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Entanglement and the Temperley-Lieb category

Michael Brannan and Benoit Collins

ABSTRACT. We survey some recent results from [BrCol6b], where a class of
highly entangled subspaces of bipartite quantum systems is described, which
arises from unitary fiber functors on the Temperley-Lieb category associated
to the representation theory of free orthogonal quantum groups. By exploiting
the rich structure of the Temperley-Lieb category and 4#is particular fiber
functor, we are able to precisely determine the largest g ular values for these
subspaces and obtain lower bounds for the minim ntropy of the
corresponding quantum channels. Future research d and some open
problems are also discussed.

1. Introdu®g

Entanglement is a fundamentg i ) um mechanics that does not
have an analogue in the classical the framework of quantum compu-
tation and quantum informatj in bipartite or multipartite systems

systems. Withg
system is describ® W complex Hilbert space H. The (pure) states of the system
are described by unN@orm vectors £ € H, taken up to a complex phase factor. (In
this paper, all Hilbert\paces are taken to be finite-dimensional, unless otherwise
specified.) Equivalenty, a pure state of the system can be described by the rank
one projector p = |£)(£| onto the subspace C§ C H. The (closed) convex hull of
pure states (viewed as rank-one projectors on H) is denoted by D(H), and elements
p € D(H) are called mized states. If we fix a basis of H and identify B(H) = M, (C)
(n = dim H), then the convex set D(H) is nothing more than the collection of all
trace-one positive semidefinite matrices, and the extreme points of D(H) are the
precisely the rank one projectors, i.e., pure states on H.

In the quantum context, one often has to deal with bipartite systems AB, built
from subsystems A, B. Mathematically, such a bipartitie system is modeled by the
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2 MICHAEL BRANNAN AND BENOIT COLLINS

tensor product Hilbert space H = H4 ® Hp, where the Hilbert spaces H,4 and
Hp describe the states of systems A and B, respectively. Given such a bipartite
system modeled on H = H4 ® Hp, a mixed state p € D(H) is said to be separable
if it belongs to the convex hull of the set of product states p = ps4 ® pp, where
pa € D(H,) and pp € D(Hp). A state p is called entangled if it is not separable.
We shall call a Hilbert subspace Hy C Hy ® Hp an entangled subspace if all of its
associated pure states are entangled. In this paper, we are concerned with studying
non-trivial examples of highly-entangled subspaces Hy C H = H4® Hp. By highly-
entangled, we shall mean that the set of pure states on H associated to the subspace
Hy are uniformly “far away” from the set of product states p4 ® pp € D(H) with
respect to some suitable measure of distance. The choice of “distance” here is not
unique, and our choice is based on the largest singular value of pure states - precise
details will be given in the next section.

What are some explicit examples of highly entangled subspaces? Well, one
trivial example that we always have access to is the -dimensional subspace
Hy = C¢ C Hy ® Hp spanned by a maximally entgdfled (Bell) state £&. That
is, a state & of the form & = d—1/2 ZZ 1€ ® fi, wh in{dim H4,dim Hp}
and (e;); C Ha, (f;); C Hp are orthonormal systems. er important example
GHP10]) is the anti-
symmetric subspsace HAH C H® H associy quare of any Hilbert
space H. As one might expect, as the relati of the subspace Hy C H
grows, the more challenging it becomgg i amples of (highly) entan-
e a very important problem
antum Computing (QC) to develop
means to construct subspacesgdo 8 we dimension in a tensor product

importance of this prob,
cation protocols [NCOO N , ancemso to the construction of counterexamples
o capacities of quantum channels [Has09].

W cmatical problems, the question of the ezistence
y entangled subspaces with large relative dimension can
be settled using proOW@bilistic techniques. The idea of studying random subspaces
of tensor products dat®pback to the work of Hayden, Leung, Shor, Winter, Hast-
ings [HLSWO04, HW08, HLW06, Has09], among others, and it was explored in
great detail by Aubrun, Belinschi, Collins, Fukuda, King, Nechita, Szarek, Werner
[ASW11,ASY14,BCN12,FK10], and others. The whole theory of random sub-
spaces of tensor products is intimately connected with random matrix theory and
free probability theory (see [CN16] for a good survey on this), and has led to many
fruitful interactions between these communities. The general outcome of these
works was the conclusion that (at least in certain asymptotic dimension regimes)
highly entangled subspaces of large relative dimension are ubiquitous: with high
probability, a randomly selected subspace of a tensor product will be highly entan-
gled. These random constructions have had a profound impact on the field, solving
several open problems, most notably the minimum output entropy additivity prob-
lem [Has09, ASW11,BCN16|. The downside to these highly random techniques
is that they provide no information on finding concrete examples that are predicted
to exist by these methods. In fact, there seems to be embarrassingly few known ex-
amples of such subspaces (beyond the ones already mentioned above). Thus, there
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is a need for a systematic development of non-random examples of highly entangled
subspaces.

The purpose of this survey is to promote our belief that one natural and fruitful
place to search for deterministic examples of highly entangled subspaces is within
the framework of representation theory. For example, if we are given a (compact)
group G and a pair of (irreducible) unitary representations H,, H, of G, then we
can form their tensor product representation H, ® H,, and attempt to quantify
the entanglement of the irreducible subrepresentations H, C H, ® H, that arise
in the decomposition of H; ® H, into irreducibles. In this way, we have a natural
playground of examples of subspaces of Hilbert space tensor products, and we shall
see that understanding the entanglement (=relative position) of these subspaces is
essentially equivalent to understanding the representation theory of G.

Our idea here is of course not new. For example, a first attempt was made in
this direction by M. Al Nuwairan [AN13, AN14], by studying the entanglement
of subrepresentations of tensor products of irreducible repgesentations of the group
SU(2). Here, Al Nuwairan showed that entanglemen always achieved for sub-

the highest weight subrepresentation). However, as is enced by the results in
[AN13, Section 3], a high degree of entanglg tunately not achieved

exhibiting a higher level of entangle
first approach would be to consider W examples of compact groups

ide of this approach is that for most

M croup constructions.
n examples of such deformations are the canonical
unctors on) the Temperley-Lieb Categories that

Jim85, Wor88, R7]. In this paper, we consider a very different fiber functor on
the Temperley-Lieb cXgories which act on higher dimensional spaces, and come
from another class of quantum groups (more closely linked with operator algebra
theory and free probability theory), called free orthogonal quantum groups.

Given an integer N > 2, the free orthogonal quatum group OJJ{, is the (compact)
quantum group whose Hopf *-algebra of polynomial functions O(OXZ) is given as
a certain natural non-commutative (or free) version of the algebra of polynomial
functions on the classical N x N orthogonal matrix group Op. In the context of C*-
algebraic compact quantum groups, O]‘t, was first introduced and studied by Wang
[Wan95]. Shortly after Wang’s original paper was published, Banica [Ban96] stud-
ied the representation category Rep(O%;) and showed that there is a natural unitary
fiber functor on the Temperley-Lieb Category TL(N), which concretely realizes the
representation category Rep(O]J\r,). In Banica’s fiber functor, the generating object
of TL(N) is given by the N-dimensional fundamental representation space CV (in
contrast to C? associated to the usual g-deformation of SU(2)). It is the entangle-
ment phenomena associated to this “higher dimensional” unitary fiber functor on
the Temperley-Lieb category that we study here.
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Our motivation to study entanglement in the context of Rep(Of) = TL(N)
comes from the pioneering work of Vergnioux [Ver07] on the seemingly unrelated
property of rapid decay (propety RD) for quantum groups. The property of rapid
decay is a geometric-analytic property posessed by certain (quantum) groups and
corresponds the existence of polynomial bounds relating non-commutative L°°-
norms of polynomial functions on quantum groups to their (much easier to calcu-
late) L2-norms. The operator algebraic notion of property RD has its origins in
the groundbreaking work of Haagerup [Haa79] on approximation properties of free
group C*-algebras. Unlike in the case of ordinary groups, where property RD is con-
nected to the combinatorial geometry of a discrete group G, in the quantum world,
property RD was observed by Vergnioux to be intrinsically connected to the geom-
etry of the relative position of a subrepresentation of a tensor product of irreducible
representations of a given quantum group. More precisely, Vergnioux [Ver07, Sec-
tion 4] points out that property RD for a given quantum group G is related to
the following geometric requirement: Given any pair of igeducible representations

The work [BC18b] that we survey here is largel n-depth exploration of
this passing remark of Vergnioux [Ver07], ay to show how a rather
modest understanding of the structure of t category can be ex-
tremely fruitful when analyzing the entang bm for Rep(O};). In this
context, we show that one can descrilg he largest singular values
of tensor product represen-
tations (see Theorem 3.3). This cqlstructionYroduces a new non-random class of
subspaces of tensor products with of being highly entangled and of
large relative dimension.
establish some interesti Jies for a class of quantum channels associated to

and obtain lower Leir minimum output entropies (see Section 4). We
also show in Se
further propertie quantum channels, including their entanglement breaking
property, and cons ting positive maps on matrix algebras which are not com-
pletely positive. It is ope that this survey will inspire others to view quantum
groups/symmetries and their associated tensor categories as a new, rich source of

entangled subspaces with interesting geometric properties.

Acknowledgements. The authors are indebted to Vern Paulsen and the ref-
erees for helpful comments.

2. Preliminaries

We refer to [NCO0O] for the basics on entangled subspaces and quantum chan-
nels. For the reader who is interested in learning more about quantum groups and
their representation categories, see [NT13, Tim08]. In the following, we use stan-
dard notations and conventions from operator algebra theory: Hilbert spaces are
typically denoted by the letter H (possibly with some additional subscripts), and
are always assumed to be finite-dimensional. The inner product on H is always
linear in the right variable, B(H) denotes the unital x-algebra of (automatically
bounded) linear operators on H, and D(H) C B(H) denotes the collection of mized
states on H. That is, p € D(H) iff p is positive semidefinite (written p > 0) and
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has unit trace, Tr(p) = 1, where Tr denotes the canonical trace on B(H) satisfying
Tr(1) = dim H. A state p € D(H) is called a pure state if there exists a unit vector
£ € H so that p is given by the rank-one projector pe = [£)(¢|. We denote by S1(H)
the Banach algebra B(H), equipped with the trace norm ||p|s, 7y = Tr(|p|), where
Ip| :== (p*p)'/2. At times, we will also write So,(H) for the space B(H) equipped
with the operator norm z — ||z 0 = supg_sccp IIEIIH

2.1. Entangled vectors and subspaces. Consider a pair of finite-dimen-
sional complex Hilbert spaces H4 and Hp with dim H4,dim Hg > 2. Our first
goal is to define what it means for a unit vector £ € Hy ® Hp to be entangled, and
how one can quantify the amount of entanglement that ¢ has. These goals are best
achieved using the singular value decomposition (SVD). Namely, any unit vector
¢ € Hy ® Hp admits a representation of the following form:

d
=Y Vhiei® fi,
i=1

where (e;)%_, C Ha and (f;)¢_, C Hp are orthonor
dim Hg}, and Ay > Ay > ... \g > 0 satisf
the orthonormal systems defining the singulg

s, d = min{dim Hy,
€17 = 1. Although
ition of & above are

Schmidt coefficients) of &.

Thus, to any unit vector £ €
ability distribution ();); correspo
in mind, we shall call £ €
deterministic: (N\;); = (
easy to see that & € H,S
a simple tensor £ = g
an entangled vec
vector gen €

e have an essentially unique prob-
ring of singular values. With this
if the corresponding distribution is
erwise, we shall call £ entangled. Tt is
agled if and only if it cannot be expressed as
¢ € Hp. The most fundamental example of
N o (or maximally entangled state), which is a unit

d
1

el = —= e; & fi-

EBell \/E;:l f

In this case, the singular values of £y are given by the uniform distribution

d’d s d )
(1,0,0,...,0) associated to a separable vector. In fact, the above remark leads to a
rigorous measurement of how entangled a unit vector £ € H, ® Hp is, namely the
so-called entanglement entropy:

(l i... l) which is in many senses “far” from the detereministic distribution

d
= Ailog \;,
i=1

where ()\;)L, are the singular values of . In other words, H(£) is simply the
Shannon entropy of the string of singular values associated to £, and it follows from
the basic properties of the Shannon entropy functional that 0 < H(§) < logd, and
H(£) is minimized (resp. maximized) if and only if £ is separable (resp. maximally
entangled). In general, H(£) gives a measure of how entangled £ is. Another
(generally less precise) measure of the entanglement of a unit vector £ € H, ® Hp
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that we shall primarily use in this paper is given by the size of the largest singular
value \;. Note that geometrically, A\; can be interpreted as the square of the cosine
of the smallest angle between £ and any product vector n ® {. In particular, we
always have

<M= sup (@ O? <1,
Il e, =< g =1

Ul

with £ being entangled (resp. maximally entangled) if and only if A\; < 1 (resp.
M = 1),

Sgppose now that we are given a linear subspace Hy C H4 ® Hg. We will call
Hy a separable subspace (resp. entangled subspace) if Hy contains (resp. does not
contain) separable vectors. Using our measure of entanglement coming from the
largest singular values for unit vectors in Hy, we can call Hy C Ha ® Hp highly
entangled if the supremum of all maximal Schmidt coefficients associated to all unit
vectors in Hy is bounded away from one. That is, the qugtity

M (Hyp) = sup A(€) = sup
§E€H,, |€]l=1 1€l zg =lImll £ 4 =]

Of course, in general we have % <\ (Hp) <

REMARK 1. For the sake of compariso
techniques prove the existence of hig

hnd the references therein. On the
inistic ezamples of Hy C Ha @ Hp

trace-preserving map (CPTP map) ® : B(Ha4) — B(Hp)
[NCO00]. By defin@n, we have ®(D(H,4)) C D(Hp) for any quantum channel
®. The perspective o antum channels we take here is that they are intimately
connected to the geometry subspaces of Hilbert space tensor products. Indeed,
suppose we are given a triple of finite dimensional Hilbert spaces (Ha, Hp, Hc)
and an isometric linear map ai’c :Hjy — Hp ® He, we can then form a pair of
quantum channels

completely posit

O5 B(HA) = B(He);  ©5%(p) = (Tem, ® )0 “p(a)")

o B(Ha) — B(Hp); @5%(p) = (1® Trg.)(aF Cp(a$9)).

In other words, associated to the subspace a(H4) C Hg ® H¢, we have two chan-
nels CIDE’C and @f’c. Note that in the literature the channel @Jj"c is called the

complement of q)i’c.

It is a remarkable fact that every quantum channel in fact arises from the
above construction. This fact is a special case of the Stinespring dilation theorem
for completely positive maps (see [HWO8]). Stinespring’s theorem basically says
that if we are given any quantum channel ® : B(H,) — B(Hp), then there exists
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an essentially unique Stinespring pair (He, cufff’c)7 where H¢o is an auxiliary enwvi-
ronment Hilbert space oz]j"c :Hy — Hp ® He is a linear isometry, and ® = q)g,c
in the above notation.

The main quantity associated to quantum channel ® : B(H4) — B(Hp) that

we will be interested in this work is called the minimum output entropy (MOE),
Hin (), which is defined by

Hupin(®) = min — H(®(|5){E]))-

§€EHA, €]=1

where H () denotes the von Neumann entropy of a state: H(p) = —Tr(plogp). Note
that by functional calculus, we have H(p) = — ), \;log \;, where ();); C [0,00)
denotes the spectrum of p. In other words, H(p) is nothing but the Shannon entropy
of the probability vector (\;); corresponding to the eigenvalues of p.

To get a better handle on what exactly Huyin(®) is, let us suppose that & =

@f’é =(® TrHC)(aﬁ’C(-)(aﬁ’c)*) is a Stinespring repgesentation for @, where
af‘}’c : Hy — Hp ® H¢ is our Stinespring isometr e claim that the MOE

values associated to
, if we fix a unit vector
-V Aie; ® f;, then one

Hppin(®) only depends on the geometry of the set
unit vectors in the subspace aﬁ’C(HA) CHp® Hc.
¢ € H 4 and write down the corresponding SV,
readily sees that

O(|€)(€]) = (+ @ Trag)(

‘OKB’C

and thus

In particular, computing

of unit vectors in t 4) C Hp ® He. Namely,

H(ok € (€)).

culation that Hp,i,(®) is zero (resp. large) if and only if
a separable subspace (resp. highly entangled subspace).

min
EEH 4, |€]=1
It follows from thi
Oéﬁ’c(HA) CHp® HZ

2.3. Free orthogonal quantum groups, their representations, and the
Temperley-Lieb Category. We now come to the main algebraic objects of study
for us — quantum groups and their representation categories. In fact we will only
consider one class of quantum groups here, called the free orthogonal quantum
groups, and explain how their representations are connected to the Temperley-Lieb
category, which is itself an amazing tensor category that is ubiquitous across many
branches of mathematics (e.g., subfactors [Jon83], quantum computation [Abr08],
knot theory [Jon85], and mathematical physics [TL71].)

2.3.1. The notion of a quantum group. The theory of quantum groups was
initiated in the second half of the 20th century by several people, including Kac,
Vainerman, Enock, Schwartz, Drinfeld, Jimbo, Woronowicz, Kustermans and Vaes
[ES92,Dri87,Jim85, Wor98, KV00]. The perspective taken by each author here
varies quite significantly, but the guiding principle is always the same: if we start
with, say, a compact matrix group G C Uy (Unx C My (C) being the unitary group),
then we can encode the entire structure of GG in terms of the commutative x-algebra
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O(G) of polynomial functions on G, which itself is generated as a *-algebra by
the N? coordinate functions u;; : G — C defining the embedding G C My(C).
For example, the multiplication G x G — G, the inversion G — G, the unit
e € G are all encoded at the level of O(G) in terms of the following unital algebra
homomorphisms

N

A:O(G) = O(G)® O(G); Augj) = Zuik ® Up; (comultiplication)
k=1

S:0(G) = O(G); S(uij) = uj; (coinverse)

e: O(G) = C; €(uij) = 0i; (counit).

From these defintions, one can readily check that the Hopf identities (e ® t)A = ¢,
m(S ® 1)A = m(t® S)A = ¢(-)1 are satisfied (where m : O(G) ® O(G) — O(G)
is the multiplication map), and what one obtains is the structure of a commutative
Hopf *-algebra (O(G), A, S, ¢).

Very loosely speaking, a quantum group is then gi

by a (possibly) noncom-
our *-algebra O(G)
lying group represent-
ss, if one places “rea-

> Without going into any of
be free orthogonal quantum groups

N > 2, let A be a unital x-algebra
be a matrix with entries in A. We will
) ;] € My(A). We will call the matrix u
matriz if u is invertible in My (A), v* = v~!, and

DEFINITION
group (of rank N) is

rthogonal Quantum Groups). The free orthogonal quantum

en by the quadruple OF; := (O(0F%), A, S, €), where

(1) O(0};) is the ¥niversal unital -algebra (over C) generated by the coeffi-
cients (ujj)i1<ij<n of a quantum orthogonal matrix u = [u;;] €
My (0(0%)). More precisely, O(O}) is the universal unital -algebra with
generators (u;;)1<ij<n satisfing the relations u;; = u;; and SN Uik
= Zgzl Upiukj = 0; ;1 for each 1 < 4,5 < N.

(2) A:O(0F) — 0(0F;) ® O(0YF) is the unique unital *-algebra homomor-
phism, called the coproduct, given by

N
A(“ij)zzum®ukj (1<4,5<N).
k=1

(3) S : 0(0F;) — 0O(0F;) is the *-antiautomorphism given by S(u;;) = uji,
1<ij<N.
(4) €: O(0F;) — C is the *-character given by €(u;;) = d;;.
REMARK 2. Of course, what we have defined above is a non-commutative Hopf
x-algebra, which we like to interpret as a noncommutative analogue of the algebra of
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coordinate functions on Opy. To support this perspective, note that if we quotient
O(0%) by its commutator ideal, we obtain the abelianization of O(O};), which
is isomorphic to O(Oy), the Hopf *-algebra of polynomial functions on the real
orthogonal group Oy. The map O(O%) — O(Oy) is given by w;; — v;;, where
v = [v;] € Mn(O(On)) forms the matrix of basic coordinate functions on Oy
(a.k.a. the fundamental representation of Opy). In this context, the coproduct map
A on O(OX,) factors through the quotient and induces the corresponding coproduct
map A on O(Oyp). In this sense, we are justified in calling the quantum group Oﬁ
a “free analogue” of the classical orthogonal group Oy, and we can even view Oy
as a “quantum subgroup” of O;{,.

2.3.2. Unitary representations of OX,. A (finite-dimensional unitary) represen-
tation of O]J\r, is given by a finite dimensional Hilbert space H, and unitary matrix
v € O(0%) ® B(H,) satisfying

(A ®1)v = vi13v3 € O(O}) ® O(O})
where above we use the standard leg numbering not forgnear maps on tensor
products. If we fix an orthonormal basis (e;)%, C en we can write v as

the matrix [v;;] € My(O(O%)) with respect tg and the above formula
translates to

(Hy),

Av;j = Z'Uik: & Vkj d).

Observe that the above definition
unitary representation of a group i
commutative.

two distinct represent Phc One is the one-dimensional trivial represen-
tation, which we » =1 O(0}) = M1(0(0%,)). The second example
is the N-dimeng W representation vt = u = [u;;] € My(O(0F))
Ktrix of generators for O(OY)).

In order to gencNQ@e more examples of unitary representations we use our intu-
ition from group theor¥und try to build more representations from v°,v! via the
operations of direct sum, tensor product, and compression to subrepresentations.
Let us recall these notions. Given two representations v = [v;;] and w = [wy], we
can naturally form their direct sum v w € O(0O}) ® B(H, ® H,,) and their tensor
product v @ w = viswi3 = [V;;Wk] € (’)(O;{,) ® B(H, ® H,) to obtain new exam-
ples of representations from known ones. From a unitary representation v = [v;;],
we may also form the contragredient representation v := [v};] € 0(0%) @ B(H,).
Finally, if p = p?> = p* € B(H,) satisfies (1 ® p)v = v(1 ® p), we can form the
subrepresentation v' := (1 ®@ p)v(1 ® p) € O(0F;) @ B(pH) of v.

In order to fully understand the structure of the unitary representations of
O?{,, we need to study intertwiner spaces between representations. Given two rep-
resentations u and v of OJJ(,, we define the space of intertwiners between u and v
as

Hom(u,v) ={T € B(H,,H,) : 0 @T)u=v(®T).}
Two representations u, v are called equivalent (written u = v) if Hom(u, v) contains
an invertible operator, and a representation w is called irreducible if Hom (u, u) =CI.
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It is a consequence of a general fact about compact quantum groups that every
unitary representation of O;{[ is equivalent to a direct sum of irreducible unitary
representations [Wor87, Wor98].

2.3.3. Fusion rules for OX, -irreducibles. As is the case for any (compact) quan-
tum group, a problem of fundamental importance concerning OX, following its in-
troduction by Wang [Wan95] was to classify its irreducible unitary representations
up to unitary equivalence. This problem was solved in the groundbreaking work
of Banica [Ban96] where he showed that there exists a complete list of irreducible
unitary representations of O]J\r,, (v*)ken,, (taken up to unitary equivalence) such
that v° = 1 (the trivial representation), v! = u (the fundamental representation),
each v* is unitarily equivalent to its conjugate vk, and moreover the following fusion
rules hold:

(1) ’Ul ® v™ =2 U\lfm\ @ U|l7m|+2 @...0 Uler. — Ul+m72r.

Note that the above labeling of irreducible representa
the same as those for SU(2). The main difference he
corresponding representation spaces are large
the Hilbert space associated to v*, then thglf
dictate that the dimension relation dim H;, Q&
hold for all £ > 1. Taken together withddagini¥

hat dimensions of the
ly, if we denote by Hy,

dimHy = k+1 = lim,
N >3)

2.3.4. The
fusion rules for
coincidence. This ns out to be a consequence of the fact (observed by Ban-
ica) that both repres@ation categories are described in terms of certain unitary
fiber functors on Temperley-Lieb categories [TL71]. Let d > 2. Recall that the
Temperley-Lieb Category TL(d) is the strict tensor category with duals generated
by two simple objects {0, 1}, where 0 denotes the unit object for the tensor cate-
gory, and 1 # 0 is a self-dual simple object with the property that the morphism
spaces TLy ;(d) := Hom(1¥% 1%!) (k,1 € N) are generated by the identity map
¢ € Hom(1,1) together with a unique morphism U € Hom(0,1 ® 1) satisfying
NoU =d € Hom(0,0) = C. Here N := U* € Hom(1 ® 1,0). The Temperley-Lieb
category admits a nice diagrammatic presentation [KL94] in terms of the so-called
Kauffman (or Temperley-Lieb) diagrams. Let k,1 € N and d € C\{0} be as above.
If k+1 is odd, we have TLj, ;(d) = 0. Otherwise we plot the set [k+1] = {1,...,k+1}
on a rectangle clockwise with {1,...,k} on the top edge and {k+1,...,k+ 1} on
the bottom edge. Next, we consider the set NCs(k + ) of non-crossing pairings of
these k + [ points on the boundary of our rectangle (see [NS06] for more details).
Geometrically, any p € NCy(k + ) corresponds to a partition of the set [k + ] into
% pairs with the property that if we connect the k + [ boundary points on our
rectangle that are paired off by p with smooth curves lying inside of our rectangle,

Not for print or electronic distribution



Please send corrections to rvr@ams.org by Tuesday, February 18
ENTANGLEMENT AND THE TEMPERLEY-LIEB CATEGORY 11

then these curves can all be arranged so that none of them cross. The resulting
non-crossing diagram is our Kauffman diagram, and is denoted by D,. The collec-
tion of all Kauffman diagrams (D )pene, (k+1) (taken up to equivalence by planar
isotopy) spans a basis for the vector space TLy ;(d). For example, when k =1 =3
there are |[NC(6)] = 5 Kauffman diagrams spanning TLy, 1 (d):

< < < <
ra ra r\ and /f\
In the diagrammatic description of the morphism spaces TLy ;(d), the compo-
sition D,D, of diagrams D, € TLy;(d) and D, € TL,, x(d) is obtained by first
stacking the diagram D,, on top of D,, connecting the bottom row of k points on D,
to the top row of k points on D,. The result is a new planar diagram, which may
have a certain number, ¢, of internal loops. By removig these loops, we obtain
a new Kauffman diagram D, € TL,, ;(d), correspondg ome r € NCq(m + 1)

(which is unique up to planar isotopy). The compo q is then defined to
be d°D.,.. For example, we have

/

As for the tensor structure on TL ply diagrammatically represented
by horizontal concatenatio ) Prams. We leave it to the reader to
Obtained from sequences of the the basic
operations of tensoring 2 she basic maps U, N, and .

Returning now ectlon w1th Rep(0+) - observe that we can produce
a natural unitar

idey € Hom(u,

. € TLO_]Q(N) — vazl €; ® e; € Hom(1l,u ® u), where
(e;), is an ortho al basis for CV. The key point here is that the universal
properties of OF; guarMgee that this functor is both injective and surjective (in the
sense of [ENOO05]). More precisely, we have the following theorem of Banica.

THEOREM 2.1 (Banica [Ban96]). The above functor is in fact a unitary fiber
functor TL(N) — Rep(OF).

With the above connection between TL(NN) and Rep(O;{,)7 an explicit construc-
tion of the irreducible representation spaces (H, k)keNo of OF; ~N can now proceed as
follows [Ban96,VV07, BDRV06]. Denote by (e;)Y, a fixed orthonormal basis for
Hy :=CV, and as above, put U= Y"1 ¢;®¢; € Hom(1,u®u). (Le., u®(1@U) =
(1 ® U).) Next, we consider the intertwiner space Hom(u®*, u®*) C B((CN)®k),
which can be shown (using its identification with TLy ,(IN)) to contain a unique
non-zero self-adjoint projection py (the Jones- Wenzl projection) [Wen87] with the
defining property that

(LHigi—l QUU* ®LH®k—i—1)pk =0 (1 <i<k-— 1).
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The projections py, are known to satisfy the Wenzl recursion

[k =1l

P1=1LlH,, DPk=1H QPk—1— W
q

(er, @ pr-1)(UU* @tyor—2)(tm, @ pe-1)
(k> 2),

which can be used to determine pg. In passing, we point out that the problem of ob-
taining explicit formulas for Jones-Wenzl projections (beyond the above recursion)
has attracted a lot of attention over the years from various mathematical commu-
nities. See [BC18a,Mor15,FK97,Rez07,Rez02] and the references therein.
We conclude this section with a description of the non-empty intertwiner spaces
Hom(v*, v! @ v™) that arise from the fusion rules (1). To begin, let us call a triple
(k,1,m) € N} admissible if there exists an integer 0 < r < min{l,m} such that
k =1+ m — 2r. In other words, (k,I,m) € N} is admissible if and only if the
tensor product representation v! ® v™ contains a (multipjaeity-free) subrepresenta-
tion equivalent to v¥. It is easy to see that the set o missible triples is invari-
(k1) ko(2): ko(3)
is admissible for all ¢ € S3. Fix an admissible t k,l,m) € Nj. Then
Hom(v*,v! ® v™) C B(Hy, H; ® H,,,) C B(Hg ") is one-dimensional

from Up := Zf\;l e; ®e; via U, =
agrammatics, U, is simply r nested
e maps Aic’m are well studied in the
94], and are known there as three-vertices.

where U, € Hom(1,u®?") is defind
(b, ®U1 ® v, )Up—1. In terpasanf Y
cups, viewed as an elemey
Temperley-Lieb recoupld
See also [EMM17] g4 tI
follows:

Here, the solid dots at the vertices are meant to depict the Jones-Wenzl pro-
jectors at the inputs/outputs. In the following we will simply omit these solid dots
in our pictures, and simply draw the three-vertex as

l m
Im __
A =

k

In order to find the unique OJ"\',—equivariant isometry af,g"m cHy - H®H,
(up to multiplication by T), we simply have to renormalize Aéfm, which amounts to
computing the norm of Aé’m. To do this, we define (following the terminology and
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diagrammatics from [KL94]) the 6-net

Og(k,1,m) = Tem, ((A;™)745™) = 1

k
Note that the trace on B(H}) corresponds to the usual Markov trace on TL(N)
[KL94,Ban96].

Now, since Aﬁ;m is a multiple of an isometry, it easily follows that HAimHQ[k +
1] = 04(k,1,m). 6-net evaluations are well known [KL#F'Ver05, VVO07], and are

given by

(3) 0,(k,1,m) = [r]g![l — rlg![m — r]g![K :

where k = | + m — 2r and [z],! = [z]4[z 1], denotes the quantum
factorial. We thus arrive at the following forXg isometry aé’m:

(4) o™ = 14" ¢

Pictorially, we have

3. Entanglement analysis

In this section we begin our study of the entanglement geometry of irreducible
subrepresentations of tensor products of irreducible representations of Oj\',. The gen-
eral setup we will consider is a fixed N > 3 and an admissible triple (k,1,m) € N§.
This corresponds to irreducible representations (v¥,v!, v™) of OJJ(, with correspond-
ing representation Hilbert spaces (Hy, H;, H,,), and a O]J(,—equivariant isometry

ozic’m : H, — H; ® H,, as constructed in the previous section. Recall that we set

_ 1 2 . .
9= % <71+ 174/N2) € (0,1). Our main interest is to study the entanglement of

the subspace aﬁc’m(H x) C H; ® Hy,, and the following proposition yields a measure
of this.

PROPOSITION 3.1 ([BC18b]). Fiz N > 3 and let (k,1,m) € N} be an admissible
triple. Then for any unit vectors & € Hy,n € H;,{ € H,,, we have

l,m [k + 1] 1/2 W
" @me ol < (5 ) < Cwd™
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where
oo
1 3/2
2\—1/2
Clg)=Q1—-¢*)" (H 1—q25)
s=1

REMARK 3. We note that the bound C(q)qw appearing in Proposition
3.1 is equivalent, as N is large, to the fourth root of the relative dimension,

( dim H,, )1/ *
dim H, dim H,, :

Proposition 3.1 can be interpreted as giving a general upper bound on the
largest Schmidt coeflicient of a unit vector belonging to the subspace aiﬂ"m(H k) C
H; ® Hp,. That is, if £ € Hy is a unit vector and aﬁe’m(f) is represented by its
singular value decomposition

ay™ (&) = Z Ve © fi,

with (e;); € Hy, (fi): C H,, orthonormal systems, a 1 22X > ... > 0 satisfy
> Ai =1, then

(5) M < Clg)%q 4

[ +m, we conclude that
afﬁ’m(Hk) is “far” from containing separable u the form n®( € HQH,,.
That is, aﬁ;m(Hk) C H ® Hy, is
following theorem.

We summarize this in the

THEOREM 3.2 ([BC18b bove, the subspaces aﬁ;m(Hk) CH®
. When k =1+ m, the highest weight

eparable subspace.

Proor. The i Lt follows from the previous proposition and the re-
marks that follg b atement follows from the observation that if one

(..EQNVECRAR (E@NRE®R...) e (CV)® g (CN)em (€ L),

then they always lie in the subspace aéffn(HHm) C H; ® H,,, (thanks to the alge-
braic properties of the Jones-Wenzl projections!). See [BC18Db] for details. O

In fact it turns out that one can say quite a lot more about the largest possible
Schmidt coefficients for irreducible subspaces of tensor products than what is said
in Proposition 3.1. The following theorem shows that the bound given above is in
fact optimal in a very strong sense: For any d € N, we can find a unit vector £ € Hy,
(provided N is sufficiently large) with the property that afc’m(f) admits at least d
Schmidt coefficients with the same magnitude as that predicted by (5).

THEOREM 3.3 ([BC18b]). Let (k,l,m) € N} be an admissible triple, N > 3,
and d < (N —2)(N — 1)L+m5k72. Then there exists a unit vector £ € Hy such that
afc’m(f) has a singular value decomposition aﬁc’m(ﬁ) =, VAie ® fi with \y > Ay >

. satisfying
[k + 1]q > Lmek .

M=dp=.. =M=t e
L= A 4 g,k lm) 1
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REMARK 4. For various applications of the above theorem, it is of critical
importance to understand if the above result is optimal in the sense that the number
d of maximal Schmidt coefficients that is obtainable is indeed given by the above
bound. At this stage, we are unable to fully answer this question. However, we can
show that the upper bound d(N) := (N — 2)(N — 1)™" 2 — of maximal Schmidt

coefficients Apax = % is asymptotically mazimal in the sense that
, [k + 1],
lim d(N)————~ =1
Mm_d( )9q(k,z,m)

This shows that in the limit as N — oo, the vector ¢ € Hj which is asserted to
exist by Theorem 3.3 becomes maximally entangled, with the bulk of its Schmidt
coeflicients equaling the maximal value Ap.x allowed by Proposition 3.1.

4. O]f,-equivariant quantum channels
and minimum output entropy e ates

In this section we consider some applications of
preceding section to study the outputs of the canonic
to our subspaces.

Following Section 2, we form, for any
complementary pair of quantum channels

oL : B(H,) — B(H,,

oL B(Hy) — B(H, @ Tr)(ak™ p(al™)").

[k +1],
Oy(k, 1, m)

We then have the following proposition concerning the & — Sy, behavior of
these channels.

PROPOSITION 4.1 ([BC18b]). Given any admissible triple (k,l,m) € N§ and
N > 3, we have

I,m Im
195" 81 (F1) = Soo () = 190%™ 81 (F1) = S (1)

. [k+l]q H—w21,—k 9 I,+7>;—k

Proor. We shall only consider q>§€”” as the proof of the other case is identical.

< _k+1]g
= 9, (k,l,m)”
positivity, convexity and the triangle inequality, it suffices to consider a pure state

To prove the upper bound ||‘I)§$m||31(H,€)—>SW(H,,,L) note that by complete
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p = |&){¢] € D(Hy) and show that H<I>2’m(p)||5x(Hm) < ey(c;ll’]:n). But in this case,

we have
2"(p) = (Tr @ 1) (" E) ol ™el) = 3 MlFl

l,m

where o™ (€) = >, V/Aie; ® f; is the corresponding singular value decomposition.
In particular, ||<I>§C’m(p)||sm(Hm) = max; A;, which by Proposition 3.1 is bounded

above by % This upper bound is obtained by taking p = |£)(&|, where
satisfies the hypotheses of Theorem 3.3. |

The preceeding norm computation for the channels @km,éﬁém allows for an
easy estimate of a lower bound on their minimum output entropies.

COROLLARY 4.2. [BC18b] Given any admissible trig (k,l,m) € N3 and N >

3, we have

i — 0,(k,1,m)
Hoin (D4™), Hypin (DY) > log (2020 ) >
(). Hosin () 2 log (Sp=7) >

) and p € D(H), we note
m of ®(p). In particular,

PRrROOF. Given a quantum channel & :
that H(®(p)) = — >, Ailog A;, where (\); i
we have the estimate

H(®@(p)) = ~log ( max ;) 806y = =108 |, 11y 1)

The first inequality in t
4.1. The second inequ¥

ollows immediately from Proposition

onsequence of the inequality 57245 [lz,jll]fn) <
q (Rt

Clq)?q 5 O
REMARK 5. Ve estimates show that for NV large and k < [+m fixed, the

minimum output eN@Opy of the channels is quite large and grows logarithmically
in N.

On the other hand, if we fix N > 3 and consider, for example, the sequence
of channels (@Zfl : B(Hg—1) — B(Hy))
positive lower bound

KEN’ then Corollary 4.2 yields the uniform

Hoin(®F1)) > —log(q) — 210g(C(q)) >0 (k € N).

This phenomenon stands in sharp contrast to what happens in the case of the
SU(2)-equivariant quantum channels studied by Al Nuwairan in [AN13, Section

2]. Indeed, in the corresponding SU(2) setting one has Hmin(fI)’;El) R~ % —0
as k — oo.
In the case where k = [ + m (the highest weight case), we note that
I,m lm
Hmin(q)k ) - Hmin(@k ) = Ov

which follows from the fact that ozéfm(Hk) C H; ® H,, is a separable subspace (cf.
Theorem 3.2).
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REMARK 6. We expect that the lower bound for the minimum output entropies
given in Corollary 4.2 to be asymptotically optimal as N — oo, at least in some cases
(e.g. m fixed). Evidence for this is provided by Theorem 3.3 and Remark 4, which

shows that aﬁc’m(Hk,) contains unit vectors which are asymptotically maximally

[k+1]4
0q(k,l,m) "

entangled with the bulk of their Schmidt coefficients equal to

5. The Choi map and Planar Isotopy

In this final section we indicate how the planar structure of our representation
theoretic model for highly entangled subspaces can be used to easily describe the
Choi maps associated to our quantum channels. As applications of this description,
we construct non-random examples of d-positive maps between matrix algebras that
fail to be completely positive, and we also study the entagfement breaking property
for our channels.

First we recall the definition of the Choi map a
B(HA) — B(HB) Let (ei)ie], (fi)ie] be two §

d to a linear map @ :
mal bases for H 4, and
H,). Then the Choi

(6) Cs

where ¢ = Y. ;e ® f; Phich is an unnormalized Bell state in
Hy® Hy). Of course, 3 acd uniquely up to the choice of matrix units
ei; and f;;. Moreovg also define a “right-handed” version of Cg of Cg

ant properties of Cp (e.g., entanglement, positivity, etc.)
oice of matrix units or side of the tensor product on which
We also note the obvious fact that the map & — Cp is

do not depend on
one slices [1) ()] by ¥
linear in ®.

Turning back to our representation category Rep(O3;) and our quantum chan-
nels @Zm : B(H) — B(Hp) ((k,1,m) € N3 admissible), we judiciously choose
orthonormal bases (e;); and (f;); of Hy so that the unnormalized Bell vector v, =
>, € ® fi € Hy ® Hy, belongs to the one-dimensional Hom-space Hom (u?, uf @ uk)
(this is always possible, thanks to the fact that O]J\r, is a compact quantum group of
Kac type. See for example [Ver07]). Using our identification Rep(O%) = TL(N),
we can depict ¢ (in terms of planar diagrams) as a three-vertex corresponding to
the admissible triple (0, k, k), which is explicitly given by (pr®px)oUr € TLg 2k (),
where py, is the kth Jones-Wenzl projector. Considering the projection |¢y) (],
we have

k k
)] = T——
o
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Then we can compute the corresponding Choi map C\7.. = (@i’m @ o) (|thw) (Vr])
k
diagrammatically by

m k m k
k k
Qq(k, l, m) - - l
&+ 1, Cqﬁ;'” =1 L %) (Y| J - ’
k k
m k m 1
Since the linear map defined by the above pl tagfe is invariant under
planar isotopy (by construction it belongs to the Temp ~Lieb category!), we see
that eq[l(ﬁll’f:) C <1>;=’" also corresponds to the fo n angle:

ke

Note here that azn’k(al )* is simply the orthogonal equivariant projection from

H,, ® Hy, onto the unique subspace equivalent to H;. We have therefore arrived at
the following theorem.

THEOREM 5.1. For the Of -equivariant quantum channel @i’m . B(H) —
B(H,,), we have

_ _ [k+ 1]q m,k  m,ky\x
(7) Cq)icvm - [l'i‘ 1]q al (al ) .

A similar argument for the complementary channel @ﬁém : B(Hy) — B(H;), yields

[k + 1], kil (k).

8 C
( ) P [m+1]q m m

In the following subsections, we show the utility of Theorem 5.1.
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5.1. Examples of positive but not completely positive maps. A crucial
property of the Choi map Cg associated to a linear map @ : B(H4) — B(Hp) is
that it can be used to detect positivity properties of ®. More precisely, we have
that ® is completely positive if and only if Cg is positive semidefinite [Cho75].
More generally, Cy can be used to detect whether or not ® is d-positive for any
d € N [HLP"12]: @ is d-positive if and only if
for all x € H,® Hp with a Schmidt rank of at most d. (That is, 2 admits a singular
value decomposition x = Zle VAie; @ fi with min; \; > 0 and s < d).

Let us now return to our usual setup of an admissible triple (k,l,m) € N}
corresponding to a non-highest-weight inclusion ak : Hy — H;® H,, of irreducible
representations of O}f,, N > 3. For each t > 0, we can consider the linear map
o, : B(Hy,) — B(Hp,) given by
[l +1],
[k +1]

Using Theorem 5.1 together with the simple fact
to B(Hy) > p +— Tru, (p)1gm,) is given by 1.4
map of ¥, is given by

(10) Co, = 1pH,,0H,) —

From this expression for Cs, , it isg

(9) oy = Ter(')IB(Hz)

Choi map associated
conclude that the Choi

iff t < 1. On the other hand, we ¢ ye following result on d—positivity_ of
D,.

v Vod (k,1,m) € N}, and fiz a natural
number d < (N — 2)(N b . en the map ®; : B(Hy) — B(H,,) is
d-positive (but not comp Qe e/ ond only if

_ ktm—l
2

d—1.

Proor. We already observed that ®; is not completely positive when
t>1. Now fix d € nd z =37 Ve @ fi € Hy, ® Hy, with Schmidt-rank
at most d. Using the in&quality of Proposition 3.1, the triangle inequality, and the
Cauchy-Schwarz inequality, we have

(Co,zlz) = [|=]|* — t(a]"* (a]"")* (2)]2)

> ol - t7 s (3 VAledlAl)

1<i<s

> Jlaf? - 9’,:;7 (¥ va)
1<i<s

> Jlalf? - %smn?

> Jlaf?(1 - td%).

From this inequality, we obtain d-positivity of ®; provided 1 — td% >0, as
g\R,6,m

claimed.
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To show failure of d-positivity when ¢ > e‘c’lflk _"kll’]rz) , one has to find z = Zle 7;®

¢ € Hy ® Hy, with Schmidt rank d satisfying (Cg,z|z) < 0. It turns out that such
an x can be canonically constructed — see [BC18b] for details. (]

REMARK 7. The above theorem can readily be used to construct maps on
matrix algebras that are d positive but not d + 1 positive. Indeed, one just has to
choose t > 1, N > 3 and an admissible triple (k,l,m) € N3 so that

04(k,1,m) i< Qq(k,hm).
(d+D[l+1], dil + 1],
Then the corresponding ®; will do the job.
5.2. Entanglement breaking channels. We now turn to another applica-
tion of Theorem 5.1, to the entanglement breaking property of our quantum chan-
I,m
nels ¢,
DEFINITION. A quantum channel ® : B(H4) — B
breaking (or EBT) if for any finite-dimensional auxili

is called entanglement
t space Hy, and any
is a separable state.

wn
-+
&
—+
)
>
m
9
=
&
=
=
B
g
<
(¢]
-+
&
5
-+
S
&
2
S
m
)

additive [Hol01,Sho02].
In order to detect whether or
to check whether or not thg

state. The following res nown: see for example [AN13, Proposition 3.4].

PROPOSITION 5
conditions are eq

(1) @ is @

(2) The state

Wuantum channel ® : B(Ha) — B(Hp), the following

S —dimlHA Co € D(Hp ® Hy) is separable.

Before coming to oW main result of this section characterizing the EBT prop-
erty for the channels ®;™, we first need an elementary lemma.

LEMMA 5.4. Let Hy and Hp be finite dimensional Hilbert spaces, let 0 # p €
B(Hg ® H,) be an orthogonal projection, and let Hy C Hg ® H 4 denote the range
of p. If Hy is an entangled subspace of Hp ® H 4, then the state p := mp 18
entangled.

PRrROOF. We prove the contrapositive. If p is separable, then we can write

p=Y &) &l @ m)(ml  (0#& € Hp, 0#n; € Ha).

For each ¢ put x; = |&){(&] ® |n:){n:|. Then since z; < p and p is a projection, it
follows that x; = pz;p, which implies that the range of x; is contained in the range
of p. In particular, & ® 1; € Hy, so Hy is separable. a

THEOREM 5.5. Let (k,l,m) € N} be an admissible triple. If k # 1 —m, then
the quantum channel <I>f,€’m is not EBT.

Not for print or electronic distribution



Please send corrections to rvr@ams.org by Tuesday, February 18

ENTANGLEMENT AND THE TEMPERLEY-LIEB CATEGORY 21

PROOF. We have from Theorem 5.1 that C'i’i‘"’ = [[l;jrrll]]“ a"F (o F)* € B(H,,

Hy). Counsider the orthogonal projection p = alm’k(a;n k) . The range of p is the
subrepresentation of H,, ® Hy equivalent to H;, and by Theorem 3.2 this subspace

is entangled iff [ # k +m. Applying Lemma 5.4 and Proposition 5.3, we conclude
that @Zm is not EBT whenever k # [ — m. O

REMARK 8. We note that Theorem 5.5 leaves open whether or not the channels

@E’inm are EBT. In this case, the corresponding Choi map is a multiple of a projection
onto a separable subspace, and we do not know if this projection is a multiple of
an entangled state.

6. Future work and open problems

We conclude this survey with a list of open problems and directions for future
work.

mples of quantum chan-
& \I/) < Hmin(q)) +
h probability [Has09,
nown. It is therefore
sidered in this work
pnsidering this question is
of tensor products of our
WP c actually possible. In par-
ey-Lieb chanels ®, then it is always
Neumann entropy H (P ® ®¢)(p) of

(1) A major problem in QIT is to find explicit
nels ®, ¥ which are strictly MOE-subbaditi
Hpin (V). Such channels are known to exist
ASW11,BCN16], but no explicit
tempting to wonder whether or no

urns out that this computation involves
'ted to the Temperley—Lleb category. This

time, a new @& is needed.

(2) Another important question related to our class of quantum channels is
the problem of computing their classical and quantum capacities. This is
another completely open and important research direction.

(3) As we have seen in this work, the Temperley-Lieb category provides a
tractable concrete model for highly entangled subspaces. It is natural to
wonder what other nice tensor categories or related structures give nice
models of entanglement. Perhaps certain examples coming from planar
algebras [Jon99] might give some interesting results?

(4) It would be interesting to make a further study of the family of d-positive
maps ®; given here. The importance of such maps in QIT is for entangle-
ment detection in bipartite systems: Positive maps that are not completely
positive can be used to distinguish entangled states from separable ones.
Of particular interest is the problem of detecting entangled states from
the positive partial transpose (PPT) states. In this context, the relevant
maps for entanglement detection are the indecomposable maps. l.e., pos-
itive maps ® which are not of the form ® = ®; + ®; o ¢, where ®; 5 are
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completely positive, and ¢ denotes the transpose map. In this context, we
ask: Are our families of maps ®; indecomposable?
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