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Context plays a key role in impulsive adverse behaviors such as fights, suicide attempts, binge-drinking, and smoking lapse.
Several contexts dissuade such behaviors, but some may trigger adverse impulsive behaviors. We define these latter contexts
as ‘opportunity’ contexts, as their passive detection from sensors can be used to deliver context-sensitive interventions.

In this paper, we define the general concept of ‘opportunity’ contexts and apply it to the case of smoking cessation. We
operationalize the smoking ‘opportunity’ context, using self-reported smoking allowance and cigarette availability. We show
its clinical utility by establishing its association with smoking occurrences using Granger causality. Next, we mine several
informative features from GPS traces, including the novel location context of smoking spots, to develop the SmokingOpp
model for automatically detecting the smoking ‘opportunity’ context. Finally, we train and evaluate the SmokingOpp model
using 15 million GPS points and 3,432 self-reports from 90 newly abstinent smokers in a smoking cessation study.
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1 INTRODUCTION
‘Impulsivity’ is defined in [15] as ‘a predisposition toward rapid, unplanned reactions to internal or external stimuli
with diminished regard to the negative consequences of these reactions to the impulsive individual or to others.
Examples of impulsive behaviors include fights (e.g., verbal arguments and road rage), impulsive buying [36, 53],
suicide attempts [43], overeating [71], binge-drinking [68], gambling [60], and smoking lapse [8]. Decades of
prior works show that one of the major precipitants of such behaviors is the existence of ‘contexts’ or situational
factors that may increase the risk of impulsive behaviors and in some cases, may lead to the final occurrence
of the impulsive behavior. We refer to such contexts as ‘opportunity’ contexts, because automated detection of
these contexts from mobile sensors gives us an opportunity to deliver novel sensor-triggered interventions.
‘Opportunity’ Context: An ‘opportunity’ context for an impulsive adverse behavior is a Spatio-Behavioro-

Temporal context that is ‘ripe’ for the occurrence of such behaviors. We call the ‘opportunity’ contexts Spatio-
Behavioro-Temporal because, in addition to being influenced by the (spatial, social, environmental, and economic)
characteristics of the current place, the current context becomes an ‘opportunity’ context if specific behaviors
have been performed at the current and prior places.
We use the phenomenon of a forest fire to characterize the ‘opportunity’ contexts because it shares several

characteristics with impulsive adverse behavior. For instance, forest fire escalates quickly if the conditions are
conducive (e.g., dry leaves, low moisture, and wind.). Using the inhibitor-inducer terminology from the drug
development literature, an ‘opportunity’ context is created when there is an absence of inhibitors and presence of
inducers. In the case of a forest fire, lack of moisture or precipitation (inhibitors) and presence of dry leaves and
wind (inducers) create suitable conditions for the spread of a forest fire that may be sparked by an unattended camp
fire [67]. We provide several examples of absence of inhibitors and presence of inducers in Table 1 to demonstrate
the generalizability of this characterization for different impulsive adverse behaviors.

The detection of ‘opportunity’ contexts using sensors can be used to deliver sensor-triggered mobile interven-
tions that are optimized for the current context. Doing so, however, first requires the automated detection of
such ‘opportunity’ contexts. We present a computational framework that can be used for detecting ‘opportunity’
contexts passively using mobile sensors in the field environment.

Table 1. Examples of Lack of Inhibitors and Presence of Inducers for different impulsive behaviors

Impulsive Behavior Absence of Inhibitors Presence of Inducers

Fights (e.g., road rage) Absence of Law enforcement
or calming influencers

Access to Weapons, physical strength,
supporting personnel

Impulsive Buying (online or offline) Having credit/money on hand Promotional incentives
on products

Smoking Lapse Smoking Allowance Availability of cigarettes

Suicide Attempts Being alone or away
from family/friends

Availability of means to
commit suicide

Overeating,
binge-drinking Not having to pay per use Competitors or companions

doing the same thing
Gambling Having credit/funds Winning or losing streaks
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1.1 Technical Challenges
Automated detection of ‘opportunity’ contexts from mobile sensors involves the following three challenges,

Feasibility:Many of the contextual characteristics (absence of inhibitors and the presence of inducers) that
define the opportunity usually cannot be directly inferred from the currently available mobile sensors. Hence,
they require non-trivial computational modeling.
Validation: Evaluating the accuracy of ‘opportunity’ context detection is challenging because it can usually

be ascertained only after the occurrence of impulsive adverse behavior or event, which in many cases may be
rare (and sometimes tragic) events.
Temporal Precision: There may be multiple inhibitors and inducers involved in an ‘opportunity’ context.

Further, each may be better characterized by its density (e.g., the density of dry leaves) or intensity (e.g., moisture
level, wind speed) rather than a binary level of presence or absence. Therefore, it is non-trivial to decide when to
declare the emergence of an ‘opportunity’ context.

1.2 Application to Smoking Lapse
To demonstrate the utility of the concept of ‘opportunity’ contexts, we use the case of smoking ‘opportunity’
context, which is hypothesized to increase the probability of smoking lapse.

There are several reasons for this choice. First, tobacco smoking continues to be a leading cause of preventable
death in the world, causing more than 7 million deaths per year, and is projected to kill 8 million per year by
2030 [1]. On a positive note, the risk of dying from smoking-related diseases is reduced by 90% on quitting
smoking before the age of 40, and approximately 7 out of 10 adult smokers in the U.S. attempt to quit smoking
completely. However, only 6.2% of quit attempts are successful. The majority of participants relapse in the first
few days after quitting. Hence, developing technologies for smoking cessation is of high societal importance.
Second, there have been several recent advances in the detection of smoking from mobile sensors, making it

feasible to do real-time-real-life smoking detection [55]. This has resulted in substantial real-life mobile sensor
data available to pursue this research on the detection of ‘opportunity’ contexts. We use data collected from one
such recent study. This helps us partially address the feasibility challenge.

Third, many smoking cessation studies include self-reports multiple times daily. Some of the questions included
in these self-reports enquire directly about the smoking restrictions in the current place and the availability of
cigarettes. This provides us with labels of inhibitors and inducers, together with associated sensor data. We use
these labels and the detection of smoking to develop a framework on how to address the validation challenge.
Fourth, the labels of smoking allowance at the current place and the availability of cigarettes can both be

binary decisions. This makes the temporal precision challenge tractable. Despite there being one inhibitor
and inducer in this case, the temporal precision challenge is still non-trivial because the assessment of both
the inhibitor and inducer is only via self-report and does not contain any information regarding the initiation
of the state transition. In particular, the self-report only indicates whether the current place allows smoking
but not when the participant entered the current place. The place here can refer to stepping outdoors from a
building (where smoking may be allowed). Similarly, the self-report may indicate the availability of cigarette at
the moment, but it contains no information on when the individual entered a place where cigarette was available.
In summary, the problem of detecting the smoking ‘opportunity’ context demonstrates the challenges of

reliably detecting a spatio-behavioro-temporal context using mobile sensors.

1.3 Contributions
Our work makes several new contributions in developing the SmokingOpp model. We introduce the concept of
smoking ‘opportunity’ context, present its characterization (in Section 5) and measurement (in Section 5.2.1),
and show that it predicts the smoking frequency (in Section 5.3). We introduce a new spatial context called
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smoking spot (in Section 6.3) and perform context mining to discover informative features from GPS data for
detecting the smoking ‘opportunity’ context (in Section 6). We propose segmentation of the sensor time-series
into windows that are based on the change in both location and activity state (instead of location transitions
alone) to obtain higher temporal precision and greater coverage in detecting smoking ‘opportunity’ context
transitions (in Section 7.5).

1.4 Utilities of Detecting the Smoking ‘Opportunity’ Context
This work has several utilities for the computing and health research communities. First, passive detection of the
smoking ‘opportunity’ context reduces the burden on participants and reduces the recall-bias associated with
retrospective self-reports. Second, our framework for continuous sensing and detection of ‘opportunity’ contexts
offers the opportunity to deliver context-sensitive sensor-triggered intervention for smoking cessation. Third,
researchers can analyze multi-modal contextual data at higher temporal resolution in vulnerable contexts along
with psychological contexts (e.g., stress [32], craving [16]), and assess lapse risk.

2 RELATED WORKS
Our work on the smoking ‘opportunity’ context is related to and builds upon several prior works. First, is the
analysis of context associated with impulsive adverse behaviors, which has mostly been from self-reports. Second,
our model for detecting the smoking ‘opportunity’ context is built upon a more in-depth analysis of mobility
patterns obtained from GPS traces. We summarize prior works on context detection from GPS traces. Finally, our
model can be leveraged for designing and delivering sensor-based interventions to support smoking cessation.
We describe recent works on geospatial analysis of smoking exposure and context-based smoking intervention.

Research on ‘Contexts’ Associated with Impulsive Adverse Behaviors from Self-Report: The effect of
‘context’ or situational factors on impulsive adverse behavior has been extensively studied via self-reports. It has
been found that smoking allowance and availability of cigarettes are significantly associated with the temptation
of smoking during smoking cessation and in some cases, may lead to the occurrence of smoking lapse [64].
Works on impulsive eating/binge drinking, show that food cues (context associated with seeing, smelling food),
time-of-day, leads to impulsive eating [35, 58]. Contexts such as companion-competition, peer-family influence,
social gatherings, are highly conducive to binge-drinking [34]. This work [40] presents a detailed review of
the contexts that may lead to impulsive buying behaviors, including having money on someone, promotional
incentives, attractive advertisements, and others. These works motivate the formulation of ‘opportunity’ contexts.
Explicitly, we define the smoking ‘opportunity’ context using smoking allowance as the absence of inhibitor and
cigarette availability as the presence of inducer.

Context Detection from GPS Traces: The concept of context [20] and context-aware computing [7] has
inspired extensive research. Recent works have focused on estimating psychological contexts such as stress [13,
14, 39] by analyzing human mobility patterns from GPS traces. Other works focus on detecting geospatial contexts
to infer locations where a user may explore opportunities for performing activities such as ‘eating,’ ‘shopping,’
‘entertainment,’ ‘sports and exercise,’ ‘fun and amusement,’ using location and activity histories of other users [74].
Detection of contexts with a potential for cue exposure utilizes GPS traces of users to quantify exposure to food
outlets [17, 62]. In addition to GPS data, several other sources of data have been used to detect contexts. For
example, [54] develops machine learning techniques to mine noisy data from social media and learns patterns
to inform a descriptive and predictive model to infer health status. Although we leverage methods from these
prior works on cleaning and processing GPS traces to detect dwell places, the development of a geodatabase of
smoking spots is a novel contribution of our work.
Geo-spatial Exposure and Context-Sensing Intervention During Smoking Cessation: Prior work [37]

has demonstrated the utility of creating a geodatabase of Point-of-Sale tobacco outlets by showing their association
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with craving and smoking lapse during smoking cessation. Recent works [48, 51] have investigated the effects of
tobacco outlet density and proximity to the user’s home on smoking lapse. They quantify exposure to smoking
by the walking distance to the tobacco outlet within a pre-defined range of 250m and 500m from the user’s
home. Finally, [41] identifies high-risk locations for smoking using rule-based geo-fencing and provides episodic
context-triggered smoking interventions that are well accepted among users. Our work complements these
works by creating a new geodatabase of smoking spots, where smoking is highly likely to occur, including
micro-locations at personal places such as designated smoking areas outside office buildings or stepping outdoors
at residences, that are not easily geofenced.

3 DATASET
We use the data collected in a smoking cessation study to develop the SmokingOpp model. The Institutional Re-

view Board approved the study (IRB), and all the participants provided written consent. Participant demographics,
inclusion criteria, study setup, and data collected appear below.

3.1 Wearable Sensors and Smartphone
Participants wore a chest-band of sensors (AutoSense [22]) consisting of ECG, respiration, and accelerometers
and a wristband consisting of a 3-axis accelerometer and 3-axis gyroscope on both wrists. The participants wore
the sensor-suite only during their waking hours (up to 16 hours per day, from wake till bed-time).
Participants carried a study-provided smartphone with the open-source mCerebrum software [31] installed.

The study smartphone was used to communicate with the on-body sensor suite and collect self-reports via
Ecological Momentary Assessments (EMA). The smartphone’s GPS sensor was utilized to collect GPS traces of
participants continuously at a rate of 1 GPS point every 1 second. The GPS data was extracted from the phone at
the end of the study. All the data, including wearable sensors, EMA data, GPS sensor traces, were stored in a
secure server with the open-source Cerebral-Cortex [28] software installed.

3.2 Participants
Participants were 126 smokers, 55 female, and 71 male, 18+ years of age, with a mean age of 49.134 ± 13.137
years. All participants were African-American, smoked at least 3 cigarettes per day, and were motivated to quit
smoking within the next 30 days of the start of the study. The participants were residents of a large city in the
USA and had a valid home address and telephone numbers. All of them agreed to wear the sensor suite.
Participants were excluded if they had a contraindication for the nicotine patch (e.g., participants at risk of

heart attack, angina, and other related health problems), active substance abuse or dependence issues, physically
unable to wear equipment, pregnant or lactating, or currently using tobacco cessation medications. Moreover,
participants who were unable to complete the entire study were excluded from the analysis.

3.3 Study Protocol
Interested participants were invited to an in-person information session where they were provided with detailed
information about the study. Once enrolled at the baseline visit, participants picked a smoking quit date. They
visited the lab during which they were trained in the proper use of the sensor devices and how to respond to
questionnaires in the form of Ecological Momentary Assessments (EMA) via mobile phones. They wore the
sensors for 4 days during the pre-quit phase. They received nicotine patch therapy, self-help materials, and
brief quitting advice. On their set quit date, participants returned to the lab. Then they wore the sensors for
10 more days during the post-quit (or smoking cessation) phase. At the end of 10 days (14 days from the study
start), participants returned to the lab and underwent biochemical verification of their smoking status. All the
participants were compensated for their time and effort.
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Fig. 1. Data processing pipeline for training and evaluating the SmokingOpp model. The dotted boundaries around the
chestband and respiration data denote that using respiration can improve the accuracy of smoking detection, but is optional.

For uniform coverage of a day by EMA’s, the day was divided into 4 blocks. The first three blocks consisted of
4 hours each, with remaining time assigned to the last block). In each block, up to 3 EMAs were triggered with a
minimum separation of 30 minutes between successive prompts. Irrespective of the source (random or triggered
by the detection of stress or smoking), each EMA included the two items we use for constructing the smoking
‘opportunity’ context labels. Thus, we are able to use each EMA for ground truth labeling.

3.4 Data Description
A total of 16,562 hours of wearable sensor data (about 900 million data points) and over 20 million GPS points
across 1,519 person-days were collected from 126 participants. Participants also provided over 4,000 EMAs, with
a compliance rate of 67.241% (4,136 out of 6,151 EMA’s prompted, were completed by the participants). Each EMA
had 53 items that took participants an average of 4.23 minutes to complete.

3.5 Data Screening for Modeling
As we use cross-subject validation, we ensure uniformity and sufficiency of self-reported data (that is used for
labeling). Therefore, we select only those participants who provided a minimum of 2 self-reports on each day
of the pre-quit and post-quit period. As a result, 26 participants were excluded from the analysis. We use GPS
sensor data for model development. Hence, participants who had no location data for more than 3 consecutive
days (since this limits us from understanding the prior locations visited for an extended amount of time) were
excluded from the study. As a result, 10 participants were excluded. Thus, we are left with 90 participants. That
amounts to 12,696 hours of sensor data (about 700 million data points), 15+ million GPS points and 3,432 (out of
4,964, 69.137% completion rate) completed EMAs across 1,080 participant days.

4 THE SMOKINGOPP FRAMEWORK
Figure 1 presents an overview of the entire SmokingOpp framework. It starts with the data sources (represented
by the boxes on the far left), followed by the various stages of processing they go through (represented by the
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boxes in the middle), and how they contribute to the final model (represented by the boxes on the far right).
In Sections 5, 6, and 7, we describe further details of each component as follows. First, we define the smoking
‘opportunity’ context in terms of smoking allowance (absence of inhibitor) and cigarette availability (presence
of inducer), (in Section 5.2). Second, we develop a binary measure of the smoking ‘opportunity’ context from
self-report, to use as ground truth labels (in Section 5.2.1). Third, we test the clinical utility of this new measure.
We use Granger Causality to test how well the smoking ‘opportunity’ context predicts smoking frequency (in
Section 5.3). Fourth, we mine the noisy mobile sensor data to derive meaningful contexts and analyze their
significance in detecting the smoking ‘opportunity’ context. We mine the contexts from GPS traces and GIS
databases (in Section 6). Fifth, we determine the appropriate size of data segmentation (i.e., window length)
that can allow efficient detection of every transition in the smoking ‘opportunity’ context with high temporal
precision (in Section 7.1). Sixth, we assign ground truth labels (in Section 7.2) and compute informative features
from the candidate windows (in Section 7.3) using the insights from the context mining analysis. Finally, we train
(in Section 7.4) and test (in Section 7.5) the SmokingOpp model on real-life data.

5 DEFINING THE SMOKING ‘OPPORTUNITY’ CONTEXT
In the following, we first provide a brief description of smoking cessation and the role of context in triggering a
smoking lapse. We then present our characterization of the smoking ‘opportunity’ context based on the user
reported (via EMA) status of availability of cigarettes and smoking allowance and propose a binary measure of
the smoking ‘opportunity’ context (for labels). Finally, we demonstrate, via Granger causality analysis, that the
current state of cigarette availability and smoking allowance Granger-cause (are significantly predictive of) the
future number of cigarettes smoked.

5.1 Smoking Cessation and the Role of Context in Triggering Smoking Lapse
The process in which smokers attempt to quit smoking and remain abstinent is termed as smoking cessation.
During abstinence, nicotine deprivation causes withdrawal symptoms (such as craving [63]). In this vulnerable
period, newly abstinent smokers may lapse if they experience acute stress, elation, or restlessness, or are exposed
to certain ‘contexts’ (or environmental cues) such as alcohol, seeing others smoke, or cigarette butts [63, 64]. First
lapses usually lead to a full relapse (when the newly abstinent smoker reverts to more regular smoking) [64]. Prior
works focus on detecting internal states such as stress [32, 56] and craving [16] as well as points of interest such
as tobacco point of sale and bars [37], that are highly conducive to smoking [19, 64]. We complement these prior
works by detecting ‘personalized spatial contexts’ including smoking spots and micro-locations at significant
dwell places that are highly conducive to smoking for each newly abstinent smoker. Individuals who are better
able to cope with such at-risk situations are successful in maintaining abstinence [27].

5.2 Inhibitor-Inducer Characterization of the Smoking ‘Opportunity’ Context and Its Measurement
The smoking ‘opportunity’ context during smoking cessation, is a Spatio-Behavioro-Temporal context that is
‘ripe’ for the occurrence of smoking lapse. For example, a smoking ‘opportunity’ may be created due to having
purchased cigarettes in the recent past (e.g., on the way home) and stepping outdoors in the current place.
We characterize the smoking ‘opportunity’ context using smoking allowance at the current location as the

absence of inhibitor and cigarette availability as the presence of inducer.
Absence of Inhibitor — Smoking Allowance: Smoking allowance (or restrictions) depends on the charac-

teristics of the current place and being indoors vs. outdoors. For example, smoking allowance near a tobacco
outlet or bar is more prevalent as compared to near hospitals, schools, or places of worship, which have very
specific and limited spaces of smoking allowance. But, in several cases detecting the allowance state of a place
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may be non-trivial due to GPS inaccuracies and ambiguity in the allowance state in the current place. For example,
the smoking allowance at personal places (e.g., own home, friend’s home) may depend on the owners.
Presence of Inducer — Cigarette Availability: Cigarette Availability refers to the state when an individual

has direct access to (e.g., on their person) or known pathways to access (e.g., borrowing from someone). In the
absence of direct observation of purchase, detection of the change in cigarette availability is non-trivial.
Association with Impulsive Adverse Behavior — Smoking Lapse: Prior works show that during absti-

nence, high availability of cigarettes, or heightened awareness of cigarette availability increases the risk of
smoking [47]. Smoking allowance is also associated with an increased likelihood of lapse [64].

5.2.1 Constructing a Binary Label of the Smoking ‘Opportunity’ Context. We utilize momentary self-reports, to
label smoking allowance and cigarette availability at a given time in the natural environment of participants. For
assessment of smoking allowance, the momentary self-report question, i.e., Ecological Momentary Assessment
(EMA), ‘Right now, Is smoking allowed where you are?’ has 3 response options of ‘Smoking is forbidden,’ ‘Smoking is
discouraged,’ ‘Smoking is allowed.’ For assessment of cigarette availability, the question ‘Right now, Cigarettes are
available to me?’ has 5 response options of ‘Not at All,’ ‘With Extreme Difficulty,’ ‘With Difficulty,’ ‘Fairly Easily,’
‘Easily.’ Given these categorical responses to the two items, we need a partitioning of the 15 (=5 × 3) categorical
response combinations to obtain a binary label of the smoking ‘opportunity’ context — ‘high’ or ‘low.’ Using
decades of experience in smoking cessation research, we narrow our design choices to the following two,

• Easily-Allowed: We consider the smoking ‘opportunity’ context to be ‘high,’ if cigarettes are ‘Easily’
available and ‘Smoking is Allowed’ at the current place. For the remaining 14 response combinations, the
smoking ‘opportunity’ context is labeled as ‘low.’

• Easily-Fairly-Allowed: We consider the smoking ‘opportunity’ context to be ‘high,’ if cigarettes are
‘Easily’ or ‘Fairly Easily’ available and ‘Smoking is Allowed’ at the current place. For the remaining 14
response combinations, the smoking ‘opportunity’ context is labeled as ‘low.’

We use data analysis to explore this design space and settle on a specific mapping (in Section 7.5).

5.3 Granger Causality Analysis Between the Smoking ‘Opportunity’ Context and Cigarette Smoking
Prior works show that smoking lapse is associated with the easy availability of cigarettes and exposure to

pro-smoking environments (high smoking allowance) [64]. The goal of this work is to develop a model for
continuous assessment of cigarette availability and smoking allowance. To do so, we first show evidence (from
our data set) that smoking allowance and cigarette availability predict future smoking. As a variable to describe
smoking usage, we use the number of cigarettes smoked. Several other variables are possible, such as time to first
lapse or whether there is a lapse, but the number of cigarettes smoked is the easiest to model.
More precisely, assume we have three time series {xt }t ∈N, {zt }t ∈N, {yt }t ∈N, where xt is cigarette availability,

zt is smoking allowance, and yt is the number of cigarettes smoked. If we control for yt up to time t , are xt and
zt predictive of future values of yt ? In other words, are current cigarette availability and smoking allowance
predictive of future cigarettes smoked? If the answer is yes, and more recent values of cigarette availability and
smoking allowance are more predictive than those further into the past, then this suggests that it would be
advantageous to determine higher frequency changes in cigarette availability and smoking allowance (which we
use to characterize the smoking ‘opportunity’ context, as described in Section 5.2) via mobile sensor data.

The standard setting for testing this is Granger causality [25]. In this setting, we specify a model with k lags
yt = α + a1yt−1 + · · · + akyt−k + b1xt−1 + · · ·bkxt−k + c1zt−1 + · · · ckzt−k + ϵt (1)

We would like to do the following hypothesis test. The null is
H0 : b1 = · · · = bk = c1 = · · · = ck = 0 (2)
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that is, that lags of cigarette availability and smoking allowance have no effect on number of cigarettes smoked.
The alternative hypothesis is

H1 : ∃i, 1 ≤ i ≤ k such that bi � 0 or ci � 0 (3)

that is, some lag of smoking availability or accessibility has an effect on number of cigarettes smoked.
However, the standard Granger causality model assumes normality of errors; our yt is non-negative count

data, while our xt and zt are ordinal levels. Under these conditions, the Gaussian error assumption will generally
not hold. It won’t be a good approximation unless the number of values yt can take is reasonably large, and the
skewness of yt |xt is low. Thus, using linear regression is often not appropriate. As an alternative, we can fit a
generalized linear model (GLM), which relaxes the assumption of Gaussian errors. A GLM [42] has three parts;
first, an exponential family distribution describing the response distribution as a function of parameters and
features, second, a linear predictor, and third, a link function д.
Given the setting above, the mean of the distribution is related to our features as follows,

E(yt ) = μ (4)

= д−1(α + a1yt−1 + · · · + akyt−k + b1xt−1 + · · ·bkxt−k + c1zt−1 + · · · ckzt−k ) (5)

and we want to test the null vs alternative hypothesis as above. The standard model for regression with count data
is Poisson regression [18]. This assumes that our response, conditioned on our features, is Poisson distributed.
Also, our link function is the log, with inverse link д−1 = exp. Using the Poisson distribution may give rise to
several issues. First is zero inflation; often count data exhibits more zeros than would be observed under a Poisson
distribution. Second is over-dispersion; in the Poisson distribution, the variance is equal to the mean, when, in
practice, the observed variance is often higher. One way to handle over-dispersion is to use negative binomial
regression, which generalizes Poisson regression with an additional parameter that describes the variance.
Hypothesis Tests:We would thus like to test the following hypotheses.
• Test for zero inflation
– H0: True model is Poisson
– H1: True model is zero-inflated Poisson. This is a mixture model where one mixture component is a
Poisson distribution, and the other mixture component takes the value 0 with probability 1.

• Over-dispersion: Poisson vs Negative Binomial
– H0: True model is Poisson
– H1: True model is negative binomial, which allows for more flexible variance

• Granger Causality
– H0: Cigarette availability and smoking allowance have no effect on future number of cigarettes smoked,
controlling for lags of cigarettes smoked

– H1: They have an effect

We can test each of these in sequence. Because we have three hypothesis tests, we apply the Bonferroni
correction. Our goal is to have the family-wise error rate P(reject any true H0) ≤ α , where α is chosen and
usually set to 0.05. In order to ensure this, the Bonferroni correction requires that the p-value for test i , denoted
by pi , to be pi <

α
n
, where n is the number of tests. For each Hypothesis test here, since we have three tests,

instead of seeking a p-value of < 0.05, we seek a p-value of < 0.05/3 = 0.017.
Exploratory Data Analysis:We focus on the post-quit EMA data for analysis; within and across participants,

this gives us 2, 388 observations. For our exploratory analysis, we focus on 400 observations. We will then perform
the hypothesis test on the remaining observations.
We start with a partial autocorrelation (PACF) plot to determine how many lags to use in our model. The PACF

gives the auto-correlation between the value at time t and each lag t − k , with linear dependence for lags in
between removed. Figure 2 shows the results. Note that this is a linear relationship between lag and future, and
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Smoking PACF plot of 400 observations
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Fig. 2. Partial Auto-correlation Function plot for the number of cigarettes smoked, suggestive of three lags for modeling.

we are technically using a GLM, which posits a non-linear relationship; however, it can still be useful for model
selection. Therefore, we use three lags.
Primary Data Analysis: First, we test for zero inflation via the countreg package in R, which uses the

hypothesis test developed in [69]. They derive a score test, which tests whether the mixture weight for the
zero-only distribution is 0. We obtain a p-value of 0.254 for this test and fail to reject the null hypothesis of no
zero inflation. For the remaining tests, we do not use a zero-inflated model. For the second test, we fit both a
Poisson regression and a negative binomial model. The latter has one additional parameter, which models the
variance. We can thus do a likelihood ratio test, where the resulting test statistic should have a X2

1 distribution.
We obtain a p-value of 0.001, which is below our Bonferroni corrected target p-value of 0.017. For the third test,
for Granger causality, we test two negative binomial models, one with the availability and allowance lags, and
one without. As these are nested models, we can also apply a X2

6 test, since the alternative model has six more
parameters than the null model. This test gives us a p-value of 5.202e − 05, well below the target p-value of 0.017.

Thus, we reject the null hypothesis that the lags of cigarette availability and smoking allowance have no effect
when including lags of the number of cigarettes smoked. This justifies using cigarette availability and smoking
allowance to quantify the smoking ‘opportunity’ context.

6 CONTEXT MINING FROM NOISY MOBILE SENSOR DATA
Prior works on detecting contextual cues for smoking lapse has focused on building a database of well-defined

geolocations such as cigarette point-of-sale. Detection of exposure to such locations can then be done via
geofencing. Our goal is to detect visitation to any location that may be conducive to a specific smoker. This may
include microlocations at personal places such as designated smoking areas outside office buildings or stepping
outdoors at residences, that are not easily geofenced.

Therefore, to detect dynamically changing exposures to smoking ‘opportunity’ contexts, we focus on identifying
sensor-derived contexts that can detect dynamic changes in the presence of inducers and the absence of inhibitors
for smoking. We propose a new context called smoking spots (i.e., where participants are observed to have
smoked before quitting) to supplement other informative contexts from the smoking cessation literature (e.g.,
bars). Moreover, we note that changes in the smoking ‘opportunity’ can not only occur when transitioning
from one spatial context into another but also in the same context (e.g., office building) if the participant steps
outdoors/indoors. Therefore, in addition to detecting the spatial context, we also detect the activity episodes.

6.1 Deriving Activity Episodes from the Wrist Worn Inertial Sensors
We infer whether a subject is in motion or not from the 3-axis wrist-worn accelerometers [21, 45]. Phone

accelerometer was not used because on some occasions (e.g., stepping outside of the house or a building, where
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Fig. 3. GMM based clustering produces a lower bound of 6.565 minutes (of dwell time) for determining a dwell place.

smoking is usually permitted), the phone may not be on the person. Hence, a vital context may be missed. The
accelerometry data collected during vehicular movements is not assessed. We do not consider the ‘in-vehicle’
context to be an ‘opportunity’ context, which can be addressed in future works.

6.2 Deriving Dwell Places and Location Transitions from GPS Traces
We employ a spatio-temporal clustering based on time and distance to detect dwell places from the noisy GPS

traces of a participant. We categorize the dwell places into significant and transient places based on the frequency
of visitation. We use the dwell places and the GPS traces of each participant to construct their location transitions.
A GPS trace is a sequence of time-stamped GPS points, tr = [p1, p2, ..., pm]. A GPS point pi = (xi , yi , ai , ti ),

∀0 ≤ i < m, consists of timestamp ti with (ti < ti+1), latitude and longitude (xi ,yi ), and GPS signal accuracy
at that point ai . GPS sensor noise, poor positioning signal, and other factors lead to inherent inaccuracies in
GPS traces. We de-noise the GPS traces via median filtering [75] as the gap between consecutive GPS points is
much less than fifty meters even at a speed of 100 kilometers per hour due to the sampling rate of 1 Hz in our
GPS traces. We perform median filtering, by substituting a GPS sample point pi , with the median of temporal
predecessor points from a window length of 2 minutes (i.e., 120 predecessor points).

6.2.1 Dwell Places. We use the de-noised GPS traces to derive dwell places (pl). More formally, a dwell place (pl)
is a geographical region where a user has been for at leastTd time within a distance of Dd around it. For example,
a user must stay at the gas station for some minimum time to be able to buy cigarettes there.

A pl is characterized by a set of consecutive GPS points {pm ,pm+1, ...,pk }, with three conditions: i.)d(pm ,pi ) ⩽ Dd ,
ii.) d(pk ,pk+1) > Dd , ∀i , wherem < i < k , and iii.) Interval(pm ,pk ) ⩾ Td . For computing the distance between
two points pm and pi (i>l), d(pm ,pi ), we use the haversine distance [66] 1 and time interval between two points is
computed as Interval(pm ,pk ) = |tm − tk |. Finally, we obtain a pl = (x, y, tarr , tdep ), where, (x ,y) is the centroid of
pl. User’s arrival and departure times into and out of pl are represented by tarr = tm and tdep = tk respectively.

Next, we use 200 meters for Dd based on prior works [75, 76]. But, forTd , there is no set threshold, as it depends
on the use case scenario. Hence, we use data analysis to find an appropriate value of Td that can distinguish
transit versus dwell at a pl.
Finding the minimum dwell time (Td ):We are interested in finding the minimum dwell time Td , which is

a lower bound on the dwell time at a location to declare it as a pl; we discard stops with a time of stay less than
Td . First, we compute the time spent (in minutes) within a distance threshold of 200m. Next, we observe that the
distribution of time spent clusters around several mean values. Hence, we use a Gaussian Mixture Model (a soft
1Haversine distance computes the greater circle distance (shortest distance on the surface of a sphere) between two points on the surface of
the earth.
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clustering method) to cluster the times spent within a distance threshold of Dd . We experiment using different
numbers of clusters/components for the Gaussian mixture model. Finally, we find that 5 components/clusters (see
Figure 3) minimizes the Bayesian Information Criterion (BIC) score. From Figure 3, we observe that Clusters 0
and 3 represent those with very low dwell times (ranging from 0.02 - 6.5 minutes). These may be from vehicular
movement and walking/running. Cluster 4 represents those places where participants dwell for a considerable
amount of time (ranging from 6.565 - 105.2 minutes). Finally, Clusters 1 and 2 represent those places where
participants usually dwell for a longer duration. These may be places where participants spend most of their time,
such as ‘home’ and ‘work.’ Based on this analysis, we use 6.565 minutes, which is the lower bound for cluster 4,
as the minimum dwell time (Td ).

6.2.2 Categorization of Dwell Places into Significant and Transient Places. We categorize the dwell places into
significant places and transient places based on the frequency of visitation.

Significant Places: Dwell places, where a participant frequently visits (e.g., ‘home,’ ‘work’) are categorized as
significant places. We apply a density-based clustering [24, 52] on the dwell places to obtain the significant places.
A participant i may have L significant places, which we denote as SP i = [SP i1, SP i2, .., SP il , .., SP

i
L].

Transient Places: Transient places are the dwell places which are not marked as a significant place. For
example, a ‘gas station’ or a ‘convenience store’ may be categorized as transient places.

6.2.3 Location Transitions. We use the dwell places to transform the GPS trace of a given participant into a set of
location transitions, where a transition occurs between the departure from one place and the arrival at the next.
We use the location and activity transitions as events to obtain the windows for detecting the smoking

‘opportunity’ context (in Section 7.1). Additionally, we use the significant and transient places along with other
information to derive the smoking spots, which are usually associated with the smoking ‘opportunity.’

6.3 The Smoking Spots
We identify a new context called Smoking Spots. These are places where participants are observed to have

smoked before quitting. In smoking cessation studies, data is usually collected from pre-quit days to generate
a baseline for analysis. In this work, we leverage the pre-quit data to locate the smoking spots. Similar to the
geodatabase of tobacco point-of-sale [37], the smoking spots can be of independent broader utility. This new
geodatabase can be used for designing and delivering new interventions. In addition, we use these smoking
spots and other informative features to detect smoking ‘opportunity’ contexts that may be used in new smoking
cessation interventions.
We locate two types of smoking spots. We call the first type, the personal smoking spots, which are person-

specific (frequently visited and unique to each individual, e.g., ‘home’) and are constructed around the significant
places where participants usually smoke during their regular smoking period. Personal smoking spots provide
evidence that smoking is usually allowed here. Cigarette availability may also be higher at these spots if another
smoker shares the significant place or if half-burnt cigarettes may still be lying around. The second type is the
general smoking spots, which are the transient places where smoking events are usually observed (potentially,
from multiple participants). These are crowd-sourced, i.e., are not person-specific and may be candidates for
constructing a new geodatabase of smoking spots. Examples of general smoking spots include outside of an
office building or a movie theater. These spots are important as they provide evidence that smoking occurs there.
Further, as multiple participants are observed to have smoked there, these spots may also provide an opportunity
to borrow a cigarette from another smoker, thus increasing cigarette availability.
In what follows, we first obtain evidence for smoking allowance (from EMAs) and smoking occurrence (via

user-reported or automated detection of smoking events, see Section 6.3.1) at different dwell places. This helps us
categorize the significant and transient places into personal and general smoking spots, respectively. We associate

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 1, Article 4. Publication date: March 2020.



SmokingOpp: Detecting the Smoking ‘Opportunity’ Context ... • 4:13

the transient places with specific semantic types (in Section 6.3.4) to obtain the POI-transient-places. We also use
the semantic type to select an appropriate level of proximity to determine exposure to the general smoking spots.
We assess how well our characterization of general smoking spots conforms to the widely held beliefs about
smoking allowance and smoking occurrence at different types of locations (e.g., places of worship vs. bars).

6.3.1 Smoking Event. We are interested in detecting microlocations where smoking occurs. For this purpose, we
first use participants’ self-reported smoking events provided in EMA questionnaires. The EMA item was worded
‘Since the last assessment, have you smoked any cigarettes?,’ with an option to respond ‘Yes,’ if they have smoked
after responding to the preceding EMA, ‘No’ otherwise. The EMA responses are timestamped. Participants may
change their location between their last smoking event(s) and when they report the smoking event. To avoid this
ambiguity, we utilize an EMA reported at a given dwell place (pl) only if the previous EMA was reported at the
same location. Although this rule resolves ambiguity, it results in missing smoking events at transient places.
To increase the chances of capturing these missed smoking events (especially at transient places), we utilize

puffMarker [55], which is a sensor-based model for detecting smoking episodes. PuffMarker uses the breathing
patterns captured from a RIP (Respiratory Inductive Plethysmography) sensor and hand gestures captured using
6-axis inertial sensors (3-axis accelerometers and 3-axis gyroscopes) worn on both wrists. It uses inertial sensor
data to identify hand-to-mouth gestures and applies a machine learning model on the corresponding respiration
data to detect deep inhalation and exhalation pattern expected during smoking.
Although smoking can be detected using hand-to-mouth gesture alone [44, 61, 65]2, using both breathing

patterns and hand-to-mouth gesture improves the recall from 75% to 87.5% and reduces the false positive rate
from 0.58 per day to 0.17 per day (see Table 2 in [55]). Also, we note that if the wrist sensor is worn on only the
dominant wrist, we may miss smoking events from 7 (out of 90) participants who switch hands during smoking.
Using puffMarker, we are able to detect 663 additional smoking events not captured by self-reports. We note

that some of these events can be false positives. However, given a low false-positive rate of puffMarker (1 false
detection for every 6 days of sensor wearing [55]), we assume all the detected smoking events to be true events.
We also note that as is the case with any sensor-detected event, puffMarker can detect smoking events only

when sensors are properly worn and sensors are active. Hence, some smoking events may remain unreported
and undetected. As the use of smoking detection is only during constructing a geodatabase of smoking spots, but
not needed when the SmokingOpp model is applied to detect smoking ‘opportunity’ contexts, the impact of any
missed smoking events on the SmokingOpp model is tolerable.

6.3.2 Characterization of Smoking Spots. Each dwell place where at least one smoking event is detected is a
candidate to be designated as a personal or general smoking spot, depending on whether the dwell place is
significant or transient. As the detection of one smoking event can result from misreporting or false detection
from sensors, we seek additional corroboration to designate a dwell place as a smoking spot. The first criterion is
evidence that smoking is allowed at the candidate dwell place. The final criterion is the existence of a sufficient
frequency of smoking events at the candidate dwell place for it to be designated as a smoking spot. In the
following, we describe our approach to identify personal and general smoking spots.

6.3.3 Identifying the Personal Smoking Spots. We create a sequence of all visits to significant places, SP i (see
Section 6.2.2) during the pre-quit phase by participant i to identify personal smoking spots from among them. We
represent this temporal sequence as spi = [spi1, spi2, ..., spij , ..., spin], with spij = SP il ∈ SP i for 1 ≤ l ≤ L. We note
2We note that in addition to detecting the hand-to-mouth gestures from wrist-worn accelerometers, methods have been developed for
detecting hand to mouth smoking gestures using other devices. One approach [72] applies a computer vision technique to detect smoking by
recognizing the gesture of the person’s arms from video data. Another work [57] detects smoking gestures by using an RF-based proximity
sensor placed on the person’s chest to detect the hand when it is in the vicinity of the mouth. The Personal Automatic Cigarette Tracker -
PACT [59] embeds a sensor in the cigarette lighter, which records a smoking event whenever the lighter is lit.
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that as spi is a temporal sequence, it is likely that several visits can be to the same place, i.e., spij = sp
i
k for j , k .

Each significant place visit, spij , has a corresponding time of arrival, spij .tarr , and a time of departure, spij .tdep .
We need evidence of smoking allowance and sufficient frequency of smoking occurrence at SP il for it to be

regarded as a personal smoking spot. To assess smoking allowance at SP il , we use the self-reported smoking
allowance in EMAs (see Section 5.2.1) at this place. A ‘Smoking is allowed’ response to the EMA item ‘Right now,
Is smoking allowed where you are?,’ is considered to be positive evidence. For each participant i , we assign an EMA
e to a spij if sp

i
j .tarr ⩽ te ⩽ spij .tdep , where te is the initiation time of response to that EMA. We then compute

the probability of smoking allowance at SP il as the fraction of EMA responses at ∀spij = SP il that are positive.
Next, for evidence of smoking occurrence, we compute the probability of smoking occurrence at SP il as

nl∑
j=1

ESP il
j

/
nl , where ESP il

j = 1, if at least 1 smoking episode is detected during jth visit to SP il , and nl is the

total number of visits to SP il . We compute the probability of smoking occurrence as the fraction of visits to SP il
when smoking is observed at least once.

We use this definition instead of counting each smoking occurrence for two reasons. First, both the EMAs as
well as the detection of smoking by sensors may miss several smoking episodes. Hence, using the numbers may
not be fully representative of the actual smoking prevalence at different significant places. Second, this definition
provides some in-variance to the time spent at different significant places.

To determine a threshold for deciding personal smoking spots, we analyze the probability of smoking allowance
and the probability of smoking occurrence at all candidate SP il in our data set. We want to cluster the candidate
SP il , which are closest to each other based on the probability of smoking allowance and occurrence. Using
Agglomerative clustering [10], we observe that any SP il with both probabilities of 0.4 or higher are separated.
Hence, we use the threshold of 0.4 for the probability of smoking allowance and occurrence to designate a
personal smoking spot (see Figure 4).
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Fig. 4. Significant places, where the probability of smok-
ing allowance and occurrence are both 0.4 or higher are
designated as Personal Smoking Spots (marked in red).
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Fig. 5. POI-transient-places of type i (either TP ip or TP ip̂ ),

where the probability of smoking allowance and occurrence
are 0.4 and 0.3 or higher, respectively, are designated as
General Smoking Spots (marked in red).

6.3.4 Identifying the General Smoking Spots. We create a list of all transient places (TP ) visited by any participant
during the pre-quit phase to identify general smoking spots from among them. In contrast with a small number
of significant places (for each participant), the number of transient places visited by all the participants is quite
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large. To narrow down our search for general smoking spots, we extract the semantic meaning of transient places
to assess the smoking allowance at a candidate location to determine if it is potentially conducive to smoking.
To obtain this information, we create a customized Point-of-Interest (POI) database, which contains a list of

POIs in and around the city of residence, including properties of the place, GPS location, and type. Following are
a list of POIs and the corresponding databases from which they have been acquired.
POIs usually conducive to smoking: We acquire POIs such as a smoke shop, tobacco retail outlet, convenience

stores, bars, and others, where smoking is usually allowed and/or there is an opportunity to purchase cigarettes.
We acquire 10, 875 licensed alcohol places, including bar and alcohol stores through the state’s alcoholic beverage
commission (e.g., TABC [2]), 8,768 licensed cigarette point-of-sale (POS) (e.g., tobacco shop (5, 501) and gasoline
station (3, 267)), retail and convenience stores (16, 518) from the state’s comptroller (e.g., [3]).
POIs usually NOT conducive to smoking: We acquire POIs such as hospitals, churches, schools, and other

similar places, where smoking is usually prohibited (barring a few designated spots), and the opportunity to
purchase cigarettes is almost none. We obtain 1, 396 licensed medical services, including hospitals, clinics, and
biomedical-research labs from the state’s comptroller. We obtain 1, 543 registered public and private schools, colleges,
universities, libraries, 60 community centers, and 2, 510 registered places of worship, including church, temple,
mosque, others from state’s open data portals.
Obtaining the POI database: Using ESRI ArcMap 10.x, we create three individual address locators from the

TIGER [6] and STAR Map [5] data sets. Then, we create a composite locator in ArcMap to incorporate all three
individual locators. First, we examine and clean all data, next we geocode them using the composite locator based
on address matching. The first round of geocoding reaches an average matching of 93%, exceeding a commonly
accepted geocoding threshold score of 85% (for the first run) [50]. Then, we visually inspect the tied addresses
and re-match by using the TIGER file, STAR map, and Google Maps. We use the re-matching process to enhance
the accuracy of the original geocode results. Finally, we merge all extracted GIS data to obtain a master POI
database, which contains all the POIs with their semantic types and corresponding GPS coordinates.
Obtaining the POI-transient-places: Finally, we use this newly constructed POI database to associate semantic

meaning to all the transient places from our dataset. As described above, we consider 6 POI semantic types —
‘alcohol,’ ‘cigarette point-of-sale (POS),’ ‘retail,’ ‘medical,’ ‘school,’ and places of ‘worship.’ In order to associate a tran-
sient placewith a POI semantic type, we use the method described in [38]. A transient place associated with a POI is
termed as POI-transient-place, indexed by i ∈ {‘alcohol,’ ‘cigarette point-of-sale (POS),’ ‘retail,’ ‘medical,’ ‘worship’}.
Note, we do not find any EMA reported at the ‘school’ POI. Hence, the analysis of the ‘school’ type has not been
possible in this work. We exclude all the other transient places that are without any POI association.
Next, we create a subset of POI-transient-places based on the proximity from their associated POI. The POI-

transient-places, which are in a closer proximity to their associated POI are termed as proximal-POI-transient-
places, (TPp ). In particular, ∀TP ip ∈ TPp reside within a distance of 30m from the centroid of their associated POI.
The remaining POI-transient-places are referred to as non-proximal-POI-transient-places (TPp̂ ). In particular,
∀TP ip̂ ∈ TPp̂ reside within the buffer of 30m and 100m from the centroid of their associated POI. Depending on
the proximity distance of a POI-transient-place to the POI centroid, a POI-transient-place type i may be assigned
to TPp (as TP ip ) or TPp̂ (as TP ip̂ ).

Designating POI-transient-places as General Smoking Spots: From all visits to transient places, we
extract all distinct visits to POI-transient-places by any participant and represent them as d = [d1,d2, ...,dN ],
with dj = TP ip or dj = TP ip̂ for some POI-transient-place i . We note that it is likely that different visits by same or
different participants may be to the same POI-transient-place type i , i.e., dj = dk = TP ip (or TP ip̂ ) for j , k . Each
visit dj , has a corresponding time of arrival, dj .tarr , and a time of departure, dj .tdep .

Similar to personal smoking spot identification, we need evidence of smoking allowance and sufficient frequency
of smoking occurrence at a POI-transient-place type i for it to be regarded as a general smoking spot. To assess
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smoking allowance at a POI-transient-place type i across all participants (since these are crowd-sourced and
not person-specific), we use the self-reported smoking allowance in EMAs. A ‘Smoking is allowed’ response
to the EMA item ‘Right now, Is smoking allowed where you are?,’ is considered to be positive evidence. For all
participants, we assign an EMA e to a dj if dj .tarr ⩽ te ⩽ dj .tdep , where te is the initiation time of response to
that EMA. Similar to personal smoking spots, the probability of smoking allowance at a general smoking spot
candidate TP ip (or TP ip̂ ) as the fraction of EMA responses at ∀dj = TP ip (or TP ip̂ ) that are positive.
Next, for the evidence of smoking occurrence, we compute the probability of smoking occurrence, at TP ip (or

TP ip̂ ) as
n∑
j=1

Ej

/
n, where Ej = 1, if at least 1 smoking episode is detected during jth visit to a TP ip (or TP ip̂ ), and

n (≤ N ) is the total number of visits to TP ip (or TP ip̂ ). We compute the probability of smoking occurrence as the
fraction of visits to TP ip (or TP ip̂ ) when smoking is observed at least once.
To determine a threshold for general smoking spots, we analyze the probability of smoking allowance and

the occurrence of all the candidate proximal and non-proximal POI-transient-places in our data set. Using
Agglomerative clustering, we observe that any POI-transient-place with the probability of smoking occurrence
of 0.3 or higher and the probability of smoking allowance of 0.4 or higher are separated. Hence, we use these two
thresholds to designate a general smoking spot (see Figure 5).
Our analysis confirms that smoking allowance and occurrence are high around bars and alcohol stores and

low at closer proximity to places of worship and hospitals. Interestingly, we observe that smoking occurrence is
low at non-proximal areas of places of worship. However, we find a higher probability of smoking occurrence in
non-proximal areas of hospitals.
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Fig. 6. Distributions of variance, skewness, and kurtosis
of GPS accuracy can distinguish ‘outdoors’ vs. ‘indoors.’

Fig. 7. The Smoking ‘opportunity’ context varies signifi-
cantly across time when people are not at ‘home.’

6.4 Indoor/Outdoor Context
Smoking spots usually provide a coarse boundary of geographical region where smoking may occur. Detection

of indoor vs. outdoor can provide a more fine-grained indication of momentary smoking ‘opportunity’ as tobacco
control policies in several countries prohibit smoking at indoor environments [4]. The indoor environment is
usually associated with low/no smoking allowance. We build upon prior works [26, 49] to find indicators or
correlates of indoor/outdoor environment from GPS data. The intuition behind the estimation of indoor/outdoor
from GPS data is that GPS signal accuracy deteriorates in indoor environments due to signal obstruction and
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limited satellite visibility [70]. To assess the suitability of GPS accuracy as an indicator of indoor vs. outdoor, we
label some time windows as ‘indoor’ and ‘outdoor’ and then test how well are they separable using GPS accuracy.
To estimate indoor/outdoor from GPS signal accuracy, first, we label time windows when participants are

walking outside versus when indoors. For this purpose, we compute the speed (in meter/sec) of participants
when transitioning from one dwell place to another. If the speed is greater than the maximum comfortable
walking speed (1.46 meter/sec [11]) and less than minimum transportation in a vehicle (3.33 meter/sec [29]) while
transitioning from one dwell place to another for a certain amount of time, we label those windows as an outdoor
environment. Note, we do not use transport ‘inside’ a vehicle as ‘outdoor’ to remove any ambiguity. If the speed
is lesser than maximum comfortable walking speed and participants are dwelling within 10 meters of home
location, we label those windows as indoor environment.
To find informative features from GPS accuracy, we compute the variance, skewness, and kurtosis of GPS

accuracy in the windows marked as outdoor (n=1, 488) and indoor (n=575). Next, we perform one-tailed Mann-
Whitney U test on the following samples, first, the variance, skewness, and kurtosis of GPS accuracy when
indoors, second, the variance, skewness, and kurtosis of GPS accuracy when outdoors. We observe that variance
(n = 575;median = 28.777;mean = 63.093 ± 84.312;p <= 0.0001), skewness (n = 575;median = 0.874;mean =
1.383 ± 1.847;p <= 0.0001), and kurtosis (n = 575;median = 0.943;mean = 5.558 ± 12.903;p <= 0.0001) of
GPS accuracy when indoors is significantly greater than the variance (n = 1, 488;median = 1.376;mean =
10.441± 30.604;p <= 0.0001), skewness (n = 1, 488;median = 0.219;mean = 0.233± 0.945;p <= 0.0001), kurtosis
(n = 1, 488;median = −0.896;mean = −0.22 ± 3.476;p <= 0.0001) when outdoors (see Figure 6).

6.5 Temporal Context
In addition to exploring the role of spatial context in detecting smoking ‘opportunity,’ we also investigate the

role of temporal context. We analyze the role of time of day and temporal patterns of visitation to tobacco outlets.
6.5.1 Contextualized Time of Day. We explore the impact of the hour of the day on the smoking ‘opportunity’
variations. We use the binary labels of the smoking ‘opportunity’ from Section 5.2.1 to compute the probability of
the smoking ‘opportunity’ being ‘high’ during each waking hour of the day (Th , from 7 AM to 10 PM, referred to
asT7 andT22, respectively), as the fraction of EMA responses atTh that are labeled as ‘high’ smoking ‘opportunity.’

Role of time of day on the likelihood of smoking or craving [9, 16] has been known. However, we notice that
the likelihood of the smoking ‘opportunity’ being high differs when participants are at ‘home’ (within 100 meters
of ‘home’ GPS coordinate), and ‘not at home’ (see Figure 7).

Key Observations:We observe a decreasing trend in the smoking ‘opportunity’ outside the home, as time
progresses from T8 to T11 (which is most likely because participants are usually busy doing their work during
these hours). During T12,T13,T14, the smoking ‘opportunity’ increases gradually (most likely participants may
break for lunch during these hours). There is a decrease duringT15,T16, which is followed by a rising trend during
the evening hours. Second, barring the morning hours of T8 and T9, we do not observe any interesting temporal
trend of the smoking ‘opportunity’ when participants are at home.

6.5.2 Temporal Patterns of Visitation to Cigarette Point-of-Sale (POS). As described in Section 5.2, the high
availability of cigarettes is usually associated with a ‘high’ smoking ‘opportunity.’ We are interested in finding
whether the time since the previous visit to a POS (where there is an opportunity to purchase cigarettes) is
associated with cigarette availability. We consider a visit to cigarette POS has occurred if an individual dwells for
at least 6.565 minutes within the distance of 30m from the centroid of a cigarette POS [37].
As we are interested in determining the role of such visits on cigarette availability, we use the two design

choices from Section 5.2.1, but only the responses to the EMA questionnaire — ‘Right now, Cigarettes are available
to me?’ in both categories of Easily-Allowed and Easily-Fairly-Allowed to assign EMA responses to the states of
‘high’ or ‘low’ availability.
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Table 2. For Easily-Fairly-Allowed, during the post-quit phase, the median time since (in hr) the last POS visit associated with
lower cigarette availability is significantly greater (p_value = 0.019) than that associated with high cigarette availability.

Design Choice Study Session
(# of Low_CA, # of High_CA)

median
(TSPV_Low_CA)

median
(TSPV_High_CA)

mean ± sd
(TSPV_Low_CA)

mean ± sd
(TSPV_High_CA) p_value

Easily-Allowed Pre-quit (229, 328) 6.296 8.772 18.844 ± 23.211 20.456 ± 22.608 0.09
Easily-Allowed Post-quit (576, 475) 54.501 44.456 76.526 ± 78.411 71.859 ± 84.908 0.084

Easily-Fairly-Allowed Pre-quit (152, 405) 7.56 7.88 19.436 ± 22.183 19.924 ± 23.314 0.372
Easily-Fairly-Allowed Post-quit (444, 607) 57.288 44.478 78.845 ± 78.623 67.726 ± 72.964 0.019

Subsequently, we analyze the effect of the time since the previous visit to cigarette POS on the state of cigarette
availability. First, for each participant, we compute the time since the previous visit to cigarette POS using the
following algorithm. We start from the beginning of the study for each participant and set the time_since counter
to 0. Once we find a visit made to a cigarette POS, we keep incrementing the time_since counter by dwell time at
intermediate dwell places and transitions until the next visit to POS is recorded. At the beginning of the next
visit, we reset the time_since to 0 and keep on incrementing it until the beginning of the next visit. The process
continues until the end of the study. The time_since is computed in the unit of hour (hr).

We hypothesize that greater time since the previous visit to cigarette POS indicates a lower cigarette availability
and conversely lesser time since the previous visit to cigarette POS indicates a higher cigarette availability.
The intuition is that the availability of cigarettes (by purchase) reduces with lesser frequency of visitation
to the cigarette POS. To evaluate the above hypothesis, we perform the following statistical tests and report
several interesting insights. For each design choice approach (Easily-Allowed and Easily-Fairly-Allowed) and the
corresponding phase of the study (pre and post-quit), we perform a one-tailed Mann-Whitney U test on the two
independent samples. The first samples are time since the previous POS visit associated with a lower cigarette
availability (TSPV_Low_CA). The second samples are time since the previous POS visit associated with a higher
cigarette availability (TSPV_High_CA). We present the hypothesis test results in Table 2.
Key Observations: First, during the post-quit, for Easily-Fairly-Allowed, the median TSPV_Low_CA (57.288

hr) is significantly higher (p_value = 0.019) than the median TSPV_High_CA (44.478 hr). Second, the above
finding implies that delaying the visit to a cigarette POS lowers the state of cigarette availability, which in
turn indicates ‘low’ smoking ‘opportunity.’ Third, the median time since previous POS visit is higher during the
post-quit as compared to the pre-quit phase. This implies that there is a noticeable behavioral change in terms of
the frequency of visitation to cigarette POS.

7 THE SMOKINGOPP MODEL
For developing the SmokingOpp model, we first develop an approach to segment the continuous sensor time
series into candidate windows. After locating the windows, we assign ground truth labels to it and compute
features from sensor data to train the SmokingOpp classifier. Finally, we evaluate the impact of various design
choices on the accuracy of detecting the smoking ‘opportunity’ context.

7.1 Event-Based Windowing for Efficient Detection of the Smoking ‘Opportunity’ Context
Our goal is to identify an appropriate segmentation of the sensor time series (into windows) such that every

transition in the smoking ‘opportunity’ context concurs with a transition in the window. This will provide high
computational efficiency and sufficient data within a window to compute robust features.
A participant’s smoking ‘opportunity’ context may change with changes in his/her location. For example, in

Figure 8, we observe that the smoking ‘opportunity’ context changes from ‘low’ at the Dwell Place A to ‘high’ at
the Dwell Place B. Sometimes, the smoking ‘opportunity’ context may also change in the same place (see Figure 9).
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Fig. 9. Defining Smoking ‘opportunity’ context window
based on both change in location and activity state.

For example, if a participant moves (detected as an activity episode) from indoor (‘low’ smoking ‘opportunity’) to
an outdoor designated smoking area (‘high’ smoking ‘opportunity’) at his/her workplace.

Using only location to define windowsmaymiss some smoking ‘opportunity’ context transitions, while defining
windows by using both location and activity transitions may significantly increase the number of windows.
Therefore, we consider both approaches to segment the sensor time series into windows. We refer to the first
approach as Win-Loc. We observe from a sample in Figure 8 that there are 3 such windows, namely,W1,W2,W3).
We refer to the second approach as Win-Loc-Act. We observe from a sample in Figure 9 that there are 5 such
windows created, namely,W1,W2,W3,W4,W5).

7.2 Label Assignment
After determining the candidate windows, our goal is to assign labels (obtained from participants’ self-reports)

to each window. First, we determine the binary labels for the smoking ‘opportunity’ context. We construct two
classes of labels based on each design choice (i.e., Easily-Allowed, and Easily-Fairly-Allowed) as described in
Section 5.2.1. If we find a single self-report in a window, we assign the reported label of the smoking ‘opportunity’
context to that window. If multiple homogeneous self-reports occur in a window and all of them have the same
label, we assign the reported homogeneous label to that window. We exclude all other windows because of
ambiguity in labels. We note that these excluded windows only constitute 7.991% of total windows.

7.3 Feature Computation
To detect the smoking ‘opportunity’ context, we compute several features from each window of sensor data. We
use context mining presented in Section 6 to compute 11 window-level features.
Personal Smoking Spots (2 features): To determine the likelihood of the place in the current window to be

a personal smoking spot (see Section 6.3.3), we use the binary indicator is current place a significant place?, and
the probability of smoking occurrence at the current place as features.

General Smoking Spots (2 features): Similar to personal smoking spots, to determine the likelihood of the
the place in the current window to be a general smoking spot (see Section 6.3.4), we use the binary indicator is
current place a TP ip or TP ip̂?, and the probability of smoking occurrence at the current place as features.

Indoor/Outdoor Context (3 features): As the variance, skewness, and kurtosis of GPS accuracy in the current
window are indicators of indoor vs. outdoor (see Section 6.4), we use these three statistics as features.
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Contextualized Time of Day (3 features):We use distance to ‘home’ (in meters) from the current place, and
we compute two features using the hour of day at the mid point of the current window (Th) : Th and T 2

h , to assess
linear and non-linear impact of time of day (see Section 6.5.1).

Temporal Patterns of Visitation to Cigarette POS (1 feature): We use the time since the last visit to a
cigarette POS to indicate the behavioro-temporal evolution of cigarette availability (see Section 6.5.2).

7.4 Model Training and Evaluation
Our goal is to develop a model that can passively detect changes in smoking ‘opportunity’ contexts from

continuous mobile sensor data in-the-wild. For model training and evaluation, we use sensor data and ground
truth self-reports (as a label) of the smoking ‘opportunity’ context from the post-quit phase.

We consider the widely-used supervised classification models for detecting the smoking ‘opportunity’ context
— Random forest based classifier [12] with 100 (RF_100) and 1000 (RF_1000) trees, SVM based classifier with RBF
kernel (SVM-RBF) [73], Logistic regression (LR) classifier [30], and Adaboost classifier [23]. We use grid search
for hyper-parameter optimization in each model.
For evaluation of model accuracy, we use leave-one-participant-out-cross-validation (LOPOCV), where we

exclude a single participant’s data for testing and use the remaining for training purposes, and repeat the
experiment for all the participants. We report the median values of the model scores, including F1, Recall, and
Precision in box-plots (see Figures 10 and 11). We also evaluate the impact of windowing choices on temporal
precision of the model, i.e., number of smoking ‘opportunity’ transitions detected, and the size of windows (as
smaller windows may detect smoking ‘opportunity’ transitions sooner).

7.5 Experimental Results
Our goal is to evaluate different combinations of the design choices for windowing (Win-Loc and Win-Loc-Act)

and labeling (Easily-Allowed and Easily-Fairly-Allowed) to observe their impact on model performance.
Win-Loc Windowing and Easily-Allowed labels: Out of 666 labeled windows, 290 (43.54%) are ‘high,’ and

376 (56.46%) are ‘low.’ Recall, precision, and F1 values appear in Figure 10 (on the left). All the models produce
similar performance scores, with logistic regression having the best median F1 score of 51.67%.
Win-Loc-Act Windowing and Easily-Allowed labels: Out of 1, 363 labelled windows, 658 (48.28%) are

‘high’ and 705 (51.72%) are ‘low.’ Recall, precision, and F1 values appear in Figure 10 (on the right). All the models
outperform the Win-Loc windowing and Easily-Allowed approach. Adaboost produces the best median precision
of 70.73%, and logistic regression produces the best median F1 of 63.07%.
Win-LocWindowing and Easily-Fairly-Allowed labels:Out of 666 labeled windows, 373 (56.0%) are ‘high,’

and 293 (43.99%) are ‘low.’ Recall, precision, and F1 values appear in Figure 11 (on the left). The performance of all
the models is better than the Win-Loc or Win-Loc-Act windowing and Easily-Allowed based approach. Adaboost
produces the best median precision of 66.67%, and logistic regression produces the best median F1 of 67.98%.
Win-Loc-Act Windowing and Easily-Fairly-Allowed labels: Out of 1, 363 labelled windows, 808 (59.28%)

are ‘high’ and 555 (40.72%) are ‘low.’ Recall, precision, and F1 values appear in Figure 11 (on the right). Overall,
the Win-Loc-Act windowing and Easily-Fairly-Allowed approach outperforms all the other modeling approaches.
Logistic regression performs the best overall with a median F1 of 74.3%.
Key Findings: We report several key findings. First, from Table 3, we observe that the Easily-Fairly-Allowed

labeling approach produces better results than Easily-Allowed approach. We observe an improvement of 16.31%
and 11.23% in F1 scores for Win-Loc and Win-Loc-Act windowing, respectively, via logistic regression-based
modeling. This may be because in several scenarios of fairly easily availability of cigarettes, even if the participants
are not carrying cigarettes with them, they can borrow a cigarette (fairly or relatively easily), resulting in a ‘high’
smoking ‘opportunity’ context. Hence, labeling some of these contexts as ‘low’ smoking ‘opportunity’ context

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 1, Article 4. Publication date: March 2020.



SmokingOpp: Detecting the Smoking ‘Opportunity’ Context ... • 4:21

Win-Loc and Easily-Allowed Win-Loc-Act and Easily-Allowed

Fig. 10. Model performance for both choices of windowing when using the Easily-Allowed label.
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Fig. 11. Model performance for both choices of windowing when using the Easily-Fairly-Allowed label.

Table 3. Shows the performance of the Logistic Regression model for various choices of windowing and labeling approaches.

# of Windows Logistic Regression
Windowing Labeling Labeled as ‘High’ Labeled as ‘Low’ F1 Precision Recall
Win-Loc Easily-Allowed 290 376 51.67 55.34 51.79

Win-Loc-Act Easily-Allowed 658 705 63.07 62.26 65.19
Win-Loc Easily-Fairly-Allowed 373 293 67.98 63.95 74.31

Win-Loc-Act Easily-Fairly-Allowed 808 555 74.3 70.27 79.82

in the Easily-Allowed labeling approach may result in false labels. We also observe that despite having a larger
number of windows in theWin-Loc-Act approach, we obtain a higher F1 as compared to theWin-Loc approach.
In particular, theWin-Loc-Act approach achieves a 6.32% increase in the F1 as compared to theWin-Loc approach
(with the Easily-Fairly-Allowed approach for computing the smoking ‘opportunity’ context).

Second, we observe that we can capture 37.864% more smoking ‘opportunity’ context transitions by using
activity episodes in addition to place transitions in defining our window of assessment. In particular, we capture
206 transitions using theWin-Loc approach (106 transitions from ‘low’ to ‘high’ and 100 transitions from ‘high’

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 1, Article 4. Publication date: March 2020.



4:22 • Chatterjee et al.

to ‘low’). Using Win-Loc-Act, on the other hand, we capture a total of 284 transitions (145 transitions from ‘low’
to ‘high’ and 139 transitions from ‘high’ to ‘low’).
Third, we observe that the average window size (in minutes) for Win-Loc-Act approach is 48.479 ± 55.302

(median=28.506) versus that of Win-Loc approach (64.545 ± 65.037 minutes (median=41.583)). Therefore, the
Win-Loc-Act approach provides better temporal precision.

8 LIMITATIONS AND FUTURE WORKS
In this work, we introduce and define the ‘Opportunity’ context for impulsive adverse behaviors. Next, to
demonstrate its utility, we develop a framework for detecting the smoking ‘opportunity’ context. We design
methods to characterize the smoking ‘opportunity’ context using smoking allowance (as the absence of inhibitor)
and cigarette availability (as the presence of inducer). Then, using discriminative features from sensor data, we
develop a model to detect binary measures of ‘high’ or ‘low’ smoking ‘opportunity’ context.
Since this work is a first step towards detecting the smoking ‘opportunity’ context, it has several limitations

that present opportunities for future research in both the UbiComp and health research communities. First, we
define the concept of an ‘opportunity’ context for impulsive behaviors and provide several examples. But, we
only present its application to the case of smoking cessation. Our framework may motivate ‘opportunity’ context
model development for other impulsive behaviors such as impulsive eating and binge drinking.

Second, our SmokingOpp model achieves only a moderate F1 score of 74.3%. This can partly be attributed to a
lack of a direct measure of the transition of the smoking ‘opportunity’ context from ‘low’ to ‘high’ and ‘high’ to
‘low.’ We use place transitions and then activity episodes to capture potential indoor to outdoor transitions at the
same place. These are proxy measures, neither of which directly identify all candidate transitions of the smoking
‘opportunity’ context. More direct measures, e.g., from wearable eyeglasses that can potentially detect cigarette
purchases or cigarette borrowing, can potentially improve the accuracy of detecting the smoking ‘opportunity’
context. They raise exciting research opportunities in first-person computer vision modeling.
Third, this is an offline model, computed purely from observational data. To become widely useful in the

society, the clinical utility of the SmokingOpp model in the management of at-risk situations of impulsive
behaviors should be established by developing and evaluating sensor-triggered just-in-time mobile intervention
via randomized clinical trials that can be triggered based on the detection of the smoking ‘opportunity’ context.
For the intervention to be most effective, it should be triggered as soon as there is a change in the smoking
‘opportunity’ context from ‘low’ to ‘high.’ Doing so requires the detection of an ‘opportunity’ context as soon as
there is a transition of context. This requires the development of an online version of the SmokingOpp model.

Fourth, the SmokingOpp model can be improved over time in a real-life deployment by using active learning
that can personalize the model to each individual’s data over time.
Fifth, in this work, we detect the smoking ‘opportunity’ context for cigarette smoking. Recently, there has

been a rapid growth in the usage of e-cigarettes [33], and some researchers have reported the harmful effects of
e-cigarette [46]. We note that the contexts or situations in which e-cigarettes are usually used may be different
from that of smoking cigarettes. This may require an adaption to the Smokingopp model to detect the e-cigarette
smoking ‘opportunity’ context.

9 CONCLUSIONS
Our work introduced a novel concept of ‘opportunity’ context for impulsive adverse behaviors. We characterize
these spatio-behavioro-temporal contexts which are conducive to impulsive adverse behaviors (e.g., smoking
lapse, overeating/binge drinking, etc.) using inhibitors, absence of which, and inducers, presence of which, create
an at-risk situation for impulsive adverse behaviors. It adds a new dimension to the fundamental notion of context
and provides a new direction for context-aware applications. Impulsive adverse behaviors can have a significant
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negative health impact on individuals and their friends and families. Reliable detection of ‘opportunity’ contexts
passively using sensors can create novel opportunities to intervene before such adverse events occur.
As this work has shown, the behavioral component in the ‘opportunity’ context makes its reliable detection

challenging. But, our framework for successfully detecting the smoking ‘opportunity’ context changes the
question from ‘whether’ to ‘how well’ can these contexts be detected. Consequently, this work opens up exciting
research opportunities with a potential for high societal impact.
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