

Integrative and Comparative Biology

Neuroendocrinology of sex-role reversal

Journal:	Integrative and Comparative Biology			
Manuscript ID	Draft			
Manuscript Type:	Symposium article			
Date Submitted by the Author:	n/a			
Complete List of Authors:	: Lipshutz, Sara; Indiana University Bloomington, Biology Rosvall, Kimberly; Indiana University Bloomington, Biology			
Keywords:	sex-role reversal, female competition, neural sensitivity, testosterone, sex steroid			

SCHOLARONE™ Manuscripts

Neuroendocrinology of sex-role reversal

Sara E. Lipshutz^{1,*}, Kimberly A. Rosvall^{1,2}

- 1. Department of Biology, Indiana University, Bloomington, IN, 47405
- 2. Center for the Integrated Study of Animal Behavior, Indiana University, Bloomington, IN,
 47405

- *Corresponding author
- 9 Full address: Department of Biology, Jordan Hall Rm. 142, 1001 E. 3rd St., Indiana University,
- Bloomington, IN 47405-7005, USAEmail address: slipshut@iu.edu
- 12 Phone number: (812) 855-4555
- 13 Fax: (812) 855-6705

Running title: Neuroendocrinology of sex-role reversal

Word count: 4,349

Abstract

Females of some species are considered sex-role reversed, meaning that they face stronger competition for mates compared to males. While much attention has been paid to behavioral and morphological patterns associated with sex-role reversal, less is known about its physiological regulation. Here, we evaluate activational and organizational hypotheses relating to the neuroendocrine basis of sex-role reversal. We refute the most widely tested activational hypothesis for sex differences in androgen secretion; sex-role reversed females do not have higher levels of androgens in circulation than males. However, we find some evidence that the activational effects of androgens may be sex-specific; circulating androgen levels correlate with some competitive phenotypes in sex-role reversed females. Organizational effects may explain these relationships, considering that early exposure to sex steroids can shape later sensitivity to hormones, often in sex-specific ways. We review evidence that sex-role reversed females have higher tissue-specific sensitivity to androgens than males, at least in some species and tissues. Moving forward, experimental and correlative studies on the ontogeny and expression of sex-role reversal will help reveal the mechanisms that generate sex-specific behaviors and sex roles.

"Why are males masculine, females feminine and occasionally vice-versa?"

36 – GC Williams, 1975

An Introduction to Sex-Role Reversal

Why are females and males different? Biologists have been trying to answer this question since Darwin first postulated that 'instinct' (behavior) may be shaped by natural selection (1859). In his Victorian era, male animals were considered dominant and promiscuous, whereas female animals were thought to be coy and subdued. In the intervening years, we have learned a lot about 'sex roles' across the animal kingdom. For many species, as Darwin and his contemporaries observed, males face stronger competition for mating opportunities than females, and females tend to conduct the majority of parental care (Darwin 1871; Clutton-Brock 1991; Andersson 1994). Whereas territorial aggression and promiscuity were historically considered male traits, however, behavioral ecologists now recognize that intrasexual competition and multiple-mating are adaptive and widespread behaviors in females of many species (Clutton-Brock 2009; Rosvall 2011; Hare and Simmons 2018). Sex-role reversal (SRR) occurs when sexual selection among females is stronger than sexual selection acting among males (Vincent et al. 1992; Kvarnemo and Ahnesjo 1996). SRR females are characterized by phenotypes typically associated with males, including morphological traits like heavier body mass, larger weaponry, and more ornamentation, as well as behavioral traits like higher territorial aggression or more intense courtship rituals. These traits are thought to facilitate female-female competition for mates and breeding territories (Emlen and Oring 1977; Gwynne 1991).

Classic work by Bateman (1948) and Trivers (1972) attributed the evolution of sex roles to anisogamy, although this has proven challenging to reconcile with sex-role reversal. In general, male gametes (sperm) are smaller and more numerous than nutrient-rich female gametes (ova), and so males may be more available to mate than females, who may be predisposed to caring for their offspring based on this initial asymmetry in parental investment.

For decades, this anisogamy argument dominated theory on the evolution of sex roles: sex differences in initial parental investment drive the degree of mating competition and direction of sexual selection (reviwed in Hoquet, 2020). However, anisogamy cannot explain the evolution of SRR because SRR-females are nonetheless female; they always produce the larger gamete, even when they compete more than males. Recent theoretical work indicates that additional factors including multiple paternity, adult mortality, and sex ratios may generate co-evolutionary feedbacks that influence the strength and sex-specificity of sexual selection (Kokko and Jennions 2008; Fromhage and Jennions 2016). Despite these advances to our understanding of the ultimate drivers of SRR, much less is known about the proximate mechanisms that give rise to SRR.

Sex steroids are logical candidates for the physiological regulation of SRR, because these hormones are associated with many sexually dimorphic traits, especially those related to mating and mating competition (Adkins-Regan 2005). Sex steroids act in two main ways, the first of which operates early in life during a critical period when exposure to a hormone (or lack thereof) can permanently organize tissue structure and function i.e. organizational effects (Phoenix et al. 1959; Arnold and Breedlove 1985), which determine whether later exposure to a hormone can bring about a phenotypic effect. One of the primary modes of action for organizational effects is to change the anatomical distribution and/or abundance of sex steroid receptors, early in the life and often lasting into adulthood (Moore et al. 1998). Activational effects typically occur during adulthood, when animals change aspects of their phenotype in response to changing hormone levels in circulation. For sex steroids, hormone secretion is regulated by the hypothalamic-gonadal-pituitary (HPG) axis, when external stimuli prompt the hypothalamus to secrete gonadotropin-releasing hormone (GnRH). GnRH then stimulates the pituitary to release gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) into the bloodstream. These gonadotropins signal to the gonads to initiate gametogenesis as well as produce sex steroids including estrogen, progesterone, and testosterone, as well as

11-ketotestosterone in fishes (Schulz et al. 2010). Many researchers have found important connections between sex steroids, their cellular mechanisms of action, and the evolution of sexually selected traits, linking the physiological origins of diversity in mating phenotypes across animals (Wingfield et al. 1990; Soma 2006; Fuxjager and Schuppe 2018; Lipshutz et al. 2019; Cox 2020). Critically, these mechanisms operate in both sexes (Staub and De Beer 1997), providing the opportunity to investigate how variation in sex steroid signaling may contribute to the origin and expression of SRR.

Here, we evaluate two key hypotheses on the role of sex steroids in the evolution of SRR. First, we examine the evidence that SRR is explained by activational effects of sex steroid secretion, focusing on sex differences in levels of androgens in circulation, as well as covariation between androgens and competitive phenotypes in SRR species. Next, we assess hypotheses relating to the organizational basis of SRR, asking whether androgen exposure early in development may explain SRR behavior and morphology, and/or sex differences in tissue-level sensitivity to androgens (e.g. androgen receptor abundance). We focus primarily on SRR birds and fishes, which have received the most attention to date, and we draw inferences from species with conventional sex roles.

H1: SRR stems from activational effects of sex steroids

Do females and males differ in androgen levels in circulation?

Two decades ago, Eens and Pinxten (2000) reviewed studies from field endocrinology to evaluate the hypothesis that SRR females have male-typical physiological mechanisms, specifically that testosterone secretion may be higher in SRR females, a reversal from the conventional pattern. Evidence from three SRR avian species did not support this hypothesis: during mating competition and courtship, males have higher testosterone in circulation compared with females (spotted sandpiper (*Actitis macularius*), Rissman and Wingfield 1984; Wilson's phalarope (*Phalaropus tricolor*), Fivizzani et al. 1986; red-necked phalarope

(*Phalaropus lobatus*), Gratto-Trevor et al. 1990), reflecting patterns seen in species with conventional sex roles.

To re-evaluate this hypothesis 20 years later, we conducted a meta-analysis on sex differences in circulating androgens in SRR species, including both testosterone and its more potent metabolite 5-alpha dihydrotestosterone (DHT), both of which bind to the androgen receptor. For the six SRR avian species with relevant data, we compiled mean androgen levels from HormoneBase (Vitousek et al. 2018) or the primary literature, using data reported in the text or measured from figures using WebPlotDigitizer (Rohatgi 2019) (Supplementary File 1). Our analysis therefore updates Eens and Pinxten's findings with more recent studies on androgen secretion in SRR avian species including black coucals (Centropus grillii), barred buttonquails (Turnix suscitator), and northern jacanas (Jacana spinosa) (Goymann and Wingfield 2004; Voigt and Goymann 2007; Voigt 2016; Lipshutz and Rosvall 2020). To estimate the standardized effect size of sex differences in androgens across SRR species, we used random effects models in the package metafor in R (Viechtbauer 2010). We ran separate models comparing females to males in different breeding stages (i.e. courting vs. caring), as male androgen levels typically decline with parental care (Wingfield et al. 1990). We also ran a mixed effects model with breeding stage as a modulator, to compare the influence of breeding stage on sex differences in levels of androgens in circulation.

First, focused on data from females and males, sampled when both sexes were competing and courting, our analysis showed an average negative and significant effect size (μ = -1.14, z = -5.24, p < 0.0001), indicating that SRR males have higher androgens than females (Figure 1). Thus, during the period of time when both sexes are seeking mates, SRR females secrete androgens in ways that are similar to females of species with conventional sex roles, and SRR males follow patterns similar to males with conventional roles. However, this courtship-stage model had significant heterogeneity in sex differences (I^2 = 0.56, Q = 22.23, df =

10, p = 0.014), indicating that not every species demonstrated the same pattern. For example, female and male barred buttonquails did not differ in levels of DHT in circulation (Voigt 2016).

When we analyzed androgen levels in SRR birds during the period of time when males are parenting, however, the effect size was not significant ($\mu = -0.019$, z = -0.14, p = 0.89), indicating no overall sex difference in circulating androgen levels (Figure 1). This parental-stage model did not have significant heterogeneity in sex differences ($I^2 = 0$, Q = 4.81, df = 7, p = 0.68), indicating similar patterns across species. During the parental care phase of breeding, these SRR males and females did not differ significantly in levels of testosterone and DHT in circulation, meaning the sex differences in androgen levels seen during courtship are ablated during periods of male parental care. Indeed, direct comparison of the courtship-stage and parental-stage data into a single model shows that breeding stage explained 79% of the variation in effect size ($Q_M = 18.52$, df = 1, p < 0.0001). In males with conventional sex roles, androgen levels decline during parental care, though not typically to female-like levels (Wingfield et al. 1990; Hirschenhauser and Oliveira 2006). Our finding – that androgens in SRR males fall to levels as low as females during parental care – may represent an extreme reduction in androgen sexual dimorphism, potentially suggesting that SRR drives lower T levels in males, higher T levels in females, or some combination of the two (sensu Goymann and Wingfield 2014). We find it interesting that in SRR species, circulating androgen levels are most similar between the sexes during the breeding stage when the sexes are most behaviorally divergent, i.e. female competition and male parental care. Clearly, sex differences in levels of androgens in circulation alone do not explain SRR.

Beyond T and DHT, fewer studies have measured other sex steroids or prohormones in SRR species, and evidence to date is mixed as to whether secretion of these hormones is sexually dimorphic. For example, a study of black coucals suggests that secretion of the androgenic precursors androstenedione and DHEA is similar between the sexes, regardless of breeding stage (Goymann and Wingfield 2004). Estradiol levels are typically higher in females

than males in conventional species, a pattern that is reflected in some SRR species (Fivizzani et al. 1986), but not others, for which estradiol levels are similar between the sexes, or higher than expected in SRR males (Rissman and Wingfield 1984; Goymann and Wingfield 2004; Voigt 2016). Progesterone levels are also typically higher in females than males, which is reflected in some SRR species (Fivizzani et al. 1986; Gratto-Trevor et al. 1990), but not others (Voigt 2016). In SRR broadnosed pipefish (*Syngnathus typhle*) and greater pipefish (*Syngnathus acus*), breeding males have higher 11-ketotestosterone than brooding males (Mayer et al. 1993), a pattern reflected in non-SRR teleost fish (Knapp et al. 1999; Mayer et al. 2004), but circulating hormones have been challenging to measure in sygnathids (Scobell and Mackenzie 2011). Together, these studies suggest that the sex steroid profiles of SRR females and males are similar to their counterparts with conventional sex roles, largely confirming the conclusions of Eens and Pinxten (2000).

Are activational effects of androgens sexually dimorphic?

Androgen levels themselves are only part of the regulation of androgen-mediated phenotypes, and there is good evidence that the sexes may differ in their gene regulatory responses to androgens (Van Nas et al. 2009; Peterson et al. 2014). Thus, androgens may differentially affect females and males in SRR species, even when hormone levels themselves largely follow patterns of sexual dimorphism seen in species with conventional sex roles. Sexspecific activational effects of androgens can be assessed with (a) correlations that directly link SRR behaviors and morphological traits with sex steroids, or (b) experimental treatments between sex steroids and traits of interest.

One approach to understand the physiological regulation of SRR is to link individual variation in endocrine phenotypes directly with variation in competitive traits, including ornamentation, weaponry, and body size. Correlational support for this idea does exist in SRR species, although it is quite limited. For instance, levels of testosterone in circulation positively

Goymann 2011). In female northern jacanas, testosterone secretion positively correlates with the size of weaponry, wing spurs, but this relationship was not found in males (Lipshutz and Rosvall 2020). Thus, despite low levels of testosterone in circulation in SRR females, there is some evidence that testosterone is related to the regulation of competitive traits in SRR females in some way. Other studies find that non-steroid hormones may regulate competitive traits in relation to SRR. In the two-spotted goby (*Gobiusculus flavescens*), a species with dynamic sex roles that change from conventional to reversed (Forsgren et al. 2004), pigmentation of the female belly ornament is regulated by the pituitary hormone prolactin as well as alphamelanocyte stimulating hormone, but this ornament does not appear to be regulated by the sex steroids testosterone, 11-keto-testosterone, or estradiol in this example (Sköld et al. 2008).

Experimental data to directly address sex-specific activational effects of androgens in SRR species is also limited, but indirect evidence suggests that both morphological and behavioral traits involved in mating competition respond to experimental manipulation of sex steroids. Early work in the SRR Wilson's and Red-necked phalaropes, for which females have brighter nuptial plumage, found that exogenous testosterone induces nuptial plumage in both females and males, suggesting that nuptial feather growth is androgen-dependent (Johns 1964). In male gulf pipefish (*Syngnathus scovelli*), exposure to estrogen impacts the development of the iridescent transverse band (Partridge et al. 2010), a sexually selected ornament in females (Flanagan et al. 2014). These findings parallel work in species with conventional roles, for which testosterone implants in females increase male-typical traits including courtship displays (Day et al. 2007), vocalizations (Nottebohm 1980; Chiver and Schlinger 2019), and nuptial plumage (Lindsay et al. 2016). In other words, the activational effects of sex steroids can reverse sex-specific phenotypes in SRR males in a manner similar to non-SRR females. For competitive behaviors like aggression, the link with testosterone in SRR species has mixed support. In female barred buttonquails, implantation with testosterone did not

increase aggression, and territorial challenge decreased levels of testosterone in circulation (Muck and Goymann 2019). In female black coucals, testosterone did not differ between challenged and unchallenged females, but territorial challenge decreased levels of progesterone in circulation, and progesterone implants reduced female aggression (Goymann et al. 2008). Similarly, the lack of a relationship between testosterone and aggressive behavior is reflected in many species with conventional sex roles (Wingfield et al. 2019). In sum, variation in androgens in circulation may explain some competitive phenotypes but not others, and these relationships can vary by sex, suggesting we must also look beyond activational hypotheses on the origin and expression of SRR.

H2: SRR stems from organizational effects of sex steroids

Organizational effects of sex steroids deliver some promise as proximate regulators of SRR (Adkins-Regan 2012). An ontogenetic hypothesis for SRR was proposed by Fivizzani et al. (1986), drawing from observations in many species that exposure to sex steroid hormones early in development can generate sex differences in later responsiveness to these hormones in adulthood (Arnold 2009). For instance, exposure to high testosterone early in life, in utero, or in ovo can influence suites of sexual characteristics (vom Saal and Bronson 1980; Hotchkiss et al. 2007), a phenotypic effect that is at least partly mediated by tissue level changes in sensitivity to sex steroids (Mori et al. 2010; Pfannkuche et al. 2011). Sensitivity is comprised of a number of factors, including sex steroid receptors, as well as enzymes that produce steroid hormones and convert them into more or less active forms (Ball and Balthazart 2008). In particular, testosterone can be locally converted by the enzymes aromatase and 5-alpha-reductase to the metabolites estradiol and DHT (Schmidt et al. 2008). These sex steroids bind to estrogen (ER) and androgen receptors (AR), respectively, initiating downstream transcriptional effects on peripheral and neural tissues that influence the expression of diverse mating phenotypes (Fuxjager and Schuppe 2018). Sex steroid sensitivity can be evaluated by measuring the

protein or mRNA abundance of sex steroid receptors and metabolic enzymes, and several aspects of sex steroid sensitivity and metabolism have been measured in SRR species, at least in some peripheral and neural tissues.

Do females and males differ in sensitivity to sex steroids?

The first study to address this question in a SRR system focused on Wilson's phalaropes, in which females showed higher 5-alpha and 5-beta reductase activity in the skin (Schlinger et al. 1989). These differences may explain why females have brighter nuptial plumage than males, but sex differences in neural androgen metabolism did not explain SRR behavior; the sexes did not differ in 5-alpha or 5-beta reductase in the neural tissues sampled. Furthermore, courting male Wilson's phalaropes had higher aromatase activity in the hypothalamus than females, a pattern found in non-SRR species (Balthazart 1991). We are aware of two additional studies that have examined neural sensitivity in SRR species, including black coucals (Voigt and Goymann 2007) and barred buttonquails (Voigt 2016). These studies, like the earlier study in Wilson's phalaropes, focus on the vertebrate social behavior network, an assemblage of steroid-sensitive brain regions that regulate mating, sexual, and social behaviors (Goodson 2005; Maney and Goodson 2011). In black coucals and barred buttonquails, AR mRNA abundance in the nucleus taeniae was higher in females compared to males, suggesting that SRR females may be able to 'do more with less' testosterone in circulation. In species with conventional sex roles, variation in sex steroid sensitivity in the nucleus taeniae may explain variation in aggression, even when hormone levels in the blood do not (Rosvall et al. 2012; Horton et al. 2014). Thus, higher androgen sensitivity in the SRR female nucleus taeniae is an encouraging explanation for SRR. However, not all studies find such patterns. For instance, aromatase gene expression was higher in hypothalamic regions in male barred buttonquails compared to females, a pattern that is comparable to non-SRR Japanese quail (Coturnix japonica) (Voigt et al. 2009) and also found in Wilson's phalaropes (Schlinger et al. 1989).

Together, these results suggest modularity of the social behavior network: some aspects of sex steroid sensitivity can be heightened in some neural tissues, and this may vary between females and males.

Global transcriptomic analyses similarly point to sexual dimorphism in sex steroid sensitivity as potentially relevant for SRR species. A microarray study comparing conventional and SRR cichlid species (Julidodchromis spp) examined sex differences in gene expression in the whole brain (Schumer et al. 2011). This study found that SRR females had globally similar neural gene expression to males in the conventional species, indicating some masculinization of the SRR female brain. Notably, differentially expressed genes between sexes included aromatase and isotocin, a paralog of arginine vasotocin (AVT), which can co-localize in AR+ neurons and influence behavior via steroid sensitive circuits (Kabelik et al. 2010). A recent RNAseq study of skin and muscle tissue in Gulf pipefish also reported that genes differentially expressed between the sexes have an excess of estrogen response elements, suggesting a role for sex steroids in the genomic regulation of female ornamentation and body depth (Anderson et al. 2020). Thus, similar to non-SRR species (Tomaszycki et al. 2009; Wade 2016), there is potential for sex-biased gene expression to influence sex differences in behavior. Moving forward, these global analyses have the potential to reveal other important mechanisms regulating SRR, particularly if they explicitly link specific nuclei with competitive traits in SRR species and their non-SRR relatives.

What are the ontogenetic origins of sex differences in steroid sensitivity?

Despite good evidence for sex differences in steroid sensitivity in adults, more research is needed to directly link adult data with early life processes in SRR species. To our knowledge, no studies have experimentally manipulated sex steroid exposure early in life to change SRR trait development, and only two studies have investigated the hormonal ontogeny of SRR species. In barred buttonquails, for example, AR mRNA expression levels were higher in female

hatchlings in every brain area investigated, and this sex difference persisted into adulthood for the mediobasal hypothalamus, lateral septum, and nucleus taeniae (Voigt 2016). Notably, these patterns differ from the closely related Japanese quail, a non-SRR species in which AR mRNA abundance is equal in hatchling females and males (Voigt et al. 2009). Another study focused more on testosterone levels in circulation in black coucals, a species that displays the typical SRR pattern in which adult females are larger than males (Andersson 1995). Specifically, Goymann and colleagues (2005) found that female nestlings grow faster and fledge with a larger body mass, compared to males. Although female nestlings do not have higher levels of testosterone in circulation compared to males, structural growth rates are related to testosterone in females but not males (Goymann et al. 2005). Considering connections between androgen exposure and growth, which set the stage for sexual dimorphism in competitive traits in many species (Hews and Moore 1995; Cox et al. 2015), these patterns indirectly suggest organizational effects as plausible drivers of SRR. In non-SRR species, gonadally derived hormones early in development shape neural substrate for activation in adulthood in a sexspecific manner, wherein sexual differentiation results from organizational alignment between gonadal and neural phenotypes (McCarthy 2016). To what extent are gonadal and neural phenotypes mismatched, or more modular, in SRR species? Future work treating embryos and/or juveniles with testosterone or aromatase inhibitors are needed to explicitly test the role of sex steroids in the development of SRR behavior and morphology.

Conclusions and future directions

We evaluated activational and organizational hypotheses linking sex steroids with the development and expression of SRR. Our meta-analysis of sex differences in androgen secretion found that SRR species follow the pattern of conventional species: males have higher levels of androgens in circulation during courtship. Despite stronger selection to compete for mates, SRR females are still females -- they produce ova, solicit copulation, and typically prefer

to mate with males. Even at low levels, however, androgens correlate with some competitive phenotypes in SRR females, suggesting that activational effects of androgens may be important in the expression of SRR. These relationships could be reconciled via sex-specific changes in sensitivity to androgens in the neural and peripheral tissues that influence 'reversed' traits in SRR species, such as territorial aggression, plumage coloration, or growth. However, it is still unclear whether and how developmental androgen exposure drives SRR in adults.

With these findings in mind, we see three research initiatives that can move the field towards greater understanding of the role of hormones in the evolution of SRR. First, evidence thus far suggests that tissue-specific sensitivity and organizational effects of androgens may generate SRR, but we need more experiments. Effectively testing these hypotheses will require manipulation of sex steroid levels, metabolism, and/or sensitivity, as well as account for phylogenetic history, for instance using paired designs that directly compare SRR species with non-SRR close relatives. Finding that some SRR phenotypes can be un-reversed, whereas others are fixed, could point to the influence of activational, organizational, or direct genetic effects (Adkins-Regan 2005).

Second, we focused on the regulation of competitive traits, but similar hypotheses can apply to the regulation of parental care in SRR males. Although parental care is outside the scope of this review, and historically not part of the definition of SRR (Ah-King and Ahnesjö 2013), sex steroids and other hormones like oxytocin, vasopressin, and prolactin are important in the regulation of parental care (Smiley 2019; Storey et al. 2020). In many SRR species, males conduct the majority of parental care and have higher levels of prolactin in circulation than females (Oring et al. 1986, 1988; Gratto-Trevor et al. 1990). In other words, SRR males may have female-typical physiological mechanisms related to parenting. Whether these parental mechanisms are the same that regulate competitive traits (i.e. pleiotropy) or whether these traits are independently regulated in relation to SRR is less clear.

Finally, like many areas of animal behavior, the study of SRR will surely be enhanced by integrated research that explicitly connects ultimate eco-evolutionary processes driving SRR with the proximate neuroendocrine factors that generate trait variation. Ecological feedbacks between the social environment and maternal physiology are a natural area of focus due to potential links between adult trait variation and early life processes. Maternal effects have yet to be tested in SRR species, but evidence from non-SRR species suggests that high-competition environments can influence maternal testosterone allocation to yolk (Bentz et al. 2016). The association of sex-role reversal with male-biased adult sex ratios (Liker et al. 2013) suggests the potential for maternal effects and ecological feedback, as hormones can also influence sex ratios (Navara 2013). This raises the possibility that some physiological regulation of SRR may be environmentally plastic, an exciting arena for future study.

Funding

This work was supported by a National Science Foundation Postdoctoral Fellowship (grant number 1907134); and an Indiana University Provost's Travel Award for Women in Science to SEL. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Acknowledgements

We thank the organizers of the SICB symposium on female perspectives of reproduction. SEL thanks Christie Riehl and Elizabeth Derryberry for encouraging this topic. Illustrations by Mae Berlow.

Figure 1. Mean effect sizes with corresponding 95% confidence intervals for sex differences in levels of androgens in circulation between females and males in courtship or parental stages.

Black square sizes represent corresponding sampling variances. Grey diamonds represent the estimated true effect from the male courtship model (μ = -1.14) and male parenting random-effects model (μ = -0.019).

References

- Adkins-Regan E. 2005. Hormones and Animal Social Behavior Princeton, NJ: Princeton University Press.
- Adkins-Regan E. 2012. Hormonal organization and activation: Evolutionary implications and questions. Gen Comp Endocrinol 176:279–85.
- 380 Ah-King M, Ahnesjö I. 2013. The "sex role" concept: An overview and e valuation. Evol Biol 40:461–70.
- Anderson AP, Flanagan SP, Rose E, Jones AG. 2020. The estrogen-responsive transcriptome of female secondary sexual traits in the Gulf pipefish. J Hered esaa008.
- Andersson M. 1994. Sexual selection, Monographs in behavior and ecology Princeton:

 Princeton Univ. Press.
- Andersson M. 1995. Evolution of reversed sex roles, sexual size dimorphism, and mating system in coucals (Centropodidae, Aves). Biol J Linn Soc 54:173–81.
 - Arnold AP. 2009. The organizational-activational hypothesis as the foundation for a unified theory of sexual differentiation of all mammalian tissues. Horm Behav 55:570–78.
- Arnold AP, Breedlove SM. 1985. Organizational and activational effects of sex steroids on brain and behavior: A reanalysis. Horm Behav 19:469–98.
- Ball GF, Balthazart J. 2008. Individual variation and the endocrine regulation of behaviour and physiology in birds: a cellular/molecular perspective. Philos Trans R Soc B Biol Sci 363:1699–1710.
- 395 Balthazart J. 1991. Testosterone metabolism in the avian hypothalamus. J Steroid Biochem Mol 396 Biol 40:557–70.

- 397 Bateman AJ. 1948. Intra-sexual selection in Drosophila. Heredity (Edinb) 2:349–68.
- Bentz AB, Becker DJ, Navara KJ. 2016. Evolutionary implications of interspecific variation in a
- maternal effect: A meta-analysis of yolk testosterone response to competition. R Soc Open
- 400 Sci 3.
- Chiver I, Schlinger BA. 2019. Sex-specific effects of testosterone on vocal output in a tropical
- suboscine bird. Anim Behav 148:105–12.
- 403 Clutton-Brock T. 2009. Sexual selection in females. Anim Behav 77:3–11.
- Clutton-Brock TH. 1991. The evolution of parental care, Monographs in behavior and ecology
- 405 Princeton: Princeton University Press.
- 406 Cox CL, Hanninen AF, Reedy AM, Cox RM. 2015. Female anoles retain responsiveness to
- 407 testosterone despite the evolution of androgen-mediated sexual dimorphism. Funct Ecol
- 408 29:758–67.
- 409 Cox RM. 2020. Sex steroids as mediators of phenotypic integration, genetic correlations, and
- evolutionary transitions. Mol Cell Endocrinol 502:110668.
- Darwin C. 1859. On the origin of species by means of natural selection. London: John Murray.
- Darwin C. 1871. The descent of man and selection in relation to sex. Murray, London.
- Day LB, Fusani L, Hernandez E, Billo TJ, Sheldon KS, Wise PM, Schlinger BA. 2007.
- 414 Testosterone and its effects on courtship in golden-collared manakins (*Manacus vitellinus*):
- Seasonal, sex, and age differences. Horm Behav 51:69–76.
- 416 Eens M, Pinxten R. 2000. Sex-role reversal in vertebrates: Behavioural and endocrinological
- 417 accounts. Behav Processes 51:135–47.
- Emlen ST, Oring LW. 1977. Ecology, sexual selection, and evolution of mating systems.
- 419 Science (80) 197:215–23.
- 420 Fivizzani AJ, Colwell MA, Oring LW. 1986. Plasma steroid hormone levels in free-living Wilson's
- phalaropes, *Phalaropus tricolor*. Gen Comp Endocrinol 62:137–44.
- 422 Flanagan SP, Johnson JB, Rose E, Jones AG. 2014. Sexual selection on female ornaments in

animals. Biol Rev.

the sex-role-reversed Gulf pipefish (Synanathus scovelli). J Evol Biol 27:2457–67. Forsgren E, Amundsen T, Borg ÅA, Bjelvenmark J. 2004. Unusually dynamic sex roles in a fish. Nature 429:551–54. Fromhage L, Jennions MD. 2016. Coevolution of parental investment and sexually selected traits drives sex-role divergence. Nat Commun 7. Fuxjager MJ, Schuppe ER. 2018. Androgenic signaling systems and their role in behavioral evolution. J Steroid Biochem Mol Biol 184:47-56. Goodson JL. 2005. The vertebrate social behavior network: Evolutionary themes and variations. Horm Behav 48:11-22. Goymann W, Kempenaers B, Wingfield J. 2005. Breeding biology, sexually dimorphic development and nestling testosterone concentrations of the classically polyandrous African black coucal, Centropus grillii. J Ornithol 146:314–24. Goymann W, Wingfield JC. 2004. Competing females and caring males. Sex steroids in African black coucals, Centropus grillii. Anim Behav 68:733-40. Goymann W, Wingfield JC. 2014. Male-to-female testosterone ratios, dimorphism, and life history - What does it really tell us? Behav Ecol 25:685–99. Goymann W, Wittenzellner A, Schwabl I, Makomba M. 2008. Progesterone modulates aggression in sex-role reversed female African black coucals. Proc R Soc B Biol Sci 275:1053-60. Gratto-Trevor CL, Fivizzani AJ, Oring LW, Cooke F. 1990. Seasonal changes in gonadal steroids of a monogamous versus a polyandrous shorebird. Gen Comp Endocrinol 80:407-18. Gwynne DT. 1991. Sexual competition among females: What causes courtship-role reversal? Trends Ecol Evol 6:118–21.

Hare RM, Simmons LW. 2018. Sexual selection and its evolutionary consequences in female

Hews DK. Moore MC. 1995. Influence of androgens on differentiation of secondary sex characters in tree lizards, *Urosaurus ornatus*. Gen Comp Endocrinol. Hirschenhauser K, Oliveira RF. 2006. Social modulation of androgens in male vertebrates: Meta-analyses of the challenge hypothesis. Anim Behav 71:265–77. Hoquet T. 2020. Bateman (1948): rise and fall of a paradigm? Anim Behav In press. Horton BM, Hudson WH, Ortlund EA, Shirk S, Thomas JW, Young ER, Zinzow-Kramer WM, Maney DL. 2014. Estrogen receptor α polymorphism in a species with alternative behavioral phenotypes. Proc Natl Acad Sci 111:1443–48. Hotchkiss AK, Lambright CS, Ostby JS, Parks-Saldutti L, Vandenbergh JG, Gray Jr LE. 2007. Prenatal testosterone exposure permanently masculinizes anogenital distance, nipple development, and reproductive tract morphology in female Sprague-Dawley rats. Toxicol Sci 96:335-45. Johns JE. 1964. Testosterone-induced nuptial feathers in phalaropes. Condor 66:449–55. Kabelik D, Morrison JA, Goodson JL. 2010. Cryptic regulation of vasotocin neuronal activity but not anatomy by sex steroids and social stimuli in opportunistic desert finches. Brain Behav Evol 75:71-84. Knapp R, Wingfield JC, Bass AH. 1999. Steroid hormones and paternal care in the plainfin midshipman fish (Porichthys notatus). Horm Behav 35:81–89. Kokko H, Jennions MD. 2008. Parental investment, sexual selection and sex ratios. J Evol Biol 21:919-48. Kvarnemo C, Ahnesjo I. 1996. The dynamics of operational sex ratios and competition for mates. Trends Ecol Evol 11:404–8. Liker A, Freckleton RP, Székely T. 2013. The evolution of sex roles in birds is related to adult sex ratio. Nat Commun 4:1-6.

dimorphism including male-typical carotenoid but not melanin plumage pigmentation in a

Lindsay WR, Barron DG, Webster MS, Schwabl H. 2016. Testosterone activates sexual

- female bird. J Exp Biol 219:3091–99.

 Lipshutz SE, George EM, Bentz AB, Rosvall KA. 2019. Evaluating testosterone as a phenotypic integrator: From tissues to individuals to species. Mol Cell Endocrinol 496:110531.

 Lipshutz SE, Rosvall KA. 2020. Testosterone secretion varies in a sex- and stage-specific manner: Insights on the regulation of competitive traits from a sex-role reversed species.

 Gen Comp Endocrinol 292:113444.
- Maney DL, Goodson JL. 2011. Neurogenomic mechanisms of aggression in songbirds,

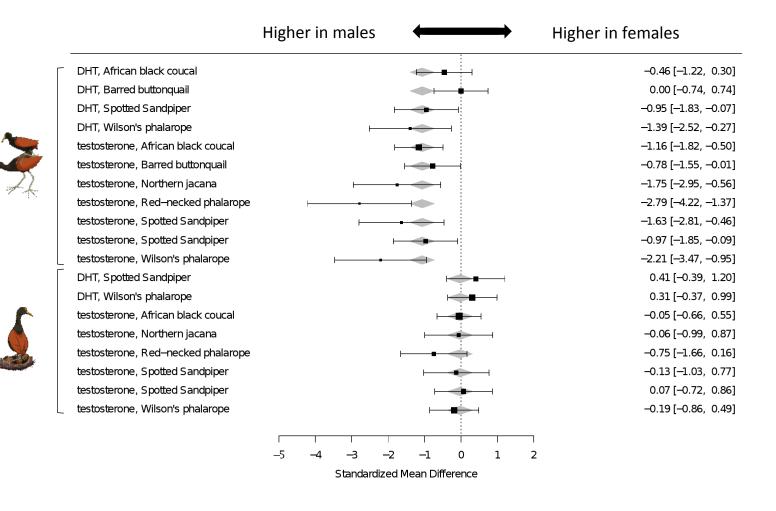
 Advances in Genetics.
- Mayer I, Borg B, Pall M. 2004. Hormonal control of male reproductive behaviour in rishes: A stickleback perspective. Behaviour 141:1499–1510.
- Mayer I, Rosenqvist G, Borg B, Ahnesjö I, Berglund A, Schulz RW. 1993. Plasma levels of sex
 steroids in three species of pipefish (Syngnathidae). Can J Zool 71:1903–7.
- McCarthy MM. 2016. Multifaceted origins of sex differences in the brain. Philos Trans R Soc B Biol Sci 371.
- Moore MC, Hewsf DK, Knapp R. 1998. Hormonal control and evolution of alternative male phenotypes: Generalizations of models for sexual differentiation. Am Zool 38:133–51.
- Mori H, Matsuda KI, Tsukahara S, Kawata M. 2010. Intrauterine position affects estrogen
 receptor α expression in the ventromedial nucleus of the hypothalamus via promoter DNA
 methylation. Endocrinology 151:5775–81.
 - Muck C, Goymann W. 2011. Throat patch size and darkness covaries with testosterone in females of a sex-role reversed species. Behav Ecol 20:1312–19.
- Muck C, Goymann W. 2019. Exogenous testosterone does not modulate aggression in sex-rolereversed female Barred Buttonquails, *Turnix suscitator*. J Ornithol 160:399–407.
- Navara KJ. 2013. Hormone-mediated adjustment of sex ratio in vertebrates. Integr Comp Biol 53:877–87.
 - Nottebohm F. 1980. Testosterone triggers growth of brain vocal control nuclei in adult female

canaries. Brain Res 189:429–36.
Oring LW, Fivizzani AJ, Colwell MA, El Halawani ME. 1988. Hormonal changes associated with
natural and manipulated incubation in the sex-role reversed Wilson's phalarope. Gen
Comp Endocrinol 72:247–56.
Oring LW, Fivizzani AJ, El Halawani ME, Goldsmith A. 1986. Seasonal changes in prolactin and
luteinizing hormone in the polyandrous spotted sandpiper, Actitis macularia. Gen Comp
Endocrinol 62:394–403.
Partridge C, Boettcher A, Jones AG. 2010. Short-term exposure to a synthetic estrogen disrupts
mating dynamics in a pipefish. Horm Behav 58:800–807.
Peterson MP, Rosvall KA, Taylor CA, Lopez JA, Choi J-H, Ziegenfus C, Tang H, Colbourne JK,
Ketterson ED. 2014. Potential for sexual conflict assessed via testosterone-mediated
transcriptional changes in liver and muscle of a songbird. J Exp Biol 217:507–17.
Pfannkuche KA, Gahr M, Weites IM, Riedstra B, Wolf C, Groothuis TGG. 2011. Examining a
pathway for hormone mediated maternal effectsyolk testosterone affects androgen
receptor expression and endogenous testosterone production in young chicks (Gallus
gallus domesticus). Gen Comp Endocrinol 172:487–93.
Phoenix C, Goy R, Gerall A, Young W. 1959. Organizing action of prenatally administered
testosterone propionate on the tissues mediating mating behavior in the female guinea pig.
Endocrinology 65:369–382.
Rissman EF, Wingfield JC. 1984. Hormonal correlates of polyandry in the spotted sandpiper,
Actitis macularia. Gen Comp Endocrinol 56:401–5.
Rohatgi A. 2019. WebPlotDigitizer
Rosvall KA. 2011. Intrasexual competition in females: Evidence for sexual selection? Behav
Ecol. 22:1131-1140.
Rosvall KA, Bergeon Burns CM, Barske J, Goodson JL, Schlinger BA, Sengelaub DR,

Ketterson ED. 2012. Neural sensitivity to sex steroids predicts individual differences in

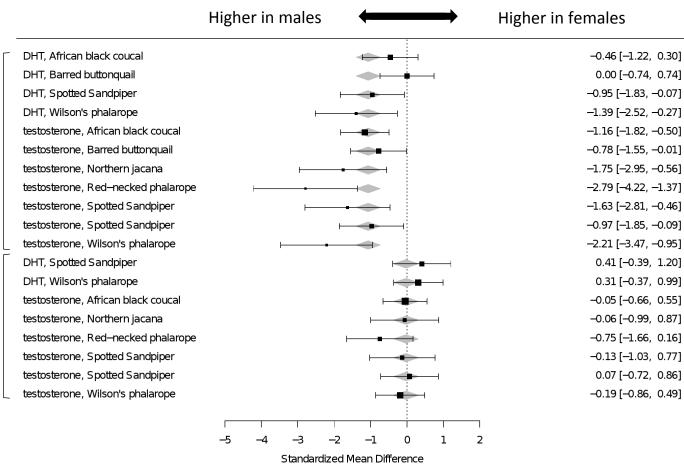
- aggression: implications for behavioural evolution. Proc R Soc B Biol Sci 279:3547–55. Schlinger BA, Fivizzani AJ, Callard G V. 1989. Aromatase, 5 alpha- and 5 beta-reductase in brain, pituitary and skin of the sex-role reversed Wilson's phalarope. J Endocrinol. Schmidt KL, Pradhan DS, Shah AH, Charlier TD, Chin EH, Soma KK. 2008. Neurosteroids, immunosteroids, and the Balkanization of endocrinology. Gen Comp Endocrinol 157:266-74. Schulz RW, de França LR, Lareyre J-J, LeGac F, Chiarini-Garcia H, Nobrega RH, Miura T. 2010. Spermatogenesis in fish. Gen Comp Endocrinol 165:390–411. Schumer M, Krishnakant K, Renn SCP. 2011. Comparative gene expression profiles for highly
- Schumer M, Krishnakant K, Renn SCP. 2011. Comparative gene expression profiles for highly similar aggressive phenotypes in male and female cichlid fishes (*Julidochromis*). J Exp Biol 214:3269–78.
- Scobell SK, Mackenzie DS. 2011. Reproductive endocrinology of Syngnathidae. J Fish Biol 78:1662–80.
- 540 Sköld HN, Amundsen T, Svensson PA, Mayer I, Bjelvenmark J, Forsgren E. 2008. Hormonal 541 regulation of female nuptial coloration in a fish. Horm Behav 54:549–56.
- 542 Smiley KO. 2019. Prolactin and avian parental care: New insights and unanswered questions.

 543 Horm Behav 111:114–30.
- Soma KK. 2006. Testosterone and aggression: Berthold, birds and beyond. J Neuroendocrinol 18:543–51.
- Staub NL, De Beer M. 1997. The role of androgens in female vertebrates. Gen Comp Endocrinol 108:1–24.
- Storey AE, Alloway H, Walsh CJ. 2020. Dads: Progress in understanding the neuroendocrine basis of human fathering behavior. Horm Behav 119:104660.
- Tomaszycki ML, Peabody C, Replogle K, Clayton DF, Tempelman RJ, Wade J. 2009. Sexual differentiation of the zebra finch song system: potential roles for sex chromosome genes.
- 552 BMC Neurosci 10:24.


- Trivers RL, 1972, Parental investment and sexual selection, In: Campbell B, editor, Sexual Selection and the Descent of Man: The Darwinian Pivot Chicago: Aldine. p. 136–79. Van Nas A, Guhathakurta D, Wang SS, Yehya N, Horvath S, Zhang B, Ingram-Drake L, Chaudhuri G, Schadt EE, Drake TA, Arnold AP, Lusis AJ. 2009. Elucidating the role of gonadal hormones in sexually dimorphic gene coexpression networks. Endocrinology 150:1235-49. Viechtbauer W. 2010. Conducting meta-analyses in R with the metafor. J Stat Softw 36:1–48. Vincent A, Ahnesjo I, Berglund A, Rosenqvist G. 1992. Pipefishes and seahorses: Are they all sex role reversed? Trends Ecol Evol 7:237-41. Vitousek MN, Johnson MA, Donald JW, Francis CD, Fuxjager MJ, Goymann W, Hau M, Husak JF, Kircher BK, Knapp R, Martin LB, Miller ET, Schoenle LA, Uehling JJ, Williams TD. 2018. Data Descriptor: HormoneBase, a population-level database of steroid hormone levels across vertebrates. Sci Data 5:1–7. Voigt C. 2016. Neuroendocrine correlates of sex-role reversal in barred buttonquails. Proc R Soc B Biol Sci 283. Voigt C, Ball GF, Balthazart J. 2009. Sex differences in the expression of sex steroid receptor mRNA in the quail brain. J Neuroendocrinol 21:1045-62. Voigt C, Goymann W. 2007. Sex-role reversal is reflected in the brain of African black coucals (Centropus grillii). Dev Neurobiol 67:1560–73. vom Saal FS, Bronson FH. 1980. Sexual characteristics of adult female mice are correlated with their blood testosterone levels during prenatal development. Science (80) 208:597 – 599. Wade J. 2016. Genetic regulation of sex differences in songbirds and lizards. Philos Trans R Soc B Biol Sci 371.
- Wingfield JC, Hegner RE, Dufty AM, Ball GF. 1990. The "Challenge Hypothesis": Theoretical
 implications for patterns of testosterone secretion, mating systems, and breeding

Wingfield JC, Ramenofsky M, Hegner RE, Ball GF. 2019. Whither the challenge hypothesis?

Horm Behav 104588.


Parenting

Courtship

Parenting

Trait	Phenotype Species Breeding	g F_Mean	F_N	F_SD
DHT	Circulating HoAfrican black (Courtshi	p 0.095	21	0.119
DHT	Circulating HoBarred button Courtshi	p 0.030	14	0.026
DHT	Circulating HoSpotted Sand; Courtshi	p 0.120	14	0.075
DHT	Circulating HoWilson's phala Courtshi	p 0.327	13	0.187
testosterone	Circulating HoAfrican black (Courtshi	p 0.567	25	0.295
testosterone	Circulating HoBarred button Courtshi	p 0.200	14	0.374
testosterone	Circulating HoNorthern jaca Courtshi	p 0.510	12	0.450
testosterone	Circulating HoRed-necked p Courtshi	p 0.085	8	0.133
testosterone	Circulating HoSpotted Sand; Courtshi	p 0.630	8	0.651
testosterone	Circulating HoSpotted Sand; Courtshi	p 0.180	14	0.112
testosterone	Circulating HoWilson's phala Courtshi	p 0.505	13	0.343
DHT	Circulating HoSpotted Sand; Parental	0.120	14	0.075
DHT	Circulating HoWilson's phala Parental	0.327	13	0.187
testosterone	Circulating HoAfrican black (Parental	0.567	25	0.295
testosterone	Circulating HoNorthern jaca Parental	0.510	12	0.450
testosterone	Circulating HoRed-necked p Parental	0.085	8	0.133
testosterone	Circulating HoSpotted Sand, Parental	0.630	8	0.651
testosterone	Circulating HoSpotted Sand; Parental	0.180	14	0.112
testosterone	Circulating HoWilson's phala Parental	0.505	13	0.343

M_Mean	M_N	M_SD	Citation	Notes
0.179	10	0.266	Voigt and Goy	Values came from webplot digitizer
0.030	14	0.030	Voigt 2016	
0.200	9	0.090	Rissman and	Wingfield 1984
0.907	5	0.722	Fivizzani et al	. 1986
2.157	17	2.095	Goymann and	Values came from hormonebase
0.500	14	0.374	Voigt 2016	
5.260	5		Lipshutz and	
3.979	7	1.926	Gratto-Trevor	combined data from all 2 years
3.710	7		_	Values came from hormonebase
0.950	9			Wingfield 1984
3.608	5		Fivizzani et al	
0.090	11			Wingfield 1984
0.262	24		Fivizzani et al	
0.590	18		=	d Wingfield 2004
0.540	7		Lipshutz and	
0.222	13			r et al. 1990 GCE
0.740	12		Oring et al. 19	
0.170	11		Rissman and Wingfield 1984	
0.625	24	0.740	Fivizzani et al	. 1986