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A B S T R A C T

Testosterone (T) mediates a variety of traits that function in competition for mates, including territorial ag-
gression, ornaments, armaments, and gametogenesis. The link between T and mating competition has been
studied mainly in males, but females also face selection pressures to compete for mates. Sex-role reversed
species, in which females are the more competitive sex, provide a unique perspective on the role of T in pro-
moting competitive traits. Here, we examine patterns of T secretion in sex-role reversed northern jacanas (Jacana
spinosa) during breeding, when females are fertile and males are either seeking copulations or conducting
parental care. We measured baseline levels of T in circulation along with a suite of behavioral and morphological
traits putatively involved in mating competition. We evaluated hypotheses that levels of T track gonadal sex and
parental role, and we begin to investigate whether T and competitive traits co-vary in a sex- and stage- specific
manner. Although females had higher expression of competitive traits than males at either breeding stage, we
found that females and incubating males had similar levels of T secretion, which were lower than those observed
in copulating males. T was correlated with wing spur length in females and testes mass in copulating males, but
was otherwise uncorrelated with other competitive traits. These findings suggest that levels of T in circulation
alone do not predict variation in competitive traits across levels of analysis, including gonadal sex and parental
role. Instead, our findings coupled with prior research indicate that selection for female mating competition and
male care may generate different physiological regulation of competitive traits.

1. Introduction

For males of many vertebrate species, testosterone (T) has been
associated with phenotypic traits that lead to successful competition
over mates. These traits include aggressive behavior (Wingfield et al.,
1990), weaponry (Malo et al., 2009), body size (Cox et al., 2009), or-
namentation (McGlothlin et al., 2008), and gonadal size (Preston et al.,
2012). Females also express many of these same traits, which likewise
function in competition for mates and other breeding resources
(Clutton-Brock, 2009; Hare and Simmons, 2018; Rosvall, 2013a; Tobias
et al., 2012). Like males, females secrete T and have the physiological
capabilities to respond to T (Staub and De Beer, 1997). However, the
relationship between T and mating competition in females has found
more equivocal support (Cain and Ketterson, 2012; Goymann and
Wingfield, 2014; Rosvall et al., in press), suggesting that T may influ-
ence trait expression differently in males and females. This can be ex-
plained in part by differences in the selective pressures that drive

endocrine mechanisms of behavior (Wingfield et al., 1990). For in-
stance, the relative importance of aggression versus parental care in
males and females may shape both sexual dimorphism in T, as well as
behavioral sensitivity to T (Lynn, 2008; Rosvall, 2013b) – this is one
hypothesized driver for why females tend to have lower levels of T in
circulation than males.

Levels of T in circulation are typically elevated at the beginning of
the breeding season, when competition for mating opportunities is
high, and then T levels decline as behavioral efforts shift to parental
care (Wingfield et al., 1990). This cross-stage shift in T production has
been well demonstrated in males (Hirschenhauser and Oliveira, 2006),
and is potentially more dramatic in females (DeVries et al., 2012;
George and Rosvall, 2018; Jawor et al., 2007). Cross-stage shifts may
also alter correlations between T and sexually selected traits, such that
these traits are strongly integrated with T during competition for mates,
but more independent from T during periods of parental care (Ketterson
et al., 2009; Lipshutz et al., 2019a).
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In sex-role reversed species, females face stronger selection to
compete for mates, and males predominantly care for offspring (Emlen
and Oring, 1977), providing an opportunity to disentangle parental role
from gonadal sex as drivers of variation in T. Whereas sex-role reversed
females are freed from the constraints of parental care, selective pres-
sures to care for offspring may limit T levels in males. The hypothesis
that sex-role reversed females have higher T than males has intrigued
behavioral ecologists for decades. Whereas early studies in sex-role
reversed phalaropes found higher T in ovarian than testicular tissue
(Höhn, 1970; Höhn and Cheng, 1967), most studies have found that the
direction and magnitude of sex differences in T is typically similar be-
tween role-reversed species and species with traditional sex roles
(Fivizzani et al., 1986; Gratto-Trevor et al., 1990; Rissman and
Wingfield, 1984; Goymann et al., 2004; but see Muck and Goymann
(2011)). Approaching sex-role reversed species from a hormonal per-
spective can shed light on the regulation of competitive traits, which
may vary based on gonadal sex and/or parental role.

One of the most well-known examples of sex-role reversal is the
jacana (family Jacanidae). Although both sexes aggressively compete
for territories, females face more intense sexual selection, have higher
potential reproductive rates, and have female-biased operational sex
ratios (Emlen and Wrege, 2004a). Female jacanas also have larger
secondary sexual traits, including weaponry, body mass, ornamenta-
tion, and behavioral dominance (Emlen and Wrege, 2004a; Lipshutz,
2017; Stephens, 1984). Males provide nearly all parental care, which
includes incubation and foraging with chicks (Emlen and Wrege,
2004b; Jenni and Collier, 1972). Although jacanas are a classic example
of female-biased dimorphism in behavior and morphology (Emlen and
Oring, 1977), there is currently no published work on the physiological
mechanisms that regulate the expression of these traits, limiting our
ability to connect proximate mechanisms with behavioral and evolu-
tionary processes in this well studied system.

Here, we quantified circulating T levels in free-living, sex-role re-
versed jacanas to evaluate the hypotheses that levels of T track gonadal
sex and/or parental role. Sex-role reversed females should be un-
constrained by parental care, and if they have higher T than males, this
would suggest that T levels are shaped by parental roles more so than
gonadal sex. We further predict that males incubating eggs should have
lower T than males seeking copulations. As a secondary goal, we begin
to evaluate whether co-variation between T and competitive traits
varies in a sex- and breeding stage-specific manner. Of the studies on
sex-role reversed species that examined phenotypic co-variation with T,
one reported that T positively correlated with plumage coloration and
body condition in females only (Muck and Goymann, 2011), and an-
other found that ornaments were testosterone-dependent in both sexes
(Eens et al., 2000). Neither of these studies examined the influence of
breeding stage on phenotypic co-variation, which is important for
considering how temporally variable selection pressures (i.e. mating
competition vs. parental care) shape differences both between and
within the sexes. We predict that T will be more strongly linked with
competitive traits in females and copulating males, but that T should be
more independent from these traits in incubating males.

2. Materials and methods

2.1. Subjects

Northern jacanas (Jacana spinosa) are tropical shorebirds found
throughout Central America, from Mexico to Panama. They breed
asynchronously and year-round, although breeding increases during the
rainy season in Panama from roughly May to October. We conducted
fieldwork from 4 June to 9 July 2018 in La Barqueta, Chiriqui, Panama
(8.207N, 82.579W).

2.2. Aggression assays

Our first step was to measure aggression, a behavioral component of
the competitive phenotype. We first observed each individual for sev-
eral days to ensure that it was pair-bonded (e.g. foraging with mate)
and territorial (e.g. actively defending territory from intruding floa-
ters). Territorial residents behave distinctly from floaters, who do not
breed nor defend territories (Emlen and Wrege, 2004a). We also de-
termined breeding status based on whether males were copulating
(n = 5) or incubating a nest (n = 7). We did not color-band individuals
as in previous studies (Lipshutz et al., 2019b) and were therefore unable
to determine harem size, but territory holders have high site fidelity
(Emlen and Wrege, 2004a), and the agricultural land where we con-
ducted this research has small ponds and canals where territorial
boundaries are distinct. We only sampled individuals that we observed
in these same stable locations consistently each and every day.

We assayed aggression in males (n = 12) and females (n = 10)
using a random combination of 4 taxidermic female mounts and 4
conspecific vocalizations following Lipshutz (2017). Briefly, we set up a
camouflage blind and placed the mount and speaker in the center of a
female and one of her male mates’ territory (~15 m from the nest if the
male was incubating). We used a 10-s recording of jacanas fighting and
vocalizing to attract the focal individual, and began the 5-min assay the
moment the female or male responded. We measured a suite of ag-
gressive behaviors, including average distance from the mount, hover
flights, wing spreads, flyovers, and vocalizations, described previously
in an ethogram for jacanas (Lipshutz, 2017). We tested females and
males independently of each other, except for one pair.

2.3. Capture and plasma collection

Next, we sought to measure baseline plasma T levels in these same
individuals. T levels can change in response to social stimulation, but
most studies suggest this process takes time (Gleason et al., 2009;
Hirschenhauser et al., 2003; Oliveira et al. 2002), consistent with time-
course studies in birds showing that T levels peak about 30 min after
activation of the HPG axis (Jawor, 2006; Rosvall et al., 2016). There-
fore, we attempted to capture each bird immediately after the short 5-
min aggression assay and measure T levels before they could be affected
by this simulated intrusion. We collected individuals using an air rifle,
followed by an anaesthetic overdose of isoflurane and decapitation to
collect trunk blood; brain and other tissues were reserved for future
study.

We were able to collect 9 individuals quickly after the intrusion
(average time from intrusion start to euthanasia = 9 min 20 s ± 1 min
35 s). We were unable to collect 13 individuals within ~10 min post-
intrusion, and so, we returned 5–8 days later to collect these individuals
(n = 6 females, 6 males). For these ‘delayed’ collections, we ensured
that male breeding stage did not change; for instance, if a male was
incubating on the day of the aggression assay, we monitored him daily
with behavioral observations to confirm that he was still incubating on
the day of collection. For each sex, we balanced immediate and delayed
collection sample sizes. In addition, we tested for and found no differ-
ence in T levels between immediate vs. delayed samples for either fe-
males (t = 0.51, df = 7.42, p = 0.62) or males (t = −0.24, df = 9.84,
p = 0.81), so we combined these immediate vs. delayed collection
individuals for further analysis. These findings are consistent with re-
cent analyses that simulated territorial intrusions do not lead to rapid
increases in T secretion in birds (Goymann et al., 2019; Wingfield et al.,
2019) but see Wingfield and Wada (1989).

We collected whole blood into heparinized BD Microtainers (pro-
duct #365965) and stored on an ice pack for up to 6 h until we sepa-
rated plasma by centrifuging for 10 min at 10,000 rpm. We stored
plasma at −20 °C for later testosterone assays.
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2.4. Morphological measurements

Postmortem, we measured several traits putatively involved in
mating competition in jacanas: wing spur length, body mass, facial
shield length, and gonad mass. In a congener, the wattled jacana (J.
jacana), territorial resident status was associated with larger wing
spurs, facial shields, and body mass for both sexes, and only territory
holders can breed (Emlen and Wrege, 2004a). These traits are much
smaller in floaters, who do not obtain territories or reproduce. We as-
sume that these traits similarly relate to intra-sexual competition in
northern jacanas, although we have not tested this explicitly. For both
species, wing spurs, facial shields, and body mass are significantly
larger in adult female jacanas compared to males (Emlen and Wrege,
2004a; Lipshutz, 2017), but these traits are small in juveniles of both
sexes (Lipshutz, personal observation).

We measured body mass with a digital scale (0.01 g), and we
measured wing spur length (from base center to tip, 0.1 mm) with ca-
lipers. Wing spurs are sharp, yellow keratinous sheaths over metacarpal
bone growths that jacanas use as weapons and display during ag-
gressive posturing. In the wattled jacana, wing spurs length positively
correlated with age in males but not females, perhaps because they
were worn down by abrasion from fighting (Emlen and Wrege, 2004a).
However, we did not observe any worn down wing spurs in this study.
In northern jacanas, facial shields are yellow, fleshy, and extend from
the upper mandible to the forehead. We measured facial shield length
(from right nare to top right lobe, 0.1 mm) with calipers. We also
measured gonad mass with a digital gem scale (0.1 oz). Gonad mass has
clear connections to mating competition because jacanas are poly-
androus – males that are simultaneously mated with a single female
compete to fertilize her eggs, and females are continuously producing
eggs for available mates to incubate (Emlen et al., 1989). Testes size is
associated with T in many avian species (Garamszegi et al., 2005), and
testes size is correlated with sperm length in shorebirds (Johnson and
Briskie, 1999). Visual inspection of the gonad(s) was also used to
confirm sex and breeding stage. All 7 males that we had observed in-
cubating had brood patches, and one male we observed copulating had
feathers growing in over his brood patch, suggesting he had recently
terminated incubation. All 10 females were fertile, with hierarchical
ovarian follicles.

2.5. Testosterone enzyme immunoassay

We extracted steroids from plasma samples using diethyl ether (3×
extractions) and reconstituted in 250 μL assay buffer. We measured
testosterone using a High Sensitivity Testosterone ELISA kit (Enzo
#ADI-900-176, Farmingdale, NY, USA) following methods described in
George and Rosvall (2018). The kit reports a detection limit of 2.6 pg/
mL. Adjusted for buffer reconstitution volume and plasma volume, this
amounts to a detection limit of 0.0325 ng T/mL plasma in males and
0.01625 ng T/mL plasma in females. All of our sample values were
above this detection limit. We confirmed assay parallelism by com-
paring concentrations from a standard curve made by kit standards to a
displacement curve made from dilutions of a copulating male jacana’s
plasma (R2 = 96.3%).We ran all samples in duplicate. We initially used
40 μL plasma from females, and 20 μL from males. Samples from three
females and four copulating males initially showed less than 20%
maximum binding, and two males showed greater than 80% maximum
binding, so we re-ran them using 10 μL plasma and 40 μL of plasma,
respectively, to obtain values in the most sensitive part of the curve. We
calculated T concentration by comparing sample absorbance with the
absorbance of the assay’s standard curve (Gen5 curve-fitting software,
Biotek EPOCH plate reader, Winooski, VT, USA). Intra-assay CV was
4.44% and inter-plate CV was 5.94%.

2.6. Statistical analysis

We conducted all statistics in R version 3.6.1 (R-Core-Team, 2019).
We examined normality using a Shapiro-Wilk normality test and ex-
amined outliers using a Grubbs test in the R package ‘outliers’ (Komsta,
2006). We normalized T using a log scale transformation for all sta-
tistical comparisons. To compare T, morphology, and aggression be-
tween the sexes at different male breeding stages, we used a one-way
ANOVA, followed by a Tukey’s post hoc test. Comparisons between
sexes or male breeding stages were made using Student’s t tests or
Wilcoxon tests, depending on normality. To assess the degree of co-
variation among T and competitive traits, we used Spearman’s corre-
lations. To control for multiple testing, we used the Benjamini-Hoch-
berg method with the p.adjust function in the R package ‘stats’ (R-Core-
Team, 2019).

We also summarized the 5 aggressive behaviors with a principal
component analysis (PCA) using the prcomp function. We retained 1 PC
with an eigenvalue >1 (hereafter ‘Aggression PC1’), which explained
64.1% of the variation in aggressive behaviors (Table 1). Distance
loaded negatively onto Aggression PC1, and hover flights, wing spreads,
flyovers, and vocalizations loaded positively, such that a more positive
PC1 reflects a more aggressive response.

3. Results

3.1. Circulating testosterone varies by sex and male breeding stage

When all males were combined, male and female T level were not
significantly different (t = −1.58, df = 17.47, p = 0.13). When
considering male breeding stage however, the groups were significantly
different (F2,19 = 8.2, p = 0.0027; Fig. 1). Copulating males had sig-
nificantly higher T levels than incubating males (5.26 ± 2.2 vs
0.54 ± 0.18 ng/mL, Tukey: p = 0.005). Females had T levels
(0.51 ± 0.13 ng/mL) similar to incubating males and significantly
lower than copulating males (Tukey: p = 0.004). One copulating male
had T similar to the average T levels of incubating males, but was not an
outlier among other copulating males (Grubbs’ test; p = 0.099); upon
collection he was observed to have new feathers growing in over his
brood patch, suggesting recent cessation of incubation.

3.2. Competitive traits vary by sex and male breeding stage

We confirmed female-biased dimorphism in traits putatively in-
volved in competition for mates, as has been previously demonstrated
in jacanas (Emlen and Wrege, 2004a; Lipshutz, 2017). Females had
significantly longer wing spurs (14.9 ± 0.3 vs. 10.2 ± 0.4 mm,
t = 10.23, df = 20.49, p < 0.0001), larger body mass (155.9 ± 2.6
vs. 92.8 ± 1.7 g, t = 21.89, df = 18.54, p < 0.0001), and longer
facial shields (28.8 ± 0.4 vs. 23.6 ± 0.4 mm, t = 9.69, df = 19.0,
p < 0.0001) than males in both breeding stages. Between males in
different breeding stages, incubating males had significantly lower
testis mass than copulating males (0.010 ± 0.0021 vs.
0.020 ± 0.0028 oz, t = −2.57, df = 8, p = 0.033), and a trend

Table 1
Loadings for principal component analysis of aggressive
behavior.

Vocal Parameter PC1

Eigenvalue 1.79
Proportion of variance 64.14%
Distance to mount −0.41
Hover Flights 0.43
Wing Spreads 0.46
Flyovers 0.46
Vocalizations 0.47
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towards longer wing spurs (10.8 ± 0.2 vs 9.4 ± 0.6 mm, t = 2.08,
df = 5.15, p = 0.091).

Groups differed significantly in Aggression PC1 (F2,19 = 3.89,
p = 0.038). Males defending their eggs (i.e. incubating males) were
marginally more aggressive than copulating males (Tukey: p = 0.089)
and significantly more aggressive than females (Tukey: p = 0.049).
Aggression did not differ between females and copulating males
(Tukey: p = 0.99).

3.3. Co-variation between testosterone and competitive traits

In females, T correlated positively with wing spur length, but not
with other putatively competitive traits (Table 2). T was positively

correlated with testes mass among copulating males, but uncorrelated
with any trait among incubating males. T was not correlated with Ag-
gression PC1, regardless of sex or male breeding stage. Individual cor-
relations for each group are plotted in a Supplemental figure (Fig. S1).

4. Discussion

In wild female and male jacanas, we found that differences in T
secretion were contingent on male breeding stage, rather than sex
alone. Circulating T levels in females were similar to levels observed in
males conducting parental care. This is reflective of patterns found in
other sex-role reversed species, for which females have similar levels of
T in circulation to incubating males, despite female jacanas facing
strong mating competition (Emlen and Wrege, 2004a). Copulating
males had higher T than incubating males, suggesting that T and par-
ental care may constrain one another. Although T varied by sex and
male breeding stage in ways that suggest T is shaped by trade-offs be-
tween competition and care, we did not find widespread or consistent
co-variation between individual differences in T and competitive traits.

In male jacanas, T differs by breeding stage, suggesting that levels of
T are shaped by shifting selection pressures from mating effort to par-
ental effort. This pattern is similar to studies of other sex-role reversed
species, in which T was similarly low for both females and nesting
males, and higher in courting males (Table 3). Stage-related variation in
T is also prevalent in non-sex-role reversed species with male parental
care (Wingfield et al., 1990). Experimental evidence that T reduces
male parental care in role reversed spotted sandpipers (Actitis macu-
laria) (Oring et al., 1989) as well as socially monogamous songbirds
(Goymann and Davila, 2017; Ketterson et al., 1992; Van Roo, 2004; but
see Lynn (2008)) indicates that high T can inhibit male parental

Fig. 1. Levels of testosterone in circulation in female (n = 10) and male jacanas at different breeding stages, incubating (n = 7) and copulating (n = 5). Boxplot
horizontal lines represent median values. Illustrations by Mae Berlow.

Table 2
Spearman correlations (rs) of circulating testosterone with competitive traits for
females and males that were incubating or copulating. Significant relationships
after Benjamini-Hochberg correction (p ≤ 0.05) are bold.

Females Incubating Males Copulating Males

Wing Spur Length rs = 0.83 rs = -0.07 rs = -0.70
p = 0.036 p = 0.91 p = 0.58

Body Mass rs = 0.09 rs = 0.29 rs = 0.70
p = 0.91 p = 0.71 p = 0.58

Facial Shield Length rs = -0.21 rs = 0.57 rs = 0.4
p = 0.71 p = 0.58 p = 0.71

Gonad Mass rs = 0.25 rs = -0.64 rs = 0.97
p = 0.71 p = 0.58 p = 0.036

Aggression PC1 rs = -0.061 rs = -0.29 rs = 0.45
p = 0.91 p = 0.71 p = 0.71
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behavior, regardless of whether males are the more competitive sex.
This idea was supported by a meta-analysis across vertebrates, finding
that male parental care predicted T but mating system did not
(Hirschenhauser and Oliveira, 2006), and another meta-analysis in
humans, finding that fathers have lower T than men without children
(Grebe et al., 2019).

Given the constraints of egg production and parental care typically
imposed on females, T levels ought to be less correlated with suites of
integrated traits in females than in males (Ketterson et al., 2009).
However, we did not find strong phenotypic co-variation with T in ei-
ther sex, except for wing spur length in females and testes mass in co-
pulating males. Considering limited sample sizes and the potential for
type II error, we view these analyses as a preliminary but important step
towards understanding hormonal regulation of competitive traits and
how it may vary based on gonadal sex and parental role. Females with
higher T have longer wing spurs, a weapon used to fight over territories
and mates. A similar finding in sex-role reversed barred buttonquail
females (Turnix suscitator) indicated that female but not male levels of T
positively correlated with body condition and the size and blackness of
the melanin throat patch (Muck and Goymann, 2011). In moorhens,
(Gallinula chloropus), the heaviest females, which tend to win most of
the competitive interactions, also had higher T levels than lighter fe-
males (Eens and Pinxten, 2000). Indeed, female jacanas generally have
longer wing spurs than males, but do not have higher T than males. In
copulating males, only testes mass was correlated with T, a pattern that
likely relates to spermatogenesis, and is supported in males of many
avian species (Garamszegi et al., 2005). T did not correlate with ag-
gression for either sex, regardless of male breeding stage. This is not
unexpected, given that aggression and baseline levels of T do not cor-
relate for many species (Kempenaers et al., 2008; Williams, 2008), al-
though it is possible that such correlations would emerge when T se-
cretion is at its physiological maximum (e.g. endogenous or exogenous
activation of the HPG axis). This is an important avenue for future re-
search, particularly considering how prior research on social respon-
siveness of T is biased towards temperate songbirds with conventional
sex roles (Goymann et al., 2019). Our observation that incubating males
had the lowest T and highest aggression suggests that mechanisms
beyond T should be explored in the future (see below). Related to this
point, higher aggression in incubating males may serve a parental
purpose (i.e. defense of developing young, rather than territoriality or
mating competition), and there is some evidence that different types of
aggression may be regulated by different mechanisms (Duque-Wilckens
and Trainor, 2017; Wingfield et al., 2006). Despite these complexities,
our analyses nevertheless suggest sex- and stage-specific variation be-
tween T and competitive traits.

Our measurements of T were necessary to begin establishing the
jacana system as a model for examining the role of gonadal steroids in
orchestrating reproductive and parental behaviors. Circulating T did
not sufficiently explain sex-role reversal; female jacanas express an
exaggerated suite of competitive traits, but have low T levels on par
with incubating males. An exciting next step is to explore how gonadal
sex and parental role influence tissue-level regulation of competitive
phenotypes. Beyond circulating T, other components of the androgenic
signaling system could explain variation in competitive phenotypes,
including variation in T production, metabolism, and/or sensitivity

(Ball and Balthazart, 2019; Fuxjager and Schuppe, 2018; Schmidt et al.,
2008; Soma, 2006; Staub and De Beer, 1997). Tissue-specific variability
in these components may regulate traits independently of circulating
sex steroids (Bentz et al., 2019; Horton et al., 2014; Lipshutz et al.,
2019a; Rosvall et al., 2012), and there is some evidence that tissue-
specific regulation may be more prevalent for groups in which T levels
are depressed (Demas et al., 2007; Rosvall, 2013a). Sex differences in
androgenic signaling in the brain have also been found in several sex-
role reversed species; female black coucals and barred button quails had
higher mRNA expression of androgen receptors (AR) in neural regions
implicated in the control of aggressive and sexual behavior (Voigt,
2016; Voigt and Goymann, 2007). Other hormones like progesterone
could also explain variation in aggression, as was found in role-reversed
black coucals (Goymann et al., 2008). In the future, we look forward to
integrating proximate mechanisms more deeply with behavioral, mor-
phological, and life history traits in jacanas, to better understand the
physiological drivers of sex-role reversal.

As jacanas are tropical birds that can breed during all months of the
year (Emlen and Wrege, 2004a), females may experience year-round
selection in relation to mating competition. Territorial females breed
simultaneously with multiple males in their harems, and males copulate
and incubate asynchronously (Emlen and Wrege, 2004b). Although we
did not follow females year round to assess individual fertility, all fe-
males in this study displayed clear signs of fertility (i.e. hierarchical
ovarian follicles) regardless of whether or not their mates had nests. In
contrast, males had large testes when copulating, but small testes when
incubating. We hypothesize that female jacanas may have a con-
tinuously fertile gonadal state, similar to males of other species that
maintain large, fertile testes throughout female incubation. Likewise,
the cycling gonadal size of male jacanas from copulation to incubation
is analogous to other species for which female ovaries return to a non-
fertile state during incubation (Williams, 2012). The essentially con-
tinual state of female jacana fertility, paired with sex-role reversal,
should generate stronger or more uniform selection on competitive
traits, which are advantageous during most of the year and do not ex-
perience counter-selection in relation to wintering or migratory states.
Our examination of T and competitive traits in jacanas add to a rich
history of understanding how gonadal sex and parental roles influence
mechanisms of behavior in sex-role reversed systems.
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Table 3
Levels of testosterone in circulation (Mean ± SE) among sex-role reversed females and males in parenting and courting breeding stages.

Species Females Parenting Males Courting Males Citation

African Black Coucal Centropus grillii 0.57 ± 0.06 0.59 ± 0.14 2.16 ± 0.51 Goymann et al. (2004)
Wilson's Phalarope Phalaropus tricolor 0.51 ± 0.1 0.63 ± 0.15 3.61 ± 1.12 Fivizzani et al. (1986)
Red-necked Phalarope Phalaropus lobatus 0.085 ± 0.047 0.22 ± 0.055 3.98 ± 0.73 Gratto-Trevor et al. (1990)
Spotted Sandpiper Actitis macularius 0.18 ± 0.03 0.17 ± 0.05 0.95 ± 0.41 Rissman and Wingfield (1984)
Barred Buttonqual Turnix suscitator 0.2 ± 0.1 NA 0.5 ± 0.1 Voigt (2016)
Northern Jacana Jacana spinosa 0.51 ± 0.13 0.54 ± 0.18 5.26 ± 2.2 this study
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