
Swarm Model Checking on the GPU

Richard DeFrancisco(B), Shenghsun Cho, Michael Ferdman,
and Scott A. Smolka

Stony Brook University, Stony Brook, NY 11794-2424, USA
rdefrancisco@cs.stonybrook.edu

Abstract. We present Grapple, a new and powerful framework for
explicit-state model checking on GPUs. Grapple is based on swarm veri-
fication (SV), a model-checking technique wherein a collection or swarm
of small, memory- and time-bounded verification tests (VTs) are run in
parallel to perform state-space exploration. SV achieves high state-space
coverage via diversification of the search strategies used by constituent
VTs. Grapple represents a swarm implementation for the GPU. In par-
ticular, it runs a parallel swarm of internally-parallel VTs, which are
implemented in a manner that specifically targets the GPU architecture
and the SIMD parallelism its computing cores offer. Grapple also makes
effective use of the GPU shared memory, eliminating costly inter-block
communication overhead. We conducted a comprehensive performance
analysis of Grapple focused on the various design parameters, including
the size of the queue structure, implementation of guard statements, and
nondeterministic exploration order. Tests are run with multiple hardware
configurations, including on the Amazon cloud. Our results show that
Grapple performs favorably compared to the SPIN swarm and a prior
non-swarm GPU implementation. Although a recently debuted FPGA
swarm is faster, the deployment process to the FPGA is much more
complex than Grapple’s.

Keywords: GPU · Model checking · Swarm verification · Grapple

1 Introduction

Modern computing exists in a space that is increasingly parallel, distributed,
and heterogeneous. High-performance co-processors such as GPUs (Graphics
Processing Units) are utilized in many super-computing applications due to their
high computational throughput, energy efficiency, and low cost [5]. GPGPU
(General-Purpose Computing on a GPU) is achieved through the use of GPU
programming languages such as the Open Computing Language (OpenCL) [6]
and the Compute Unified Device Architecture (CUDA) [1].

In 2014, we adapted the multicore SPIN model checking (MC) algorithm of
[24] to the GPU [12]. While our approach achieved speedups up to 7.26x over
traditional SPIN, and 1.26x over multicore SPIN, it was severely limited by the
c© Springer Nature Switzerland AG 2019
F. Biondi et al. (Eds.): SPIN 2019, LNCS 11636, pp. 94–113, 2019.
https://doi.org/10.1007/978-3-030-30923-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30923-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-30923-7_6


Swarm Model Checking on the GPU 95

memory footprint of the GPU, and by an explicit limit on state-vector size set
by the hash function [8].

The introduction of Swarm Verification (SV) in [27] represented an entirely
new approach to parallel MC. In SV, a large number of MC instances are exe-
cuted in parallel, each with a restricted memory footprint and a different search
path. Each instance is called a verification test (VT), because it does not seek
to cover the full state space as a model checker would. Through the use of diver-
sification techniques, VTs are independent of one other in terms of the portions
of the model’s state space they cover. By executing a sufficiently large number
of VTs, one is therefore statistically guaranteed to achieve nearly complete, if
not complete coverage of the entire state space.

In this paper, we present Grapple, bringing the light-weight yet powerful
nature of SV to the massively parallel GPU architecture. While other swarm
implementations run internally sequential VTs in parallel, Grapple VTs are
internally parallel and evolved from our previous GPU-based MC design [12].
Each VT runs on a single block of the GPU, with a bitstate hash table in shared
memory, compacting per-state storage by a factor of 64 compared to the cuckoo
tables used in [12]. These tables use the hash function of [29], eliminating the
hard 64-bit state vector limit of our previous model checker.

Grapple VTs run in parallel on all available GPU streaming multiprocessors
(SMs), and make efficient use of the GPU scheduler to quickly replace jobs the
instant an SM becomes available. As VTs are independent of each other and
each one is tightly bound to a single chip on hardware, there is no need for
inter-block communication or additional synchronization primitives.

To assess Grapple’s performance, we used a benchmark specifically designed
for SV-based model checkers [16,27]: a model that can randomly generate more
than 4 billion states. Exploration progress in the benchmark is captured by the
visitation of 100 randomly distributed states, or waypoints, with 100 waypoints
approaching complete state-space exploration. Our experiments, which we ran
on multiple hardware configurations, including the Amazon cloud [2], evaluate
the impact of variations in queue size, guard-statement implementation, and
nondeterministic exploration order.

We also compared Grapple’s performance with the FPGA swarm implemen-
tation of [16], the CPU swarm of [27], and the original (non-swarm) GPU imple-
mentation of [12]. Grapple easily outperforms the GPU implementation and the
CPU swarm, and reaches all waypoints in a number of VTs comparable to that
required by the FPGA implementation. While it cannot compete in raw speed
with the hardware-level FPGA implementation, it offers much easier deployment,
with VTs that complete in under a second. We additionally evaluated Grapple
using multiple configurations of the Dining Philosophers problem, a small model
with a known state-space size and deadlock violation.

In summary, our main contributions are as follows. (i) We introduce Grapple,
a GPU-based swarm verification model checker with internally parallel verifi-
cation tasks. (ii) We analyze structural elements of VTs (e.g., search strategy,
queue size, guard logic, number of threads per VT) to determine how they impact



96 R. DeFrancisco et al.

the rate of exploration. (iii) We compare Grapple’s performance to previous SV
implementations on the CPU [27] and FPGA [16], as well as to our non-swarm
GPU-based model checker [12].

The rest of the paper is organized as follows. Section 2 provides back-
ground on GPU hardware, the CUDA programming model, the SPIN model
checker, and swarm verification. Section 3 presents our Grapple model checker.
Section 4 presents our various experimental results. Section 5 considers related
work. Section 6 interprets our findings and offers directions for future work.

2 Background

Fig. 1. GPU hardware model.
SP = Stream Processor

To motivate our design decisions for Grap-
ple, we first explain the intricacies of GPU
hardware and the associated CUDA pro-
gramming model, and provide an overview
of the SPIN model checker [7], on which
Grapple is based. Further details on the
GPU hardware and CUDA are available in
the CUDA C Programming Guide [4].

2.1 GPU Hardware Model

The GPU is a high-performance co-
processor designed to efficiently render 3D
graphics in real time. GPUs are well-
suited for linear algebra, matrix arithmetic,
and other computations frequently used
in graphical applications. As illustrated in
Fig. 1, the GPU architecture consists of a
scalable array of N multithreaded Stream-
ing Multiprocessors (SMs), each of which is
made up of M Stream Processor (SP) cores.
Each core is equipped with a fully pipelined
integer-arithmetic logic unit (ALU) and a
floating-point unit (FPU) that execute one integer or floating-point instruction
per clock cycle. Each SM controls a warp of 32 threads, executing the same
instructions in lock-step for all threads.

The GPU features a number of memory types, differing in access speed,
capacity, and read/write availability. Global memory is large (order of gigabytes),
available device-wide, but relatively slow. Constant memory is a cached, read-
only memory intended for storing constant values that are not updated during
execution. Finally, each SM has a shared memory region (16–48 KB). In practice,
accessing shared memory can be up to 100 times faster than using global memory
for the same transaction.



Swarm Model Checking on the GPU 97

Devices connect to the host machine using the PCIe bus. Communication
between the host and device are extremely costly compared to on-board memory
accesses, including those that use global memory.

2.2 CUDA Programming Model

CUDA is the proprietary NVIDIA programming model for general-purpose com-
puting on their GPU architecture. While the alternative model, OpenCL, is uni-
versally compatible with all GPU architectures, the high-performance of CUDA
has led to wide adoption. We decided to write Grapple in CUDA for this reason,
but an OpenCL implementation would be very similar.

The CUDA parallel computing model uses tens of thousands of lightweight
threads assembled into one- to three-dimensional thread blocks. A thread executes
a function called a kernel, which contains the computations to be run in parallel.
Each thread uses different parameters. Threads located in the same thread block
can work together in several ways. They can insert a synchronization point into
the kernel, which requires all threads in the block to reach that point before
execution can continue. They can also share data during execution. In contrast,
threads located in different thread blocks cannot communicate in such ways and
essentially operate independently.

Shared-memory transactions are typically parallel to some number n dis-
tinct banks, but if two or more address requests fall in the same bank, the
collision causes a serialization of the access. It is therefore important to under-
stand addressing patterns when utilizing shared memory. Register management
is also critically important. Use of registers is partitioned among all threads and,
as such, using a large number of registers within a CUDA kernel will limit the
number of threads that can run concurrently. Double and long variables, use
of shared memory, and unoptimized block/warp geometry all lead to increased
register use. If available registers are exhausted, the contents will spill over into
local memory- a special type of device memory with the same high-latency and
low-bandwidth as global memory.

The SIMD nature of warps on SPs has a great impact on code structure for
the GPU. As warps act in lock-step, any branching logic encountered by a warp
must have all branches explored by all threads. The data created during the
additional branch exploration is simply discarded. This phenomena is referred
to as branch divergence and is warp-local; other warps continue to perform inde-
pendently of the divergent warp. This can lead to scheduling conflicts where
non-branching warps must wait for the divergent warps to complete. It is also
generally a performance loss within a warp, especially for cases where one or
more branches is long but uncommonly taken.

Finally, kernels can be launched in parallel on a single device, as long as
that device has the capacity to do so. Streams are command sequences that
execute in order internally, but can be concurrent with each other. The number of
concurrent streams is device dependent, and additional streams will queue until
the device has availability. Streams are unnecessary to run parallel commands
on multiple devices, and are not needed for pipelining data transfers with kernel



98 R. DeFrancisco et al.

execution. Two commands from multiple streams cannot run concurrently if
the host specifies memory manipulation or kernel launches on stream 0 (default)
between them. Synchronization, where necessary, can be invoked within a stream
or across streams with provided CUDA sync statements.

2.3 SPIN Model Checker

SPIN [7] is a widely used model checker designed to verify multi-threaded soft-
ware. SPIN has an ever-growing list of features and options, including opti-
mization techniques, property specification types, and hardware support. State
spaces can be pruned using partial order reduction, speed can be increased by
changing search strategies or disabling certain checks, and memory footprint
can be reduced through bitstate hashing. SPIN can handle safety and liveness
properties, any LTL specification, Büchi automata, never claims, and invariant
assertions. Multicore support was added in 2007 [23], improved in 2012 [24], and
extended to liveness properties in 2015 [20].

A central feature of the 2012 algorithm is the structure holding the frontier of
newly discovered states. In order to assign these states to the N worker threads,
SPIN uses two sets of N × N queues. By splitting each frontier queue into
an N × N structure all threads can communicate without the need for mutex
locks. Of these two queue sets, one (output) fills with a new frontier as the
other (input) empties the current frontier. When the input queue is empty, all
threads synchronize and the two swap labels. This process continues until both
the input and output are empty or a violation is found. We adopt this structure
for Grapple.

2.4 Swarm Verification

Recently, support for large-scale parallel model checking on CPU-based systems
was added to SPIN in the form of swarm verification (SV) [25–27]. SV is a
technique wherein a large number of small verification tasks (VTs) are run in
parallel on many independent processors, including multiple CPUs, multicore
CPUs, and distributed systems [25]. The term verification test is used in place
of model checker or verifier because these tests are not guaranteed to complete.
Instead, each test is given a set amount of time and memory to explore whatever
portion of the state space it can. VTs can be as small as a number of KBs.

Each VT is independent, and the state space it covers is differentiated
through the use of various diversification techniques. These techniques include
reversing search direction or search order, randomizing nondeterministic choice
order of transitions, and other perturbations of the original search algorithm.
VTs do not share resources nor need to live on the same physical machine. Given
enough parallel hardware, all VTs can run concurrently. When these resources
are more limited, VTs will be scheduled like any other batch of independent
programs.

The most potent diversification technique is the use of statistically indepen-
dent hash functions. With up to 108 suitable unique 32-bit hash polynomials,



Swarm Model Checking on the GPU 99

in addition to other search diversification methods, the potential number of dis-
tinct concurrent searches is easily in the billions [25]. Hash functions reduce the
state space graph via collisions; as each hash table is much smaller than the
total number of states, collisions are frequent. If we treat each collision as valid
(consider them the same state, even if that is not the case), the state space will
be quickly, and naturally pruned.

Fig. 2. Pruning states via hash colli-
sion. (i) Hash collision {B,C} on trace
ABEFJDI. (ii) Hash collision {E,F} on
trace ABECGHKLDI.

Figure 2 depicts state-space prun-
ing via collision. In both searches,
a left-favoring Depth-First Search
strategy is used, but their hash
tables use different hash polynomi-
als to store states. In the left graph,
nodes B and C have the same hashed
value, so C appears to be the same
state and will not be expanded. In
the right graph, E and F have the
same value, preventing the expan-
sion of F . While this method of
pruning all but assures that individ-
ual VT will not reach all states in

the state space, with a sufficient number of diverse VTs, the swarm as a whole
will achieve full coverage.

3 Swarm Verification via the Grapple Model Checker

The Grapple model checker brings the power of GPU computing to the model-
checking problem via swarm verification. For simplicity of presentation, we dis-
cuss Grapple’s design in terms of a Waypoints (WPs) benchmark specifically
designed for SV-based model checkers [16,27]. The WP benchmark involves a
model that can randomly generate more than 4 billion states. Said model is
comprised of 8 processes each in control of 4 bits. At successor generation, the
current process will nondeterministically set one of its bits to 1. Exploration
progress in the benchmark is captured by the visitation of 100 randomly dis-
tributed states, or waypoints, with 100 waypoints suggesting a nearly complete
state-space exploration. This style of presentation does not in any way imply
that Grapple is limited to this one benchmark; it is still a general-purpose model
checker. And indeed, we present results from an additional model in Sect. 4.

Although traditionally each VT is a small, sequential version of SPIN, this is
not the case for Grapple VTs, which run on the GPU. As discussed in Sect. 2.1,
the GPU has a SIMD/SIMT programming model: a single instruction or set of
instructions is given to a group of threads operating on different data. Warps of
32 threads execute in lock-step, and all branches in logic must be fully explored
by the entire warp. Mimicking SPIN by running a completely sequential VT
on an entire warp would waste massive amounts of resources. Instead, we use a
modified version of the 2014 GPU MC algorithm [12] to run a single, internally-
parallel VT per warp. VTs execute independently in parallel outside of the warp,



100 R. DeFrancisco et al.

but internally (i.e., within a given VT), all data structures are shared among
the threads and there is a single state space to explore.

While the queue structure and general search algorithm remain the same as
the 2014 MC, there are a number of alterations made to the GPU VT to take
advantage of the new swarm environment. First and foremost, the hash table is a
bitstate implementation moved to shared memory. This hash table is only shared
among threads within a VT and not between VTs. Factors typically considered
weaknesses of a shared-memory approach are its locality to an SM and its small
size (48 KB maximum). With each SIMD-parallel VT limited to a single warp,
all threads within the VT are guaranteed to be on the same SP within the same
SM, and therefore all have access to this structure. The 48 KB limit is not an
issue for VTs utilizing bitstate hashing, as such a table can hold nearly 400,000
entries. This is on the low end of the scale for a VT compared to those in other
SV implementations [25,27], but VTs of this size were shown to work well in a
recent FPGA implementation [16].

Also as in the FPGA implementation, cuckoo hashing [8] has been replaced
with an AB mix function based on the Jenkins Linear Feedback Shift Register
(LFSR) [29]. For this purpose, two random integers, A and B, are generated on
the host machine for each VT and included as parameters in the VT’s kernel
launch. This hash function change is motivated by a desire to better align with
the FPGA implementation, as well as the elimination of the multiple-function
schema used in the cuckoo algorithm. The random variables are reused on the
GPU in some search strategies as quick random-digit generators, as on-device
random generation tends to be convoluted and this method is more efficient.
Since each VT is relegated to a single warp, the fast-barrier synchronization [41]
used in the previous GPU MC implementation has also been removed. Instead,
the on-board CUDA syncthreads() function is used at the required synchro-
nization points.

Grapple, like the FPGA swarm [16], runs multiple VTs within a single pro-
gram, with additional copies of that program launched by script if necessary. In
contrast, the SPIN swarm [27] is coordinated by a script that simply launches
every VT as an independent thread. A Grapple program running on the GPU
initiates multiple VTs, each a CUDA kernel, and utilizes streams to run these
kernels in parallel whenever possible. The number of VTs that a core program can
launch is dependent upon the hardware of the device(s) available, the memory
footprint of each VT, and how initialization and memory transfers are handled.
In the current design, all variables and structures are initialized, transferred to
the GPU before kernel launch, transferred back to the host after kernel com-
pletion, and then freed in a single batch. Theoretically, more VTs could be
launched within a program and additional efficiency squeezed out if the trans-
fers were pipelined with some VT execution, but the current arrangement also
has benefits.



Swarm Model Checking on the GPU 101

Fig. 3. Control flow for Grapple with 250 * K VTs.

Since the primary diversification techniques in Grapple are alterations in hash
polynomial, search structure, and nondeterminism order, most of the host-level
set-up is common across VTs. Overall, these common elements reduce the cost of
this process to be nearly negligible when compared to time spent on the device.
In this case, pipelining would increase overall complexity of the core code with
minimal benefit. On the theme of common initialization, structures are placed
in constant memory whenever possible so all VTs gain fast read-only access.

Figure 3 illustrates the control flow of Grapple. Upon start-up, a swarm script
launches a CUDA program on all available hardware devices (GPUs). When
there is only a single device, these K programs must sequentialize with each
other, with one program launching after the execution of the previous program
and its sort instance (the Linux sort utility is used to count WPs) has terminated.
Internally, each CUDA program initializes a number of VTs, in this case 250,
sharing common data wherever possible to minimize overhead. Examples of this
includes setting up the initial state and sending WP identifiers to GPU constant
memory. This initialization/pre-launch procedure runs on the CPU (host).



102 R. DeFrancisco et al.

Each VT is assigned to a single stream, and as many of them as possible will
be launched in parallel to the N streaming multiprocessors (SMs) available on
the device. The number (250) of VTs maintained by a given GPU program is a
function of the global memory footprint of all structures associated with those
VTs. While the hash tables are assigned to the 48 KB of on-chip shared memory,
frontier queues and other support structures must still hold the full-length global
state vectors and combine to reach the upper limits of the GPU global memory.
Despite sitting on global memory, these structures are still access-limited to a
single VT, maintaining VT independence.

Once launched, a VT executes its complete search until its frontier queues
are empty, and there are no more states to be explored. This exhaustion process
is driven by the limited size of the hash table, and the collision-based pruning
mentioned described in Sect. 2.4.

To achieve maximal utilization of SMs and therefore maximal parallelism
at the SM-level, VTs are assigned to SMs using pipelining: as soon as a VT
completes its execution on a SM, the GPU scheduler replaces it with a new VT,
until all VTs within the CUDA program have been executed on some SM. At
this point, the host collects the discovered WPs from all 250 VTs and appends
this information to a single output file. All data structures on both the GPU
and CPU are released, and the program terminates. The output file is read by a
sort utility, and current progress reported by the swarm script. The next GPU
program is launched, and the process continues until all GPU programs in the
swarm are exhausted.

Note that for a single GPU system, a swarm of size 50,000 VTs requires 200
sequentially launched CUDA programs. One of the benefits of Grapple, and SV
in general, is that if additional GPUs are available, even on different machines in
different locations, these 200 CUDA programs can run in parallel with each other
without additional modification. These other GPUs may have more memory or
more SMs, allowing more VTs per program or more concurrent execution of
VTs, respectively.

Due to the abridged nature of VT searches, minute changes in control flow
can have a major impact on the set of visited states for each VT. As hash
collisions are resolved by dropping the new entry, even differences in the order of
constituent operations change the results. To better understand a VT’s behavior,
we offer in Algorithm 1 a comprehensive breakdown of a VT’s main control loop.
Furthermore, in Sect. 4, we conduct a series of tests that illuminate the effects
of making even minor changes to the code.



Swarm Model Checking on the GPU 103

Algorithm 1. State-Space Exploration Loop executed
by each VT thread
Each of a given VT’s N parallel threads does the following:

while none of thread i ’s output queues are empty do
for all N of thread i ’s input queues do

while input queue j is not empty do
for all processes in the model do

for all nondeterministic choices NDC
within a process do

successor = successor generation(process,
NDC, state);
selection = (mix(a, b, state));
hashed value = (selection/8) % table size;
sel = selection%8;
visited state = table[hashed value];
table[hashed value] |= (1<<sel);
if (visited state &(1 <<sel)) == 0 then

Report state back to CPU for check
against 100 WPs
Pick random thread i’ ∈ N to
output to
if i’ has slots then

Insert the new state into queue i’
end if//implicit else drop the state

end if
end for//close for (NDC)

end for//close for (process)
end while

end for
syncthreads();

Check output queues for emptiness
end while

The nondetermin-
istic choice (NDC)
has a variety of dif-
ferent implementation
options. Traditionally,
all nondeterministic
options would be acc-
essed in order as in
standard BFS (paral-
lel BFS in this case)
behavior. With minor
modification, all non-
deterministic options
can be visited in ran-
dom order. To min-
imize the amount of
branching logic, all
NDC order possibil-
ities are enumerated
in constant memory,
and the selection of
order is completely
random for each step
in the loop.

As described in
Sect. 2.3, Grapple VTs
use a set of N ×
N queue structures to
allow lock-free com-
munication between
threads. Each thread
has a set of N input

queues and N output queues, with I slots in each queue. We call an N × N × I
set of queues a queue structure. In Sect. 4, we consider a queue structure in Grap-
ple to be the same as a queue in SPIN and FPGA VTs. For this to hold, I will
often be as small as four or five slots.

In Grapple, the input and output queue structures are sets of pointers to a
single array in GPU global memory. To avoid illegal memory access, a VT must
first check that there are slots available when attempting to insert a new state.
In Algorithm 1, this check happens after a state is marked visited. If there are
no queue slots available, the state is dropped and its successors potentially lost.
If instead the queue check happens before the state is marked visited, the same
state (or a state with the same hash value) can be visited later. This second
location is used in FPGA and Grapple VTs.



104 R. DeFrancisco et al.

The logic employed with this check also plays a factor in Grapple’s perfor-
mance. If the check prevents writing outside the bounds of the underlying array
structure, hence referred to as the old guard, it will still allow threads to write
to unintended targets. A stricter boundary check, the new guard, enforces the
local limitation of I. In practice, illustrated in Sect. 4, VTs with the old guard
have better performance.

The reason for the better behavior of the old guard is as follows. When a
thread n attempts to write to another thread q, the new guard would make
sure n is not writing to q + 1 instead. If n is attempting to write to the (non-
existent) I + 1 slot of q, it instead overwrites slot 0 of q + 1. In practice, this is
a random state-drop that replaces a shallow state in the queue structure with a
deeper one. Both guards lead to a state-drop, but the old guard favors keeping
deep states while the new guard favors shallow states. In general, the Grapple
implementation uses the old, deep-state-favoring, guard logic.

All discussion of dropped states to this point has been of random drops or
partial-match drops (hash collisions). It is also possible to do complete explicit-
state drops for specific state-vector matches. The default behavior of the FPGA
swarm is to consider WPs to be violations. When one of these states is encoun-
tered, it is reported and dropped without generating successors. While for other
models this behavior may lead to unreachable portions of the state space, it is
not the case for the WP model. Our Grapple tests include variants with and
without this WP dropping behavior.

4 Experimental Results

In this section, we present experimental results for Grapple. The first set of exper-
iments use the WP benchmark to test variants of the Grapple VT design, and
allow us to compare performance with the SPIN [27] and FPGA [16] swarms,
as well as with our non-swarm GPU implementation [12]. All of these tests
use the same 100 WPs, selected from a random distribution over the 32-bit
integer space. The GPU used in these experiments is an Nvidia Geforce 660Ti
GPU with 2 GB GPU global memory, and 7 SMs. This is an older, inexpensive
GPU model but still allows for Grapple to show sufficient performance. SPIN
experiments run Swarm 3.2 with SPIN 6.4.7, using an Intel dual-socket server
that has two Xeon E5-2670v3 CPUs (24 cores total) running at 2.3 GHz and
Hyper-Threading enabled (48 hardware threads total), with 128 GB of RAM.
FPGA experiments are done with cycle-accurate SystemC simulations using
Xilinx Vivado HLS 2017.4, targeting a Xilinx Virtex-7 XC7V690T FFG1761-
3 FPGA. The test environments for the SPIN and FPGA experiments are the
same as in [16]. Additionally, we include experiments using the Dining Philoso-
pher’s problem in order to demonstrate Grapple’s ability to discover a known
deadlock violation. Finally, we show Grapple’s potential in a high-performance
environment by running WP benchmark tests on Amazon’s EC2 GPU cloud
platform [2].



Swarm Model Checking on the GPU 105

4.1 WP Benchmark

FPGA experiments use internally sequential VTs with 48 KB of storage each.
The FPGA runs in batches of 44 concurrent VTs, starting a new batch when
the previous one finishes. Unlike the general-purpose VT designs of the GPU
and CPU swarms, which can be applied to any Promela model, the FPGA
swarm is currently limited (hardwired) to the 32-bit random number generator.
Fortunately, there are still some variants of this WP benchmark to test against.

0

20

40

60

80

100

0 20000 40000 60000 80000 100000

W
ay

po
in

ts
 F

ou
nd

Number of VTs

Full-Warp Grapple
FPGA
Half-Warp Grapple
Full-Warp No Drop
FPGA No Drop

Fig. 4. Grapple VT vs FPGA VT.

Figure 4 shows combined
results of two FPGA swarm
variants and three Grapple
variants running the WP bench-
mark. In the standard configu-
ration, WPs are recorded upon
discovery, considered a viola-
tion, and the state is dropped.
Non-WP states first check the
queue, and are marked visited
and propagate if there are slots
available or drop and remain
unvisited if the queue is full.
This allows the state (or a col-

liding state) to potentially be visited later by the same VT. In later Grapple
tests, we refer to this control flow as “FPGA-style”, as it matches the behavior
of VTs in [16].

Half-warp (16 threads per VT) Grapple leads the FPGA in number of WPs
from the very beginning and reaches the 100th WP in 34,500 VTs, over 28,000
fewer VTs than its counterpart. The full-warp (32 threads per VT) Grapple
implementation, however, is outpaced by the FPGA. The FPGA completes the
WP benchmark in 30,947 fewer VTs. While these three versions share the same
control flow and queue structure size (4,096 entries), the half-warp Grapple
implementation has much better performance when using the WP/VT met-
ric. In terms of raw speed, however, the half-warp version is slower, with VTs
lasting 650 ms compared to the full-warp’s average of 451 ms. Both Grapple ver-
sions cannot match the hardware-level speed of the FPGA implementation, but
Grapple offers fast VTs with a much easier deployment process than the FPGA
swarm.

There is also an alternate control flow, wherein the 100 WPs are reported
but otherwise treated like any other state. In this case, all 100 are discovered by
the FPGA in 46,515 VTs or roughly 74.4% the number of VTs as the previous
iteration. Full-warp Grapple also sees improvement, completing in 77,750 VTs.
This is not significant enough to catch up with the FPGA or half-warp Grapple.
A no-drop version of half-warp Grapple was not included in these tests.

On FPGA hardware, the swarms from Fig. 4 complete in an extremely fast
12.5 s for the original and 9.3 s for no-drop, with individual VTs lasting only
∼0.2 ms. These swarms, however, were run on a cycle-accurate FPGA simulator,



106 R. DeFrancisco et al.

where one second of simulated time takes approximately one hour of wall-clock
time. The simulation allows for more useful data collection without harming
FPGA performance, and is cheaper and faster than deploying to a physical
FPGA.

Fig. 5. Impact of frontier size on Grap-
ple search.

Fig. 6. Impact of guard logic change on
Grapple search.

Figure 5 shows the impact of the queue structure size on Grapple’s perfor-
mance. This test was inspired by the WP/VT difference between earlier half-
warp vs full-warp tests. For the same size queue structure (N×N×I), a Grapple
half-warp VT has more slots per thread (a smaller N value means a larger I
value). Since the number of slots can impact state-drops (see Sect. 3), we ran
a series of tests expanding the queue structure size (and thus the I value) for
full-warp Grapple. When I = 16 or I = 8 (16,384 or 8,192 total queue structure
size), by 25,000 VTs we determined that these versions would not outperform
the I = 4 control and terminated the swarms. I = 6 performs just slightly
worse than the control. Grapple achieved peak performance with I = 5 (5,120
queue structure size), reaching 100 WPs in 62,000 VTs. This is better than the
93,500 VTs of the control, but still worse than the 34,500 of half-warp Grap-
ple. Since half-warp Grapple uses a queue structure of 4,096 elements (I = 16
with N = 16), but outperforms all full-warp versions in WP/VT, the difference
in performance requires further study. It is likely due to a low-level bottleneck,
such as register access patterns or to differences in exploration order arising from
the fewer random thread options.

We also tested the impact of altering the guard logic for full-warp Grapple’s
queue structure, as explained in Sect. 3. Both versions use a queue structure with
4,096 entries, and otherwise identical control flow. Figure 6 shows the old guard
logic maintaining a WP lead throughout the lifetime of the swarm, reaching the
100th WP in 93,500 VTs. The new guard logic takes an additional 90,000 VTs
to find all 100 WPs, with ∼47% of the search spent looking for the final WP.



Swarm Model Checking on the GPU 107

Unlike in Grapple and FPGA tests, where the hash table size is always 48 KB
per VT, SPIN swarm experiments run on a variety of different hash table sizes.
While a 48 KB hash table would be ideal for comparison purposes, a SPIN swarm
requires hash tables to be multiples of 32. With the table size set to 32 KB, SPIN
ran for over a week without discovering all 100 WPs, after which we terminated
the search. The next step up, with 64 KB-hash-table VTs, managed to find 90
WPs in 263,220 s (just over three days). As in [16], the optimal configuration for
the SPIN swarm seems to be a 256 MB table per VT. This version uncovers all
100 WPs in 10,890 s, ∼3.4x as long as half-warp Grapple or ∼1.8x as long as
full-warp Grapple.

The optimal setting for SPIN VTs requires over 5000x the amount of mem-
ory per VT as Grapple and the FPGA. A larger memory footprint for each VT
lets a VT cover a greater portion of the state-space, but at the cost of longer
execution time per VT. The SPIN results suggest that either the overhead for
creating many small SPIN VTs hinders their effectiveness, or that SPIN’s imple-
mentation of diversification techniques favor larger VTs. While SPIN could run
more concurrent VTs if more machines were available, improving performance,
the same could be said for the Grapple and FPGA versions.

Non-swarm GPU tests were difficult for this model. Our original implemen-
tation in [12] called for four full explicit-state cuckoo hash tables to contain
every possible state vector. Although the WP benchmark uses randomly gen-
erated 32-bit states, the states are still wrapped in a 64-bit unsigned long long
integer. Following the original MC design, the total hash storage alone would
be 128 GB, much larger than the 2 GB of global memory on this GPU. Con-
verting this checker to bitstate hashing allows us to cut the hash storage to a
more-reasonable 500 MB. However, this does not account for the other support
structures that still use full 64-bit state vectors. The simplest solution is to run a
version that is 250x the size of a single Grapple VT, since we know 250 Grapple
VTs can be allocated in one CUDA program without exhausting memory. A
table this size can hold just over 98 million states, a fraction of the statespace
generated by the WP benchmark. Our non-swarm checker explores this space in
352 s, reaching 10 WPs. As a standalone program, the GPU MC clearly cannot
compete with the full state-space exploration of Grapple.

4.2 Dining Philosophers Model

Table 1 contains results for Dining Philosophers, where each philosopher picks
up the left stick, then the right, releases the left and then the right. There is
a violating state (deadlock) when all philosophers pick up their respective left
stick concurrently. The minimum number of VTs tested is 7, since less than 7
would take the same amount of time to run on this GPU. For versions with more
processes, we use sets of 451 VTs (an arbitrary large number that fits within
the GPU memory footprint), but for DP10 and DP11, we determined that more
precision would be better than just saying x≤ 451. The number of VTs needed to



108 R. DeFrancisco et al.

fully explore the state space increases dramatically when increasing the number
of processes to 12. This is as expected, as DP11 has 177,146 states to fit into
392,800 slots per VT (∼45% occupancy), while DP12 has 531,440 states to fit
into the same number of slots (∼135% occupancy). Beyond 12, we prematurely
terminate the search due to the low rate of new state discovery.

Table 1. Dining Philosophers model in Grapple.

Number
of pro-
cesses

% of VTs
finding
violation

Average VT
execution time

State space size # of VTs
to explore

% of state
space
covered by
first
451VTs

10 67.72 195ms 59048 100% in 7 100

11 46.65 366ms 177146 100% in 14 100

12 25.55 677ms 531440 100% in
3157

99.99

13 13.75 832ms 1594322 99.21% in
24,805

98.65

14 11.18 882ms 4782968 97.76% in
13,530

92.72

15 11.35 902ms 14348906 93.19% in
50,061

76.56

The final column of Table 1 shows the percentage of the state space covered
in the first 451 VTs. Due to search overlap, the number of unique states visited
grows logarithmically with the number of VTs. The effect is more pronounced
in a deterministic model like Dining Philosophers, since the only source of diver-
sification in Grapple for such models is the VT’s hash polynomial.

4.3 Large-Scale Results

For our large-scale experiments, we used two Amazon EC2 nodes [2], one with
4 and one with 8 Tesla V100 devices. Each device features 16 GB global mem-
ory and 80 SMs. All devices for each configuration run concurrently and their
reported WPs are collected by a script on the host. As in the previous tests, each
VT is independent and features data structures private to said VT. There is no
inter-GPU communication other than WP counting by the script. Each CUDA
program runs 2,000 VTs between reports to the host.



Swarm Model Checking on the GPU 109

0

20

40

60

80

100

0 20000 40000 60000 80000 100000

W
ay

po
in

ts
 F

ou
nd

Number of VTs

4-GPU
8-GPU

Fig. 7. Grapple with 16 threads/VT on Amazon
EC2

As in Fig. 7, the 4-GPU
node reaches all 100 WPs in
72,000 VTs (18,000 per GPU).
The 8-GPU node reaches all
100 in 80,000 VTs (10,000
per GPU). Even with state-
recording overhead they com-
plete in 42 min and 21 min,
respectively. This is faster
than our previous results with
such recording disabled. Turn-
ing off state-recording results
in a reduction of average
VT time from 1.02250 s to
203.51 ms. This is a significant
reduction of 80.1%.

5 Related Work

In [23], SPIN was extended to support dual-core processors, using nested DFS
to check safety and liveness properties. This work was extended to multicore
systems for safety properties in [24] and liveness properties in [20]. Despite the
earlier debut of a distributed model checker [11], the dual-core version of SPIN
was the first parallel MC to reach wide adoption. Other work sought to avoid the
naturally sequential depth-first post-order found in dual-core SPIN’s nested DFS
algorithm by leveraging the parallelism in breadth-first reachability analysis on
both distributed [35] and multicore systems [10]. This was mainly accomplished
using two algorithms: One Way Catch Them Young (OWCTY) and Maximal
Accepting Predecessors (MAP). Both algorithms perform parallel reachability
analysis, but differ in the way they detect cycles in the state-space graph.

Early GPU-based MC efforts focused on a priori graph exploration, as
opposed to generating new states on-the-fly [9,17,22,28,32]. The first on-the-fly
GPU approach used the GPU to generate new states with enabled transitions,
and the CPU for duplicate detection [18]. This is not unlike waypoint counting
in Grapple, but their system makes less efficient use of the GPU hardware and
is not based on SV. GPUexplore [38] was introduced in 2014 along with our
own GPU-based model checker [12]. While we tried to redesign SPIN to take
advantage of the GPU architecture, GPUexplore worked on Labeled Transition
Systems (LTSs) and followed a symbolic approach. Grapple uses VTs based on
our 2014 design, so it is still very different than GPUexplore. A GPU-based on-
the-fly reachability checking system for LTSs that achieved 50–100x performance
over sequential search was presented in [40].

In [36], GPUs were used for strong and branching bisimilarity checking.
A GPU-based method for liveness checking for finite-state concurrent system
appeared in [37]. Three partial-order reduction algorithms were implemented



110 R. DeFrancisco et al.

on the GPU in [33], bringing GPUexplore closer to parity with existing CPU-
based checkers. A second version of GPUexplore was released that same year,
with improvements made to lock-less hashing and thread synchronization [39].
Unlike [37], this version does not include support for liveness properties. Scal-
ability tests for GPUexplore were carried out in [13], achieving 5.5 million
states/second on a 61.9 million state model. Additionally, they used GPUex-
plore to pit the 2015 Maxwell Architecture Nvidia Titan X GPU against the
2016 Pascal Titan X GPU, averaging a 1.73x improvement on the new device.
A more in-depth comparison between cuckoo hashing and the GPUexplore table
was carried out in [14], concluding that cuckoo hashing is 3x faster for random
data and up to 9x faster for non-random data.

A GPU-based parameter-synthesis tool for stochastic systems was presented
in [15]. Utilizing a single GPU, it achieves up to 31x the performance of sequen-
tial approaches. A multi-core version of the LTSMIN model checker [31] out-
performed the 2005 multi-core SPIN and the 2008 multi-core DiVinE model
checkers. In [19], a new multi-core DFS algorithm called CNDFS with better
performance than the OWCTY algorithm was presented. This technique uses
a swarm approach with state coloring to perform cycle detection concurrently
with state-space exploration. LTSMIN saw further improvements in 2015 includ-
ing support for new modeling languages [30].

In [21,34], an FPGA was used to accelerate the exploration of a relatively
small 10,000-state model, achieving a 50x speed-up compared to its software
equivalent. The FPGA swarm of [16], to which this work is compared, achieved
a 900x improvement over a SPIN swarm for a model of a much more substantial
size (4B+ states). While this scale of improvement is unlikely for a single GPU
device, the process of deployment to the FPGA is much more complex compared
to the GPU. Additionally, their FPGA swarm was designed specifically for the
32-bit WP model, while Grapple can handle arbitrary Promela models.

6 Conclusions

We have presented Grapple, a new framework for highly efficient explicit-state
model checking on the GPU. Grapple is based on swarm verification (SV), and
its features include: a parallel swarm of internally parallel verification tasks
(VTs); GPU-optimized implementations of hash functions and bitstate repre-
sentation of visited states; and optimal use of GPU shared memory, thereby
eliminating inter-block communication/synchronization overhead. Our experi-
mental results show that Grapple outperforms multicore SV [25] and GPU non-
SV [12] approaches, and that it uses a number of VTs similar to that required
by an FPGA swarm [16].

Future work includes adding support for larger state vectors, allowing us to
test Grapple with larger-scale model instances from the BEEM database [3]. We
will also investigate new diversification techniques, including randomized process
order and alternative NDC search strategies.



Swarm Model Checking on the GPU 111

References

1. About CUDA: NVIDIA developer zone. https://developer.nvidia.com/about-cuda
2. Amazon EC2 P3 instances. https://aws.amazon.com/ec2/instance-types/p3/
3. BEEM: BEnchmarks for Explicit Model checkers-ParaDiSe. http://paradise.fi.

muni.cz/beem/
4. CUDA C programming guide. https://docs.nvidia.com/cuda/cuda-c-

programming-guide/index.html
5. Green 500: TOP500 supercomputer sites. https://www.top500.org/green500/
6. OpenCL technologyTM - intel.com. http://software.intel.com/OpenCL
7. Spin-formal verification. http://spinroot.com/
8. Alcantara, D.A.F.: Efficient hash tables on the GPU. Copyright: Copyright Pro-

Quest, UMI Dissertations Publishing 2011. Last updated 23-01-2014; First page:
n/a; M3: Ph.D. (2011)

9. Barnat, J., Bauch, P., Brim, L., C̆es̆ka, M.: Designing fast LTL model checking
algorithms for many-core GPUs. J. Parallel Distrib. Comput. 72(9), 1083–1097
(2012)

10. Barnat, J., Brim, L., Ročkai, P.: Scalable multi-core LTL model-checking. In:
Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 187–203.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73370-6 13

11. Barnat, J., Brim, L., Stř́ıbrná, J.: Distributed LTL model-checking in SPIN. In:
Dwyer, M. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 200–216. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45139-0 13

12. Bartocci, E., DeFrancisco, R., Smolka, S.A.: Towards a GPGPU-parallel SPIN
model checker. In: Proceedings of the 2014 International SPIN Symposium on
Model Checking of Software, pp. 87–96. ACM (2014)

13. Cassee, N., Neele, T., Wijs, A.: On the scalability of the GPUexplore explicit-state
model checker. In: Proceedings of the Third Workshop on Graphs as Models (GaM
2017), Uppsala, Sweden (2017)

14. Cassee, N., Wijs, A.: Analysing the performance of GPU hash tables for state space
exploration. Electron. Proc. Theor. Comput. Sci. (EPTCS) 263, 1–15 (2017)

15. Češka, M., Pilař, P., Paoletti, N., Brim, L., Kwiatkowska, M.: PRISM-PSY: pre-
cise GPU-accelerated parameter synthesis for stochastic systems. In: Chechik, M.,
Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 367–384. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49674-9 21

16. Cho, S., Ferdman, M., Milder, P.: FPGASwarm: high throughput model checking
using FPGAs. In: 28th International Conference on Field Programmable Logic and
Applications (FPL). IEEE (2018)

17. Deng, Y., Wang, B.D., Mu, S.: Taming irregular EDA applications on GPUs.
In: Proceedings of the ICCAD 2009 International Conference on Computer-Aided
Design, ICCAD 2009, pp. 539–546. ACM, New York (2009)

18. Edelkamp, S., Sulewski, D.: Efficient explicit-state model checking on general pur-
pose graphics processors. In: van de Pol, J., Weber, M. (eds.) SPIN 2010. LNCS,
vol. 6349, pp. 106–123. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16164-3 8

19. Evangelista, S., Laarman, A., Petrucci, L., van de Pol, J.: Improved multi-core
nested depth-first search. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012.
LNCS, pp. 269–283. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33386-6 22

https://developer.nvidia.com/about-cuda
https://aws.amazon.com/ec2/instance-types/p3/
http://paradise.fi.muni.cz/beem/
http://paradise.fi.muni.cz/beem/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.top500.org/green500/
http://software.intel.com/OpenCL
http://spinroot.com/
https://doi.org/10.1007/978-3-540-73370-6_13
https://doi.org/10.1007/3-540-45139-0_13
https://doi.org/10.1007/978-3-662-49674-9_21
https://doi.org/10.1007/978-3-642-16164-3_8
https://doi.org/10.1007/978-3-642-16164-3_8
https://doi.org/10.1007/978-3-642-33386-6_22
https://doi.org/10.1007/978-3-642-33386-6_22


112 R. DeFrancisco et al.

20. Filippidis, I., Holzmann, G.J.: An improvement of the piggyback algorithm for par-
allel model checking. In: Proceedings of the 2014 International SPIN Symposium
on Model Checking of Software, pp. 48–57. ACM (2014)

21. Fuess, M.E., Leeser, M., Leonard, T.: An FPGA implementation of explicit-state
model checking. In: Proceedings of the 2008 16th International Symposium on
Field-Programmable Custom Computing Machines, FCCM 2008, Washington, DC,
USA, pp. 119–126. IEEE Computer Society (2008)

22. Harish, P., Narayanan, P.J.: Accelerating large graph algorithms on the GPU using
CUDA. In: Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC
2007. LNCS, vol. 4873, pp. 197–208. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-77220-0 21

23. Holzmann, G., Bos̆nac̆ki, D.: The design of a multicore extension of the SPIN
model checker. IEEE Trans. Softw. Eng. 33(10), 659–674 (2007)

24. Holzmann, G.J.: Parallelizing the SPIN model checker. In: Donaldson, A., Parker,
D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 155–171. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31759-0 12

25. Holzmann, G.J.: Cloud-based verification of concurrent software. In: Jobstmann,
B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 311–327. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5 15

26. Holzmann, G.J., Joshi, R., Groce, A.: Swarm verification. In: Proceedings of the
2008 23rd IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2008, Washington, DC, USA, pp. 1–6. IEEE Computer Society (2008)

27. Holzmann, G.J., Joshi, R., Groce, A.: Swarm verification techniques. IEEE Trans.
Softw. Eng. 37(6), 845–857 (2011)

28. Hong, S., Kim, S.K., Oguntebi, T., Olukotun, K.: Accelerating CUDA graph algo-
rithms at maximum warp. In: Proceedings of PPoPP 2011 16th ACM Symposium
on Principles and Practice of Parallel Programming, pp. 267–276 (2011)

29. Jenkins, B.: A hash function for hash table lookup. https://burtleburtle.net/bob/
hash/doobs.html

30. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

31. Laarman, A., van de Pol, J., Weber, M.: Multi-core LTSmin: marrying modularity
and scalability. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 506–511. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20398-5 40

32. Luo, L., Wong, M., Hwu, W.: An effective GPU implementation of breadth-first
search. In: Proceedings of DAC 2010 47th Design Automation Conference, DAC
2010, pp. 52–55 (2010)

33. Neele, T., Wijs, A., Bošnački, D., van de Pol, J.: Partial-order reduction for GPU
model checking. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS,
vol. 9938, pp. 357–374. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46520-3 23

34. Tie, M.E.: Accelerating explicit state model checking on an FPGA: PHAST. Mas-
ter’s thesis, Northeastern University (2012)

35. Verstoep, K., Bal, H., Barnat, J., Brim, L.: Efficient large-scale model checking. In:
2009 IEEE International Symposium on Parallel Distributed Processing, IPDPS
2009, pp. 1–12, May 2009

https://doi.org/10.1007/978-3-540-77220-0_21
https://doi.org/10.1007/978-3-540-77220-0_21
https://doi.org/10.1007/978-3-642-31759-0_12
https://doi.org/10.1007/978-3-662-49122-5_15
https://burtleburtle.net/bob/hash/doobs.html
https://burtleburtle.net/bob/hash/doobs.html
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-642-20398-5_40
https://doi.org/10.1007/978-3-642-20398-5_40
https://doi.org/10.1007/978-3-319-46520-3_23
https://doi.org/10.1007/978-3-319-46520-3_23


Swarm Model Checking on the GPU 113

36. Wijs, A.: GPU accelerated strong and branching bisimilarity checking. In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 368–383. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46681-0 29

37. Wijs, A.: BFS-based model checking of linear-time properties with an application
on GPUs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
472–493. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 26

38. Wijs, A., Bošnački, D.: GPUexplore: many-core on-the-fly state space exploration
using GPUs. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 233–247. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54862-8 16

39. Wijs, A., Neele, T., Bošnački, D.: GPUexplore 2.0: unleashing GPU explicit-state
model checking. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 694–701. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 42

40. Wu, Z., Liu, Y., Sun, J., Shi, J., Qin, S.: GPU accelerated on-the-fly reachabil-
ity checking. In: 2015 20th International Conference on Engineering of Complex
Computer Systems (ICECCS), pp. 100–109 (2015)

41. Xiao, S., Feng, W.C.: Inter-block GPU communication via fast barrier synchro-
nization. In: Proceedings of the IPDPS 2010 IEEE International Symposium on
Parallel Distributed Processing, pp. 1–12, April 2010

https://doi.org/10.1007/978-3-662-46681-0_29
https://doi.org/10.1007/978-3-319-41540-6_26
https://doi.org/10.1007/978-3-642-54862-8_16
https://doi.org/10.1007/978-3-642-54862-8_16
https://doi.org/10.1007/978-3-319-48989-6_42
https://doi.org/10.1007/978-3-319-48989-6_42

	Swarm Model Checking on the GPU
	1 Introduction
	2 Background
	2.1 GPU Hardware Model
	2.2 CUDA Programming Model
	2.3 SPIN Model Checker
	2.4 Swarm Verification

	3 Swarm Verification via the Grapple Model Checker
	4 Experimental Results
	4.1 WP Benchmark
	4.2 Dining Philosophers Model
	4.3 Large-Scale Results

	5 Related Work
	6 Conclusions
	References




