
Multi-Robot Guided Policy Search for Learning
Decentralized Swarm Control
Chao Jiang, Member, IEEE, and Yi Guo, Senior Member, IEEE

Abstract—Multi-robot learning has been extensively studied
recently. Developing provably-correct algorithms for learning
decentralized control policies remains challenging. In this let-
ter, we propose a sample-efficient multi-robot learning method
based on guided policy search to learn decentralized swarm
control policies. The proposed method uses distributed trajectory
optimization to provide guiding trajectory samples for policy
training. In turn, the learned policy is exploited to update
trajectory optimization results so that the guiding trajectories
are reproducible by the current policy. A learning algorithm is
designed to alternate between distributed trajectory optimization
and policy optimization, which eventually converges to the
solution with good long-term performance. We demonstrate the
effectiveness of our method in a multi-robot rendezvous problem.
The simulation results in a robot simulator show that our method
efficiently learn decentralized control policy with substantially
less training samples.

Index Terms—Multi-robot learning, distributed trajectory op-
timization, guided policy search, robotic swarm

I. INTRODUCTION

MULTI-ROBOT learning problems are commonly for-
mulated as Markov games [1] or decentralized partially

observable Markov decision process (Dec-POMDP) [2]. Multi-
robot learning has been investigated under the reinforcement
learning (RL) paradigm to learn decentralized policies in the
framework of concurrent learning [3], [4]. However, as the
robots update their policies concurrently during learning, the
environment becomes non-stationary. This could be problem-
atic since previous experience used for learning becomes
invalid as the dynamics of environment changes, which makes
the learning unstable. In [5], a distributed online learning of
motion control is adopted for multi-robot cooperation. In [6],
a novel neural network policy that spans an entire robot swarm
is proposed. The robot swarm communicates and collectively
trains the policy in a decentralized manner. Alternatively, the
framework of centralized learning and decentralized execution
has been extensively adopted [7]–[11], where training is cen-
tralized and global information is accessible for each robot to
evaluate and improve its policy, while only local information
is used during decentralized execution.

A majority of existing work adopts the RL paradigm for
the centralized training phase. However, designing appropriate

This work was partially supported by the US National Science Foundation
under Grant CMMI-1825709.

C. Jiang is with the Department of Electrical and Computer En-
gineering, University of Wyoming, Laramie, WY, 82071 USA e-mail:
cjiang1@uwyo.edu.

Y. Guo is with the Department of Electrical and Computer Engineer-
ing, Stevens Institute of Technology, Hoboken, NJ 07030, USA e-mail:
yguo1@stevens.edu.

reward functions that fully capture the learning objectives
could be difficult for multi-robot systems in complex appli-
cations. Moreover, the search space in multi-robot learning
could be substantially huge, thus sample-efficiency and algo-
rithm tractability have been the main concerns for multi-robot
reinforcement learning [12].

In this letter, we focus on sample-efficient multi-robot
learning, and propose a novel multi-robot learning method
based on the guided policy search (GPS) [13], [14] to learn
decentralized control policies. The proposed method uses dis-
tributed trajectory optimization to generate guiding trajectory
samples for policy training. In turn, the learned policy is
exploited to update the guiding trajectories so that the guiding
trajectories are reproducible by the current policy. The dis-
tributed trajectory optimization and the policy optimization are
alternately performed based on alternating direction method
of multipliers (ADMM) [15]. The algorithm eventually con-
verges to a solution that exhibits good long-term performance.
We verify the effectiveness of our method in a multi-robot
rendezvous problem. The simulation results show that our
method efficiently learn decentralized control policies with
substantially less training samples.

The main contribution of this letter is the multi-robot guided
policy search (MRGPS) method. Specifically, 1) a distributed
trajectory optimization based on linear-quadratic-regulator
(LQR) is designed for the guiding trajectory generation in
policy training. This distributed trajectory optimization extends
the single-robot guided policy search [13], [14] to multi-robot
systems. 2) The learned decentralized policy achieves the
robotic swarm control goal using the robot’s local observation
only and does not require inter-robot communication. 3) The
proposed method provides a new framework for learning
decentralized multi-robot control policies, and demonstrates
sample-efficiency comparing to existing supervised learning
methods. Note that a distributed variant of GPS is presented
in [16], where multiple robots collect and share training
samples in a distributed and asynchronous manner to jointly
learn an optimal policy. Similar framework is also reported in
[17]. However, the policy learning algorithms in these work
essentially address single-robot control problems. In contrast,
our method is designed to solve multi-robot control problems.

The reminder of this letter is organized as follows. Section
II presents the problem formulation of the multi-robot guided
policy search for decentralized swarm control. Section III
provides the design details of the proposed policy learning
algorithm. The experimental validation and evaluation are
presented in Section IV. We conclude our work and discuss
the future work in Section V.



II. PROBLEM FORMULATION AND LEARNING
FRAMEWORK

A. Multi-Robot Swarm Control

We consider a multi-robot system with N robots. To focus
on high-level motion control, we assume that the dynamics of
each robot is described by the discrete-time model

xi(t+ 1) = xi(t) + ui(t). (1)

where xi ∈ R2 and ui ∈ R2 are the 2-dimensional position
and control of the i-th robot, respectively.

We study a multi-robot rendezvous problem where the ob-
jective is that given any initial positions, the robots aggregate
together such that the multi-robot team converges to a common
position, i.e., (xi−xj)→ 0 as t→∞, and the robot velocities
converge to 0, i.e., ui → uj → 0 as t→∞. We formulate the
robotic swarm control as an optimization problem where the
goal is to find the optimal robot trajectories {xi(t),ui(t)}Tt=0

with the initial position xi(0) = xinit
i , for i = 1, .., N , which

minimize the following objective function:

min
X,U

N∑
i=1

T∑
t=0

l
(
xi(t),ui(t)

)
=

∑
i,t

 ∑
j∈R(i)

‖xi(t)− xj(t)‖22 + ‖ui(t)‖22


s.t. xi(t+ 1) = xi(t) + ui(t);xi(0) = x

init
i

(2)

where R(i) is the set of neighboring robots of the i-th robot.
We use {X,U} to denote the set of trajectories of all N
robots. The first term in the objective function forces the robots
to minimize the relative distance to its neighboring robot j ∈
R(i) and the second term minimizes the control input of each
robot whose velocity will converge to 0.

B. Decentralized Policy for Robotic Swarm Control

We aim to learn the decentralized control policy π
(
oi|θ

)
=

ui, parameterized by θ, such that for any initial condition xinit
i

of each robot, the control policy computes the velocity control
output ui from the robot’s local observation oi to achieve the
objective of the swarm control defined in (2). The observation
vector of each robot i, oi = [∆T

i,i1, ...,∆
T
i,ij ]

T , includes the
relative position ∆i,ij of its neighboring robot j ∈ R(i),
with respect to the i-th robot’s local coordinate system. It is
worth noting that the robot’s control policy requires neither the
knowledge of global coordinate system nor the communication
to its neighboring robots to acquire information regarding
their global positions. Learning the control policy essentially
is to find the optimal policy parameters θ that achieve the
performance objective averaged over M samples, that is

min
X,U

1

M

M∑
n=1

[
N∑
i=1

T∑
t=0

l
(
xn,i(t), π

(
on,i(t)|θ

))]
s.t. xn,i(t+ 1) = xn,i(t) + π

(
on,i(t)|θ

)
;xi(0) = x

init
i

(3)

A control policy π
(
oi|θ

)
can be constructed from expert

demonstration through supervised learning of behaviors (e.g.,
[18], [19]). However, supervised learning is prone to com-
pounding errors that deteriorate the long-term performance

(a) (b)

Fig. 1: The overview of the proposed multi-robot learning
method based on guided policy search: (a) training phase; (b)
execution phase.

[20]. Furthermore, to minimize the effect of compounding
errors, a substantial number of training samples are required to
reconstruct the control policy. In this letter we propose a novel
multi-robot learning method based on guided policy search for
learning decentralized control of robotic swarm.

C. Guided Policy Search via Trajectory Optimization

An overview of the multi-robot learning framework is
shown in Fig. 1. We adopt the centralized training and de-
centralized execution paradigm. The centralized training is
performed by the proposed MRGPS as shown in Fig. 1a.
Specifically, the policy training is guided by the distributed
trajectory optimization which, for each initial condition n =
1, ...,M , solves for the sample trajectories {Xn,Un} of
all N robots. The sample trajectories provide a constricted
search space for policy training, which avoids unnecessary
exploration in the search space. The initial sample trajectories
are used to initialize the policy π. The learned policy is
exploited to update the guiding trajectories {X̃n, Ũn}Mn=1

which in turn plays a part in the trajectory optimization such
that the resulting sample trajectories are adapted to the current
policy. Therefore, the guiding trajectories should accomplish
the control objective and meanwhile should be reproducible by
the learned policy. The learning process alternates between the
policy optimization using the guiding trajectories and the dis-
tributed trajectory optimization with an augmented objective
making the resulting sample trajectories resemble the output
of the current policy. In such a manner, the policy will be
eventually reconstructed from the guiding trajectories that are
reproducible by the policy, and thus avoids the compounding
errors issue. During online execution, as shown in Fig. 1b,
the learned policy π is deployed on each robot to compute the
decentralized control solely from the robot’s local observation.
The robots share the same policy parameters learned by the
algorithm.

Remark 1: The sample-efficiency of the proposed method
is achieved by using the distributed trajectory optimizer that
iteratively constructs successful sample trajectories to direct
the policy search to high-reward regions. Moreover, the tra-
jectory optimizer iteratively adapts to the learned policy such
that the training samples eventually come from the policy’s
own exploration.



Remark 2: It is worth noting that with the known model
of robot dynamics in (1), one could directly solve the multi-
robot rendezvous problem as formulated in (2) via distributed
trajectory optimization. However, solving such a distributed
trajectory optimization is time consuming and may not meet
the online execution need. It also requires inter-robot com-
munication to obtain neighboring robots’ global positions. In
contrast, our proposed approach learns neural network policies
so that: 1) given any initial conditions, our approach produces
robot control on-the-fly to achieve decentralized rendezvous
control; and 2) our approach does not need inter-robot commu-
nication and can rely on the robot’s local observation through
sensing only.

More formally, the guided policy learning can be formulated
as the following optimization problem:

min
X,U ,θ

1

M

M∑
n=1

L(Xn,Un) +R(X,U ,θ)

s.t. xn,i(t+ 1) = xn,i(t) + un,i(t);xn,i(0) = x
init
n,i

(4)

where L(Xn,Un) =
∑

i,t l
(
xn,i(t),un,i(t)

)
is the cost of the

swarm control, and {Xn,Un} denotes the trajectories of all
N robots of the n-th sample, and

R(X,U ,θ) =

M∑
n=1

N∑
i=1

T∑
t=0

1

2

∥∥π(xn,i(t)|θ
)
− un,i(t)

∥∥2
2

(5)

is the regression cost of reconstructing the decentralized con-
trol policy. The solution to the above optimization problem
is the decentralized control policy π, parameterized by the
optimal parameters θ∗. Note that our goal is to learn the
control policy that takes as input the robot local observation,
oi, rather than the robot state, xi. Thus, π(xn,i|θ) in (5) will
be evaluated with samples of robot local observations taken
at the corresponding robot states, i.e., π(on,i|θ). In the next
section, we present the proposed MRGPS method that solves
the optimization problem (4) for the swarm control policy.

III. MULTI-ROBOT GUIDED POLICY SEARCH

A. Algorithm Overview

The MRGPS algorithm employs the alternating optimization
scheme of ADMM [15] to solve (4). By introducing new
variables X̃ and Ũ , (4) is then reformulated as a constrained
problem whose augmented Lagrangian can be written as

L(λx,λu) = argmin
1

M

M∑
n=1

L(Xn,Un) +R(X̃, Ũ ,θ)+

M∑
n=1

(ρ
2
‖Xn − X̃n + λxn‖22 +

ρ

2
‖Un − Ũn + λun‖22

) (6)

where λx, λu are the Lagrangian multipliers; ρ is a constant;
Xn, Un and X̃ , Ũ are the trajectories minimizing the
trajectory optimization cost and the policy optimization cost in
(4), respectively. Then, the algorithm solves (6) by alternating
between 1) the trajectory optimization with two additional
quadratic objectives and 2) the policy optimization using the
guiding trajectories.

The trajectories Xn, Un of the n-th sample is solved via
the trajectory optimization:

min
Xn,Un

N∑
i=1

T∑
t=0

l
(
xn,i(t),un,i(t)

)
+
ρ

2
‖xn,i(t)− x̃n,i(t)+

λxn,i(t)‖22 +
ρ

2
‖un,i(t)− ũn,i(t) + λ

u
n,i(t)‖22

s.t. xn,i(t+ 1) = xn,i(t) + un,i(t);xn,i(0) = x
init
n,i

(7)

The optimization problem is the swarm control problem (2)
with two additional quadratic costs that penalize the deviation
from the guiding trajectories used to train the current policy.
This ensures that the trajectories obtained via the trajectory
optimization are reproducible by the current policy. We solve
the optimization problem by the distributed trajectory opti-
mization approach discussed in Section III-B.

In the policy optimization, the parameters θ are optimized
by solving the regression problem:

min
θ
R(X̃, Ũ ,θ) (8)

given the guiding trajectories X̃ , Ũ that provide the super-
vision data for training. As discussed in Section II-C, the
policy function is evaluated using the robot’s local observation
oi(t) sampled at the corresponding robot state x̃i(t) from the
guiding trajectories.

The guiding trajectories X̃n, Ũn of the n-th sample are
then updated by minimizing the following cost:

min
X̃n,Ũn

N∑
i=1

T∑
t=0

1

2

∥∥π(on,i(t)|θ
)
− ũn,i(t)

∥∥2
2
+
ρ

2
‖xn,i(t)−

x̃n,i(t) + λ
x
n,i(t)‖22 +

ρ

2
‖un,i(t)− ũn,i(t) + λ

u
n,i(t)‖22

(9)

This minimization ensures that the guiding trajectories gener-
ated by the distributed trajectory optimization (7) resemble the
outputs of the current policy, making the guiding trajectories
reproducible by the current policy. By alternately optimizing
(7)∼(9), the trajectory optimizer that produces the guiding
trajectories and the current policy are adapted to each other
and eventually exhibit the same behavior at convergence.

Finally, λx and λu are updated by

λx = λx + (X − X̃);λu = λu + (U − Ũ) (10)

Thus, the optimization problem defined in (4) is solved by
recursively solving (7)∼(10) in an alternating manner. The
proposed MRGPS algorithm is summarized in Algorithm 1.

Remark 3: The proposed MRGPS algorithm exploits the
ADMM framework and thus has the same convergence guar-
antees. At convergence, the algorithm converges to the solution
where the learned policy can be regarded as an approximate
optimal controller, thus it not only succeeds from all initial
states in training samples, but also generalizes to various new
initial states. In fact, unlike the standard supervised learning
that trains a policy model on a fixed set of training samples, the
MRGPS constantly explores in high-reward regions provided
by the trajectory optimizer. Greater quantity and diversity of
the samples explored during training would help achieve better
generalizability to new initial states.

In the subsequent subsections, we present the distributed
trajectory optimization that solves the subproblem (7) and the
policy optimization that solves the subproblem (8).



Algorithm 1: Multi-Robot Guided Policy Search
Input : M initial conditions {Xinit

n }Mn=1;
Output: Decentralized control policy π

(
oi|θ

)
;

1 Generate M sets of sample trajectories with distributed
trajectory optimization, given the initial conditions
{Xinit

n }Mn=1;
2 Initialize the guiding trajectories X̃ , Ũ with the trajectory

optimization solution;
3 while not converged do
4 Optimize the trajectories of all robots, Xn, Un, by

solving (7) via the distributed trajectory optimization
for samples n = 1, ...,M ;

5 Optimize the policy parameter θ by solving the
regression problem (8) with the guiding trajectories
X̃ , Ũ ;

6 Update the guiding trajectories X̃ , Ũ by solving the
optimization problem (9);

7 Update the Lagrangian multipliers λx, λu using (10);
8 end

B. Distributed Trajectory Optimization

The problem defined in (7) is essentially a multi-robot tra-
jectory optimization with an augmented cost function. To solve
(7), we design a distributed trajectory optimization algorithm
which combines the distributed optimization algorithm [21]
and the trajectory optimization based on the linear-quadratic
regulator (LQR) [22], assuming a known robot dynamics
model. Thereby, we extend the single-agent guided policy
search method to multi-robot learning problems.

The cost function in (7) can be further written as (here the
subscript n denoting the n-th sample is omitted)

min
X,U

N∑
i=1

T∑
t=1

∑
j∈R(i)

‖xi(t)− xj(t)‖22 + ‖ui(t)‖22+

ρ

2
‖xi(t)− x̃i(t) + λ

x
i (t)‖22 +

ρ

2
‖ui(t)− ũi(t) + λ

u
i (t)‖22

(11)

where
∑

j∈R(i) ‖xi−xj‖22 is a cross-coupled term. To decen-
tralize the optimization, we adopt the distributed optimization
method [21] where the cost function in (11) is decoupled using
the dual decomposition method and then the resulting dual
problems are solved for the optimal trajectories [X∗,U∗].
Specifically, after decoupling the Lagrangian and the dual
function of the dual problem, (11) is equivalent to the fol-
lowing optimization problem:

min
X,U

N∑
i=1

T∑
t=1

∑
j∈R(i)

(
dT
ij(t)− dT

ji(t)
)
xi(t) + ‖ui(t)‖22+

ρ

2
‖xi(t)− x̃i(t) + λ

x
i (t)‖22 +

ρ

2
‖ui(t)− ũi(t) + λ

u
i (t)‖22

(12)

where dij(t) and dji(t) are the variables introduced in the dual
problem, which reflect the deviation from the desired relative
position, (xi − xj), at time t, and are estimated by robot i
and j, respectively. The cost function in (12) is decoupled such
that each robot has its own private cost.

Thus, solving (12) is equivalent to finding the solution to
the private optimization problem of each robot in a distributed
manner through the following iteration:

For each robot i = 1, ..., N , initialize dij for all j ∈ R(i),
and then:

1. Compute the optimized trajectory of the robot, x∗i , that
minimizes the private cost for each i = 1, ..., N in (12).

2. Update dij ← dij + αk

(
(x∗i − x∗j )− dij

2

)
.

Step 1 and 2 are repeated until the solution converges.
Particularly, Step 1 can be solved by existing trajectory op-
timization algorithms with the robot dynamics described in
(1). We exploit the LQR-based trajectory optimizer here.

C. Policy Optimization via Regression

Learning the decentralized control policy π
(
oi|θ

)
essen-

tially is to solve the following regression problem:

min
θ

M∑
n=1

N∑
i=1

T∑
t=1

1

2

∥∥π(on,i(t)|θ
)
− un,i(t)

∥∥2
2

(13)

with the input being the local observation of each robot, oi(t),
and the target output being the desired control ui(t). The pairs
of input, on,i(t), and target output, un,i(t), are provided by
the guiding trajectories X̃n, Ũn.

We use a feed-forward neural network to approximate the
policy function π

(
oi|θ

)
. The neural network is composed of

multiple hidden layers. The parameters θ include the weights
and bias of the neural network. A supervised learning with
stochastic gradient descent algorithm is used to fit the policy
function to the current guiding trajectory samples X̃, Ũ by
minimizing the loss function (13).

IV. SIMULATION RESULTS

A. Experiment Setup

1) Robot Simulation: The simulation experiments were
conducted in V-REP robot simulator [23]. A 40 × 40 m2

square region was created as the simulated environment. The
differential drive robot Pioneer P3-DX was selected as the
mobile robot. The robot control algorithm was implemented
in a MATLAB client program which communicates with V-
REP via remote API. The number of robots was set to N = 5.
The sampling period of the simulation was 0.1 s.

Note that the policy learned using our MRGPS method
computes the high-level control ui(t) in Eq. (1). To control
the differential drive robot in the simulator, we applied the
coordinate transformation [24] to transform ui(t) to the wheel
speed control of the differential drive robot. This method has
been used in our previous work [25], [26].

2) Neural Network Implementation: The policy function is
approximated using a fully connected neural network with two
hidden layers. Both hidden layers have 32 hidden nodes and
are activated by a sigmoid function. The dimension of the input
layer and the output layer is 8 and 2, respectively. A linear
activation function is applied to the output layer. The selection
of the hyperparameters is a result of balancing the policy
fitting accuracy and the variance of predicted control outputs.
The training and numerical computation of the neural network
were implemented using the MATLAB neural network training
toolbox.



(a) t=20 s (b) t=30 s (c) t=50 s (d) trajectories

Fig. 2: Snapshots of the online swarm control simulation.

B. Policy Learning

The MRGPS algorithm described in Alg. 1 was carried
out to learn the decentralized policy. The parameter ρ was
selected as 2. The Lagrangian multipliers λx and λx were
randomly initialized between [0, 1]. In the distributed trajectory
optimization algorithm, the initial estimate of the relative
position dij was randomly initialized between [0, 20] in both
directions. The step-size for updating the estimate dij at each
iteration k was chosen as αk = 0.001. To verify the sample-
efficiency of the proposed method, we trained the policies with
M = 10 and M = 100 samples, respectively, and compare
their performance in online test experiments. Each sample
contains randomly initialized robot positions and consists of
100 time steps. The training using 10 samples converges with
a policy fitting error about 5×10−4 after 9 iterations of Alg. 1.
The training using 100 samples converges with a policy fitting
error about 9× 10−4 after 12 iterations.

The computational cost of Alg. 1 is evaluated with M =
100 on a computer with an Intel® Xeon® E5-1620 (3.5 GHz)
CPU and 16 GB RAM. The average time consumed for each
portion of the algorithm per iteration is as follows: 131.2 s for
trajectory optimization (line 4), 551.3 s for policy optimization
(line 5), and 412.2 s for guiding trajectory update (line 6).

C. Testing and Performance Evaluation

1) Online Swarm Control: In the online swarm control
experiments, the learned decentralized policy was deployed
on each robot. At each time step, the policy computes the
robot control from the its local observation only. The robots’
positions were randomly initialized in the 40× 40 m2 square
region. The duration of each simulation was set to 50 s.

The snapshots of the online swarm control experiment
are presented in Fig. 2, which show the robot positions at
different time steps. Fig. 2d shows the robot trajectories, whose
moving directions are indicated by the increasing degree of
opacity. One can see that the robots start from different initial
positions and successfully complete the rendezvous task. The
time history of the relative distance between any two robots
is shown in the upper figure of Fig. 3a. We can see that the
relative distance converges after about 30 s. The time history
of the robot wheel speed control are shown in the lower figure
of Fig. 3a, where the solid and dashed lines denote the right
and left wheel speed control, respectively. The robot control
signals all converge to 0 after about 40 s.

We also tested the robustness of our method under noisy
observations. A Gaussian noise with mean µ = 0 m and
standard deviation σ = 0.2 m was added to each robot’s local
observation of the neighboring robots’ relative positions, ∆i,ij .
The results of online swarm control under noisy observations

0 10 20 30 40 50

Time (s)

0

20

40

R
e
la

ti
v
e

d
is

ta
n

c
e

 (
m

)

0 10 20 30 40 50

Time (s)

-1

0

1

R
o

b
o

t 
c
o

n
tr

o
l

(m
/s

)

(a)

0 10 20 30 40 50

Time (s)

0

20

40

R
e

la
ti
v
e

d
is

ta
n

c
e

 (
m

)

0 10 20 30 40 50

Time (s)

-1

0

1

R
o

b
o

t 
c
o

n
tr

o
l

(m
/s

)

(b)

Fig. 3: Online swarm control results (a) without and (b) with
observation noise.

are shown in Fig. 3b. One can see that the computed control
drives the robots to achieve the rendezvous task. The policy is
trained without observation noise but is tolerant to moderate
observation noise during online execution.

2) Performance Evaluation: We evaluate our method by
conducting extensive experiments and compare the perfor-
mance with the standard supervised learning method adopted
in existing work such as [18], [19]. The supervised learning
uses the same neural network architecture as the proposed
MRGPS algorithm. The trajectory optimizer in Section III-B
is used to generate successful trajectories as the training set
which includes robot local observations and target control at
every time steps of the trajectories. The neural network policy
is trained on the training set once, using mini-batch stochastic
gradient decent to minimize the mean squared error between
the network outputs and the target outputs. Note that the
supervised learning only solves the regression problem (line
5 of Alg. 1) once, while our MRGPS iteratively generates
reproducible sample trajectories (lines 4 and 6 of Alg. 1) to
guide the policy search.

To compare sample-efficiency, we use M = 10 and M =
100 samples for both methods to train the swarm control
policies and compare the online swarm control performance.
We present the statistical results of 100 simulation runs
and compare the success rate and the convergence time. A
simulation run is considered successful if for all robots i ∈ N ,
the distance to the nearest robot j, ‖xi−xj‖, is less than 0.5
m after convergence within 50 s.

Table I shows the success rate of our proposed method
compared with the supervised learning. One can see that our
method can achieve 91% success rate with only 10 samples.
The success rate increases to 97% with 100 samples. On the
contrary, the success rate of the supervised learning is 77%
with 10 samples and 90% with 100 samples, respectively.
Compared with the supervised learning, our method is more
sample-efficient and attains good success rate even with a
small number of samples for training. As for the unsuccessful
runs of our method, the relative distances between the robots
are converging, but do not meet the requirement of “less than
0.5 m after convergence within 50 s” as defined above.

We also analyze the convergence time of the online swarm
control using our MRGPS and the supervised learning method.
We consider that the swarm control converges at the time
when, for all robots, the distance to its nearest robot is less
than 0.5 m. Fig. 4 shows the statistical results of convergence



TABLE I: Success rate over 100 test runs.

Our MRGPS method Supervised learning
M = 10 M = 100 M = 10 M = 100

Success rate 91% 97% 77% 90%
∗M is the number of samples used to train the policy.

SL(M=10) MRGPS(M=10)

20

30

40

50

C
o

n
v
e

rg
e

n
c
e

 T
im

e
 (

s
)

(a)

SL(M=100) MRGPS(M=100)

20

30

40

50

C
o
n
v
e
rg

e
n
c
e
 T

im
e
 (

s
)

(b)

Fig. 4: Convergence time over successful runs with (a) M=10
and (b) M=100. SL and MRGPS stand for supervised learning
and our multi-robot guided policy search, respectively.

time over successful runs, where the central mark in each box
is the median, the edges of the boxes are the 25th and 75th
percentiles, respectively, the whiskers extend to the max/min,
and the cross markers represent outliers. It can be seen that
1) given the same number of training samples M , the control
policy trained using our MRGPS method converges faster than
that using the supervised learning; 2) For both methods, the
more training samples are used, the faster the online control
converges.

V. CONCLUSIONS AND FUTURE WORK

In this letter, we proposed a novel multi-robot guided
policy search method for learning decentralized control of
robotic swarm. The policy learning is guided by the guiding
trajectories generated by the distributed trajectory optimiza-
tion. Meanwhile, the guiding trajectories are updated to be
reproducible by the learned policy. Thus, the proposed multi-
robot guided policy search alternates between a supervised
policy training and a distributed trajectory optimization with
an augmented objective for the resulting guiding trajectories
to adapt to the current policy. Simulation experiments in a
robot simulator were conducted to verify and evaluate our
method, and the results demonstrated superior performance
and sample-efficiency over existing supervised learning.

The proposed method adopts a distributed trajectory op-
timization that operates on known system dynamics. In fu-
ture work, we will investigate the multi-robot guided policy
search under approximate or unknown system dynamics. Fur-
thermore, we will investigate end-to-end learning where the
learned policy operates on low-level robot perceptions such as
raw sensor measurements with limited robot local observation
of nearby robots.

REFERENCES

[1] M. L. Littman, “Markov games as a framework for multi-agent rein-
forcement learning,” in Machine Learning Proceedings, pp. 157–163,
1994.

[2] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The
complexity of decentralized control of markov decision processes,”
Mathematics of Operations Research, vol. 27, no. 4, pp. 819–840, 2002.

[3] M. Tan, “Multi-agent reinforcement learning: Independent vs. coopera-
tive agents,” in Proceedings of the International Conference on Machine
Learning, pp. 330–337, 1993.

[4] G. Tesauro, “Extending q-learning to general adaptive multi-agent sys-
tems,” in Advances in Neural Information Processing Systems, pp. 871–
878, 2004.

[5] K. H. Low, W. K. Leow, and M. H. Ang, “Autonomic mobile sensor
network with self-coordinated task allocation and execution,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C, vol. 36, no. 3,
pp. 315–327, 2006.

[6] M. Otte, “An emergent group mind across a swarm of robots: Collective
cognition and distributed sensing via a shared wireless neural network,”
The International Journal of Robotics Research, vol. 37, no. 9, pp. 1017–
1061, 2018.

[7] M. Hüttenrauch, A. Šošić, and G. Neumann, “Guided deep reinforce-
ment learning for swarm systems,” arXiv:1709.06011, 2017.

[8] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in International Conference
on Autonomous Agents and Multiagent Systems, pp. 66–83, 2017.

[9] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mor-
datch, “Multi-agent actor-critic for mixed cooperative-competitive en-
vironments,” in Advances in Neural Information Processing Systems,
pp. 6379–6390, 2017.

[10] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in AAAI Conference on
Artificial Intelligence, pp. 2974–2892, 2018.

[11] S. Li, Y. Wu, X. Cui, H. Dong, F. Fang, and S. Russell, “Robust
multi-agent reinforcement learning via minimax deep deterministic
policy gradient,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 4213–4220, 2019.

[12] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba, “Scalable trust-
region method for deep reinforcement learning using kronecker-factored
approximation,” in Advances in Neural Information Processing Systems,
pp. 5279–5288, 2017.

[13] S. Levine and V. Koltun, “Guided policy search,” in International
Conference on Machine Learning, pp. 1–9, 2013.

[14] I. Mordatch and E. Todorov, “Combining the benefits of function
approximation and trajectory optimization,” in Robotics: Science and
Systems, vol. 4, 2014.

[15] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[16] A. Yahya, A. Li, M. Kalakrishnan, Y. Chebotar, and S. Levine,
“Collective robot reinforcement learning with distributed asynchronous
guided policy search,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 79–86, 2017.

[17] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-eye
coordination for robotic grasping with large-scale data collection,” in
International Symposium on Experimental Robotics, pp. 173–184, 2016.

[18] P. Long, W. Liu, and J. Pan, “Deep-learned collision avoidance policy
for distributed multiagent navigation,” IEEE Robotics and Automation
Letters, vol. 2, no. 2, pp. 656–663, 2017.

[19] C. Jiang, Z. Chen, and Y. Guo, “Learning decentralized control policies
for multi-robot formation,” in IEEE/ASME International Conference on
Advanced Intelligent Mechatronics, pp. 758–765, 2019.

[20] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the International Conference on Artificial Intelligence and Statistics,
pp. 627–635, 2011.

[21] R. L. Raffard, C. J. Tomlin, and S. P. Boyd, “Distributed optimization for
cooperative agents: Application to formation flight,” in IEEE Conference
on Decision and Control, vol. 3, pp. 2453–2459, 2004.

[22] B. D. Anderson and J. B. Moore, Optimal control: linear quadratic
methods. Courier Corporation, 2007.

[23] E. Rohmer, S. P. Singh, and M. Freese, “V-REP: A versatile and scalable
robot simulation framework,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1321–1326, 2013.

[24] A. De Luca, G. Oriolo, and M. Vendittelli, “Control of wheeled mobile
robots: An experimental overview,” in Ramsete, pp. 181–226, 2001.

[25] Z. Chen, C. Jiang, and Y. Guo, “Distance-based formation control of
a three-robot system,” in Chinese Control and Decision Conference,
pp. 5501–5507, 2019.

[26] C. Jiang, Z. Chen, and Y. Guo, “Multi-robot formation control: a
comparison between model-based and learning-based methods,” Journal
of Control and Decision, vol. 7, no. 1, pp. 90–108, 2020.


