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Abstract

Robots frequently face complex tasks that require more than
one action, where sequential decision-making (SDM) capa-
bilities become necessary. The key contribution of this work
is a robot SDM framework, called LCORPP, that supports
the simultaneous capabilities of supervised learning for pas-
sive state estimation, automated reasoning with declarative
human knowledge, and planning under uncertainty toward
achieving long-term goals. In particular, we use a hybrid rea-
soning paradigm to refine the state estimator, and provide
informative priors for the probabilistic planner. In experi-
ments, a mobile robot is tasked with estimating human in-
tentions using their motion trajectories, declarative contex-
tual knowledge, and human-robot interaction (dialog-based
and motion-based). Results suggest that, in efficiency and ac-
curacy, our framework performs better than its no-learning
and no-reasoning counterparts in office environment.

1 Introduction
Mobile robots have been able to operate in everyday en-
vironments over extended periods of time, and travel long
distances that have been impossible before, while providing
services, such as escorting, guidance, and delivery (Hawes et
al. 2017; Veloso 2018; Khandelwal et al. 2017). Sequential
decision-making (SDM) plays a key role toward robot long-
term autonomy, because real-world domains are stochastic,
and a robot must repeatedly estimate the current world state
and decide what to do next.

There are at least three AI paradigms, namely super-
vised learning, automated reasoning, and probabilistic plan-
ning, that can be used for robot SDM. Each of the three
paradigms has a long history with rich literature. However,
none of the three completely meet the requirements in the
context of robot SDM. First, a robot can use supervised
learning to make decisions, e.g., to learn from the demon-
strations of people or other agents (Argall et al. 2009).
However, the methods are not designed for reasoning with
declarative contextual knowledge that are widely available
in practice. Second, knowledge representation and reason-
ing (KRR) methods can be used for decision making (Gel-
fond and Kahl 2014). However, such knowledge can hardly
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be comprehensive in practice, and robots frequently find it
difficult to survive from inaccurate or outdated knowledge.
Third, probabilistic planning methods support active infor-
mation collection for goal achievement, e.g., using decision-
theoretic frameworks such as Markov decision processes
(MDPs) (Puterman 2014) and partially observable MDPs
(POMDPs) (Kaelbling, Littman, and Cassandra 1998). How-
ever, the planning frameworks are ill-equipped for incorpo-
rating declarative contextual knowledge.

In this work, we develop a robot SDM framework that en-
ables the simultaneous capabilities of learning from past ex-
periences, reasoning with declarative contextual knowledge,
and planning toward achieving long-term goals. Specifically,
we use long short-term memory (LSTM) (Hochreiter and
Schmidhuber 1997) to learn a classifier for passive state
estimation using streaming sensor data, and use common-
sense reasoning and probabilistic planning (CORPP) (Zhang
and Stone 2015) for active perception and task completions
using contextual knowledge and human-robot interaction.
Moreover, the dataset needed for supervised learning can
be augmented through the experience of active human-robot
communication, which identifies the second contribution of
this work. The resulting algorithm is called learning-CORPP

(LCORPP), as overviewed in Figure 1.

We apply LCORPP to the problem of human intention es-
timation using a mobile robot. The robot can passively es-
timate human intentions based on their motion trajectories,
reason with contextual knowledge to improve the estima-
tion, and actively confirm the estimation through human-
robot interaction (dialog-based and motion-based). Results
suggest that, in comparison to competitive baselines from
the literature, LCORPP significantly improves a robot’s per-
formance in state estimation (in our case, human intention)
in both accuracy and efficiency. 1

2 Related Work

KRR and SDM: SDM algorithms can be grouped into two
classes depending on the availability of the world model,
namely probabilistic planning, and reinforcement learning
(RL). Next, we select a sample of the SDM algorithms, and

1A demo video is available: https://youtu.be/YgiB1fpJgmo
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Figure 1: An overview of LCORPP that integrates supervised learning, automated reasoning, and probabilistic planning. Stream-
ing sensor data, e.g., from RGB-D sensors, is fed into an offline-trained classifier. The classifier’s output is provided to the
reasoner along with classifier’s cross-validation. This allows the reasoner to encode uncertainty of the classifier’s output. The
reasoner reasons with declarative contextual knowledge provided by the domain expert, along with the classifier’s output and
accuracies in the form of probabilistic rules, and produces a prior belief distribution for the probabilistic planner. The planner
suggests actions to enable the robot to actively interact with the world, and determines what actions to take, including when
to terminate the interaction and what to report. At each trial, the robot collects the information gathered from the interaction
with the world. In case of limited experience for training, LCORPP supports data augmentation through actively seeking human
supervision. Solid and dashed lines correspond to Algorithms 1 and 2 respectively, as detailed in Section 4.

make comparisons with LCORPP.

When world model is unavailable, SDM can be realized
using RL. People have developed algorithms for integrat-
ing KRR and RL methods (Leonetti, Iocchi, and Stone 2016;
Yang et al. 2018; Lyu and others 2019; Sridharan and Rainge
2014; Griffith, Subramanian, and others 2013; Illanes et
al. 2019). Among them, Leonetti, Iocchi, and Stone used
declarative action knowledge to help an agent to select only
the reasonable actions in RL exploration. Yang et al. devel-
oped an algorithm called PEORL that integrates hierarchical
RL with task planning, and this idea was applied to deep RL

by Lyu and others in 2019.

When world models are provided beforehand, one can
use probabilistic planning methods for SDM. Contextual
knowledge and declarative reasoning have been used to
help estimate the current world state in probabilistic plan-
ning (Zhang, Sridharan, and Wyatt 2015; Zhang and Stone
2015; Sridharan et al. 2019; Ferreira et al. 2017; Chit-
nis, Kaelbling, and Lozano-Pérez 2018; Lu et al. 2018;
2017). Work closest to this research is the CORPP algorithm,
where hybrid reasoning (both logical and probabilistic) was
used to guide probabilistic planning by calculating a proba-
bility for each possible state (Zhang and Stone 2015). More
recently, researchers have used human-provided declarative
information to improve robot probabilistic planning (Chit-
nis, Kaelbling, and Lozano-Pérez 2018).

The main difference from the algorithms is that LCORPP

is able to leverage the extensive data of (labeled) decision-
making experiences for continuous passive state estimation.
In addition, LCORPP supports collecting more data from the
human-robot interaction experiences to further improve the
passive state estimator over time.

KRR and supervised learning: Reasoning methods have
been incorporated into supervised learning in natural lan-
guage processing (NLP) (Chen, Tan, and others 2019;
Zellers, Holtzman, and others 2019) and computer vi-
sion (Zellers et al. 2019; Aditya et al. 2019; Chen et al.
2018) among others. For instance, Chen, Tan, and others in
2019 used commonsense knowledge to add missing infor-
mation in incomplete sentences (e.g., to expand “pour me
water” by adding “into a cup” to the end); and Aditya et al.
used spatial commonsense in the Viual Question Answer-
ing (VQA) tasks. Although LCORPP includes components for
both KRR and supervised learning, we aim at a SDM frame-
work for robot decision-making toward achieving long-term
goals, which identifies the key difference between LCORPP

and the above-mentioned algorithms.

SDM and supervised learning: Researchers have devel-
oped various algorithms for incorporating human super-
vision into SDM tasks (Taylor and Borealis 2018; Amiri
et al. 2018; Thomaz, Breazeal, and others 2006). Among
them, Amiri et al. used probabilistic planning for SDM un-
der mixed observability, where the observation model was
learned from annotated datasets. Taylor and Borealis sur-
veyed a few ways of improving robots’ SDM capabilities
with supervision (in the form of demonstration or feedback)
from people. In comparison to the above methods, LCORPP

is able to leverage human knowledge, frequently in declara-
tive forms, toward more efficient and accurate SDM.

To the best of our knowledge, this is the first work on
robot SDM that simultaneously supports supervised learning
for passive perception, automated reasoning with contextual
knowledge, and active information gathering toward achiev-
ing long-term goals under uncertainty.
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3 Background

In this section, we briefly summarize the three computa-
tional paradigms used in the buildings blocks of LCORPP.

LSTM: Recurrent neural networks (RNNs) (Hopfield 1982)
are a kind of neural networks that use their internal state
(memory) to process sequences of inputs. Given the input
sequence vector (x0, x1, ..., xn), at each time-step, a hid-
den state is produced that results in the hidden sequence of
(h0, h1, ..., hn). LSTM (Hochreiter and Schmidhuber 1997)
network, is a type of RNN that includes LSTM units. Each
memory unit in the LSTM hidden layer has three gates for
maintaining the unit state: input gate defines what informa-
tion is added to the memory unit; output gate specifies what
information is used as output; and forget gate defines what
information can be removed. LSTMs use memory cells to
resolve the problem of vanishing gradients, and are widely
used in problems that require the use of long-term con-
textual information, e.g., speech recognition (Graves, Mo-
hamed, and Hinton 2013) and caption generation (Vinyals et
al. 2015). We use LSTM-based supervised learning for pas-
sive state estimation with streaming sensor data in this work.

P-log: Answer Set Prolog (ASP) is a logic programming
paradigm that is strong in non-monotonic reasoning (Gel-
fond and Kahl 2014; Lifschitz 2016). An ASP program in-
cludes a set of rules, each in the form of:

l0 ← l1, · · · , ln, not lk, · · · , not ln+k

where l’s are literals that represent whether a statement is
true or not, and symbol not is called default negation. The
right side of a rule is the body, and the left side is the head.
A rule head is true if the body is true.

P-log extends ASP by allowing probabilistic rules for
quantitative reasoning. A P-log program consists of the log-
ical and probabilistic parts. The logical part inherits the syn-
tax and semantics of ASP. The probabilistic part contains
pr-atoms in the form of:

prr(G(η) = w|B) = v

where G(η) is a random variable, B is a set of literals and
v ∈ [0, 1]. The pr-atom states that, if B holds and experiment
r is fixed, the probability of G(η) = w is v.

POMDPs: Markov decision processes (MDPs) can be used
for sequential decision-making under full observability. Par-
tially observable MDPs (POMDPs) (Kaelbling, Littman, and
Cassandra 1998) generalize MDPs by assuming partial ob-
servability of the current state. A POMDP model is repre-
sented as a tuple (S,A, T,R, Z,O, γ) where S is the state-
space, A is the action set, T is the state-transition function,
R is the reward function, O is the observation function, Z is
the observation set and γ is discount factor that determines
the planning horizon.

An agent maintains a belief state distribution b with ob-
servations (z ∈ Z) using the Bayes update rule:

b′(s′) =
O(s′, a, z)

∑
s∈S T (s, a, s′)b(s)

pr(z|a, b)

where s is the state, a is the action, pr(z|a, b) is a normalizer,
and z is an observation. Solving a POMDP produces a policy
that maps the current belief state distribution to an action
toward maximizing long-term utilities.

CORPP (Zhang and Stone 2015) uses P-log (Baral, Gel-
fond, and Rushton 2009) for knowledge representation and
reasoning, and POMDPs (Kaelbling, Littman, and Cassan-
dra 1998) for probabilistic planning. Reasoning with a P-log
program produces a set of possible worlds, and a distribution
over the possible worlds. In line with the CORPP work, we
use P-log for reasoning purposes, while the reasoning com-
ponent is not restricted to any specific declarative language.

4 Framework

In this section, we first introduce a few definitions, then
focus on LCORPP, our robot SDM framework, and finally
present a complete instantiation of LCORPP in detail.

Definitions: Before describing the algorithm, it is neces-

sary to define three variable sets of Vlrn, Vrsn and Vpln that
are modeled in the learning, reasoning, and planning com-

ponents respectively. For instance, Vlrn includes a finite set
of variables:

Vlrn = {V lrn
0 , V lrn

1 , ...}

We consider factored spaces, so the three variable sets can
be used to specify the three state spaces respectively, i.e.,
Slrn, Srsn and Spln. For instance, the learning component’s

state space, Slrn, can be specified by Vlrn, and includes a
finite set of states in the form of:

Slrn = {slrn0 , slrn1 , ...}

Building on the above definitions, we next introduce the
LCORPP algorithm followed by a complete instantiation.

4.1 Algorithms

We present LCORPP in the form of Algorithms 1 and 2,
where Algorithm 1 calls the other.

The input of LCORPP includes the dataset Ω for sequence
classification, declarative rules θ, logical facts β, and a
POMDP model M. Each sample in Ω is a matrix of size
T × N , where T is the time length and N is the number of
features. Each sample is associated with a label, where each
label corresponds to state slrn ∈ Slrn. Logical-probabilistic
rules, θ, are used to represent contextual knowledge from
human experts. Facts, β, are collected at runtime, e.g., cur-
rent time and location, and are used together with the rules
for reasoning. Finally, POMDP model M includes world dy-
namics and is used for planning under uncertainty toward
active information gathering and goal accomplishments.

Algorithm 1 starts with training classifier ρ using dataset
Ω, and confusion matrix C that is generated by cross-
validation. The probabilities in C are passed to the reasoner
to update probabilistic rules θ. Action policy π is then gen-
erated using the POMDP model M and off-the-shelf solvers

from the literature. Matrix Ĉ (of shape C) and counter c
are initialized with uniform distribution and 0 respectively.
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Algorithm 1 LCORPP

Require: A set of instance-label pairs Ω (training dataset),
Logical-probabilistic rules θ, Termination probability thresh-
old ǫ, POMDP model M, Batch size K

1: Compute classifier ρ using Ω
2: C ← CROSS-VALIDATE(ρ), where C is a confusion matrix
3: Update rules in θ with the probabilities in C
4: Compute action policy π with M (using POMDP solvers)

5: Initialize Ĉ (same shape of C) using uniform distributions
6: Initialize counter: c ← 0
7: while SSUB(Ĉ − C) > ǫ do
8: Collect new instance I
9: L ← DT-CONTROL(ρ, I,M), where L is the label of I

10: Store instance-label pair: ω ← (I, L)
11: Ω ← Ω ∪ ω
12: c ← c+ 1
13: if c == K then
14: Compute classifier ρ using augmented dataset Ω

15: Ĉ ← CROSS-VALIDATE(ρ)

16: Update rules in θ with the probabilities in Ĉ

17: C ← Ĉ
18: c ← 0
19: end if
20: end while

SSUB(Ĉ − C) is a function that sums up the absolute val-

ues of the element-wise subtraction of matrices Ĉ and C.
As long as the output of SSUB is greater than the termina-
tion threshold ǫ, the robot collects a new instance I , passes
the instance along with the classifier and the model to Al-
gorithm 2 to get label L (Lines 8-9). The pair of instance
and label, ω, is added to the dataset Ω and the counter (c)
is incremented. If c reaches the batch size K, new classifier
ρ is trained using the augmented dataset. Then, it is cross-

validated to generate Ĉ, and the rules θ are updated. Also, c
is set to 0 for collection of a new batch of data (Lines 13-18).

Algorithm 2 requires classifier ρ, data instance I , and
POMDP model M . The classifier (ρ) outputs the learner’s
current state, slrn ∈ Slrn. This state is then merged into
β in Line 2, which is later used for reasoning purposes. A

set of variables, V̂
rsn

, is constructed in Line 3 to form state
space Ŝrsn, which is a partial state space of both Srsn and
Spln. brsn is the reasoner’s posterior belief. Belief distri-

bution b̂rsn over Ŝrsn bridges the gap between LCORPP’s

reasoning and planning components: b̂rsn is computed as
a marginal distribution of the reasoner’s output in Line 6;
and used for generating the prior distribution of bpln for ac-
tive interactions. LCORPP initializes POMDP prior belief bpln

over the state set Spln with b̂rsn in Line 7, and uses policy
π to map bpln to actions. This sense-plan-act loop contin-
ues until reaching the terminal state and the estimation label
would be extracted from the reporting action (described in
detail in subsection 4.2).

4.2 Instantiation

We apply our general-purpose framework to the problem of
human intention estimation using a mobile robot, as shown
in Figure 2. The robot can observe human motion trajecto-

Algorithm 2 DT-CONTROL: Decision Theoretic Control

Require: Classifier ρ, Instance I , and POMDP model M
1: Update state: slrn ← ρ(I), where slrn ∈ Slrn

2: Collect facts β from the world, and add slrn into β

3: V̂
rsn

← {V̂ |V̂ ∈ Vrsn, and V̂ ∈ Vpln}

4: Use V̂
rsn

to form the state space of Ŝrsn, where Ŝrsn ⊂ Srsn

and Ŝrsn ⊂ Spln

5: Reason with θ and β to compute belief brsn over Srsn

6: Compute b̂rsn (over Ŝrsn), i.e., a marginal of brsn

7: Initialize belief bpln (over Spln) using b̂rsn

8: repeat
9: Select action a ← π(bpln), and execute a

10: Make observation o
11: Update bpln based on a and o using Bayes update rule
12: until reaching terminal state term ∈ Spln

13: L ← EXTRACTLABEL(a)

0D\�,�KHOS�\RX"�
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Figure 2: Robot estimating human intention, e.g., human in-
tending to interact or not, by analyzing human trajectories,
reasoning with contextual knowledge (such as location and
time), and taking human-robot interaction actions.

ries using streaming sensor data (RGB-D images), has con-
textual knowledge (e.g., visitors tend to need guidance help),
and is equipped with dialog-based and motion-based inter-
action capabilities. The objective is to determine human in-
tention (in our case, whether a human is interested in in-
teraction or not). In the following subsections, we provide
technical details of a complete LCORPP instantiation in this
domain.

Learning for Perception with Streaming Data In order
to make correct state estimation based on the streaming sen-
sor data while considering the dependencies at various time
steps, we first train and evaluate the classifier ρ using dataset
Ω. We split the dataset into training and test sets, and pro-
duce the confusion matrix C, which is later needed by the
reasoner. Human intention estimation is modeled as a clas-
sification problem for the LSTM-based learner:

slrn = ρ(I)

where robot is aiming at estimating slrn ∈ Slrn using
streaming sensor data I . In our case, streaming data is in
the form of people motion trajectories; and there exists only

one binary variable, intention ∈ Vlrn. As a result, state set
Slrn includes only two states:

Slrn = {slrn0 , slrn1 }

where slrn0 and slrn1 correspond to the person having in-
tention of interacting with the robot or not. Since the hu-
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man trajectories are in the form of sequence data, we use
LSTM to train a classifier for estimating human intentions
with motion trajectories. Details of the classifier training are
presented in Section 5. Next, we explain how the classifier
output is used for reasoning.

Reasoning with Contextual Knowledge Contextual
knowledge, provided by domain experts, can help the robot
make better estimations. For instance, in the early mornings
of work days, people are less likely to be interested in
interacting with the robot, in comparison to the university
open-house days. The main purpose of the reasoning
component is to incorporate such contextual knowledge to
help the passive state estimation.

The knowledge base consists of logical-probabilistic rules
θ in P-log (Baral, Gelfond, and Rushton 2009), a declarative
language that supports the representation of (and reasoning
with) both logical and probabilistic knowledge. The reason-
ing program consists of random variables set Vrsn. It starts
collecting facts and generating β. The confusion matrix gen-
erated by the classifier’s cross-validation is used to update
θ. The variables that are shared between the reasoning and

planning components are in the set V̂
rsn

. The reasoner pro-
duces a belief brsn over Srsn via reasoning with θ and β.

In the problem of human intention estimation, the rea-
soner contains random variables:

Vrsn = {location, time, identity, intention, · · · },

where the range of each variable is defined as below:

location: {classroom, library}

time: {morning, afternoon, evening}

identity: {student, professor, visitor}

intention: {interested, not interested}

We further include probabilistic rules into the reasoning
component. For instance, the following two rules state that
the probability of a visitor showing up in the afternoon is 0.7,
and the probability of a professor showing up in the library
(instead of other places) is 0.1, respectively.

pr(time=afternoon|identity=visitor)=0.7.

pr(location=library|identity=professor)=0.1.

It should be noted that time and location are facts that
are fully observable to the robot, whereas human identity
is a latent variable that must be inferred. Time, location, and
intention are probabilistically determined by human identity.
We use time and location to infer human identity, and then
estimate human intention.

The binary distribution over human intention, b̂rsn, a

marginal distribution of brsn over Ŝrsn, is provided to the
POMDP-based planner as informative priors.2

2The reasoning component can be constructed using other
logical-probabilistic paradigms that build on first-order logic,
such as Probabilistic Soft Logic (PSL) (Bach and others 2017)
and Markov Logic Network (MLN) (Richardson and Domingos
2006). In comparison, P-log directly takes probabilistic, declara-
tive knowledge as the input, instead of learning weights with data,
and meets our need of utilizing human knowledge in declarative
forms.

Active Perception via POMDP-based HRI Robots can
actively take actions to reach out to people and gather
information. We use POMDPs to build probabilistic con-
trollers. A POMDP model can be represented as a tuple
(Spln, A, T,R, Z,O, γ). We briefly discuss how each com-
ponent is used in our models:

• Spln : Ŝrsn×Spln
l ∪{term} is the state set. Ŝrsn includes

two states representing human being interested to interact

or not. Spln
l includes two states representing whether the

robot has turned towards the human or not and term is
the terminal state.

• A : Aa∪Ar is the set of actions. Aa includes both motion-
based and language-based interaction actions, including
turning (towards the human), greeting, and moving for-
ward slightly. Ar includes two actions for reporting the
human being interested in interaction or not.

• T (s, a, s′) = P (s′|s, a) is the transition function that ac-
counts for uncertain or non-deterministic action outcomes
where a ∈ A and s ∈ S. Reporting actions deterministi-
cally lead to the term state.

• Z = {pos, neg, none} is the observation set modeling
human feedback in human-robot interaction.

• O(s′, a, z) = P (z|a, s′), where z ∈ Z, is the observa-
tion function, which is used for modeling people’s noisy
feedback to the robot’s interaction actions.

• R(s, a) is the reward function, where costs of interaction
actions, aa ∈ Aa, correspond to the completion time. A
correct (wrong) estimation yields a big bonus (penalty).

Reporting actions deterministically lead to the term state.
We use a discount factor γ = 0.99 to give the robot a long
planning horizon. Using an off-the-shelf solver (e.g., (Kur-
niawati, Hsu, and Lee 2008)), the robot can generate a be-
havioral policy that maps its belief state to an action toward
efficiently and accurately estimating human intentions.

To summarize, the robot’s LSTM-based classifier esti-
mates human intention based on the human trajectories.
The reasoner uses human knowledge to compute a distribu-
tion on human intention. The reasoner’s intention estimation
serves as the prior of the POMDP-based planner, which en-
ables the robot to actively interact with people to figure out
their intention. The reasoning and planning components of
CORPP are constructed using human knowledge, and do not
involve learning. The reasoning component aims at correct-
ing and refining the LSTM-based classifier’s output, and the
planning component is for active perception.

5 Experiments

In this section, we describe the testing domain (including the
dataset), experiment setup, and statistical results.

5.1 Dataset and Learning Classifiers

We use a human motion dataset (Kato, Kanda, and Ishiguro
2015) to train the LSTM-based classifier, where the dataset
was collected using multiple 3D range sensors mounted
overhead in a shopping center environment. Each instance
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Figure 3: (Left) A human detected and tracked by our
Segway-based robot in the classroom building. (Right) The
corresponding collected trajectory, where the robot’s posi-
tion is shown in square “�”, and the human trajectory starts
at dot and finishes in “△” position. In this example, the hu-
man was interested in interactions.

in the dataset includes a human motion trajectory in 2D
space, and a label of whether the human eventually inter-
acts with the robot or not. There are totally 2286 instances
in the dataset, where 63 are positive instances (2.7%). Each
trajectory includes a sequence of data fields with the sam-
pling rate of 33 milliseconds. Each data field is in the form
of a vector: (xi, yi, zi, vi, θmi

, θhi
). Index i denotes the

timestep. xi and yi are the coordinates in millimeter. zi is
the human height. vi is human linear velocity in mm/s. θmi

is the motion angle in radius. θhi
is the face orientation in

radius. We only use the x and y coordinates, because of the
limitations of our robot’s perception capabilities.

The input vector length is 60 including 30 pairs of x
and y values. Our LSTM’s hidden layer includes 50 mem-
ory units. In order to output binary classification results, we
use a dense layer with sigmoid activation function in the
output layer. We use Adam (Kingma and Ba 2014), a first-
order gradient method, for optimization. The loss function
was calculated using binary cross-entropy. For regulariza-
tion, we use a dropout value of 0.2. The memory units and
the hidden states of the LSTM are initialized to zero. The
epoch size (number of passes over the entire training data)
is 300. The batch size is 32. The data was split into sets for
training (70%) and testing (30%). To implement the classi-
fier training, we used Keras (Chollet and others 2015), an
open-source python deep-learning library.

5.2 Illustrative Example

Consider an illustrative example: a visitor to a classroom
building in the afternoon was interested to interact with the
robot. The robot’s goal is to identify the person’s intention
as efficiently and accurately as possible.

Human motion trajectory is captured by our robot using
RGB-D sensors. Figure 3 presents a detected person, and
the motion trajectory. The trajectory is passed to the LSTM-
based classifier, which outputs the person being not inter-
ested in interaction (false negative).

The robot then collected facts about time and location.
Domain knowledge enables the robot to be aware that: pro-
fessors and students are more likely to show up in the class-
room; and visitors are more likely to show up in the after-
noon and to interact with the robot, whereas they are less
likely to be present in the classroom building. Also, the
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Figure 4: Confusion matrix of the LSTM classifier

LSTM classifier’s confusion matrix, as shown in Figure 4,
is encoded as a set of probabilistic rules in P-log, where
the true-negative probability is 0.71. Therefore, given all the
declarative contextual knowledge, the reasoner computes the
following distribution over the variable of human identity,
V rsn
id , in the range of [student, visitor, professor]:

Dist(V rsn
id ) = [0.36, 0.28, 0.36] (1)

Given the observed facts and the classifier’s output, the
robot queries its reasoner to estimate the distribution over
possible human intentions

b̂rsn == [0.22, 0.78] (2)

where 0.22 corresponds to the human being interested in in-

teraction. b̂rsn is the belief over state set Ŝrsn (a marginal
distribution of both Srsn and Spln).

The reasoner’s output of b̂rsn is used for initializing the
belief distribution, bpln, for the POMDP-based planner:

bpln = [0.22, 0.78, 0, 0, 0]

where bpln is over the state set of Spln as described in Sec-
tion 4.2. For instance, spln0 ∈ Spln is the state where the
robot has not taken the “turn” action, and the human is inter-

ested in interaction. Similarly, spln3 ∈ Spln is the state where
the robot has taken the action “turn”, and the human is not
interested in interaction.

During the action-observation cycles (in simulation), pol-
icy π maps bpln to “greet” and “move forward” actions, and

bpln is updated until the robot correctly reported human in-

tention and reached terminal state (spln4 ). The actions, corre-
sponding human feedback, and belief update are presented
in Figure 5. Although, the LSTM classifier made a wrong
estimation, the reasoner and planner helped the robot suc-
cessfully recover from the wrong estimation.

5.3 Experimental Results

We did pairwise comparisons between LCORPP with the fol-
lowing methods for human intention estimation to investi-
gate several hypotheses. Our baselines include: Learning
(L): learned classifier only. Reasoning (R): reasoning with
contextual knowledge. Planning (P): POMDP-based interac-
tion with uniform priors. Learning+Reasoning (L+R): rea-
soning with the classifier’s output and knowledge. Reason-
ing+Planning (R+P): reasoning with knowledge and plan-
ning with POMDPs.
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Figure 5: An illustrative example of information flow in
LCORPP: the learning component generates “facts” and
probabilistic rules for the reasoner, and the reasoner com-
putes a prior distribution for the planner, which actively in-
teracts with the environment.

Our experiments are designed to evaluate the following
hypotheses. I) Given that LCORPP’s prior belief is generated
using reasoner and learner, it would outperform baselines in
intention estimation in F1 score while receiving less action
costs; II) In case of inaccurate knowledge, or III) the learner
not having a complete sensor input, LCORPP’s planner can
compensate these imperfections by taking more actions to
maintain higher F1 score. IV) In case of scarcity of data,
robot’s most recent interaction can be used to augment the
dataset and improve overall performance of LCORPP.

In each simulated trial, we first sample human iden-
tity randomly, and then sample time and location accord-
ingly, using contextual knowledge, such as professors tend
to showing up early. According to the time, location, and
identity, we sample human intention. Finally, we sample a
trajectory from the test set of the dataset, according to the
previously sampled human intention. We added 30% noise
to the human reactions (robot’s observation) being compli-
ant with the ground truth but independent from robot’s ac-
tions. LCORPP requires considerable computation time for
training the classifier (∼10 min) and generating the POMDP-
based action policy (∼1 min). The training and policy gen-
eration are conducted offline, so they do not affect the run-
time efficiency. Reasoning occurs at runtime, and typically
requires less than 1 millisecond.

LCORPP vs. Five Baselines: Figure 6 shows the overall
comparisons using the six SDM strategies, each number is
an average of 5000 trials, where the setting is the same
in all following experiments. The three strategies, P, R+P
and LCORPP, include the POMDP-based planning compo-
nent, and perform better than no-planning baselines in F1
score. Among the planning strategies, ours produces the best
overall performance in F1 score, while reducing the interac-
tion costs (dialog-based and motion-based)(Hypothesis I).

Inaccurate Knowledge: In this experiment, we evaluate
the robustness of LCORPP to inaccurate knowledge (Hy-

Figure 6: Pairwise comparisons of LCORPP with five base-
line sequential decision-making strategies. The right subfig-
ure excludes the strategies that do not support active human-
robot interaction and hence produce zero costs.

Figure 7: Performances of LCORPP and baselines given
contextual knowledge of different accuracy levels: High,
Medium and Low. Baselines that do not support reasoning
with human knowledge are not included in this experiment.

pothesis II). Our hypothesis is that, in case of contextual
knowledge being inaccurate, LCORPP is capable of recover-
ing via actively interacting with people. We used knowledge
bases (KBs) of different accuracy levels: High, Medium,
and Low. A high-accuracy KB corresponds to the ground
truth. Medium- and low-accuracy KBs are incomplete, and
misleading respectively. For instance, low-accuracy knowl-
edge suggests that professors are more likely to interact with
the robot, whereas visitors are not, which is opposite to
the ground truth. Figure 7 shows the results where we see
the performances of R and L+R baseline strategies drop to
lower than 0.4 in F1 score, when the contextual knowledge
is of low accuracy. In F1 score, neither R+P nor LCORPP

is sensitive to low-accuracy knowledge, while LCORPP per-
forms consistently better than R+P. In particular, when the
knowledge is of low accuracy, LCORPP retains the high F1
score (whereas R+P could not) due to its learning compo-
nent.

Additional experimental results on Hypotheses III and IV
are provided in the supplementary document.

6 Conclusions

In this work, we develop a robot sequential decision-
making framework that integrates supervised learning for
passive state estimation, automated reasoning for incorpo-
rating declarative contextual knowledge, and probabilistic
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planning for active perception and task completions. The
developed framework has been applied to a human inten-
tion estimation problem using a mobile robot. Results sug-
gest that the integration of supervised deep learning, logical-
probabilistic reasoning, and probabilistic planning enables
simultaneous passive and active state estimation, producing
the best performance in estimating human intentions.
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