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Abstract. We survey some recent results from [BrCo16b], where a class of
highly entangled subspaces of bipartite quantum systems is described, which
arises from unitary fiber functors on the Temperley-Lieb category associated
to the representation theory of free orthogonal quantum groups. By exploiting
the rich structure of the Temperley-Lieb category and this particular fiber

functor, we are able to precisely determine the largest singular values for these
subspaces and obtain lower bounds for the minimum output entropy of the
corresponding quantum channels. Future research directions and some open
problems are also discussed.

1. Introduction

Entanglement is a fundamental notion in quantum mechanics that does not
have an analogue in the classical world. Within the framework of quantum compu-
tation and quantum information, entanglement in bipartite or multipartite systems
produces, on the one hand, many counterintuitive phenomena, while on the other
hand, it can be used to design new communications protocols which admit no clas-
sical analogues [Eis06,Gro96,CLSZ95,EJ96].

Throughout this paper we will focus on entanglement in bipartite quantum
systems. Within the formalism of quantum mechanics, a quantum mechanical
system is described by a complex Hilbert space H. The (pure) states of the system
are described by unit norm vectors ξ ∈ H, taken up to a complex phase factor. (In
this paper, all Hilbert spaces are taken to be finite-dimensional, unless otherwise
specified.) Equivalenty, a pure state of the system can be described by the rank
one projector ρ = |ξ〉〈ξ| onto the subspace Cξ ⊂ H. The (closed) convex hull of
pure states (viewed as rank-one projectors on H) is denoted by D(H), and elements
ρ ∈ D(H) are called mixed states. If we fix a basis of H and identify B(H) ∼= Mn(C)
(n = dimH), then the convex set D(H) is nothing more than the collection of all
trace-one positive semidefinite matrices, and the extreme points of D(H) are the
precisely the rank one projectors, i.e., pure states on H.

In the quantum context, one often has to deal with bipartite systems AB, built
from subsystems A,B. Mathematically, such a bipartitie system is modeled by the
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tensor product Hilbert space H = HA ⊗ HB , where the Hilbert spaces HA and
HB describe the states of systems A and B, respectively. Given such a bipartite
system modeled on H = HA ⊗HB , a mixed state ρ ∈ D(H) is said to be separable
if it belongs to the convex hull of the set of product states ρ = ρA ⊗ ρB, where
ρA ∈ D(HA) and ρB ∈ D(HB). A state ρ is called entangled if it is not separable.
We shall call a Hilbert subspace H0 ⊂ HA ⊗HB an entangled subspace if all of its
associated pure states are entangled. In this paper, we are concerned with studying
non-trivial examples of highly-entangled subspaces H0 ⊂ H = HA⊗HB. By highly-
entangled, we shall mean that the set of pure states on H associated to the subspace
H0 are uniformly “far away” from the set of product states ρA ⊗ ρB ∈ D(H) with
respect to some suitable measure of distance. The choice of “distance” here is not
unique, and our choice is based on the largest singular value of pure states - precise
details will be given in the next section.

What are some explicit examples of highly entangled subspaces? Well, one
trivial example that we always have access to is the one-dimensional subspace
H0 = Cξ ⊂ HA ⊗ HB spanned by a maximally entangled (Bell) state ξ. That

is, a state ξ of the form ξ = d−1/2
∑d

i=1 ei ⊗ fi, where d = min{dimHA, dimHB}
and (ei)i ⊂ HA, (fi)i ⊂ HB are orthonormal systems. Another important example
that has been well-studied in the literature (see for example [GHP10]) is the anti-
symmetric subspsace H∧H ⊂ H⊗H associated to the tensor square of any Hilbert
space H. As one might expect, as the relative dimension of the subspace H0 ⊆ H
grows, the more challenging it becomes to find explicit examples of (highly) entan-
gled subspaces. However, in recent years it has become a very important problem
in Quantum Information Theory (QIT) and Quantum Computing (QC) to develop
means to construct subspaces H0 of large relative dimension in a tensor product
H = HA ⊗HB such that all states are highly entangled. One major reason for the
importance of this problem is for applications to entanglement-assisted communi-
cation protocols [NC00,LB13], and also to the construction of counterexamples
to additivity questions related to capacities of quantum channels [Has09].

As is the case for many mathematical problems, the question of the existence
of a rich supply of highly entangled subspaces with large relative dimension can
be settled using probabilistic techniques. The idea of studying random subspaces
of tensor products dates back to the work of Hayden, Leung, Shor, Winter, Hast-
ings [HLSW04,HW08,HLW06,Has09], among others, and it was explored in
great detail by Aubrun, Belinschi, Collins, Fukuda, King, Nechita, Szarek, Werner
[ASW11,ASY14,BCN12,FK10], and others. The whole theory of random sub-
spaces of tensor products is intimately connected with random matrix theory and
free probability theory (see [CN16] for a good survey on this), and has led to many
fruitful interactions between these communities. The general outcome of these
works was the conclusion that (at least in certain asymptotic dimension regimes)
highly entangled subspaces of large relative dimension are ubiquitous: with high
probability, a randomly selected subspace of a tensor product will be highly entan-
gled. These random constructions have had a profound impact on the field, solving
several open problems, most notably the minimum output entropy additivity prob-
lem [Has09,ASW11,BCN16]. The downside to these highly random techniques
is that they provide no information on finding concrete examples that are predicted
to exist by these methods. In fact, there seems to be embarrassingly few known ex-
amples of such subspaces (beyond the ones already mentioned above). Thus, there
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is a need for a systematic development of non-random examples of highly entangled
subspaces.

The purpose of this survey is to promote our belief that one natural and fruitful
place to search for deterministic examples of highly entangled subspaces is within
the framework of representation theory. For example, if we are given a (compact)
group G and a pair of (irreducible) unitary representations Hπ, Hσ of G, then we
can form their tensor product representation Hπ ⊗ Hσ, and attempt to quantify
the entanglement of the irreducible subrepresentations Hν ⊂ Hπ ⊗ Hσ that arise
in the decomposition of Hπ ⊗Hσ into irreducibles. In this way, we have a natural
playground of examples of subspaces of Hilbert space tensor products, and we shall
see that understanding the entanglement (=relative position) of these subspaces is
essentially equivalent to understanding the representation theory of G.

Our idea here is of course not new. For example, a first attempt was made in
this direction by M. Al Nuwairan [AN13,AN14], by studying the entanglement
of subrepresentations of tensor products of irreducible representations of the group
SU(2). Here, Al Nuwairan showed that entanglement is always achieved for sub-
representations of tensor products of SU(2)-irreducibles (except when one takes
the highest weight subrepresentation). However, as is evidenced by the results in
[AN13, Section 3], a high degree of entanglement is unfortunately not achieved
when working with SU(2).

In order to use representation theory to obtain examples of entangled subspaces
exhibiting a higher level of entanglement, there are two natural approaches. The
first approach would be to consider more complicated examples of compact groups
and their representations. The significant downside of this approach is that for most
examples of groups G, one lacks the complete understanding of the representation
category Rep(G) that one has for SU(2). The second approach, which we follow in
this paper, is to instead consider “q-deformations” of the representation category
Rep(SU(2)) arising from certain quantum group constructions.

Perhaps the most well-known examples of such deformations are the canonical
realizations of (i.e., unitary fiber functors on) the Temperley-Lieb Categories that
are associated to the Drinfeld-Jimbo-Woronowicz q-deformations of SU(2) [Dri87,
Jim85,Wor88,Wor87]. In this paper, we consider a very different fiber functor on
the Temperley-Lieb categories which act on higher dimensional spaces, and come
from another class of quantum groups (more closely linked with operator algebra
theory and free probability theory), called free orthogonal quantum groups.

Given an integer N ≥ 2, the free orthogonal quatum group O+
N is the (compact)

quantum group whose Hopf ∗-algebra of polynomial functions O(O+
N ) is given as

a certain natural non-commutative (or free) version of the algebra of polynomial
functions on the classical N×N orthogonal matrix group ON . In the context of C∗-
algebraic compact quantum groups, O+

N was first introduced and studied by Wang
[Wan95]. Shortly after Wang’s original paper was published, Banica [Ban96] stud-
ied the representation category Rep(O+

N ) and showed that there is a natural unitary
fiber functor on the Temperley-Lieb Category TL(N), which concretely realizes the
representation category Rep(O+

N ). In Banica’s fiber functor, the generating object
of TL(N) is given by the N -dimensional fundamental representation space C

N (in
contrast to C2 associated to the usual q-deformation of SU(2)). It is the entangle-
ment phenomena associated to this “higher dimensional” unitary fiber functor on
the Temperley-Lieb category that we study here.
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Our motivation to study entanglement in the context of Rep(O+
N ) ∼= TL(N)

comes from the pioneering work of Vergnioux [Ver07] on the seemingly unrelated
property of rapid decay (propety RD) for quantum groups. The property of rapid
decay is a geometric-analytic property posessed by certain (quantum) groups and
corresponds the existence of polynomial bounds relating non-commutative L∞-
norms of polynomial functions on quantum groups to their (much easier to calcu-
late) L2-norms. The operator algebraic notion of property RD has its origins in
the groundbreaking work of Haagerup [Haa79] on approximation properties of free
group C∗-algebras. Unlike in the case of ordinary groups, where property RD is con-
nected to the combinatorial geometry of a discrete group G, in the quantum world,
property RD was observed by Vergnioux to be intrinsically connected to the geom-
etry of the relative position of a subrepresentation of a tensor product of irreducible
representations of a given quantum group. More precisely, Vergnioux [Ver07, Sec-
tion 4] points out that property RD for a given quantum group G is related to
the following geometric requirement: Given any pair of irreducible representations
HA, HB of G, all multiplicity-free irreducible subrepresentations H0 ⊂ HA ⊗ HB

must be asymptotically far from the cone of decomposable tensors in HA ⊗HB .
The work [BC18b] that we survey here is largely an in-depth exploration of

this passing remark of Vergnioux [Ver07], and our goal is to show how a rather
modest understanding of the structure of the Temperley-Lieb category can be ex-
tremely fruitful when analyzing the entanglement problem for Rep(O+

N ). In this
context, we show that one can describe very precisely the largest singular values
of states that appear in irreducible subrepresentations of tensor product represen-
tations (see Theorem 3.3). This construction produces a new non-random class of
subspaces of tensor products with the property of being highly entangled and of
large relative dimension. As easy applications of these entanglement results, we
establish some interesting properties for a class of quantum channels associated to
these subspaces. We compute explicitly the S1 → S∞ norms of these channels,
and obtain lower bounds on their minimum output entropies (see Section 4). We
also show in Section 5 how one can use “planar diagrammatic” arguments to study
further properties of our quantum channels, including their entanglement breaking
property, and constructing positive maps on matrix algebras which are not com-
pletely positive. It is our hope that this survey will inspire others to view quantum
groups/symmetries and their associated tensor categories as a new, rich source of
entangled subspaces with interesting geometric properties.

Acknowledgements. The authors are indebted to Vern Paulsen and the ref-
erees for helpful comments.

2. Preliminaries

We refer to [NC00] for the basics on entangled subspaces and quantum chan-
nels. For the reader who is interested in learning more about quantum groups and
their representation categories, see [NT13,Tim08]. In the following, we use stan-
dard notations and conventions from operator algebra theory: Hilbert spaces are
typically denoted by the letter H (possibly with some additional subscripts), and
are always assumed to be finite-dimensional. The inner product on H is always
linear in the right variable, B(H) denotes the unital ∗-algebra of (automatically
bounded) linear operators on H, and D(H) ⊆ B(H) denotes the collection of mixed
states on H. That is, ρ ∈ D(H) iff ρ is positive semidefinite (written ρ ≥ 0) and
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has unit trace, Tr(ρ) = 1, where Tr denotes the canonical trace on B(H) satisfying
Tr(1) = dimH. A state ρ ∈ D(H) is called a pure state if there exists a unit vector
ξ ∈ H so that ρ is given by the rank-one projector ρξ = |ξ〉〈ξ|. We denote by S1(H)
the Banach algebra B(H), equipped with the trace norm ‖ρ‖S1(H) = Tr(|ρ|), where
|ρ| := (ρ∗ρ)1/2. At times, we will also write S∞(H) for the space B(H) equipped

with the operator norm x �→ ‖x‖∞ = sup0�=ξ∈H
‖xξ‖
‖ξ‖ .

2.1. Entangled vectors and subspaces. Consider a pair of finite-dimen-
sional complex Hilbert spaces HA and HB with dimHA, dimHB ≥ 2. Our first
goal is to define what it means for a unit vector ξ ∈ HA ⊗HB to be entangled, and
how one can quantify the amount of entanglement that ξ has. These goals are best
achieved using the singular value decomposition (SVD). Namely, any unit vector
ξ ∈ HA ⊗HB admits a representation of the following form:

ξ =

d∑
i=1

√
λiei ⊗ fi,

where (ei)
d
i=1 ⊂ HA and (fi)

d
i=1 ⊂ HB are orthonormal systems, d = min{dimHA,

dimHB}, and λ1 ≥ λ2 ≥ . . . λd ≥ 0 satisfy
∑d

i=1 λi = ‖ξ‖2 = 1. Although
the orthonormal systems defining the singular value decomposition of ξ above are
never unique, it turns out the sequence of numbers (λi)i is uniquely determined (as
a multi-set) by the vector ξ and these numbers are called the singular values (or
Schmidt coefficients) of ξ.

Thus, to any unit vector ξ ∈ HA ⊗ HB , we have an essentially unique prob-
ability distribution (λi)i corresponding to its string of singular values. With this
in mind, we shall call ξ ∈ HA ⊗ HB separable if the corresponding distribution is
deterministic: (λi)i = (1, 0, 0, . . . , 0). Otherwise, we shall call ξ entangled. It is
easy to see that ξ ∈ HA ⊗HB is entangled if and only if it cannot be expressed as
a simple tensor ξ = η ⊗ ζ for η ∈ HA, ζ ∈ HB. The most fundamental example of
an entangled vector is a Bell vector (or maximally entangled state), which is a unit
vector ξBell ∈ HA ⊗HB with SVD

ξBell =
1√
d

d∑
i=1

ei ⊗ fi.

In this case, the singular values of ξBell are given by the uniform distribution(
1
d ,

1
d , . . . ,

1
d

)
, which is in many senses “far” from the detereministic distribution

(1, 0, 0, . . . , 0) associated to a separable vector. In fact, the above remark leads to a
rigorous measurement of how entangled a unit vector ξ ∈ Ha ⊗HB is, namely the
so-called entanglement entropy:

H(ξ) = −
d∑

i=1

λi log λi,

where (λi)
d
i=1 are the singular values of ξ. In other words, H(ξ) is simply the

Shannon entropy of the string of singular values associated to ξ, and it follows from
the basic properties of the Shannon entropy functional that 0 ≤ H(ξ) ≤ log d, and
H(ξ) is minimized (resp. maximized) if and only if ξ is separable (resp. maximally
entangled). In general, H(ξ) gives a measure of how entangled ξ is. Another
(generally less precise) measure of the entanglement of a unit vector ξ ∈ Ha ⊗HB
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that we shall primarily use in this paper is given by the size of the largest singular
value λ1. Note that geometrically, λ1 can be interpreted as the square of the cosine
of the smallest angle between ξ and any product vector η ⊗ ζ. In particular, we
always have

1

d
≤ λ1 = sup

‖η‖HA
=‖ζ‖HB

=1

|〈ξ|η ⊗ ζ〉|2 ≤ 1,

with ξ being entangled (resp. maximally entangled) if and only if λ1 < 1 (resp.
λ1 = 1

d ).
Suppose now that we are given a linear subspace H0 ⊆ HA ⊗HB. We will call

H0 a separable subspace (resp. entangled subspace) if H0 contains (resp. does not
contain) separable vectors. Using our measure of entanglement coming from the
largest singular values for unit vectors in H0, we can call H0 ⊆ HA ⊗ HB highly
entangled if the supremum of all maximal Schmidt coefficients associated to all unit
vectors in H0 is bounded away from one. That is, the quantity

λ1(H0) := sup
ξ∈H0, ‖ξ‖=1

λ1(ξ) = sup
‖ξ‖H0

=‖η‖HA
=‖ζ‖HB

=1

|〈ξ|η ⊗ ζ〉|2 << 1.

Of course, in general we have 1
d ≤ λ1(H0) ≤ 1 with d = min{dimHa, dimHB}.

Remark 1. For the sake of comparison, we note here that current random
techniques prove the existence of highly entangled subspaces H0 ⊆ HA ⊗HB with
λ1(H0) ∼ t for any t ∈ (0, 1), where t = dimH0

dim(HA⊗HB) in certain asymptotically large

dimensional regimes. See [BCN12,BCN16] and the references therein. On the
other hand, in Section 3 we shall exhibit deterministic examples of H0 ⊆ HA ⊗HB

with λ1(H0) ∼
√
t where t = dimH0

dim(HA⊗HB) ∈ (0, 1).

2.2. Quantum channels. Given two Hilbert spaces HA and HB, a quantum
channel is a mathematical model that describes the transmission of mixed states
on HA to mixed states on HB . More precisely, a quantum channel is a linear,
completely positive and trace-preserving map (CPTP map) Φ : B(HA) → B(HB)
[NC00]. By definition, we have Φ(D(HA)) ⊆ D(HB) for any quantum channel
Φ. The perspective on quantum channels we take here is that they are intimately
connected to the geometry subspaces of Hilbert space tensor products. Indeed,
suppose we are given a triple of finite dimensional Hilbert spaces (HA, HB, HC)

and an isometric linear map αB,C
A : HA → HB ⊗HC , we can then form a pair of

quantum channels

ΦB,C
A : B(HA) → B(HC); ΦB,C

A (ρ) = (TrHB
⊗ ι)(αB,C

A ρ(αB,C
A )∗)

ΦB,C
A : B(HA) → B(HB); ΦB,C

A (ρ) = (ι⊗ TrHC
)(αB,C

A ρ(αB,C
A )∗).

In other words, associated to the subspace α(HA) ⊆ HB ⊗HC , we have two chan-

nels ΦB,C
A and ΦB,C

A . Note that in the literature the channel ΦB,C
A is called the

complement of ΦB,C
A .

It is a remarkable fact that every quantum channel in fact arises from the
above construction. This fact is a special case of the Stinespring dilation theorem
for completely positive maps (see [HW08]). Stinespring’s theorem basically says
that if we are given any quantum channel Φ : B(HA) → B(HB), then there exists
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an essentially unique Stinespring pair (HC , α
B,C
A ), where HC is an auxiliary envi-

ronment Hilbert space αB,C
A : HA → HB ⊗HC is a linear isometry, and Φ = ΦB,C

A

in the above notation.
The main quantity associated to quantum channel Φ : B(HA) → B(HB) that

we will be interested in this work is called the minimum output entropy (MOE),
Hmin(Φ), which is defined by

Hmin(Φ) = min
ξ∈HA, ‖ξ‖=1

H(Φ(|ξ〉〈ξ|)).

whereH(·) denotes the von Neumann entropy of a state: H(ρ) = −Tr(ρ log ρ). Note
that by functional calculus, we have H(ρ) = −

∑
i λi log λi, where (λi)i ⊂ [0,∞)

denotes the spectrum of ρ. In other words, H(ρ) is nothing but the Shannon entropy
of the probability vector (λi)i corresponding to the eigenvalues of ρ.

To get a better handle on what exactly Hmin(Φ) is, let us suppose that Φ =

ΦB,C
A = (ι ⊗ TrHC

)(αB,C
A (·)(αB,C

A )∗) is a Stinespring representation for Φ, where

αB,C
A : HA → HB ⊗ HC is our Stinespring isometry. We claim that the MOE

Hmin(Φ) only depends on the geometry of the set of singular values associated to

unit vectors in the subspace αB,C
A (HA) ⊆ HB ⊗HC . Indeed, if we fix a unit vector

ξ ∈ HA and write down the corresponding SVD αB,C
A (ξ) =

∑
i

√
λiei⊗fi, then one

readily sees that

Φ(|ξ〉〈ξ|) = (ι⊗ TrHC
)(|αB,C

A (ξ)〉〈αB,C
A (ξ)|) =

∑
i

λi|ei〉〈ei|,

and thus

H(Φ(|ξ〉〈ξ|)) = −
∑
i

λi log λi = H(αB,C
A (ξ)).

In particular, computing Hmin(Φ) amounts to minimizing the entanglement entropy

of unit vectors in the subspace αB,C
A (HA) ⊆ HB ⊗HC . Namely,

Hmin(Φ) = min
ξ∈HA, ‖ξ‖=1

H(αB,C
A (ξ)).

It follows from this calculation that Hmin(Φ) is zero (resp. large) if and only if

αB,C
A (HA) ⊆ HB ⊗HC is a separable subspace (resp. highly entangled subspace).

2.3. Free orthogonal quantum groups, their representations, and the
Temperley-Lieb Category. We now come to the main algebraic objects of study
for us – quantum groups and their representation categories. In fact we will only
consider one class of quantum groups here, called the free orthogonal quantum
groups, and explain how their representations are connected to the Temperley-Lieb
category, which is itself an amazing tensor category that is ubiquitous across many
branches of mathematics (e.g., subfactors [Jon83], quantum computation [Abr08],
knot theory [Jon85], and mathematical physics [TL71].)

2.3.1. The notion of a quantum group. The theory of quantum groups was
initiated in the second half of the 20th century by several people, including Kac,
Vainerman, Enock, Schwartz, Drinfeld, Jimbo, Woronowicz, Kustermans and Vaes
[ES92,Dri87,Jim85,Wor98,KV00]. The perspective taken by each author here
varies quite significantly, but the guiding principle is always the same: if we start
with, say, a compact matrix groupG ⊂ UN (UN ⊆ MN (C) being the unitary group),
then we can encode the entire structure of G in terms of the commutative ∗-algebra
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O(G) of polynomial functions on G, which itself is generated as a ∗-algebra by
the N2 coordinate functions uij : G → C defining the embedding G ⊆ MN (C).
For example, the multiplication G × G → G, the inversion G → G, the unit
e ∈ G are all encoded at the level of O(G) in terms of the following unital algebra
homomorphisms

Δ : O(G) → O(G)⊗O(G); Δ(uij) =
N∑

k=1

uik ⊗ ukj (comultiplication)

S : O(G) → O(G); S(uij) = u∗
ji (coinverse)

ε : O(G) → C; ε(uij) = δij (counit).

From these defintions, one can readily check that the Hopf identities (ε⊗ ι)Δ = ι,
m(S ⊗ ι)Δ = m(ι ⊗ S)Δ = ε(·)1 are satisfied (where m : O(G) ⊗ O(G) → O(G)
is the multiplication map), and what one obtains is the structure of a commutative
Hopf ∗-algebra (O(G),Δ, S, ε).

Very loosely speaking, a quantum group is then given by a (possibly) noncom-
mutative Hopf ∗-algebra G := (O(G),Δ, S, ε). Of course, when our ∗-algebra O(G)
is not commutative, there is no longer anything like an underlying group represent-
ing O(G) as an algebra of coordinate functions. Nonetheless, if one places “rea-
sonable” assumptions on O(G), then one obtains an algebraic/analytic structure
that deserves to be considered group like (e.g., the existence of a “Haar measure”,
a rich finite-dimensional unitary representation theory, a Peter-Weyl theorem, and
so on). See [Tim08,Wor98,DK94] for more details. Without going into any of
the gory details, we assure the readers that the free orthogonal quantum groups
defined below satisfy the reasonable assumptions alluded to above.

First some notation and terminology. Let N ≥ 2, let A be a unital ∗-algebra
over C, and let u = [uij ]1≤i,j≤N ∈ MN (A) be a matrix with entries in A. We will
write u∗ = [u∗

ji] ∈ MN (A) and ū = [u∗
ij ] ∈ MN (A). We will call the matrix u

an N × N quantum orthogonal matrix if u is invertible in MN (A), u∗ = u−1, and
ū = u.

Definition (Free Orthogonal Quantum Groups). The free orthogonal quantum
group (of rank N) is given by the quadruple O+

N := (O(O+
N ),Δ, S, ε), where

(1) O(O+
N ) is the universal unital ∗-algebra (over C) generated by the coeffi-

cients (uij)1≤i,j≤N of a quantum orthogonal matrix u = [uij ] ∈
MN (O(O+

N)). More precisely, O(O+
N ) is the universal unital ∗-algebra with

generators (uij)1≤i,j≤N satisfing the relations uij = u∗
ij and

∑N
k=1 uikujk

=
∑N

k=1 ukiukj = δi,j1 for each 1 ≤ i, j ≤ N .

(2) Δ : O(O+
N ) → O(O+

N )⊗O(O+
N ) is the unique unital ∗-algebra homomor-

phism, called the coproduct, given by

Δ(uij) =
N∑

k=1

uik ⊗ ukj (1 ≤ i, j ≤ N).

(3) S : O(O+
N ) → O(O+

N ) is the ∗-antiautomorphism given by S(uij) = uji,
1 ≤ i, j ≤ N .

(4) ε : O(O+
N ) → C is the ∗-character given by ε(uij) = δij .

Remark 2. Of course, what we have defined above is a non-commutative Hopf
∗-algebra, which we like to interpret as a noncommutative analogue of the algebra of
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coordinate functions on ON . To support this perspective, note that if we quotient
O(O+

N ) by its commutator ideal, we obtain the abelianization of O(O+
N ), which

is isomorphic to O(ON ), the Hopf ∗-algebra of polynomial functions on the real
orthogonal group ON . The map O(O+

N ) → O(ON ) is given by uij �→ vij , where
v = [vij ] ∈ MN (O(ON )) forms the matrix of basic coordinate functions on ON

(a.k.a. the fundamental representation of ON ). In this context, the coproduct map
Δ on O(O+

N ) factors through the quotient and induces the corresponding coproduct

map Δ on O(ON ). In this sense, we are justified in calling the quantum group O+
N

a “free analogue” of the classical orthogonal group ON , and we can even view ON

as a “quantum subgroup” of O+
N .

2.3.2. Unitary representations of O+
N . A (finite-dimensional unitary) represen-

tation of O+
N is given by a finite dimensional Hilbert space Hv and unitary matrix

v ∈ O(O+
N )⊗ B(Hv) satisfying

(Δ⊗ ι)v = v13v23 ∈ O(O+
N )⊗O(O+

N )⊗ B(Hv),

where above we use the standard leg numbering notation for linear maps on tensor
products. If we fix an orthonormal basis (ei)

d
i=1 ⊂ Hv, then we can write v as

the matrix [vij ] ∈ Md(O(O+
N )) with respect to this basis, and the above formula

translates to

Δvij =

d∑
k=1

vik ⊗ vkj (1 ≤ i, j ≤ d).

Observe that the above definition corresponds precisely to our usual notion of a
unitary representation of a group if we were to assume that our Hopf ∗-algebra was
commutative.

What are some examples of unitary representations of O+
N? Based on the above

formulas, it should be evident to the reader that we have immediate access to at least
two distinct representations. The first one is the one-dimensional trivial represen-
tation, which we denote by v0 := 1 ∈ O(O+

N ) = M1(O(O+
N )). The second example

is the N -dimensional fundamental representation v1 := u = [uij ] ∈ MN (O(O+
N ))

(which is simply the matrix of generators for O(O+
N )).

In order to generate more examples of unitary representations we use our intu-
ition from group theory and try to build more representations from v0, v1 via the
operations of direct sum, tensor product, and compression to subrepresentations.
Let us recall these notions. Given two representations v = [vij ] and w = [wkl], we
can naturally form their direct sum v⊕w ∈ O(O+

N )⊗B(Hv ⊕Hw) and their tensor

product v ⊗ w = v12w13 = [vijwkl] ∈ O(O+
N ) ⊗ B(Hv ⊗ Hw) to obtain new exam-

ples of representations from known ones. From a unitary representation v = [vij ],

we may also form the contragredient representation v̄ := [v∗ij ] ∈ O(O+
N ) ⊗ B(Hv).

Finally, if p = p2 = p∗ ∈ B(Hv) satisfies (1 ⊗ p)v = v(1 ⊗ p), we can form the
subrepresentation v′ := (1⊗ p)v(1⊗ p) ∈ O(O+

N )⊗ B(pH) of v.
In order to fully understand the structure of the unitary representations of

O+
N , we need to study intertwiner spaces between representations. Given two rep-

resentations u and v of O+
N , we define the space of intertwiners between u and v

as
Hom(u, v) = {T ∈ B(Hu, Hv) : (ι⊗ T )u = v(ι⊗ T ).}

Two representations u, v are called equivalent (written u ∼= v) if Hom(u, v) contains
an invertible operator, and a representation u is called irreducible if Hom(u, u)=C1.
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It is a consequence of a general fact about compact quantum groups that every
unitary representation of O+

N is equivalent to a direct sum of irreducible unitary
representations [Wor87,Wor98].

2.3.3. Fusion rules for O+
N -irreducibles. As is the case for any (compact) quan-

tum group, a problem of fundamental importance concerning O+
N following its in-

troduction by Wang [Wan95] was to classify its irreducible unitary representations
up to unitary equivalence. This problem was solved in the groundbreaking work
of Banica [Ban96] where he showed that there exists a complete list of irreducible
unitary representations of O+

N , (vk)k∈N0
, (taken up to unitary equivalence) such

that v0 = 1 (the trivial representation), v1 = u (the fundamental representation),

each vk is unitarily equivalent to its conjugate vk, and moreover the following fusion
rules hold:

vl ⊗ vm ∼= v|l−m| ⊕ v|l−m|+2 ⊕ . . .⊕ vl+m =
⊕

0≤r≤min{l,m}
vl+m−2r.(1)

Note that the above labeling of irreducible representations and fusion rules is exactly
the same as those for SU(2). The main difference here is that dimensions of the
corresponding representation spaces are larger. More precisely, if we denote by Hk

the Hilbert space associated to vk, then the fusion rules v1 ⊗ vk ∼= vk+1 ⊕ vk−1

dictate that the dimension relation dimH1 dimHk = dimHk+1 + dimHk−1 must
hold for all k ≥ 1. Taken together with the initial conditions H0 = C and H1 = CN ,
one obtains that the dimensions dimHk are given by the quantum integers

dimHk = [k + 1]q := q−k
(1− q2k+2

1− q2

)
(N ≥ 3),

where q ∈ (0, 1) is given by q + q−1 = N . (When N = 2, we have q = 1, and then
dimHk = k + 1 = limq→1− [k + 1]q. However, in the sequel we will always take
N ≥ 3.)

2.3.4. The connection to Temperley-Lieb. The striking similarity between the
fusion rules for the irreducible representations of O+

N to those of SU(2) is no
coincidence. This turns out to be a consequence of the fact (observed by Ban-
ica) that both representation categories are described in terms of certain unitary
fiber functors on Temperley-Lieb categories [TL71]. Let d ≥ 2. Recall that the
Temperley-Lieb Category TL(d) is the strict tensor category with duals generated
by two simple objects {0, 1}, where 0 denotes the unit object for the tensor cate-
gory, and 1 �= 0 is a self-dual simple object with the property that the morphism
spaces TLk,l(d) := Hom(1⊗k, 1⊗l) (k, l ∈ N) are generated by the identity map
ι ∈ Hom(1, 1) together with a unique morphism ∪ ∈ Hom(0, 1 ⊗ 1) satisfying
∩ ◦ ∪ = d ∈ Hom(0, 0) = C. Here ∩ := ∪∗ ∈ Hom(1 ⊗ 1, 0). The Temperley-Lieb
category admits a nice diagrammatic presentation [KL94] in terms of the so-called
Kauffman (or Temperley-Lieb) diagrams. Let k, l ∈ N and d ∈ C\{0} be as above.
If k+l is odd, we have TLk,l(d) = 0. Otherwise we plot the set [k+l] = {1, . . . , k+l}
on a rectangle clockwise with {1, . . . , k} on the top edge and {k + l, . . . , k + 1} on
the bottom edge. Next, we consider the set NC2(k + l) of non-crossing pairings of
these k + l points on the boundary of our rectangle (see [NS06] for more details).
Geometrically, any p ∈ NC2(k+ l) corresponds to a partition of the set [k+ l] into
k+l
2 pairs with the property that if we connect the k + l boundary points on our

rectangle that are paired off by p with smooth curves lying inside of our rectangle,
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then these curves can all be arranged so that none of them cross. The resulting
non-crossing diagram is our Kauffman diagram, and is denoted by Dp. The collec-
tion of all Kauffman diagrams (Dp)p∈NC2(k+l) (taken up to equivalence by planar
isotopy) spans a basis for the vector space TLk,l(d). For example, when k = l = 3
there are |NC2(6)| = 5 Kauffman diagrams spanning TLk,k(d):

, , , , and .

In the diagrammatic description of the morphism spaces TLk,l(d), the compo-
sition DpDq of diagrams Dp ∈ TLk,l(d) and Dq ∈ TLm,k(d) is obtained by first
stacking the diagram Dp on top of Dq, connecting the bottom row of k points on Dp

to the top row of k points on Dq. The result is a new planar diagram, which may
have a certain number, c, of internal loops. By removing these loops, we obtain
a new Kauffman diagram Dr ∈ TLm,l(d), corresponding to some r ∈ NC2(m + l)
(which is unique up to planar isotopy). The composition DpDq is then defined to
be dcDr. For example, we have

× = d

As for the tensor structure on TL(d), this is simply diagrammatically represented
by horizontal concatenation of Kauffman diagrams. We leave it to the reader to
verify how each of the above diagrams is obtained from sequences of the the basic
operations of tensoring and composing the basic maps ∪,∩, and ι.

Returning now to the connection with Rep(O+
N ) – observe that we can produce

a natural unitary tensor functor TL(N) → Rep(O+
N ) given by ι ∈ TL1,1(N) �→

idCN ∈ Hom(u, u) and ∪ ∈ TL0,2(N) �→
∑N

i=1 ei ⊗ ei ∈ Hom(1, u ⊗ u), where
(ei)

N
i=1 is an orthonormal basis for CN . The key point here is that the universal

properties of O+
N guarantee that this functor is both injective and surjective (in the

sense of [ENO05]). More precisely, we have the following theorem of Banica.

Theorem 2.1 (Banica [Ban96]). The above functor is in fact a unitary fiber
functor TL(N) → Rep(O+

N ).

With the above connection between TL(N) and Rep(O+
N ), an explicit construc-

tion of the irreducible representation spaces (Hk)k∈N0
of O+

N can now proceed as
follows [Ban96,VV07,BDRV06]. Denote by (ei)

N
i=1 a fixed orthonormal basis for

H1 := CN , and as above, put ∪ =
∑N

i=1 ei⊗ei ∈ Hom(1, u⊗u). (I.e., u⊗2(1⊗∪) =
(1 ⊗ ∪).) Next, we consider the intertwiner space Hom(u⊗k, u⊗k) ⊆ B((CN )⊗k),
which can be shown (using its identification with TLk,k(N)) to contain a unique
non-zero self-adjoint projection pk (the Jones-Wenzl projection) [Wen87] with the
defining property that

(ιH⊗i−1
1

⊗ ∪ ∪∗ ⊗ιH⊗k−i−1
1

)pk = 0 (1 ≤ i ≤ k − 1).
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The projections pk are known to satisfy the Wenzl recursion

p1 = ιH1
, pk = ιH1

⊗ pk−1 −
[k − 1]q
[k]q

(ιH1
⊗ pk−1)(∪ ∪∗ ⊗ιH⊗k−2

1
)(ιH1

⊗ pk−1)

(k ≥ 2),

which can be used to determine pk. In passing, we point out that the problem of ob-
taining explicit formulas for Jones-Wenzl projections (beyond the above recursion)
has attracted a lot of attention over the years from various mathematical commu-
nities. See [BC18a,Mor15,FK97,Rez07,Rez02] and the references therein.

We conclude this section with a description of the non-empty intertwiner spaces
Hom(vk, vl ⊗ vm) that arise from the fusion rules (1). To begin, let us call a triple
(k, l,m) ∈ N3

0 admissible if there exists an integer 0 ≤ r ≤ min{l,m} such that
k = l + m − 2r. In other words, (k, l,m) ∈ N3

0 is admissible if and only if the
tensor product representation vl ⊗ vm contains a (multiplicity-free) subrepresenta-
tion equivalent to vk. It is easy to see that the set of admissible triples is invari-
ant under coordinate permutations: (k1, k2, k3) is admissible iff (kσ(1), kσ(2), kσ(3))

is admissible for all σ ∈ S3. Fix an admissible triple (k, l,m) ∈ N
3
0. Then

Hom(vk, vl ⊗ vm) ⊆ B(Hk, Hl ⊗ Hm) ⊆ B(H⊗k
1 , H⊗l

1 ⊗ H⊗m
1 ) is one-dimensional

and is spanned by the following canonical non-zero intertwiner

Al,m
k = (pl ⊗ pm)

(
ιHl−r

⊗ ∪r ⊗ ιm−r

)
pk,(2)

where ∪r ∈ Hom(1, u⊗2r) is defined recursively from ∪1 :=
∑N

i=1 ei ⊗ ei via ∪r =
(ιH1

⊗∪1 ⊗ ιH1
)∪r−1. In terms of the planar diagrammatics, ∪r is simply r nested

cups, viewed as an element of TL0,2r(N). The maps Al,m
k are well studied in the

Temperley-Lieb recoupling theory [KL94], and are known there as three-vertices.
See also [EMM17]. A three-vertex is typically diagrammatically represented as
follows:

Al,m
k =

l m

k

Here, the solid dots at the vertices are meant to depict the Jones-Wenzl pro-
jectors at the inputs/outputs. In the following we will simply omit these solid dots
in our pictures, and simply draw the three-vertex as

Al,m
k =

l m

k

.

In order to find the unique O+
N -equivariant isometry αl,m

k : Hk → Hl ⊗ Hm

(up to multiplication by T), we simply have to renormalize Al,m
k , which amounts to

computing the norm of Al,m
k . To do this, we define (following the terminology and

Please send corrections to rvr@ams.org by Tuesday, February 18

Not for print or electronic distribution



PROOF

ENTANGLEMENT AND THE TEMPERLEY-LIEB CATEGORY 13

diagrammatics from [KL94]) the θ-net

θq(k, l,m) = TrHk
((Al,m

k )∗Al,m
k ) = l m

k

k

.

Note that the trace on B(Hk) corresponds to the usual Markov trace on TL(N)
[KL94,Ban96].

Now, since Al,m
k is a multiple of an isometry, it easily follows that ‖Al,m

k ‖2[k+
1]q = θq(k, l,m). θ-net evaluations are well known [KL94,Ver05,VV07], and are
given by

θq(k, l,m) :=
[r]q![l − r]q![m− r]q![k + r + 1]q!

[l]q![m]q![k]q !
,(3)

where k = l + m − 2r and [x]q! = [x]q[x − 1]q . . . [2]q[1]q denotes the quantum

factorial. We thus arrive at the following formula for our isometry αl,m
k :

αl,m
k = ‖Al,m

k ‖−1Al,m
k =

( [k + 1]q
θq(k, l,m)

)1/2

Al,m
k .(4)

Pictorially, we have

αl,m
k =

(
[k+1]q

θq(k,l,m)

)1/2

l m

k

.

3. Entanglement analysis

In this section we begin our study of the entanglement geometry of irreducible
subrepresentations of tensor products of irreducible representations ofO+

N . The gen-
eral setup we will consider is a fixed N ≥ 3 and an admissible triple (k, l,m) ∈ N

3
0.

This corresponds to irreducible representations (vk, vl, vm) of O+
N with correspond-

ing representation Hilbert spaces (Hk, Hl, Hm), and a O+
N -equivariant isometry

αl,m
k : Hk → Hl ⊗ Hm as constructed in the previous section. Recall that we set

q = 1
N

(
2

1+
√

1−4/N2

)
∈ (0, 1). Our main interest is to study the entanglement of

the subspace αl,m
k (Hk) ⊆ Hl ⊗Hm, and the following proposition yields a measure

of this.

Proposition 3.1 ([BC18b]). Fix N ≥ 3 and let (k, l,m) ∈ N
3
0 be an admissible

triple. Then for any unit vectors ξ ∈ Hk, η ∈ Hl, ζ ∈ Hm, we have

|〈αl,m
k (ξ)|η ⊗ ζ〉| ≤

( [k + 1]q
θq(k, l,m)

)1/2

≤ C(q)q
l+m−k

4 ,
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where

C(q) = (1− q2)−1/2
( ∞∏

s=1

1

1− q2s

)3/2

Remark 3. We note that the bound C(q)q
l+m−k

4 appearing in Proposition
3.1 is equivalent, as N is large, to the fourth root of the relative dimension,(

dimHk

dimHl dimHm

)1/4

.

Proposition 3.1 can be interpreted as giving a general upper bound on the

largest Schmidt coefficient of a unit vector belonging to the subspace αl,m
k (Hk) ⊆

Hl ⊗ Hm. That is, if ξ ∈ Hk is a unit vector and αl,m
k (ξ) is represented by its

singular value decomposition

αl,m
k (ξ) =

∑
i

√
λiei ⊗ fi,

with (ei)i ⊂ Hl, (fi)i ⊂ Hm orthonormal systems, and λ1 ≥ λ2 ≥ . . . ≥ 0 satisfy∑
i λi = 1, then

λ1 ≤ C(q)2q
l+m−k

2 .(5)

Since the above quantity is much smaller than 1 when k < l+m, we conclude that

αl,m
k (Hk) is “far” from containing separable unit vectors of the form η⊗ζ ∈ Hl⊗Hm.

That is, αl,m
k (Hk) ⊂ Hl ⊗ Hm is highly entangled. We summarize this in the

following theorem.

Theorem 3.2 ([BC18b]). For k, l,m as above, the subspaces αl,m
k (Hk) ⊆ Hl⊗

Hm are (highly) entangled provided k < l+m. When k = l+m, the highest weight
subspace αl+m(Hl+m) ⊂ Hl ⊗Hk is a separable subspace.

Proof. The first statement follows from the previous proposition and the re-
marks that follow. The second statement follows from the observation that if one
considers the elementary (separable) tensors

(. . . ξ ⊗ η ⊗ ξ ⊗ η)⊗ (ξ ⊗ η ⊗ ξ ⊗ . . .) ∈ (CN )⊗l ⊗ (CN )⊗m (ξ ⊥ η),

then they always lie in the subspace αl,m
l+m(Hl+m) ⊂ Hl ⊗Hm (thanks to the alge-

braic properties of the Jones-Wenzl projections!). See [BC18b] for details. �

In fact it turns out that one can say quite a lot more about the largest possible
Schmidt coefficients for irreducible subspaces of tensor products than what is said
in Proposition 3.1. The following theorem shows that the bound given above is in
fact optimal in a very strong sense: For any d ∈ N, we can find a unit vector ξ ∈ Hk

(provided N is sufficiently large) with the property that αl,m
k (ξ) admits at least d

Schmidt coefficients with the same magnitude as that predicted by (5).

Theorem 3.3 ([BC18b]). Let (k, l,m) ∈ N3
0 be an admissible triple, N ≥ 3,

and d ≤ (N − 2)(N − 1)
l+m−k−2

2 . Then there exists a unit vector ξ ∈ Hk such that

αl,m
k (ξ) has a singular value decomposition αl,m

k (ξ) =
∑

i

√
λiei⊗fi with λ1 ≥ λ2 ≥

. . . satisfying

λ1 = λ2 = . . . = λd =
[k + 1]q

θq(k, l,m)
≥ q

l+m−k
2 .
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Remark 4. For various applications of the above theorem, it is of critical
importance to understand if the above result is optimal in the sense that the number
d of maximal Schmidt coefficients that is obtainable is indeed given by the above
bound. At this stage, we are unable to fully answer this question. However, we can

show that the upper bound d(N) := (N − 2)(N − 1)
m+l−k−2

2 of maximal Schmidt

coefficients λmax =
[k+1]q

θq(k,l,m) is asymptotically maximal in the sense that

lim
N→∞

d(N)
[k + 1]q

θq(k, l,m)
= 1.

This shows that in the limit as N → ∞, the vector ξ ∈ Hk which is asserted to
exist by Theorem 3.3 becomes maximally entangled, with the bulk of its Schmidt
coefficients equaling the maximal value λmax allowed by Proposition 3.1.

4. O+
N -equivariant quantum channels

and minimum output entropy estimates

In this section we consider some applications of the entanglement results of the
preceding section to study the outputs of the canonical quantum channels related
to our subspaces.

Following Section 2, we form, for any admissible triple (k, l,m) ∈ N3
0, the

complementary pair of quantum channels

Φl,m
k : B(Hk) → B(Hm); ρ �→ (Tr⊗ ι)(αl,m

k ρ(αl,m
k )∗),

Φl,m
k : B(Hk) → B(Hl); ρ �→ (ι⊗ Tr)(αl,m

k ρ(αl,m
k )∗).

In terms of the planar diagramatics of the Temperley-Lieb category, we have

Φl,m
k (ρ) =

[k + 1]q
θq(k, l,m)

m

m

l

k

k

ρ and Φl,m
k (ρ) =

[k + 1]q
θq(k, l,m)

l

l

m

k

k

ρ .

We then have the following proposition concerning the S1 → S∞ behavior of
these channels.

Proposition 4.1 ([BC18b]). Given any admissible triple (k, l,m) ∈ N3
0 and

N ≥ 3, we have

‖Φl,m
k ‖S1(Hk)→S∞(Hm) = ‖Φl,m

k ‖S1(Hk)→S∞(Hl)

=
[k + 1]q

θq(k, l,m)
∈

[
q

l+m−k
2 , C(q)2q

l+m−k
2

]
.

Proof. We shall only consider Φl,m
k as the proof of the other case is identical.

To prove the upper bound ‖Φl,m
k ‖S1(Hk)→S∞(Hm) ≤ [k+1]q

θq(k,l,m) , note that by complete

positivity, convexity and the triangle inequality, it suffices to consider a pure state
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ρ = |ξ〉〈ξ| ∈ D(Hk) and show that ‖Φl,m
k (ρ)‖S∞(Hm) ≤ [k+1]q

θq(k,l,m) . But in this case,

we have

Φl,m
k (ρ) = (Tr⊗ ι)(|αl,m

k ξ〉〈αl,m
k ξ|) =

∑
i

λi|fi〉〈fi|,

where αl,m
k (ξ) =

∑
i

√
λiei ⊗ fi is the corresponding singular value decomposition.

In particular, ‖Φl,m
k (ρ)‖S∞(Hm) = maxi λi, which by Proposition 3.1 is bounded

above by
[k+1]q

θq(k,l,m) . This upper bound is obtained by taking ρ = |ξ〉〈ξ|, where ξ

satisfies the hypotheses of Theorem 3.3. �

The preceeding norm computation for the channels Φl,m
k ,Φl,m

k allows for an
easy estimate of a lower bound on their minimum output entropies.

Corollary 4.2. [BC18b] Given any admissible triple (k, l,m) ∈ N3
0 and N ≥

3, we have

Hmin(Φ
l,m
k ), Hmin(Φ

l,m
k ) ≥ log

(θq(k, l,m)

[k + 1]q

)
≥ −

( l +m− k

2

)
log(q)− 2 log(C(q)).

Proof. Given a quantum channel Φ : B(H) → B(K) and ρ ∈ D(H), we note
that H(Φ(ρ)) = −

∑
i λi log λi, where (λi)i is the spectrum of Φ(ρ). In particular,

we have the estimate

H(Φ(ρ)) ≥ − log
(
max

i
λi

)
= − log ‖Φ(ρ)‖B(K) ≥ − log ‖Φ‖S1(H)→B(K).

The first inequality in the corollary now follows immediately from Proposition

4.1. The second inequality is just a consequence of the inequality
[k+1]q

θq(k,l,m) ≤
C(q)2q

l+m−k
2 . �

Remark 5. The above estimates show that for N large and k < l+m fixed, the
minimum output entropy of the channels is quite large and grows logarithmically
in N .

On the other hand, if we fix N ≥ 3 and consider, for example, the sequence

of channels
(
Φk,1

k−1 : B(Hk−1) → B(Hk)
)
k∈N

, then Corollary 4.2 yields the uniform
positive lower bound

Hmin(Φ
k,1
k−1) ≥ − log(q)− 2 log(C(q)) > 0 (k ∈ N).

This phenomenon stands in sharp contrast to what happens in the case of the
SU(2)-equivariant quantum channels studied by Al Nuwairan in [AN13, Section

2]. Indeed, in the corresponding SU(2) setting one has Hmin(Φ
k,1
k−1) ≈

log(k+1)
k+1 → 0

as k → ∞.
In the case where k = l +m (the highest weight case), we note that

Hmin(Φ
l,m
k ) = Hmin(Φ

l,m
k ) = 0,

which follows from the fact that αl,m
k (Hk) ⊆ Hl ⊗Hm is a separable subspace (cf.

Theorem 3.2).
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Remark 6. We expect that the lower bound for the minimum output entropies
given in Corollary 4.2 to be asymptotically optimal asN → ∞, at least in some cases
(e.g. m fixed). Evidence for this is provided by Theorem 3.3 and Remark 4, which

shows that αl,m
k (Hk) contains unit vectors which are asymptotically maximally

entangled with the bulk of their Schmidt coefficients equal to
[k+1]q

θq(k,l,m) .

5. The Choi map and Planar Isotopy

In this final section we indicate how the planar structure of our representation
theoretic model for highly entangled subspaces can be used to easily describe the
Choi maps associated to our quantum channels. As applications of this description,
we construct non-random examples of d-positive maps between matrix algebras that
fail to be completely positive, and we also study the entanglement breaking property
for our channels.

First we recall the definition of the Choi map associated to a linear map Φ :
B(HA) → B(HB). Let (ei)i∈I , (fi)i∈I be two fixed orthonomal bases for HA, and
let (eij)i,j∈I , (fij)i,j∈I be the corresponding matrix units in B(HA). Then the Choi
map is the operator CΦ ∈ B(HA ⊗HB) given by

CΦ =
∑
i,j∈I

Φ(eij)⊗ fij = (Φ⊗ ι)(|ψ〉〈ψ|),(6)

where ψ =
∑

i∈I ei ⊗ fi ∈ HA ⊗ HA (which is an unnormalized Bell state in
HA ⊗HA). Of course, CΦ is only defined uniquely up to the choice of matrix units

eij and fij . Moreover, one could also define a “right-handed” version of C̃Φ of CΦ

given by C̃Φ = (ι⊗Φ)|ψ〉〈ψ| (i.e., slicing on the right instead of the left). However,
for our purposes, the relevant properties of CΦ (e.g., entanglement, positivity, etc.)
do not depend on the choice of matrix units or side of the tensor product on which
one slices |ψ〉〈ψ| by Φ. We also note the obvious fact that the map Φ �→ CΦ is
linear in Φ.

Turning back to our representation category Rep(O+
N ) and our quantum chan-

nels Φl,m
k : B(Hk) → B(Hm) ((k, l,m) ∈ N

3
0 admissible), we judiciously choose

orthonormal bases (ei)i and (fi)i of Hk so that the unnormalized Bell vector ψk =∑
i ei ⊗ fi ∈ Hk ⊗Hk belongs to the one-dimensional Hom-space Hom(u0, uk ⊗ uk)

(this is always possible, thanks to the fact that O+
N is a compact quantum group of

Kac type. See for example [Ver07]). Using our identification Rep(O+
N ) ∼= TL(N),

we can depict ψk (in terms of planar diagrams) as a three-vertex corresponding to
the admissible triple (0, k, k), which is explicitly given by (pk⊗pk)◦∪k ∈ TL0,2k(N),
where pk is the kth Jones-Wenzl projector. Considering the projection |ψk〉〈ψk|,
we have

|ψk〉〈ψk| =
k

k

k

k
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Then we can compute the corresponding Choi map C
Φl,m

k

=
(
Φl,m

k ⊗ ι
)
(|ψk〉〈ψk|)

diagrammatically by

θq(k, l,m)

[k + 1]q
C

Φl,m
k

=

m

m

l

k

k

k

k

|ψk〉〈ψk| =

m

m

l

k

k

k

k

,

Since the linear map defined by the above planar tangle is invariant under
planar isotopy (by construction it belongs to the Temperley-Lieb category!), we see

that
θq(k,l,m)
[k+1]q

C
Φl,m

k

also corresponds to the following planar tangle:

k

k

m

m

l =
θq(k, l,m)

[l + 1]q
αm,k
l (αm,k

l )∗,

Note here that αm,k
l (αm,k

l )∗ is simply the orthogonal equivariant projection from

Hm ⊗Hk onto the unique subspace equivalent to Hl. We have therefore arrived at
the following theorem.

Theorem 5.1. For the O+
N -equivariant quantum channel Φl,m

k : B(Hk) →
B(Hm), we have

C
Φl,m

k

=
[k + 1]q
[l + 1]q

αm,k
l (αm,k

l )∗.(7)

A similar argument for the complementary channel Φl,m
k : B(Hk) → B(Hl), yields

C̃Φl,m
k

=
[k + 1]q
[m+ 1]q

αk,l
m (αk,l

m )∗.(8)

In the following subsections, we show the utility of Theorem 5.1.
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5.1. Examples of positive but not completely positive maps. A crucial
property of the Choi map CΦ associated to a linear map Φ : B(HA) → B(HB) is
that it can be used to detect positivity properties of Φ. More precisely, we have
that Φ is completely positive if and only if CΦ is positive semidefinite [Cho75].
More generally, CΦ can be used to detect whether or not Φ is d-positive for any
d ∈ N [HLP+12]: Φ is d-positive if and only if

〈CΦx|x〉 ≥ 0

for all x ∈ HA⊗HB with a Schmidt rank of at most d. (That is, x admits a singular
value decomposition x =

∑s
i=1

√
λiei ⊗ fi with mini λi > 0 and s ≤ d).

Let us now return to our usual setup of an admissible triple (k, l,m) ∈ N3
0

corresponding to a non-highest-weight inclusion αl,m
k : Hk ↪→ Hl⊗Hm of irreducible

representations of O+
N , N ≥ 3. For each t ≥ 0, we can consider the linear map

Φt : B(Hk) → B(Hm) given by

Φt = TrHk
(·)1B(Hl) − t

[l + 1]q
[k + 1]q

Φl,m
k .(9)

Using Theorem 5.1 together with the simple fact that the Choi map associated
to B(Hk) � ρ �→ TrHk

(ρ)1B(Hl) is given by 1B(Hm⊗Hk), we conclude that the Choi
map of Φt is given by

CΦt
= 1B(Hm⊗Hk) − tαm,k

l (αm,k
l )∗.(10)

From this expression for CΦt
, it is clear that Φt is completely positive iff CΦt

≥ 0
iff t ≤ 1. On the other hand, we can prove the following result on d-positivity of
Φt.

Theorem 5.2 ([BC18b]). Fix N ≥ 3 and (k, l,m) ∈ N
3
0, and fix a natural

number d ≤ (N − 2)(N − 1)
k+m−l−2

2 . Then the map Φt : B(Hk) → B(Hm) is
d-positive (but not completely positive) if and only if

1 < t ≤ θq(k, l,m)

d[l + 1]q
≤ C(q)−2q−

k+m−l
2 d−1.

Proof. We have already observed that Φt is not completely positive when
t > 1. Now fix d ∈ N and x =

∑s
i=1

√
λiei ⊗ fi ∈ Hm ⊗ Hk with Schmidt-rank

at most d. Using the inequality of Proposition 3.1, the triangle inequality, and the
Cauchy-Schwarz inequality, we have

〈CΦt
x|x〉 = ‖x‖2 − t〈αm,k

l (αm,k
l )∗(x)|x〉

≥ ‖x‖2 − t
[l + 1]q

θq(k, l,m)

( ∑
1≤i≤s

√
λi‖ei‖‖fi‖

)2

≥ ‖x‖2 − t
[l + 1]q

θq(k, l,m)

( ∑
1≤i≤s

√
λi

)2

≥ ‖x‖2 − t
[l + 1]q

θq(k, l,m)
s‖x‖2

≥ ‖x‖2
(
1− td

[l + 1]q
θq(k, l,m)

)
.

From this inequality, we obtain d-positivity of Φt provided 1 − td
[l+1]q

θq(k,l,m) ≥ 0, as

claimed.
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To show failure of d-positivity when t >
θq(k,l,m)
d[l+1]q

, one has to find x =
∑d

i=1 ηi⊗
ζi ∈ Hl ⊗Hm with Schmidt rank d satisfying 〈CΦt

x|x〉 < 0. It turns out that such
an x can be canonically constructed – see [BC18b] for details. �

Remark 7. The above theorem can readily be used to construct maps on
matrix algebras that are d positive but not d+ 1 positive. Indeed, one just has to
choose t > 1, N ≥ 3 and an admissible triple (k, l,m) ∈ N3

0 so that

θq(k, l,m)

(d+ 1)[l + 1]q
< t ≤ θq(k, l,m)

d[l + 1]q
.

Then the corresponding Φt will do the job.

5.2. Entanglement breaking channels. We now turn to another applica-
tion of Theorem 5.1, to the entanglement breaking property of our quantum chan-

nels Φl,m
k .

Definition. A quantum channel Φ : B(HA) → B(HB) is called entanglement
breaking (or EBT) if for any finite-dimensional auxiliary Hilbert space H0, and any
state ρ ∈ D(H0 ⊗HA), we have that (ι⊗Φ)(ρ) ∈ D(H0 ⊗HB) is a separable state.

The class of EBT channels are precisely those which eliminate entanglement
between the input states of composite systems. These channels form an important
class which are amenable to analysis. For example, it is known that for EBT chan-
nels, both the minimum output entropy and the Holevo capacity (i.e., the capacity
of a quantum channel used for classical communication with product inputs) is
additive [Hol01,Sho02].

In order to detect whether or not a given quantum channel is EBT, it suffices
to check whether or not the corresponding Choi map is a multiple of an entangled
state. The following result is well known: see for example [AN13, Proposition 3.4].

Proposition 5.3. For a quantum channel Φ : B(HA) → B(HB), the following
conditions are equivalent.

(1) Φ is EBT.
(2) The state ρ := 1

dimHA
CΦ ∈ D(HB ⊗HA) is separable.

Before coming to our main result of this section characterizing the EBT prop-

erty for the channels Φl,m
k , we first need an elementary lemma.

Lemma 5.4. Let HA and HB be finite dimensional Hilbert spaces, let 0 �= p ∈
B(HB ⊗HA) be an orthogonal projection, and let H0 ⊆ HB ⊗HA denote the range
of p. If H0 is an entangled subspace of HB ⊗ HA, then the state ρ := 1

dimH0
p is

entangled.

Proof. We prove the contrapositive. If ρ is separable, then we can write

p =
∑
i

|ξi〉〈ξi| ⊗ |ηi〉〈ηi| (0 �= ξi ∈ HB , 0 �= ηi ∈ HA).

For each i put xi = |ξi〉〈ξi| ⊗ |ηi〉〈ηi|. Then since xi ≤ p and p is a projection, it
follows that xi = pxip, which implies that the range of xi is contained in the range
of p. In particular, ξi ⊗ ηi ∈ H0, so H0 is separable. �

Theorem 5.5. Let (k, l,m) ∈ N
3
0 be an admissible triple. If k �= l − m, then

the quantum channel Φl,m
k is not EBT.
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Proof. We have from Theorem 5.1 that C
Φl,m

k

=
[k+1]q
[l+1]q

αm,k
l (αm,k

l )∗ ∈ B(Hm⊗
Hk). Consider the orthogonal projection p = αm,k

l (αm,k
l )∗. The range of p is the

subrepresentation of Hm ⊗Hk equivalent to Hl, and by Theorem 3.2 this subspace
is entangled iff l �= k +m. Applying Lemma 5.4 and Proposition 5.3, we conclude

that Φl,m
k is not EBT whenever k �= l −m. �

Remark 8. We note that Theorem 5.5 leaves open whether or not the channels

Φl,m
l−m are EBT. In this case, the corresponding Choi map is a multiple of a projection

onto a separable subspace, and we do not know if this projection is a multiple of
an entangled state.

6. Future work and open problems

We conclude this survey with a list of open problems and directions for future
work.

(1) A major problem in QIT is to find explicit examples of quantum chan-
nels Φ,Ψ which are strictly MOE-subbaditive: Hmin(Φ⊗Ψ) < Hmin(Φ) +
Hmin(Ψ). Such channels are known to exist with high probability [Has09,
ASW11,BCN16], but no explicit examples are known. It is therefore
tempting to wonder whether or not the channels considered in this work
might be MOE subadditive. The first step in considering this question is
to have an effective means of estimating the MOE of tensor products of our
channels. In this context some computations are actually possible. In par-
ticular, if one takes one of our Temperley-Lieb chanels Φ, then it is always
possible to explicitly compute the von Neumann entropy H(Φ⊗Φc)(ρ) of
the output of a Bell state ρ, where Φc denotes the so-called complemen-
tary channel associated to Φ. It turns out that this computation involves
the quantum 6j-symbols associated to the Temperley-Lieb category. This
particular calculation is the topic of work in preparation [BCLY18]. At
the present time, it seems that in order to have any hope of whitnessing
strict MOE subadditivity in our channels, more tensor products beyond
simply channels and their complements need to be studied, and at this
time, a new idea is needed.

(2) Another important question related to our class of quantum channels is
the problem of computing their classical and quantum capacities. This is
another completely open and important research direction.

(3) As we have seen in this work, the Temperley-Lieb category provides a
tractable concrete model for highly entangled subspaces. It is natural to
wonder what other nice tensor categories or related structures give nice
models of entanglement. Perhaps certain examples coming from planar
algebras [Jon99] might give some interesting results?

(4) It would be interesting to make a further study of the family of d-positive
maps Φt given here. The importance of such maps in QIT is for entangle-
ment detection in bipartite systems: Positive maps that are not completely
positive can be used to distinguish entangled states from separable ones.
Of particular interest is the problem of detecting entangled states from
the positive partial transpose (PPT) states. In this context, the relevant
maps for entanglement detection are the indecomposable maps. I.e., pos-
itive maps Φ which are not of the form Φ = Φ1 + Φ2 ◦ t, where Φ1,2 are
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completely positive, and t denotes the transpose map. In this context, we
ask: Are our families of maps Φt indecomposable?
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