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ABSTRACT

In this paper, we present ARCHIE, a framework for testing aug-
mented reality applications in the wild. ARCHIE collects user feed-
back and system state data in situ to help developers identify and
debug issues important to testers. It also supports testing of multiple
application versions (called “profiles”) in a single evaluation session,
prioritizing those versions which the tester finds more appealing.
To evaluate ARCHIE, we implemented four distinct test case ap-
plications and used these applications to examine the performance
overhead and context switching cost of incorporating our frame-
work into a pre-existing code base. With these, we demonstrate that
ARCHIE provides no significant overhead for AR applications, and
introduces at most 2% processing overhead when switching among
large groups of testable profiles.

Index Terms: Software and its engineering—Software testing and
debugging; Human-centered computing—User interface toolkits;
Human-centered computing—Mixed / augmented reality

1 INTRODUCTION

Augmented reality (AR) applications are increasing in popularity,
with applications moving beyond just gaming to fields such as health-
care [46, 59, 70], education [50, 82, 85], manufacturing [41, 61, 65],
and so on. On mobile application marketplaces, AR apps for enter-
tainment [12, 24, 27], measurement [3, 4], translation [11, 16], and
more are reaching millions and hundreds of millions of downloads.
While augmented reality systems have been around since the early
1990s [66], the current rise in popularity is due to two reasons. The
first reason is the hardware able to support AR is relatively inexpen-
sive and widely available. The market niche originally dominated
by bulky and expensive head-mounted displays (HMDs) such as
Google Glass [8], Microsoft Hololens [15], and Oculus Rift [19] is
now being filled by conventional smartphones, particularly when
paired with inexpensive headsets such as Google Cardboard [9].
Even older devices such as the Google Nexus 5, originally released
in 2013 [14], are able to download an AR app as easily as a regular
smartphone app.

The second reason is that AR-specific development kits (such as
Google’s ARCore for Android [10] and Apple’s ARKit for iOS [2])
and integrated development environments (such as Unity3D [32]
with Vuforia [36]) have made it easier for developers to build AR
apps without specialized knowledge of machine learning, computer
vision, or graphics. Developers who desire greater control over
their systems can make use of computer vision libraries such as
TensorFlow [29] or OpenCV [21] to create even more powerful
applications.

However, the current AR software development landscape is lack-
ing any software tools to test and debug AR apps. AR apps are
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different from conventional apps in that the augmented images and
labels are generated and positioned based on the user’s behavior
and environment. For example, a navigation app like Google Maps
AR [37] will need to determine the user’s context from their position,
facing direction, and visible entities in their environment to deter-
mine what directions to place on the screen and where. This makes
AR applications very difficult to test in the wild due to high vari-
ability of user behavior and environmental factors. User movement
speed, weather, lighting, presence and movement of bystanders, and
many other factors all contribute to the performance of an AR sys-
tem. However, traditional software engineering practices such as
the creation and automation of unit tests are ill-equipped to capture
and recreate these conditions, as the test writers would be unable
to predict which combinations and interactions of conditions a user
would encounter. Similarly, because these conditions are likely to
occur in tandem, logic to handle one set of conditions is likely to
interfere with the logic for another set, making regression testing
difficult as well. Once the evaluations are over, even with detailed
interviews or questionnaires filled out by the testers, it is impossible
to know what underlying errors in the system caused the observable
issue. For example, incorrect label placement in an AR navigation
app could be due to a lag in the output generation or an error in the
placement logic.

To help address these needs, we present ARCHIE, the
Augmented Reality Computer-Human Interaction Evaluator
framework, specifically designed to help AR application developers
with system testing and the collection of feedback and debugging
data. Our framework makes the following contributions:

• Identifying performance and usability issues in the wild.
ARCHIE collects performance and usability feedback from
testers using a smartwatch-based companion app. Feedback is
gathered after specific system events to verify positive results
(such as identifying an AR target), and after periods of inac-
tivity to verify negative results (such as failing to identify a
target). Testers are also able to identify any specific issues they
observe (such as slow output, poor output placement, etc.)

• Recreating and debugging run-time errors. When testers
submit poor performance or usability feedback, it is important
to understand what underlying errors caused that poor feed-
back. ARCHIE aggregates environmental and system state
data during run-time, and provides collections of that data for
each instance of poor feedback submitted by the tester. Devel-
opers can then query that data, or feed it to the app back in the
lab to identify and debug system errors.

• Testing multiple implementations. ARCHIE also allows de-
velopers to implement multiple logical modules, called profiles,
which can be used to compare different functional options for
an application, such as user interfaces or event recognition.
ARCHIE instantiates these profiles at run-time, and interleaves
them for the tester, collecting dedicated feedback for each one.

The rest of the paper is organized as follows: Section 2 provides
an overview of current issues facing AR application testers and the
evaluation methods they employ. Section 3 describes the design



(a) Classifier error generates wrong warn-
ing text

(b) Slow processing, quick user movement
prevents classification

(c) Poor label placement covers pertinent
real-world content (car in intersection)

(d) Alert correctly placed but difficult to
read due to poor color choice

Figure 1: Conditions that may negatively impact users’ experience of ”distracted pedestrian” AR application.

(a) Length of evaluation (b) Evaluation method * (c) Size of test group

Figure 2: Evaluation trends of surveyed AR systems. Figures marked with asterisks (*) show papers which fall into multiple categories.

of ARCHIE, and Section 4 describes how developers and testers
interact with ARCHIE. Sections 5 and 6 evaluates our solution, and
discusses how to extend ARCHIE to support virtual reality (VR)
app testing respectively. Section 7 discusses the related work, and
Section 8 concludes.

2 OBSERVATIONS OF REAL-WORLD TESTING PRACTICES

An AR app has some common errors that are difficult to detect using
conventional software engineering testing. To illustrate, consider an
AR app for smartphones that seeks to warn distracted pedestrians
when they might be walking into an intersection, such as the one
shown in Figure 1.

The first kind of error are classification errors, as seen in Figure
1a. These are errors that result in incorrect label or image to be
displayed. The causes of classification error can be due to the
mismatch between the training and testing data sets used in the
lab, and the actual visual inputs encountered in the wild. Some
contributors to classification errors include environmental conditions
such as poor light and viewing angle, as well as intra-class variations
(such as different breeds of the same animal or different models of
the same car). Because AR systems are subject to user movement,
classification errors can also occur when the tester is moving too
quickly to get a clear image of the target (such as Figure 1b). As it
is impossible to train a classifier for every variation of inputs that it
may receive, or to control exactly the movement and behavior of the
user, classification errors are very common for AR systems.

The second kind of error are placement errors. Placement errors
occur when the system has correctly classified the visual input, but
places the label or image output in an inappropriate location on
the display. This kind of error has the potential to be dangerous
to testers, as they can affect the tester’s safety in the real world.
For example, Figure 1c shows how the stop sign can be correctly
identified, but the warning label blocks the tester’s view of the
vehicle in the intersection.

The third kind of error are resource limitation errors. These are

errors that are caused by insufficient resources (e.g. CPU, RAM, etc.)
in the underlying system. It is possible for resource limitation errors
to contribute to a classification or placement error. For example,
the classification error shown in Figure 1b may be due to a slow
sampling rate from the device camera, or insufficient resources to
process the input in time.

The fourth kind of error are style errors. Style errors occur when
the system classifies input and generates output correctly, and places
the output in an appropriate location, but presents the output in an
inappropriate way. For example, in Figure 1d, the warning label for
the stop sign is placed above the intersection, but the white text is
unreadable against the bright sky.

Environment System Function Sources

Lab

Label display [69, 79, 80]
Label placement [54, 63, 75]
UI comparison [44, 64]

Interaction [39, 43, 48, 60, 74]
Avatars [52, 78, 84]

Wild Label display [40, 58, 77]
Interaction [45, 86]

Table 1: System functions targeted by surveyed AR systems

2.1 Survey of Feedback Methods
To understand how AR researchers handle testing errors, we con-
ducted a survey of recent AR related papers. We first identified the
high level system function being tested. We then categorized papers
by whether the project was tested in the lab or in the wild, the length
of the evaluation, the size of the test group, and primary method of
collecting tester feedback. The results are presented in Table 1 and
Figure 2, and summarized into the following key points.

• Head-mounted displays (HMDs) are a popular testing



platform. The majority of papers surveyed (62%) tested
their platform either solely on HMDs or supplementing the
HMD with a smartphone. A comparatively small number
(24%) [40, 45, 60, 64, 86] tested solely on smartphones, while
14% [39, 63, 80] tested on a custom platform.

• Questionnaires and interviews are the primary methods
for gathering feedback from testers. Of the papers surveyed,
81% relied solely on questionnaires, interviews, or both to col-
lect tester feedback. The remaining papers [39, 63, 77, 80]
substituted or supplemented these methods with manual cod-
ing, which is the manual review and labeling of data collected
by the system.

• Most tests are conducted in a single sitting with a small
group of testers. The bulk of papers surveyed (62%) con-
ducted all tester activities within a single day. Of those papers,
69% conducted their evaluations with 25 or fewer testers.

• A non-trivial portion of papers explicitly asked testers to
compare user interface (UI) options. More than one third
of papers surveyed [44, 54, 64, 74, 75, 77, 78, 84] gave testers
multiple UI options to evaluate, and took feedback specifically
on which UI version was preferred for the target scenario.

2.2 Limitations of Existing Methods
From this survey, it is clear that questionnaires, interviews, or a
combination of both are the method of choice for eliciting feedback
from system testers. Unfortunately, these methods suffer from a
number of limitations. The first limitation is that, while question-
naires and interviews can be very helpful in identifying whether the
issues discussed above (classifier, placement, resource limitation,
style) occurred, they are limited in their ability to identify the is-
sues’ underlying cause. For example, a tester might indicate in her
interview that the application failed to identify the stop sign, but
would not necessarily be able to tell you why. Was the tester moving
too quickly for the camera to get a clear picture, such as in Figure
1b? Was she viewing the target from too severe of an angle for the
classifier to recognize it? Was the light too low? Was the classifier
too slow to process the image, and was overridden by earlier or
later inputs? Using questionnaires and interviews alone cannot help
researchers answer these questions.

The second limitation is that questionnaires and interviews pro-
vide no support for recreating error scenarios upon returning to the
lab. Subjective, written responses from testers provide no actionable
data to use as input back into the system. Any data sets, system
inputs, or generated outputs must be recreated from scratch in order
to debug the issues reported by testers.

The third limitation is that, when applications are testing multiple
GUIs or implementation versions, questionnaires and interviews
cannot guarantee that testing conditions for each version are con-
sistent. Specifically, if a tester claims to prefer Interface A over
Interface B, it is important to verify that the tester’s preference is due
to the differences in interfaces only, and not because of additional
factors. For example, if the tester only evaluated Interface A during
the day and Interface B at night, it is possible that the preference was
impacted by time of day. Utilizing questionnaires and interviews to
compare application versions or UI alternatives cannot provide this
crucial insight into the testing conditions for each option.

Based on our observations of current testing methods for AR
systems, and the inability of these methods to handle the testing
issues discussed above, we designed ARCHIE to (1) collect tester
feedback in situ to assess system performance and usability, (2) col-
lect system input and resource consumption data to assist developer
debugging efforts, and (3) facilitate multi-UI testing to support a
more consistent tester experience. ARCHIE’s lightweight design
allows it to provide these features without impacting the function of

the application under test. The following sections discuss the design
of ARCHIE in greater detail.

3 SYSTEM DESIGN

3.1 Framework Architecture

As shown in Figure 3, the ARCHIE framework consists of three
primary components: the AR application as developed by the exter-
nal research team, the ARCHIE annotator helper application, and
the ARCHIE core library. The annotator helper application is a
lightweight client responsible only for forwarding input requests to
the evaluator, and returning his or her response to the main system.
The core library contains the bulk of our framework functionality.
Any application wishing to utilize the ARCHIE framework may also
implement modules called profiles to represent a distinct UI design
point for testers to evaluate. A profile could contain logic for input,
output, or core event recognition (such as gesture recognition or
object classification).

Figure 3: ARCHIE framework system architecture

An AR application-under-test (AUT) interactions with the core
library by passing a configuration file on start-up to the ARCHIE
Controller, the primary interface point between testable applications
and the rest of the framework. The configuration file should mini-
mally contain the list of input, output, and core event recognition
profiles the framework is expected to utilize during the test instance.
The ARCHIE Controller then instantiates these profiles, raising the
appropriate events to connect to input sources, retrieve and pro-
cess input data, and communicate the results to the user. Once the
configuration file settings have been imported and the profile event
handlers are initialized, the controller is responsible for managing
the profile switching schedule, interfacing with the annotator appli-
cation, and monitoring the appropriate device-level resources over
the remainder of the test instance. When the evaluation is complete,
ARCHIE generates user feedback and system state output logs for
researchers to review.



Figure 4: Runtime program loop with internal and user-driven data collection events.

Algorithm 1 Profile Scheduler

1: P, LP, T, U, C← configuration file
2: if t == 0 then
3: for ρ in P do
4: Qt(ρ) = IRt = α(ρt)

5: else
6: while size(P)> LP do
7: for ρ in P do
8: IRt = α(ρt)

9: Qt(ρ) = Qt−1(ρ)+( 1
U )(IRt −Qt−1(ρ))

10: ρmin←min(Qt(P))
11: ρmax←max(Qt(P))
12: if diff (ρmax, ρmin)≥C then
13: remove(P, ρmin)
14: scheduleNextProfile(ρmax)
15: while executionTimeRemaining do
16: roundRobin(P)

3.2 Profile Scheduling
The straightforward solution for choosing which profile to execute
next would be to simply execute each profile in Round Robin order.
However, this is not an effective use of a tester’s time, as it could
obligate her to spend a large portion of the trial interfacing with
system features that may not be applicable or interesting to her.
Instead, ARCHIE provides a customized scheduling algorithm that
uses a tester’s feedback data to prioritize the most liked profiles over
time while still collecting the annotation and usability data in which
researchers are interested.

To implement this algorithm, we utilized a customized solution
for the Multi-Arm Bandit Problem as shown in Algorithm 1. We
first define the reward function for a given data vector collected from
profile (ρ) at instance (i) within time slice (t) as shown in Equation
1. This equation provides a numerical representation of how well the
system’s event recognition results matched the user’s ground truth
labels, plus the user’s overall likability score at that given moment.
Once all the instantaneous rewards have been calculated, the overall
reward earned by the profile during the given time slice is calculated
using Equation 2. It should be noted that both of these equations are
simply default functions provided by ARCHIE, and that researchers

Param Type Description
P Collection The set of profiles, classifiers to

be evaluated
LP Integer P min-size constant
T Integer Time slice size constant
U Float Uncertainty constant
C Float Confidence threshold constant
t Object Current time slice of size T
ρt Collection Set of user response data col-

lected while executing profile ρ

over time slice t
IRt Integer Reward received at time t

Qt(ρ) Float Action-value function for profile
ρ at time t

Table 2: Parameter list for profile scheduler algorithm. Values can
be set in the configuration file for the application-under-test.

wishing to use our framework may provide their own functions that
are better tailored to their specific needs.

A(ρti) =

{
1+usrScoreti sysRespti = usrRespti

usrScoreti sysRespti 6= usrRespti
(1)

α(ρt) =
T

∑
i=0

A(ρti) (2)

We then customize the traditional upper-confidence-bound solu-
tion of the Multi-Arm Bandit Problem, populating the parameters in
Table 2 using entries retrieved from the application’s configuration
file, such as those shown in Figure 5a. The algorithm starts with
the entire collection of profiles (P) as listed in the configuration
file and calculates the action-value function (Qt ) for each profile
(ρ) at the end of a given time slice (t). Since there is no guarantee
that a user will always give the same feedback for a given profile,
the action-value function is calculated in a non-stationary manner,
giving greater weight to the most recent reward result for that profile.
If the difference between the minimum and maximum action-values
for a given time slice falls rises above a developer-defined threshold
(C), the profile that earned the minimum score will be eliminated



Data Group Fields Collect Commit
Event Recognition: Input Timestamp; Preprocessed feature sets 1A 2A, 2B

Event Recognition: Results Timestamp; Result; Preprocessing time; Processing time 1B 2A, 2B
System Stats: Display Timestamp; Frame count; Total frame time; Average frame time 3A 3A, 5

System Stats: Resources Timestamp; CPU consumption; RAM consumption; Process info 3B 3B, 5
UX Feedback Timestamp; UX feature; User response 4A 4B

Table 3: Data collected by ARCHIE framework at various ”collect” and ”commit” points shown in Figure 4

(a)

(b)

Figure 5: Examples of configuration file settings to control (A)
properties of the profile scheduling algorithm, and (B) asynchronous
annotation data requests to the evaluator.

from the collection. Once the count of profiles remaining in the col-
lection reaches a developer-defined limit (LP), ARCHIE will execute
the remaining profiles in Round Robin fashion.

The goal of this customized algorithm is to prioritize those profiles
in which the tester shows the greatest interest, while simultaneously
suppressing those profiles which the tester finds inferior. If a profile’s
reward is low enough that it falls below the acceptability threshold,
then it is removed entirely and the tester does not have to interact
with it any more. Furthermore, the algorithm does not require the
system to converge on a single best answer. By providing a profile
collection limit, the developer is able to designate the point at which
the system will stop culling the collection and continue with Round
Robin instead. By combining developer-provided parameters with
user-driven reward functions, this scheduling algorithm helps ensure
that testers are only presented with system options in which they are
interested, and none in which they are not.

3.3 System State Data Collection

Based on the lessons learned in Section 2, we know how impor-
tant it is to provide some way of identifying and debugging unin-
tended event recognition behavior while conducting in-the-wild tests.
ARCHIE helps researchers by buffering and storing collections of
system state and user response data, clustered according to events
in which researchers are interested, such as event recognition re-
sults which do not agree with the user’s ground truth labels, or poor
usability feedback.

Figure 4 demonstrates the on-going process of collecting ap-
plication and system state data during a trial using the ARCHIE
framework. Data samples extracted from the event recognition pro-
cess are collected whenever a given phase of the pipeline is complete,
while asynchronous user-focused data, such as usability feedback
data, is collected according to the schedule set up by the researchers
in the application’s configuration file. The individual data points that
are collected for each data group and the types of events that can
trigger committing the buffer contents to file are described in Table
3. While each data group supports only a single event to trigger
the collection of their respective data samples, any one of multiple
commit events may trigger writing the buffered data to file. Once

the data in the buffer has been committed, its contents are cleared
and a new collection instance is started.

4 TESTING WITH ARCHIE

4.1 Collecting Tester Feedback

Once the system has been initialized by the developer with the
profiles that should be evaluated, the system can be handed off to
testers. The ARCHIE framework requests input from the tester (1) to
confirm when an event of interest is identified and (2) on configurable
asynchronous schedules to collect general usability feedback and
to see if any events of interest have been missed. (An example of a
configuration file entry for asynchronous data collection is shown
in Figure 5b.) An input request starts by playing an alert on the
annotator device (such as a smartwatch, as shown in Figure 6), and
presenting the question set by the developer (such as ”Have you seen
a stop sign in the last 10 minutes?” or ”How are you liking the app so
far?”). The user can toggle between positive and negative responses
by tapping the center of the screen (Figure 6a). If the developer has
included a request for additional input (such as rating how much
the app is liked or disliked), the tester can drag her finger around
the edge of the screen to provide her input (Figure 6b). Finally, the
tester can select any applicable issues she encountered by checking
them off from a grid of options, as shown in Figure 6c.

4.2 Debugging with Output Files

Once a tester has provided system and usability feedback, the output
files generated by the ARCHIE framework can be used to recreate
and debug the original scenario in order to determine the underlying
cause. Consider again the system from Figure 1. The tester has com-
pleted the evaluation, and reported back to the research team that
the system was a little slow in providing warnings of stop signs, and
sometimes missed the stop signs altogether. To determine the under-
lying bug, the developers retrieve the data logs written by ARCHIE
to the device file system. The data files (as described in Table 3) are
organized into timestamped directories according to system event,
such as an asynchronous event query (”async”), a system-generated
event recognition (”system”), or a UX feedback request (”ux”). The
directory name is then appended with the user’s response (such as
”falseNeg”, ”falsePos”, or ”slow”), and the appropriate timestamp.
Inside each directory are the relevant files associated with that event,
such as the inputs provided to the system and results that the system
generated, as well as system display and resource consumption logs.

From these log files, it is possible to determine what unique
combination of internal and external conditions caused the system
to generate false positive or negative classifications, or contributed
to slow performance. Input frames can be fed back into the system
in the lab to determine where a classification error occurred or
where an inappropriate label was placed. Reviewing the system log
can help identify whether a spike in RAM and CPU consumption
was anomalous or consistent with the rest of the trial. Exploring
the results and system display logs in tandem can help determine
whether the time an augmentation takes to display is due to the
application’s processing time or lag in the device as a whole.



(a) (b) (c)

Figure 6: Tester using ARCHIE annotator to provide feedback: (A) tapping to toggle between affirmative and negative reactions, (B) scrolling
along the edge of the watch to rate her experience, (C) selecting issues she experienced from a grid of options.

(a) TF Classify (b) TF Speech (c) Color Blob Detector (d) DroneTracker

Figure 7: Sample screenshots of the ARCHIE evaluation candidate applications

5 EVALUATIONS

We implemented and evaluated ARCHIE using a Google Pixel 2
running Android 8.1.0. We elected to test our framework using a
smartphone because it could also double as an HMD when placed in
an appropriate head mount. For testing purposes, we are primarily
interested in the performance impacts when incorporating ARCHIE
into different types of AR applications, to ensure that any negative
feedback a tester may provide is due to the performance of the
application itself, and not the influence of ARCHIE.

The design for the ARCHIE framework supports the collection
of camera frames, video clips, audio clips, GPS and IMU data as
sources of input for the data logs. Currently, only support for camera
frame collection has been implemented because it was sufficient
to meet the needs of our evaluations. The framework design also
supports the collection of output camera frames containing the final
augmented view displayed the user, but was not implemented due
its library-specific (ARKit, Vuforia, etc.) nature. We anticipate
adding this functionality to the framework in the future when more
implementation-agnostic API support becomes available.

5.1 Evaluation Candidates

We used the following four case study applications to evaluate
ARCHIE: TF Classify, TF Speech, Color Blob Detector, and Drone-
Tracker. These applications were chosen to showcase how our
framework integrates with three of the most popular computer vi-
sion support libraries in research and industry: TensorFlow [29],
OpenCV [21], and Vuforia [36]. Each application was either taken
from the publicly available sample applications published by the
library developers or created as part of a tutorial, and represents a

range of sensor and UI interactions.
“TF Classify” [30] (shortened to “TF-C”, shown in Figure

7a) is an image classification application distributed and maintained
by the TensorFlow development team which utilizes preview frames
from the device’s camera, categorizes the primary subject of the
image, and populates a text box on the phone screen with the results
in real-time. The camera preview is not manipulated directly; only
the content of the text box is updated.

“TF Speech” [30] (shortened to “TF-S”, shown in Figure 7b)
is another application from TensorFlow which focuses on audio
processing rather than image processing. Instead of using the camera,
it captures audio snippets from the microphone and parses them in
order to identify words it recognizes. The list of known words is
displayed on the application screen, and when a recognized word is
heard, the application will briefly highlight the corresponding box
for that word on the screen.

“Color Blob Detector” [20] (shortened to “CBD”, shown in
Figure 7c) is an application distributed by the OpenCV development
team which performs active color processing and boundary detection
on a live camera preview. To detect color blobs, the user must
press the device screen to select an area of the camera preview that
he or she wishes to match. The application then segments that
portion of the preview frame and identifies the primary color. For all
subsequent preview frames until the user selects a new color blob,
boundaries of areas within the preview that match the same primary
color are detected and highlighted in real-time.

“DroneTracker” (shortened to “DT”, shown in Figure 7d) is
an application that we obtained from [13], as there are no formally
recognized sample applications available for Vuforia. The Drone-
Tracker app consists of a dual-target tracking system which displays



(a)

(b)

Figure 8: Impacts to (A) app-level classification time and (B) device-
level FPS per case study application before and after incorporating
ARCHIE framework

a small sci-fi drone that responds to and follows a target moved by
the user around the screen in real-time.

5.2 Overhead of Incorporating ARCHIE
Because each of the evaluation candidate applications differs in
nature from its fellows, each one had to be tested differently. TF-
C was placed on the edge of a desk, pointed downward at a rug
with a design detailed enough to be confused between two of the
classifier’s known classes. TF-S was laid on the desk next to an
active radio. CBD was placed on the edge of the desk and pointed
toward the rug as well, with a single screen touch by the tester to
active the color blob boundary recognition logic. DT was placed
on the edge of a stack of books, overlooking the two targets. Each
application was then allowed to run for five trials of five minutes
each, while ARCHIE collected the appropriate system state and
application output data.

Figures 8 and 9 reflect the impact to UI and system performance
respectively when incorporating the ARCHIE framework into an
existing application. While examining impacts to CPU and RAM
consumption is expected, we also included the UI metrics of display
FPS and time to classify in order to demonstrate how ARCHIE might
impact the user experience. If refactoring an application resulted in
lowered FPS or a dramatically increased classification time, then
developers could expect users to experience a decreased quality of
overall system performance due to delayed or inaccurate system
responses. However, no ARCHIE case studies showed significant
impacts to FPS or classification time.

Of the performance metrics evaluated, the only case in which
performance showed a significant hit was when ARCHIE was added
to the TF-Speech app. In this case, user-space CPU utilization
went up from about 28% to about 40%. We believe that the reason
for this is due to the extremely simple nature of the original app -
meaning that adding ARCHIE introduced a non-trivial amount of
additional processing. The other apps utilize the camera and some

System Tester Resp. Num. of
Function Method(s) Eval. Sess.

H
M

D

Display
Questionnaire + 1 [51]

Interview Unclear [73]
Questionnaire 3 [47]

UI comparison Questionnaire + 1 [76]Interview

Interaction

Questionnaire + 1 [57, 81]Interview
Questionnaire Unclear [49]

Interview 1 [68]
Avatar Questionnaire 1 [55]

Sm
ar

t
ph

on
e

Interaction Manual coding 3 [38]

B
ot

h Display Interview 1 [53]
Interaction Questionnaire 1 [71]

Table 4: Expanded survey of contemporary VR systems

degree of image processing (operations which already require a good
deal of resource consumption), such that introducing the additional
processing for ARCHIE was negligible.

5.3 Cost of Switching Profiles

Providing context-switching ability for a collection of profiles and
classifiers is a key contribution of the ARCHIE framework. However,
this feature provides no benefit if the cost of context-switching is
high. Therefore, we ran a series of tests evaluating the CPU and
RAM consumption overhead of context-switching for collections
of profiles ranging in size from one to ten, as reflected in Figure 10.
TF-C was used for this evaluation. Five configurations were created
with various numbers of profiles (one, three, five, seven and ten)
for ARCHIE to manage, with each profile representing a distinct
instance of the core image recognition classifier. Each profile was
allowed to execute for one minute before switching to the next; each
configuration was executed five times for 25 minutes per execution.

During testing, however, the camera interface would occasion-
ally freeze, causing a significant drop in resource consumption until
the next context switch, at which point the camera preview would
refresh and processing began again. Over all of the trials for all
configurations, only 5% of the records were affected and removed.
The results in Figure 10 reflect the aggregated results for the re-
maining 95%. At most, resource consumption fluctuates by 2%
when considered across five trials of 25 minutes each for each of
the five test cases. This leads us to conclude that ARCHIE provides
no significant overhead when switching between profiles during
evaluations.

6 ADDITIONAL DISCUSSION

Even though ARCHIE was originally designed with AR applications
in mind, it could easily be adapted to work with virtual reality
(VR) applications. We expanded our survey from Section 2 to
examine VR systems as well (results in Table 4), and observed
the following: (1) all evaluations were conducted in the lab on
some combination of smartphones and HMDs, (2) all papers but
one [38] used questionnaires and interviews to collect user feedback,
and (3) three papers [51, 76, 81] conducted their own explicit UI
comparisons. Based on this, we believe ARCHIE has real potential
for use in testing VR applications as they move out of the lab and
into the wild. To accommodate this shift, we would need support for
new profiles to monitor motion sickness, and data collection from
new sensors such as galvanic skin response.
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Figure 9: Consumption of (A) memory, (B) user-space CPU, and (C) kernel-space CPU before and after incorporating ARCHIE framework
into application code base. Results averaged over five trials each.
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Figure 10: Impacts to consumption of (A) memory, (B) user-space CPU, and (C) kernel-space CPU when switching between differently sized
collections of profiles at run-time. Results averaged over five trials each.

7 RELATED WORK

Many tools and frameworks exist to help developers test their mobile
AR systems. These testing platforms serve a number of goals, many
of which can be supplemented with ARCHIE.

Commercial testing tools. The increase in commercially avail-
able AR hardware and development environments brings with it an
increase in commercial testing tools as well. Oculus provides official
guidelines for performance optimization [35] as well as an array
of performance monitoring and debugging tools [6, 18, 23, 25] for
applications built for the Rift headset. Microsoft provides its own
official guidelines for testing applications built for the HoloLens
headset [31], in addition to a selection of emulators and simula-
tors [22, 33, 34] for testing applications with pre-determined inputs.
Similarly, Apple’s latest version of ARKit ships with a testing tool
called ”Reality Composer” [28], which allows developers to record
and replay system inputs for testing. There are also many general-
purpose tools available for graphics and systems-level profiling, such
as NVIDIA’s ”Nsight” suite of tools [17], the ”apitrace” tool for
OpenGL [1], Android’s system trace CLI tool [5], and Windows pro-
filers for system events [7] and DirectX applications [26]. While all
of these tools can be helpful during development and initial testing
stages, they are generally suitable only for in-lab testing, as their
operations are quite resource-intensive. ARCHIE can supplement
these efforts by providing additional lightweight support when an
application has passed code quality testing in the lab and is ready
for user evaluations in the wild.

Quality of Experience (QoE) testing. In addition to commer-
cial tools, there has been research aimed at quantifying the quality
of experience (QoE) that a tester might have while using a given
application. Papers such as [42, 62, 83] propose frameworks to iden-
tify potential system bottlenecks that could adversely affect user
experience. However, what these systems provide is raw data out-

put; it is up to the researcher to determine the point at which the
perceived latency for an application operation becomes insufferable
to the user. ARCHIE can supplement these testing frameworks by
providing temporally-aligned user feedback data to identify exactly
when changes in system performance start to impact the user.

Cross-platform testing. Other general-purpose testing tools fo-
cus on supporting heterogeneous hardware platforms [72], software
platforms [67], and embedded devices [56]. However, these test-
ing platforms do not address the user experience component of the
testing process. ARCHIE can supplement cross-platform testing
frameworks such as these by presenting users with different imple-
mentations of a given interface on a given device in order to identify
whether any issues or preferences exist from a user’s perspective
when porting applications to new environments.

8 CONCLUSIONS

In this paper, we presented ARCHIE, the Augmented Reality
Computer-Human Interaction Evaluator framework. We demon-
strated the prevalence and limitations of using only questionnaires
and interviews for testing augmented reality applications in the wild,
and showed how our feedback framework can assist developers in
identifying and debugging UX issues with negligible impact to sys-
tem performance. In the future, we would like to expand ARCHIE
to include more formal usability testing.
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