accuacy is achieved
for 8 human subjects, while 88% accuacy is achieved for
15 human subjects in [19]. The key reasons for the limited
performance in existing research are two folds. First, they did
not explore the emerging mmWave radar for high-resolution
motion detection and capture. Second, they rely on hand-
crafted features (such as stride rate) and rudimentary machine
learning methods.

Our Solution. In this paper, a deep microdoppler learning
system is proposed, which utilizes deep neural networks to
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automatically learn and extract the discriminative features in
the mmWave gait biometic data to distinguish a large number
of people from each other. In particular, our system consists of
two subsystems including human target tracking and human
target recognition. The tracking subsystem is responsible for
detecting the appearance of a human subject, tracking his/her
locations and estimating his/her walking velocity. The recog-
nition subsystem utilizes the tracking data to generate the
microdoppler signatures as the mmWave biometrics, which
are fed into a custom-designed residual deep convolutional
neural network (DCNN) for automatic feature extractions.
Finally, a softmax classifier utilizes the extracted features
for user identification. Moreover, to make sure the system
works well in the multipath-rich environments such as indoor
scenes, dedicated data-preprocessing solutions, such as high-
pass filter, cell averaging constant false alarm rate detector
(CA-CFAR), and spectorgram enhancement scheme, are also
integrated into the system to mitigate the environment-induced
distortions and noise. In a typical indoor environment, a top-1
identification accuracy of 97.45% is achieved for a dataset of
20 people.

The rest of the paper is organized as follows: Section II
details the basics, challenges, and system overview of the
mmWave biometric identification solution. Section III presents
human tracking subsystem, Section IV explains human iden-
tification subsystem. Section V presents the experimental
results. Section sec:conclusion concludes this paper.

II. SYSTEM DESIGN

A. Preliminaries

10

T.

Fig. 1: FMCW signal with linear ramp

The fundamental concept in radar systems is the trans-
mission of a signal, which is reflected by the objects in its
propagation path. The key advantage of Frequency Modulated
Continuous Wave (FMCW) radar system is its capability of
measuring the range/location and the velocity of the moving
target simultaneously. In particular, the signal used in FMCW
radars is called chirp, whose frequency increases linearly with
time as shown in Fig. 1. The chirp is characterized by a
start frequency (i.e., carrier frequency) f., bandwidth B and
duration 7. The slope of the chirp S = B/T. characterizes
the frequency changing rate. The transmitter of the radar sends
a chirp signal and the receiver captures the reflected chirp
generated by the object. A frequency mixer combines the

transmitted and received chirps to produce the beat signal.
For a target at distance d, the beat signal can be described by

Aexp(52r(fot + 2d/X.) = Aexp(j2m(2d/N.)) exp(j27 fot)

ey
where A is the signal attenuation gain. fo = 2dS/C is called
beat frequency. A\. = C/f. is the wavelength of the carrier
frequency where C' is the speed of light. Exploiting the beat
frequency fy, the distance of the target can be easily obtained

f“C
d —

When the target is moving to a new location, the frequency
of beat signal will be changed if the distance between the
previous location and the new location is larger than the radar
range resolution, which is directly related to the bandwidth B,
ie.,

C
dres = 735+ 3
5B 3

Due to extremely high carrier frequency of mmwave FMCW
radar, very large bandwidth B can be used, which leads to
fine-grained range resolution.

While the frequency of the beat signal is used to measure
target distance, the phase of the beat signal exp(j27(2d/\.))
defined in eq. (1) can be exploited to measure the target
velocity even if the radar can not detect the location change
of the target due to the range resolution constraint. Assume
the target moves over an very small distance after /N chirps
are sent and received, which generates N beat signals. In this
case, all N beat signals will have the same beat frequency
but with different phases. In particular, the phase of the beat
signal n € (1,2, ..., N) is equal to

exp(j27(2v/ A )nT.) 4

where 2v/ .. is called Doppler frequency. The eq. (4) indicates
the phases of beat signals for each distinguishable distance
constitute a new signal whose carrier frequency is exactly
the Doppler frequency. When a human subject is walking,
the different human parts (e.g., arms, legs, foots, and torso)
move at different velocities, which lead to different Doppler
frequencies. The radar can distinguish the movements of two
parts only if their speed difference is larger than the velocity
resolution, which is determined by the observation duration
NT, and the carrier wavelength A, i.e.,

Ac
2NT,.’
Since mmWave radar has a wavelength in the scale of millime-
ters, it characterizes fine-grained motion dynamics of human
gait. For example, compared with sub-6GHz radar, the 77GHz

mmWave radar can achieve over 12 times higher velocity
resolution.

&)

Ures =

B. mmWave Gait Biometric

The raw mmWave data samples can be collected by using
commercial off-the-shelf mmWave radar and these raw sam-
ples are converted into mmWave gait biometrics by following
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the workflow in Fig. 2. First, the analog beat signal is sampled
using the sampling frequency fs, which leads to the discrete
beat signal consisting of K = T.fs; samples. Then, M beat
signals constitute a frame, which can be represented by a
K x M matrix. Next, L frames constitute a observation sample
(i.e., mmWave data sample), which consists of N = ML
discrete beat signals and can be represented by K x N matrix.
Then, we perform range-FFT on such signal matrix to generate
the range-time map. In particular, we perform K-points FFT
along each column of the signal matrix to obtain a column
of K elements, each of which corresponds to the complex
amplitude A exp(j27(2d/)\.)) of a particular beat frequency
fo defined in eq. (1). If the absolute amplitude for frequency
fo is non-zero, then based on eq. (2), a target is detected
at the range that corresponds to this frequency. Performing
range-FFT for all N columns of the signal matrix, we can
obtain the range-time map. Then, we apply short-time-Fourier-
transform (STFT) over each row (range bin), which leads to
K spectrograms. Each spectrogram characterizes the micro-
Doppler signatures when the human moves a particular range
bin. Next, we combine K spectograms together to generate
the mmWave gait biometric.

frequency
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Fig. 2: mmWave Gait Biometric Generation Workflow

C. Challenges

The key challenges to exploit mmWave micro-Doppler
signatures for gait recognition are two-fold. First, the micro-
Doppler signatures come from the reflections that directly
bounce off from human bodies. However, mmWave signals
have very short wavelengths and thus can be easily reflected
back by surrounding obstructions. These reflections carry
the environment-dependent information, which is harmful for
the recognition task and has to be removed. In particular,
these environment reflections include static ones, which are
directly induced by the stationary obstructions (e.g., walls)
and dynamics ones, which indirectly bounce from other sta-
tionary obstructions and then bounce from human bodies. The
harmful environment reflections carry delayed and distorted
micro-Doppler information. Second, mmWave gait biometric
is of high dimensional data. Therefore, heuristically selecting
features from such data is suboptimal, which may fail to char-
acterize the salient and discriminative patterns to distinguish a
large number of people from each other. This naturally requires
us to implement automatic feature extraction by exploiting
deep neural networks.

D. System Overview

Our system consists of two subsystems including human
target tracking and human target recognition. The tracking
subsystem is responsible for detecting the appearance of
a human subject, tracking his/her locations and estimating
his/her walking velocity. The traveling locations and traveling
time are used to determine the dimension of mmWave data
sample (i.e., K and N). The collected data samples from a
group of human subjects are then converted into mmWave
gait biometric samples, which are fed into the recognition
subsystem. The recognition subsystem exploits these samples
to train a deep neural network that automatically learns the
salient features of the mmWave gait biometrics. The trained
network is used to identify the human subjects. To make sure
the system works well in the multipath-rich environments (e.g.,
indoor scenes), dedicated data-preprocessing solutions, such
as high-pass filter, cell averaging constant false alarm rate
detector (CA-CFAR), and spectorgram enhancement scheme,
are also integrated into the system to mitigate the distortions
in the mmWave biometric samples caused by environment-
induced static/dynamic reflections and background noise. The
system architecture is shown in Fig. 3 and the details of each
system block are presented in the following sections.

ITI. HUMAN TARGET TRACKING
A. Range-Doppler Map with Static Reflection Suppression

The target tracking is based on the range-Doppler map,
which is generated by performing 2D-FFT on each mmWave
data frame, i.e., first performing FFT across each column
(range-FFT) to create range-time matrix and then applying
FFT across each range bin (Doppler-FFT) of range-time map
to generate range-Dopper map. The peaks in the cells of the
range-Dopper map represent the detected targets associated
with their radical velocities and locations relative to the
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Fig. 4: Range-Doppler Map with Static Reflections

radar. However, as shown in Fig. 4, the static objects in the
background environment such as chairs, tables, can induce the
static reflections that generate undesired peaks along the zero
velocity line. To remove these static reflections, we apply an
8th-order butterworth high-pass filter with cutoff frequency of
100Hz on each row of range-time map and then apply Doppler-
FFT on the filtered range-time map.

B. Detection Map with Dynamic Reflection Removal

Using the range-Doppler map, the target detection map can
be generated, which labels the detected moving targets as 1s
in the corresponding cells of the range-Doppler map. Towards
this goal, we first need to remove dynamic environment
reflections, which can generate multiple fake targets as shown
in Fig. 5. The dynamic reflections come from the signals that
bounce from walls and then bounce from human subjects.
Thus, those signals travel over long propagation paths to
arrive at the radar receiver. Therefore, their energy levels are
generally lower, compared with the signals directly reflected
from the human subjects. Therefore, by treating the dynamic
reflections as noise, we can adopt CA-CFAR [25], which is
one of most commonly used target detectors in radar theory

x10%

4 Actual
/ Target
|

o 3

he) |
2

g‘z Dynamic }
< Reflection ||

1

0

Range 3 -2

Speed (m/s)

Fig. 5: Highpass-filtered Range-Doppler Map with Dynamic
Reflections

for noisy and interference-rich environments. The key idea of
CA-CFAR is to determine whether a target is present or not by
comparing its energy to an adaptive threshold 7. The threshold
is a function of the desired false-alarm probability and the
estimated noise level that is computed by taking the mean
of neighbouring cells around the cell-under-test. However, the
key challenge to directly apply CA-CFAR for human subject
detection is that different parts (e.g., torso and legs) of a human
move at different velocities so that the bulk motion of torso
generates the main Doppler component that is modulated by
the micro-Doppler components from the swinging arms and
legs. This can create a cluster of closely-located peaks with
comparable energy levels in the range-Doppler map. Such
phenomenon can significantly affect the detection performance
of CA-CFAR. To address this challenge, before applying CA-
CFAR, we exploit the percentile method in [25] to only
localize the cells in the range-Doppler map which correspond
to torso reflections. Using the threshold from CA-CFAR, the
cells with torso reflections can be labelled as 1’s and other
cells are labeled as O0’s. Then, the cells with 1’s are merged
a single connected component. The connected component is
replaced as a single point by its centroid, which generates the
final binary detection map as shown in Fig. 6.

Target

-3 -2 -1 1 2 3

0
Speed (m/s)

Fig. 6: Detection Map
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Fig. 7: Range-Velocity-Time Map for Human Tracking

C. Sliding-Window based Tracking

Based on the detection map, we first identify the target
presence by checking whether a peak with non-zero velocity
appear or not. Once a target is identified, we initiate the
tracking by locking the target’s location within the range-
Doppler map. Then, a detection map is generated for every
radar data frame. Since the target’s approximate velocity
is also available from the detection map, a 2D window is
employed to continuously track the position of the target as
shown in Fig. 7 tracking. By moving the window across the
detection maps, we can keep tracking the target at various time
instances. In particular, this window predicts the potential area
the target will move to during next data frame. The length of
the moving window estimates the predicted moving distance
of the human between two radar frames and is set to be 20T},
where v is the estimated velocity and T is time duration of
the radar frame that is equal to the number of chirps per-frame
M times the chirp duration 7,.. The width of the window is
determined according to the velocity variance. In our case, we
set it to be 0.5m/s. Figure 7 shows a walking trace of a tracked
human subject, which shows walking range and velocity at
each time instance.

IV. HUMAN TARGET IDENTIFICATION - DEEP
MICRO-DOPPLER LEARNING

A. mmWave Biometric Generation and Enhancement

The tracking subsystem can tell the walking range and
time information, which is used to extract the mmWave raw
data that contains the human movements. Then, we apply
range-FFT on the extracted mmWave data to generate the
range-time map. The range-time map, as shown in Fig. 8a,
is pre-processed to remove static and dynamic environment
reflections. Similar to the tracking subsystem, the static reflec-
tion removal is adopted on the range-time map by applying
butterworth high-pass filter for each range bin. Then, dynamic
reflection removal is initiated. In particular, we apply CA-
CFAR and windowing technique, similar to the ones used
for tracking, in each range bin to extract the samples that
contains human movements, while zeroing-out the harmful
dynamic reflections. The pre-processed range-time map in

range-time map
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(b) Pre-processed Range-Time Map

Fig. 8: (a) Range-Time Map (b) Pre-processed Range-Time
Map

Fig. 8b is converted into a mmWave biometric sample, which
is an aggregated spectrogram as demonstrated in Section I.B.
To improve recognition accuracy, we further enhance the
spectrogram. First, the spectrogram is normalized by dividing
the amplitude of each point in the spectrogram with the total
energy of the spectrogram, which is the sum of the amplitudes
of all points in the spectrogram. Second, mean filtering is
applied by calculating the mean of the spectrogram, which
is treated as the estimated noise floor. Then, the noise floor is
subtracted from the spectrogram. Third, a 2D-Gaussian filter
is convolved over the spectrogram to further reduce noise. The
enhanced mmWave gait biometric is shown in figure 9.

B. Feature Extraction and Classification

We use a DCNN to learn high-level salient features from
mmWave biometric data samples. We found that Residual DC-
NNs (ResNets) [22], which are DCNNs with residual layers,
outperform most of the currently popular DCNN architectures
for mmWave biometric recognition. Residual layers are stacks
of convolutional, activation, batch normalization and addition
layers with a skip connection. The skip connection allows
the features to propagate forward via both the main stack
of layers and the skip connection bypassing the primary
stack. This promotes better feature extraction and gradient
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Fig. 9: mmWave gait biometric with torso carrying high-
energy low-frequency microdoppler signatures (darker co-
lar) and arms/foots inducing low-energy high-frequency mi-
crodoppler signatures

flow during back propagation. In particular, we construct a
custom-designed 14-layer ResNet following the architectural
design principles as defined in [22]. We utilize 2 types of
residual layers, identity and convolutional residual layers. The
identity residual layers do not have any operations on the
skip connection and maintain the feature map’s height and
width. The convolutional residual layers have convolutional
and batch normalization operations in the skip connections,
and the operation reduces the dimension of the output feature
map. The detailed network structure is illustrated in Fig. 10
and its parameters are listed in Table I. The high level features
extracted by the ResNet are passed on to a softmax classifier
which converts the features to class likelihoods:
Z(c)
ie = Pleli) = = —
Zj:l epo ()
The class with the maximum likelihood is considered as the
classifier’s prediction:

(6)

i). )

The model’s predictions along with the true labels are used
to compute cross entropy loss for backpropagtion to upate the
model’s weights [23]:

" = argmaz.coP(c

N

L(ta y) =- Z Z ticl‘)g(yic)- ¥

i=1c¢<C

V. EXPERIMENTAL VALIDATION
A. Experimental Setup

Our mmWave FMCW radar system (Fig. 11) is from Texas
Instruments (TI) IWR1642EVM boost board interfaced with
a DCAIT000EVM board to capture the raw radar samples,
which are processed using the custom-designed system blocks
proposed in this paper. Our radar system has 2 transmitting
antennas, 4 receiving antennas, and 120° field of view of
azimuth plane. The radar system operates from 77 Ghz to
81 Ghz covering upto a 4 Ghz bandwidth. A Dell Latitude
7480 laptop with TI mmWave studio software is used as a

layer output size layer parameters
convl 64 x 512 7 X 7,32, stride 2
maxpooll 32 x 256 3 x 3, stride 2
1x1, 32
conv2_x 16 x 128 3x3, 32(x2
1x1, 128
1x1, 64
conv3_x 8 x 64 3x3, 64| x2
1x1, 256
1x1, 64
conv4_x 4 x 32 3x3, 64| x2
1x1, 256
bottleneck 1x1 average pool, 20-d fc, softmax

TABLE I: Parametric overview of Resnet

Parameter Value
Frequency 771G
Bandwidth 900.9Mhz
Ramp Slope 15Mhz
ADC Samples 256
Sampling rate SMsps
No.of Frames 200
No.of Chirps 230
Periodicity 33.00

TABLE II: Texas
parameters

Instrunments IWR1642 mmWave device

control system for our radar device to configure the FMCW
wave parameters such as chirp width, repetition time and chirp
slope. Table II lists the key parameters that we used for our
data collection.

B. Dataset Construction and Training Methodology

We recruited 20 volunteers to create our dataset. Each
participant was asked to walk in his/her natural way in a
office area shown in Fig. 11. A participant can either walk
towards the radar or walk away from the radar, each of which
is counted as one walking instance. We asked each participant
to finish 90 walk instances that lead to 90 raw radar samples
per participant. Each raw radar sample is then converted to a
mmWave gait biometric sample by following the procedures
proposed in the previous section. Each biometric sample has
a dimension of 128 x 1024. The dataset was split into training
and testing set by randomly selecting samples for each set. We
used a 85-15 train-test split ratio and a 10 fold Monte Carlo
cross validation was performed, with a mini batch size of 32.
The Adam optimizer [23] was used to train the model with an
initial learning rate of 1 x 10~* and a decay rate of 1 x 1073
for 250 epochs.

C. User Identification Accuracy

DCNNs are trained on the training set, and the test set
is used to monitor the model’s performance on unseen data.
The testing set is not used to update the weights of the
DCNN which allows us to quantify the model’s real world
performance. The train and test accuracies are defined as
follows:

# of correct predictions from train set

Train Accuracy =

)

# of samples in train set
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Fig. 11: (Left) Data collection environment. (Right) TI
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# of correct predictions from test set

Test Accuracy = .
4 # of samples in test set

Our approach achieves a mean testing accuracy of 97.45 +
1.13%. Fig. 12 shows the convergence of the model test
accuracy over 10-fold cross validation.

Accuracy
o
°
S

140 160 180 200 220 240

S 20 40 60 80 100

légoch
Fig. 12: Test accuracy of 10-fold Monte Carlo cross validation.

D. Confusion Matrix

The confusion matrix is utilized to show model performance
over each class in the dataset. A confusion matrix has 4
metrics true positive (TP), true negative (TN), false positive
(FP) and false negative (FN). The four metrics define different
ratios of negative and positive samples, where positive samples
are the samples which belong to the class of interest and

negative samples are defined as the samples which don’t
belong to the class of interest. The confusion matrix for a
model trained on our dataset is shown in Fig. 13. The diagonal
elements of the matrix describe the TPs for each class. After
deleting the diagonal elements, the remaining elements of each
row represent the FPs and the remaining elements of each
column characterize the FNs. It is shown that our system can
consistently achieve high true positive rate (low true negative
rate) along with low false positive and false negative rates for
all classes/human subjects.
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Fig. 13: Confusion matrix for a model trained on our dataset

E. Classification Report

We also present the classification report for our system. The
report consists of 3 metrics: precision, recall and Fl-score
which are computed from the four metrics (TP, TN, FP and
FN) used in confusion matrix. The three metrics are defined
below. The precision score is the confidence of the classifier
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to identify samples of a class, recall defines the classifier’s
ability to identify all relevant cases in the dataset. The F1-
score is interpreted as the weighted average of precision and
recall. The classification report is shown in Fig. 14. We can
observe that our system achieve achieve very high (over 95%)
precision, recall and F1 scores for almost every human subject.

Precisi TP
recision = ———————
(I'P+FP)’
TP
frecall = 7 TN
= 2(Recall x Precision)

(Recall + Precision)
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Fig. 14: Average test accuracy of 8, 18-layer ResNets. Each
network is trained on a randomly selected train and test set.

VI. CONCLUSION

This paper proposed a deep learning system for user
recognition based on mmWave gait biometrics. Two subsys-
tems, human target tracking and human target identification,
are implemented first to track user’s locations and estimate
user’s walking velocity and next to identify/classify users.
We produce the high-resolution microdoppler signatures as
the mmWave biometrics, which are successfully used for hu-
man identification in the second subsystem. A custom-design,
ResNet learns the salient features embedded in the high-
dimensional mmWave biometric samples. For training and
testing, we collected 20 different gait patterns from volunteers
and achieved 97.45% of classification accuracy.
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