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Abstract: We study a class of quantum channels arising from the representation the-
ory of compact quantum groups that we call Temperley—Lieb quantum channels. These
channels simultaneously extend those introduced by Brannan and Collins (Commun
Math Phys 358(3):1007-1025, 2018), Nuwairan (Int J Math 25(6):1450048, 2014) and
Lieb and Solovej (Acta Math 212(2):379-398, 2014). (Quantum) Symmetries in quan-
tum information theory arise naturally from many points of view, providing an important
source of new examples of quantum phenomena, and also serve as useful tools to sim-
plify or solve important problems. This work provides new applications of quantum
symmetries in quantum information theory. Among others, we study entropies and ca-
pacitites of Temperley—Lieb channels, their (anti-) degradability, PPT and entanglement
breaking properties, as well as the behaviour of their tensor products with respect to en-
tangled inpurs. Finally we compare the Tempereley—Lieb channels with the (modified)
TRO-channels recently introduced by Gao et al. (Commun Math Phys 364(1):83-121,
2018)).

1. Introduction

A fundamental problem in (quantum) information theory is to understand the capacity
of a noisy communications channel. In the quantum world, this is harder, because there
are many notions of capacities, many of which are defined through a regularization
limit whose computation and mathematical understanding is much more subtle and
mathematically involved than in the classical case. The non-trivial channels for which
many entropic or capacity related quantities can be computed and be of non-trivial
value or interest are rather scarce. One reason for this paucity is that many quantities
are defined with minimizers, and many properties (e.g. PPT, entanglement breaking
property (shortly, EBT), degradability and so on) rely on the existence of auxiliary
objects or computations of tensors that are close to impossible to describe effectively
without additional conceptual assumptions on the quantum channel.
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One of the most natural (and to our mind, underrated) properties of a quantum channel
is for it to possess some sort of group symmetry. In this paper, we will focus on quantum
channels which feature symmetries with respect to structures which are more general
than groups: compact quantum groups. For example, the notion of a covariant quantum
channel with respect to a compact group action was introduced in many contexts [WHO02,
DFH06,MSD17,AN14,LS14,Rit05] but these properties have not been extensively used
from the analysis point of view of quantum information theory (shortly, QIT) such as
estimating capacities and related quantities. In addition, most of the time, the covariance
under consideration is with respect to the most elementary group representations, e.g.,
the basic representation of a matrix group G C M, (C) on C". The principal reason
behind the restriction to the basic representations so far is that the symmetries involved
and the analysis behind many aspects of representation theory are not well-understood
to the degree required to estimate important quantities. Nonetheless, it was observed in
many places that such symmetries can be useful (e.g. [MHRW16,HM15,Sch05,DFHO06,
KW09,SWPGC09,MSD17], etc). See also [COS18] for a covariant characterization of
k-positive maps.

The first systematic attempt to remedy this limitation was conducted by Al Nuwairan
[AN14] in the context of SU(2) symmetries. Here, Al Nuwairan investigated quan-
tum channels arising from the intertwining isometries of the irreducible decomposi-
tion of the tensor product of two irreducible representations of SU(2), which we will
call SU (2)-Temperley—Lieb quantum channels (shortly, SU (2)-TL-channels). Thanks
to the well-known SU(2)-Clebsch—Gordan formulas, explicit results could be obtained
and it turned out that SU(2)-TL-channels play an important role in describing gen-
eral SU(2)-covariant quantum channels. However, from the perspective of entangle-
ment theory, the performance of SU(2)-TL-channels was not spectacular: although
a complete description was given of which irreducible representation appearing in a
tensor product of representations is entangled, the minimum entanglement entropy
was computed explicitly, and allowed to deduce that such quantum channels were
not suitable candidates for the violation of additivity for the minimum output entropy
[BC18, Remark6]. Subsequently, [BC18] considered a quantum extension of SU (2)-TL-
channels using irreducible representations of free orthogonal quantum groups, which
we call O} -TL-channels in this paper, and noticed that a notion of rapid decay was
exactly the concept needed to quantify the high level of entanglement in this new
setup. The main theme of [BC18] was to replace group symmetries by quantum group
symmetries, especially for the free orthogonal quantum group O}, case, whose main
advantage is that it allows one to work with a well-understood C*-tensor category
(the Temperley-Lieb category) which facilitates very explicit computations and esti-
mates.

The present work undertakes a much more systematic study of SU (2)-TL-channels
and O}, -TL-channels, and compares their various information theoretic properties. One
important achievement of this paper is that the minimum output entropy (shortly, MOE)
Hpin, the coherent information Q(l) and the Holevo information x can be estimated,
and that these estimates are asymptotically sharp as N becomes big, in the case of
O3 -TL-channels. More generally, the main results of this paper are summarized in
Table 1.
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Table 1. Summary of results

Properties\channels O;(/—TL—ch. [Sects. 4, 5] SU (2)-TL-ch. [Sect. 5]
Hpin Asympt. sharp [AN13]

oW and X Asympt. sharp Rough estimates

EBT No except for the lowest weight Complete

PPT No except for the lowest weight with N > 1 Complete
(Anti-)degradability No except for the lowest weight with N > 1 Partial results

C (classical capacity) C<Q2+e)xwithN > 1 ? (open)

Equivalence to TRO ch. 7 (open) No in general [Sect. 7]

The term TRO in the above will be clarified later in the introduction and in Sect. 7
with more details. As it appears from the above table, many interesting and unexpected
phenomena are unveiled, which we find counterintuitive, and whose proof boils down
to an extensive case analysis. Let us highlight a few points:

e Many non-trivial results can be obtained about the degradability and anti-degradability
of the covariant quantum channels. To the best of our knowledge, although these no-
tions are really important to estimate capacities (and we use such results), there
are almost no non-trivial examples in the literature of quantum channels for which
one can assess the degradability and anti-degradability. Our computation is possible
thanks to averaging methods stemming from (quantum) group invariance.

e In most cases, O}, -TL-channels with large N have a highly non-trivial structure.
Indeed, they are not PPT, not degradable, not anti-degradable except for the possibil-
ity of lowest weight subrepresentations, which we still have not settled. Moreover,
we present a complete list for EBT and PPT for SU (2)-TL-channels and it turns out
that the notions of PPT and EBT are actually equivalent in the case of SU(2). One
important ingredient here is the diagrammatic calculus for Temperley—Lieb category
covered in Sect. 3.3.

e On the other hand, we reveal unexpected results on (anti-)degradability of SU (2)-
TL-channels. We show that they are degradable for extremal cases such as lowest
or highest weight, whereas it is not true for other intermediate cases. Indeed, we
provide an example of a non-degradable SU (2)-TL-channel in low dimensions (see
Example 5.9).

e One notable result is that we have exhibited infinitely many quantum channels
® : B(Hy) — B(Hp) satisfying the extremal condition “Q(®) = 0 and C(P) =
log(dim(Hp))” among SU (2)-TL-channels, which are anti-degradable and non-PPT.
(See Sect. 5.4).

One crucial point in QIT is that it is often unavoidable to consider tensor products
of quantum channels, and in general, computations in tensor products become very in-
volved. However when the channels have nice symmetries, as we show in this paper,
computations can remain tractable, even in non-trivial cases. In particular, we can fully
describe the output of the maximally entangled state under tensor products of certain
Temperley—Lieb channels. The main technical tool is an application of diagrammatic
calculus explained in Sect. 3.3, which can be applied to O3} -TL-channels, see Sect. 6
for the details.

Finally, TL-channels bear some resemblance to another important family of channels
introduced in [GJL18], called TRO-channels and their modified versions. Here, TRO
refers to ternary ring of operators and the name “TRO-channel” comes from the fact
that its Stinespring space, i.e. the range of the Stinespring isometry actually has a TRO
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structure. Examples of TRO-channels include random unitary channels from regular rep-
resentations of finite (quantum) groups and generalized dephasing channels [GJL18].
While the authors were preparing this manuscript and discussing it for the first time
publicly, the question of how our TL-channels compare to TRO channels was posed
(and, in particular, whether or not TL implies TRO). The answer is that these classes of
channels bear important differences, as explained in Sect. 7.

This paper is organized as follows. After this introduction, Sect. 2 provides some
background and reminders about quantum channels and compact quantum groups. Sec-
tion 3 recalls some details on free orthogonal quantum groups and their associated
representation theory. Then, we introduce Tempereley-Lieb quantum channels (shortly,
TL-channels) and collect some details on their associated diagrammatic calculus. Sec-
tion 4 contains results about the entropies and capacities of TL-channels. Then, Sect. 5
addresses the property of entanglement breaking and PPT for TL-channels. Section
6 shows that Oy -TL-channels (unlike most ‘structureless’ quantum channels) behave
very well under tensor products. Finally, Sect. 7 addresses the question of comparing the
class of Kac type TL-channels with other previously well-studied classes of quantum
channels such as quantum erasure channels, amplitude damping channels, dephasing
channels and depolarizing channels. We end the final section with an example of Kac
type TL-channel not belonging the above mentioned class of (modified) TRO-channels.

2. Preliminaries

2.1. Quantum channels and their information theoretic quantities. Here, we are only
interested in quantum channels based on finite dimensional Hilbert spaces. Recall that
a quantum channel is a linear completely positive trace-preserving (shortly, CPTP) map
® : B(Hy) — B(Hp). It is well-known that there is a so called Stinespring isometry
V : Hy — Hp ® Hg such that
Q(p) = ®Tre)(VoV™), p € B(Ha),

where Trg refers to the trace on B(Hg). For a given Stinespring isometry V we can
consider the complementary channel ® : B(H4) — B(HEg) of ® given by

®(p) = (Trg @ )(VpV¥), p € B(Ha).

For each quantum channel there are several important information theoretic quanti-
ties, which we recall in the following.

Definition 2.1. Let ® : B(H4) — B(Hp) be a quantum channel.
(1) The Holevo information y (®) is defined by

1(@) = max | H@(Y pepc)) = Y. peH @0 ],

where the maximum runs over all possible choice of ensemble of quantum states
{(px), (px)} on H4 and H(-) refers to the von Neumann entropy of a state p €
B(Hy).

(2) The coherent information Q1) (®) is defined by

0 (@) := max{H(®(p)) — H(D(p))}
where the maximum runs over all quantum states p in B(Hy4). Note that the def-

inition is independent of the choice of Stinespring isometry which determines the
complementary channel ®.
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(3) The classical capacity C(®) and the quantum capacity Q () are obtained by the reg-
ularizations of the Holevo information and the coherent information, respectively,
as follows.

X(q;@n) Q((D)Z lim Q(l)(q)(X)n)'

C(®) = lim
n— 00 n

(4) The minimum output entropy (MOE) Hpin () is given by
Hypin (®) := mpin H(®(p)),

where the minimum runs over all quantum states p in B(Hy).

Remark 2.2. The two quantities y and Hp,, are closely related. In general, we have the
following for a quantum channel ® : B(H4) — B(Hp).

x(®) < logdp — Hnin(®P), (2.1
where dp refers to the dimension of Hg [Holl2].

The regularization precedure for the classical capacity and the quantum capacity
causes serious difficulties for the calculations of capacities in general. There are, how-
ever, some properties of channels that allow us to simplify the calculation, which we
present below.

Definition 2.3. Let ® : B(H4) — B(Hp) be a quantum channel with the complemen-
tary channel @ : B(Hy4) — B(HEg).

(1) We say that @ is degradable (resp. anti-degradable) if there exists a channel W :
B(Hp) —_ B(Hg) (resp. ¥ : B(Hg) — B(Hp)) such that ® = W o & (resp.
D =Vod).

(2) We say that @ is entanglement-breaking (shortly, EBT) if there exist a probability

distribution (p, ), and product states ,of ® ,of € B(Hp ® H4) such that the Choi
matrix of ®, Co = i Zf”}:l D(ejj) ®ejjisgivenby Cop = ), Pxpf ® ,of.
(3) We say that ® is PPT (positive partial transpose) if (Tp ® 1)Co is a positive matrix
in B(Hp ® Hy), equivalently if Tp o @ is also a channel where T3 is the transpose
map on B(Hp).
(4) We say that & is bistochastic if ®(JA) = 3.
From the definition it is clear that EBT channels are PPT and by [Hol12, Corollary

10.28] they are also anti-degradable. Note that we have the following consequences of
the above properties.

Proposition 2.4. Let ® : B(Hy) — B(Hp) be a quantum channel.
(1) [DSO5] If ® is degradable, then Q(®) = QD (P).
(2) [HHH96,Per96,Hol12] If ® is PPT or anti-degradable, then Q(®) = Q1 (d) = 0.
(3) [Sho02] If @ is EBT, then C(®) = x (D).
Some bistochastic channels have the following straightforward capacity estimates.

Proposition 2.5. Let ® : B(H4) — B(Hp) be a bistochastic quantum channel with a
Stinespring isometry V : Hy — Hp ® Hg. Suppose further that its complementary
channel ® is also bistochastic, then we have

dads 1. (2.2)
E

d
log > < 0"(®) = C(®) < minflogd,. logdp. log
E
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Proof. We first observe that positivity of @ tells us

A
Pl s1 (k14— B(Hg) = I PHBHN—BH) = 1P a)||B(HE) = s’

. n . . n d_A n
Since ®“" is also bistochastic, we also have || ||51(H?n)_>B(H§>n) < (ds) . Thus,
we have

. dp
Higin (P®") = m/}n H(q>®n(p)) > —log ||©®"||S‘(H;\®")—>B(H[;®") > nlog a

Note also that Hjn (P®") = Hmin(gég) = Hpin(®®") > nlog Z—i so that we have

X(@®") < logdy — Hinin(®®")

dp dg
< nlogdp — n - max{log —, log

da Z}

dad

= n - min{logdy, log 4 B}.
E
Thus, we have
(-D®n dsd
c@) = tim 227 minflogdy. log dp, log “A9E )

n—o0 dE

together with the obvious estimate x (®®") < n - log dp.
The lower bound is direct from the definition of the coherent information.

14 ~ 1a 1p dp
(D ANy -4 By — e
0 (qD)EH(q)(dA)) H(CD(dA))ZH(dB) IOng—IOng-

2.2. Compact quantum groups and their representations. A compact quantum group is
apairG = (C(G), A) where C(G) is a unital C*-algebraand A : C(G) — C(G) Qmin
C(G) is a unital x-homomorphism satisfying that (1) (A®)A = (t® A)A and (2) each
of the spaces span {A(a)(1 ® b) : a,b € C(G)} and span{A(@)(b® 1) : a,b € C(G)}
are dense in C (G) ®min C (G). Itis well known that every compact quantum group has the
(unique) Haar state h, which is a state on C(G) suchthat t @ h)A = h(-)1 = (h Q) A.
If the Haar state £ is tracial, i.e. h(ab) = h(ba) for all a, b € C(G), then G is said to
be of Kac type.

A (finite dimensional) representation of G is a pair (u, H,) where H, is a fi-
nite dimensional Hilbert space and u = (u; j)i<i, j<d4, € B(H,) ® C(G) such that
Aui j) = ZZ“Zl uik Quy jforalll <i, j <d,.Here,d, refers to the dimension of u.
The representation u is called unitaryif it further satisfies u*u = 1, ®1 = uu*. Whenever
we have a unitary representation (u, H,) of G we obtain a so-called G-action on B(H,,)

Bu: B(H,) — B(H,) ® C(G), x> u(x® Du*. 2.3)

For given unitary representations v and w, we say thatalinearmap 7 : B(Hy,) — B(Hy)
intertwines v and w if

TRHv=w(T 1)
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and denote by Homg (v, w) (simply, Hom (v, w)) the space of intertwiners. If Hom (v, w)
contains an invertible intertwiner, then v and w are said to be equivalent. A unitary repre-
sentation (v, H,) is called irreducible if Hom(v) = Hom(v, v) = C- 1, and we denote
by Irr(G) the set of all irreducible unitary representations of G up to equivalence.

When we fix a representative u* = [u?;.]f{“j:l € My, (C(G)) for each @ € Irr(G),
the Peter-Weyl theory for compact quantum groups says the space Pol(G) := span{uf‘j :
a € Irr(G), 1 < i, j < dy}is a subalgebra of C(G) containing all the information on
the quantum group G. In particular, it hosts the map S called the antipode determined
by the formula

S(”Z) = (u(}ti)*s a € Irr(G)v 1 S lv] S dot'
For representations v = (v;;) and w = (wy;) we define its tensor product v @ w by

dy dy

vOw= Y D e ®en ®vijwy € B(H,) ® B(Hy,) ® C(G).
i,j=1k,il=1

Then the representation category consisting of unitary representations as objects and
intertwiners as morphisms is a strict C*-tensor category under the natural adjoint oper-
ation Hom (v, w) — Hom(w, v), T + T*, and the tensor product . It is well known
that any finite dimensional representation decomposes into a direct sum of irreducible
representations, so that we have

v@w%@fy:lui.

In case u is a component of the irreducible decomposition of v @ w we write u C v Q w.
For a given unitary representation (v, Hy,) we consider the map j : B(H) — B(H)
defined by j(T)& = T*£. Then the contragredient representation of v is given by

v’ = (W i<ij=d, = (@ D@") € B(H) ® C(G).

The contragredient representation v° is unitary if G is of Kac type.

For each compact quantum group G we have its opposite version G°P with the same
algebra C(G°P) = C(G), but with the flipped co-multiplication Ay, = X 0 A, where X
is the flip map on C(G) Qmin C(G). Then, for any unitrary representation u = (u;;) €
B(H,) ® C(G) of G we have an associated representation u™* = (u”/fl.) € B(H,) ® C(G)
of G°P.

2.3. Clebsch—Gordan channels. LetG be acompactquantum group and (u, H,), (v, Hy)
and (w, Hy) be unitary irreducible representations of G such that u C v @ w, which
gives us its intertwining isometry op" : H, — H, ® H,,. By using a,,’" as the Stine-

spring isometry we get the following complementary pair of quantum channels:
® " B(Hy) — B(Hy);  p > Troley " ple,™)")
@y B(H,) — B(H,); p > Try(a)” plal™)*).

‘We name the above channels as Clebsch—Gordan channels (shortly, CG-channels) since
the isometry «;;" " reflects the Clebsch-Gordan coefficients directly. Note that the symbol
v does not refer to the conjugate representation, instead it means that we trace out the
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H, part. These channels have been studied by Al-Nuwairan [AN14], Brannan—Collins
[BC18], and also Lieb—Solovej [LS14]. It turns out that CG-channels preserve certain
“quantum symmetries”. Recall that groups provide a certain symmetry on quantum chan-
nels through their (projective) unitary representations, namely covariance of channels.
This concept naturally extends to the case of quantum groups as follows.

Definition 2.6. Let ® : B(H4) — B(Hp) be a quantum channel. Suppose that there are
unitary representations (u, H4) and (w, Hp) of a compact quantum group G such that

(t® ®)(Bu(p)) = Pu(®(p)), p € B(Ha),

where B, and B, are G-actions from (2.3). Then we say that the channel ® is G-
covariant with respect to (1, w). In case we have no possibility of confusion we simply
say G-covariant.

Note that the covariance with respect to group representations has been studied in
various contexts and has provided useful tools to handle information-theoretic problems
[Sch05,DFH06,KW09,MW09,SWPGC09,MS14,NU17,MSD17].

We show that with mild assumptions, CG-channels are also G-covariant.

Proposition 2.7. Let u, v and w be irreducible unitary representations of a compact
quantum group G such that u C v @® w. Then the CG-channel ®.'" is G-covariant with

respect to (u, v) if the conjugate representation w® is also unitary. Similarly, ®;'" is
G°®P-covariant with respect to (u™, w*) if v°¢ is unitary.

Proof. We first check the case of CDZ’"_’. For any quantum state p € B(H,) we have

(@ @ 1) (u(p ® u)
=1 Tr@ (el ® Yu(p ® Du*((@2™)* @ v)]
=1 @Tr@ U Dw)(@)” ®1)(p @ D((@)™)* @ (v D w)*]
du,'

dy
= Y > @I @ K Iey oley ™) ()| @ 1) (kD)

i il =1 k1K =1
® vjj Wk Wy vl-*/j/
dy d

= D D @TUNGI® ) IDay” pley™)* (i)'l © D]

i1 j=11LI=1
dy
k *
® v,-j(z u)klwkl/)vi/j/
k=1

A dy
= 2 2 @U@ ) UNe " o) (1)1 8 D]
i,ji',j'=11I=1
&® Vij (wtwc)ll/vl.*,j/
d,
= > (@ TINGI® Day”ple™) (1)1 ® D] ® v
i,j,i',j'=1
= (@17 (p) ® ¥,
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where we use tracial property for the fourth equality and the assumption that w®
unitary for (w'w);r = 8.
For ®;’" we observe that
(@, " @0u*(§) ®@ 1) = (2" @ NHu(|§) ® 1) = (@ H(v D w) (e, ") ® D],
where S is the antipode of the quantum group G. Thus, we get
(C z)(u*(p ® Du)
dy

= Z D Trddi) 1@ k) ey pley ™) (1) 6|

i,j,i",j'=1k1Kk 1I'=1
® |l/><k/|)] & w[*kvjfivj’i’wl’k’-
Then, we get the wanted conclusion by the same argument. O
The G-covariance property has the following useful consequence.

Proposition 2.8. Let © : B(H,) — B(H,) be a quantum channel which is G-covariant
with respect to a pair of unitary representations (u, v) of a compact quantum group G.
If, in addition, v is assumed to be irreducible, then ® is bistochastic. In particular, all
CG-channels associated to a Kac type compact quantum group are bistochastic.

Proof. Since ® is G-covariant and 1” € Hom(u u), we get CIJ(d”) € Hom(v, v). But
irreducibility and Schur’s lemma then give CI>( a L) € CI, which implies D(H Lu )—;—5. o

The following Proposition tells us that, under the assumption that G is of Kac type
and u € v (@ w, the orthogonal projection from H, ® H,, onto H, can be obtained by
applying an averaging technique using the Haar state, for each unit vector & € H,. More-
over, together with Theorem 3.3, the following Proposition will be used to characterize
EBT for TL-channels.

Proposition 2.9. Let G be a compact quantum group of Kac type and u, v, w € Irr(G)
with u C v@® w. Then for any unit vector &€ € a,’" (H,) € Hy, ® Hy, we have

1
d—aﬁ’w(alf’w =@ (vOw) (§)El® DD w)).

Proof. Let A = (1 ® 1t Q@ h)((v D w)*(1 ® |€)(€])(v @D w)). Then, in order to reach the
conclusion, it is enough to show that

Suw
dy
for any irreducible components u’ of v @ w and any 1 € H,. Indeed,
(nl(ay ™) Aay” [n) = h([((nl(a,;")* @ DD w)*1(1§)(EI @ 1)
[(v®w) (e, In) @ D]
=h(((n] ® D) (e, ") 18) €l @ D' (In) @ 1)).
Tr(B )|

/

(e, ™)* Aay ) =

u

Then the facts that (¢ ® h)((u")* (B ® Du') = » and

Tr((o, ") [E) E Loy ™) = (Eley™ (™) 18) = 8w

complete the proof. O
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3. Temperley-Lieb Channels

3.1. Free orthogonal quantum groups O7.. Let us fix an integer N > 2, F € GLy(C)
satisfying FF = +1. We define C (07) as the universal C*-algebra generated by
ujj (1 < i,j < N) with the defining relations (1) u*u = 1y ® 1 = wuu™ and
@ u = (F® Du“(F~' ® 1) where u = (u;j)1<i,j<n € B(CY) ® C(0}) that is
called the fundamental representation. Then, together with a unital *x-homomorphism
A : C(0}) = C(0F) ®min C(07) determined by

N
Alwij) =Y uix ®@ uyj,
k=1
07 = (C(07), A) forms a compact quantum group, which is called the free orthog-
onal quantum group with parameter matrix F [VDW96,Ban96,Ban97]. In particular,

07 =SUQ)IfF = ( 0 and we denote by O}, if F = 1y. Note that O, is of

1
-10
Kac type if and only if F is unitary [Ban97], which covers both of the above cases.

3.2. Representations of O%. It is known from [Ban96] that the irreducible representa-
tions of O; can be labelled (v¥) keN, (up to unitary equivalence) in such a way that W0 =

| ~

1, v} = u, the fundamental representation, v = J, and the following fusion rule holds:

Ul ® Um >~ @ Ul+m72r. (31)

0<r=<min{l,m}

Denote by Hj the Hilbert space associated to vk. Then Hy = C, H; = CV, and (3.1)
shows that the dimensions dim Hj satisfy the recursion relations dim Hj dim Hy =
dim Hpy1 + dim Hj_1. Defining the quantum parameter

1 2

w=t(—2)econ
N\1+,/1-4/N2

then one has go+q,, ! = N, and it can be shown by induction that the dimensions dim Hj

are given by the quantum integers

/1= go?t*?
dim Hy = [k + 114 = qo~ (1—2) (N > 3).
— 40

When N = 2, we have go = 1, and then dim Hy = k+1 = limy_, ;- [k +1]4,. Note that
for N > 3, we have the exponential growth asymptotic [k + 1]y, ~ N kas N — o0).
We now describe the explicit construction of the representations v* and their corre-
sponding Hilbert spaces Hy due to Banica [Ban96]. (See also the description in [VV07,
Sect. 7]). The idea is that according to the fusion rules (3.1), the kth tensor power uOk
of the fundamental representation contains exactly one irreducible subrepresentation
equivalent to v¥. In particular, if we agree to explicitly identify v¥ as a subrepresentation
of u®k, then there exists a unique projection 0 # py € Homo; (u®k, u®k) C B(H1®k)

called the Jones—Wenzl projection [Jon83, Wen87] satisfying Hy = pk(Hf@k ) and

vF = (pe ® DuP (pe @ 1) € B(Hy) ® C(0F).
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Thus, we are left with the problem of describing the projection py. To this end, fix
an orthonormal basis (ei)lN: | for Hy = CV, and put

N
Up = Ze,» ® Fe;. (3.2)

i=1

It is then a simple matter to check that Ur € Homoz(l, uu), ie. u®2(UF ®1) =
(Ur ® 1). In particular, Lyeit ® Ur ® tyek-i-1 € Homo;(u@k_z), u®k) for each
1

1 <i <k — 1. Using these observations, we inductively define (py)i>1 using p1 = tp,
together with the so-called Wenzl recursion

[k —1]q
[k]q

Dk =tH ® pk—1 — (tH, ® prk—1)(Up U ®tHl®k—2)(tH1 ® pk-1) (K >=2),

(3.3)
where ¢ = ¢(F) € (0, go] is another quantum parameter defined so that ¢ + ¢~ =
Tr(F*F).

The Jones—Wenzl projections first appeared in the context of II;-subfactors [Jon83].
The shared connection between subfactor theory and the representation theory of O7.
is through the famous Temperley—Lieb category. Indeed, as explained for example in
[Ban96,BC18,BC17], given d € (—oo, —2] U [2, co) the Temperley—Lieb Category
TL(d) is defined to be the strict C*-tensor category generated by two simple objects
{0, 1}, where O denotes the unit object for the tensor category, and 1 # 0 is a self-dual
simple object with the property that the morphism spaces TLy ;(d) := Hom(1®%, 1®)
(k,l € N) are generated by the identity map ¢« € Hom(1, 1) together with a unique mor-
phism U € Hom(0, 1®1) satisfyingNoU = |d| € Hom(0, 0) = C and the “snake equa-
tion” (@MU 1) = (N® 1)t ®U) = sgn(d)t. Here, the “cap” N is simply the adjoint
U* € Hom(1 ® 1, 0) of the “cup” U. On the other hand, we have the concrete C*-tensor
category Rep(O7,) of finite dimensional unitary representations of O7., and it was shown
by Banica [Ban96] that if d = Tr((F F)(F*F)), then there exists a unitary fiber functor
TL(d) — Rep(O}.) which is determined by mapping the simple objects 0, 1 € TL(d) to

W0, 0! e Rep(07.), respectively, and by mapping the generating morphisms as follows

t € TLi1(d) = gy € Homos (v', ') & U € TLo2(d) > U

0 .1 1
eHomO;(v ,v D).

In other words, with d and F' as above, we can concretely realize TL(d) in terms of the
subcategory of finite dimensional Hilbert spaces Rep(O7,). In particular, for calculations
involving morphisms and objects in Rep(O7}.), one can perform these calculations using
the well-known planar diagrammatic calculus in the Temperley—Lieb category TL(d)
[BC17,KL94,CFS95], which we now briefly review.

3.3. Diagrammatic calculus for Rep(O7). In the following, we continue to use the

notations (e.g. Hy = pk(H1®k), UF, etc.) defined above. We use the standard string dia-
gram calculus to depict linear transformations between Hilbert spaces. That is, a linear
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operator p € B(Hy, H;) will be diagrammatically represented as a string diagram

with the input Hilbert space at the bottom of the diagram, and the output at the top.
The string corresponding to H; will be labeled by I. We will generally omit the string
corresponding to Hy = C, so a vector § € Hy = B(C, Hy) and a covector §* € H =
B(Hy, C) will be drawn, respectively, as

| l

Similarly, p € B(Hy ® H;, Hy ® Hy) is denoted using parallel input/output strings

Ko

We define (for later use) the (kth) quantum trace’ functional
w:BHP) > C,  wlp) =T (F'H)®p) (keN),
which is depicted by the closure of a string diagram as follows:

k k
_.

1 The term “trace” comes from the fact that under the fiber functor TL(d) — Rep(O}), T} corresponds to
the well-known Markov trace 7 : TLy x(d) — C obtained by tracial closure of Temperley—Lieb diagrams
[KL94].
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Composition of linear maps is depicted by vertical concatenation of string diagrams and
tensoring is depicted by placing them in parallel, respectively.

)

|

z‘ B k" ‘1’ k" ‘z’

pp" | = o e®@p [T e || P

k‘ ‘T k‘ ‘l k‘ ‘l
k

Let us end this subsection by describing the string-diagrammatic representation of
the maps specific to the representation category Rep(O7.). Recall that for Rep(07.), we
have the fundamental generating morphisms ¢y, , Ur, Ng := U}.. We depict these maps
as follows:

Then one has that the fundamental Temperley—Lieb relations are graphically depicted.
For example, the value of a closed loop is |d|:

IUr P =nroUr = ] =Te(F*F) = d,
1

and the snake equations are given by

(i, ® NP (UF ® ) = m = FF = sgn(@)| = m = (NF ® i), ® Up).

3.4. Temperley—Lieb channels. We now come to our main objects of study, which are
the CG-channels associated to the irreducible representations of the quantum groups O+,
which, in view of the above connection with the Temperley-Lieb category, we redub
“Temperley—Lieb channels”:

Definition 3.1. A triple (k,[,m) € Ng is called admissible if there exists an integer
0 < r < min{l, m} such that k = [ + m — 2r. For an admissible triple (k, [, m) € Ng
we have vk C ! @ v™ with the intertwining isometry oz,lc’m : H, - H ® H, and

the corresponding CG-channels @Zi’”m and CDZ;’W (shortly, CIJQ"" and @i’”’) are called
(O7-)Temperley—Lieb channels.
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Let us now give a string-diagrammatic description of the covariant isometries a,l{’m
which define the TL-channels above. We begin by fixing an admissible triple (k, [, m) €
Ng and define

A = (1@ pa) (1, ® Uy @ i, ) px € Homo (05, o/ @v™), (3.4)
where U, € HomO; °, 02" ) is defined recursively from
1 ._ ro._ r—1
UF e UF, UF e (lH1®r71®UF®LH1®r—l)UF .

In terms of our string diagram formalism, U'; is given by r nested cups

and Ai’m is given by

The (non-zero) map Ai’m is often called a three-vertex in the context of tensor cat-
egory theory and Temperley—Lieb recoupling theory [KL94], and (following standard

conventions) the above string diagram for Ai’m is simply drawn as a trivalent vertex:

l m
Im _
AT =

k

We then have that the the adjoint (Ai’m)* is obtained by rotating 180 degrees about
the horizontal axis.

(A" =

l m

From Schur’s Lemma and irreducibility, it follows that our required isometry a,l(’m must

be a scalar multiple of the three-vertex Af(’m, and this scaling factor is given in terms of
the so-called theta-net 6, (k, I, m) [KL94].
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[P = g m = r1g\k + 1 + 11!
B [114'[m],'Tk],!

)

Og (k, 1,m) := T (A" AL™) = !

where ¢ = q(F), k =1 +m — 2r, and [x];! = [x]y[x — 1], ...[2]4[1]; denotes the
quantum factorial. Then one has

o _( (i) )1/2 Lm _( [k+1], )1/2
= e ko =\ &Lm

3.5. Kac type Temperley—Lieb channels. Throughout the rest of the paper we make the
standing assumption that all free orthogonal quantum groups O7}. under consideration are
of Kac type, which is equivalent to the unitarity of F [Ban97]. (In fact, for the most part
we just consider O7F,, however this slightly higher level of generality is useful at times,
allowing us for example to prove results for SU (2) simultaneously). The main reason for
making the Kac assumption is that for the calculations that follow, it is essential for us to
have that the “physical operations” of taking partial traces in tensor product spaces such as
B(H; ® H,,) agree with the “quantum operations” coming from taking (partial) quantum
traces using the functionals t; described above. In this case, we also have the handy fea-

ture that the O.-covariant unit vectors ozg’k € H;® Hy, are all maximally entangled states.

Remark 3.2. Note that when O7. is of Kac type, we have that both the quantum param-
eters go and g defined above are equal (since N = Tr(F*F) when F is unitary). From
now on we simply use the letter g to denote the quantum parameter.

Of course, since in the Kac case the quantum traces and ordinary traces agree, we have
the following diagrammatic representations for the Temperley—Lieb quantum channels

Im INTN
YR T
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m
7 [k+1]
cI)l,m — q
e 0 =Gt m)
m
!
k
l.m [k+1]q
CD’ = — m
e P =g nm |
k
!

Let us finish this section with an application of our string diagram formalism to
the Choi matrices associated to the TL-channels. The result below was proved for the
cases of SU(2) by Al-Nuwairan [AN14] and O;{, in [BC17]. The following general case
follows by the exact same planar isotopy arguments used in [BC17].

Theorem 3.3. For any admissible triple (k, [ m) € N3 the Choi matrices associated to

any Kac type O}.-TL-channels CDI " and dD are given by

k+1y ik, m.
Zcbk (lei)(ej) @ lei)ej| = [l+1]q k(al ** and (3.5)

[k+1] .
o(C, m)-?e, (ej| ® DY (|el><e,|>—ﬁ bl (@l (3.6)

respectively, where (e;); is the canonical orthonormal basis of Hy and o : B(Hy) ®
B(H)) — B(H;) ® B(Hy), A® B+ B ® A is the canonical flip-map. In particular,
these Choi matrices are scalar multiples of Oy.-covariant projections onto irreducible
subrepresentations.

Example 3.4. In low dimensions we can write down explicit formulas of the Kac type
TL-channels.
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DG = 0;(, with N > 2) From (3.4), (3.5) and the last formula of Sect. 3.4 we can
readily check
[2]4

= [k+2]q pk+11 (37)

U(chllc.m)

where pr+1 € B(H) ® Hy) C B(Hi2> (k1) ) is the Jones—Wenzl projection. Then
the recursive formula (3.3) tells us that

[2]4
[k +2],

my (k]
o () = (Tr(p)lHk ~ s f]q pi(p ® lHkl)pk) ., p € B(Hy).

In particular, when k = 1 we clearly have p; = 1p,, and thus

],i N 1
D7 (p) = WTT(,ONH. —Nz_(” PE€ B(Hy). (3.8)

Moreover, we have <I>?’1 = Cb}’z thanks to (3.7) and the fact that ¥ o pp o ¥ = p»,
where ¥ : H1 ® Hy — H; ® Hy, |ij) +> |ji) is the canonical flip-map. Note that
YoToX =0(T)forany T € B(H; ® Hy).

(2) (G = SU(2)) We record some low dimensional SU (2)-TL-channels, which follows
from the explicit formulae of Clebsch—Gordan coefficients (See [BohO1, Sect. V.2]
for details): | |

2.1, ab z(a+2d) —=zb
(a) D7 : Ma(C) - M1 (C), [C d] |3 e %(2a3+d)},

2a b0
1 b
(b) @} : My(C) — M3(O), [‘C‘d]H Zela+d) b |,
| 0 Fe 3

- ail a2 a3 ai + yaxn %(au +a3)
c) ©, : M3(C)—»My(C), | a1 ax a3z |~ |
2
as1 az ass |

1 1
pl@r+an) jan+az

() @3 : M3(C) - My(C),

1 —1
apy a2 a13 7(ai +2ax +3a33) m(an +a3)
N )

a1 ax a; 1 |
—=(azx1 +a 7(Bai +2axn +a
as1 a3 as sl tan)  zGan 22 +as3)

4. The Minimum Output Entropy and Holevo/Coherent Information of
Oj,-Temperley-Lieb Channels

In this section we establish asymptotically sharp estimates on the minimum output en-
tropy, the Holevo information and the coherent information of O}, -TL-channels for large
enough N. The estimate begins with the following result of [BC18, Corollary 4.2].

Oy (k. L,m)__ 1+m—k

) =
[k +1], 2

Hinin(®4™) = Hipin (O™ > Tog( logN — C(N) (4.1)

with C(N) — 0 as N — oo. The above estimate was conjectured to be asymptotically
optimal as N — oo in [BC18], which will be confirmed to be true below.
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Before we dig into the above conjecture we prepare several elementary estimates.
Let f(t) = —tlogt, 0 < t < 1 be the function we use for the entropy. Then it is
straightforwad to see that £(r) < '/? and f(r) <1 —r, where a < b means that there
is a universal constant C > 0 such that a < C - b. The Fannes—Audenaert inequality
[Aud07] says that for any quantum states X, Y € B(H) withdimH =n

1
|H(X) = H(Y)| = §log(n — 1)+ f(8) + f(1 = 6), &= [IX =Yl

where || - ||1 is the trace norm, so that we have

|H(X) — H(Y)| Slogn - ||X — Y| +|1X = Y||;/*. 4.2)

Lemmad.1. Let X,Y € B(H)+ with dimH = n. Suppose further that Tr(X) = 1 >
Tr(Y) > 0. Then we still have

1/2
|H(X) — H(Y)| <logn - [|X = Y[[ +[|X — Y||}/%. (4.3)

Proof. First we observe that

H(X)— HY) = H(X) + Tr(Y) log Tr(Y) — Tr(Y)H(%)

=Tr(Y)logTr(Y)+ (1 —Tr(Y)H(X) + Tr(Y)(H(X) — H(L))
Tr(Y)
=A+B+C,

where A = Tr(Y) log Tr(Y), B = (1-Tr(Y))H(X)and C = Tr(Y)(H(X)—H(ﬁ)).
Since wehave 1 — Tr(Y) =Tr(X —Y) < ||X — Y||1 we know

Al S IIX =Y, Bl Slogn-[IX =Yl

For the third term we have

€1 < 1HOO = H()| S logn - [1X — ||y +|X — ——||
= Try)) ™ ogn - Te(Y) 1 Te(Y) 1

Finally we observe that

X — Tr(Y)Ill =X =YIh +(Tr(Y)

=X =Y +1=-Tr(Y) <2[|X - Y],

— DIIY[h

which leads us to the conclusion we wanted. O

Lemma 4.2. For any admissible (I, m, k) € NS withk =1+ m — 2r we have

N[k +1], 1
4 14 0(~).
0, (k, 1, m) N2
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Proof. We first observe for any k > 1 that

k+1 1 1 — g%+2
k+lly _ L1, /i — 4Ny —1
kN 2 1—¢

1 R g% — g2+

1 1 1 1
= E(2+ O(m))(l + O(W)) =1+ O(m).

Then, we can easily see for alla > b € N that

[a]q _ [a]q [b+1]q _ L a—b _ L
[(blgNe—b  [a—1],N [blyN _(1+0(N2)) _1+0(N2)’

which can be extended to the following
laly!
[b]y'[a — b]yINP@—b)
Finally, we have
N'lk+1], _ N (14! Im]g 'k + 1]4!
04k, 1, m) [Pl — rlgtm — rlgllk +r + 1]4!
B [/, [m],! [k + 1], ![r]y ! N"*+D
B [rlg!ll — rlg!N7¢=") [m — rl ! r]g !N70n=7) [k+r+1],!

[bly'[a — blyINbP@=D
[al,!

1
=1+0(35) =

1
since —r(l —r)—rm—r)+rk+1)=rQr—1—m+k+1)=r. 0O

Here, we introduce some notations. For N > 2 we write theindexset/ = {1,2,..., N}.
We also need multi-index sets

I"={i=(,...,in):ik€l, 1 <k <n)
and
I;z ={i=G1,...,in)€l" ix #ixs1, 1 <k<n-—1}
We sometimes need to aviod particular indices as follows.
(s,t)/I;‘é :={i=(i1,...,in)el7"é:i1 # 5,01 # t}
and
I;\(t) ={i=(>1,...,0y) € I; tip #t}

forn € N, s # t € I. Note that we have |(s,t)/17”é| = (N =2)(N = D" ! and
[\ = (N = 1)".

For eachi € I} we can easily see that [i) = ¢;, ® --- ® ¢;, € H, so that p,|i) = |i)
from the Jones—Wenzl recursion.

Fori € I" andj € I" the vector [i)®[j) € CN"*™ will simply be denoted by |ij). We
Willuseaveryspeciﬁcindexmk =(1,2,1,..) e I*,k > 1.Fori= (i1, ...,i,) € I",
its order reversed multi-index i = (in,...,01) € I" will be considered.
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Theorem 4.3. For each admissible triple (I, m, k) € Ng we have

1. I.m l+m—k
“logN — C(N) < Hmin(®;") = Hmin(P;7) < — -log N + D(N)
4.4)
with C(N), D(N) — O0as N — oco. When k = | +m, we actually recover the following
result ([BC18, Remark 7]).

l+m—k
2

Hmln(q) Hmln(q) = O

l+m) l+m)

forany N > 2.

Proof. We setr = # We will use a very specific indexm := (1,2, 1,...) € H; C
H1®k, which splits into (my, ..., mg) = m = m'm”’, where m’ = (my,...,m;_,) €
H_, C H1®l_r andm” = (mj_y41,...,mg) € Hy_, C H1®m_r. Then, we have

04k, 1, m)
[k +1],
- Tr ®L(Ai’m|m’m”)(m’m”|(Ai’m)*)
= Y Tr@d(p ® pu)(Im'i)(m¥| @ im"){m" ) (pr ® pu)]

@™ (jm)(m]) = Tr @c(AL™ [m) (m|(A;"™)*)

iilel”

= Y (¥ |pm'i) - plim”)(im"|p,,
iilel”

= > imMm’ 1+ Y0 ¥ |py i) - pulim”)m” | p
ie(1,2)/1% Lirg(1,2)/1;
0g (k. 1, m)

= L (Z(1) + Z(2)), (4.5)

[k +1],
Oq (k,1,m) 04 (k,1,m)

where

o, Z() = Zieu,z)/z; hm")m"| and “EER=ZQ2) = Yiieao
(m'i'| pym’i) - plim”)(i'm”|p,,. Here, we used the fact that for i € (1, 2)/1;é we
have m'i € H; andim” € H,,. Note that

6,(k, 1, m)

k+11, ZR2)=Tr @ «((p1 ® pm)IE){EI(p1 ® pm)) = 0,

where |§) = Zml,z)/[; Im'i) ® [im”). The term Z(1) is the dominant one with entropy

k1, Otk om)
O Lm) & [k+1]
q

Y LS YD)

0 (k Lm) 8 kw10,

H(Z(1)) = (N —2)(N — 1)""!

=0 -

=+ 0(—))10g[(1 + 0( ))Nr]
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by Lemma 4.2. For the second term Z(2) we have
[k+1],

. 1 . _ 11
TZ@) =1 -TrZU) =1= N =N =" oG

1
= 0(—).
(N)
By Lemma 4.1 we have

H(OM™ (jm)m) — H(Z(1)] < mlog NTr(Z2)) + Te(Z@)/2 < 0(——
[H (P, (jm)({m][)) (Z()| 5 g N Tr(Z(2)) (ZQ2) N(ﬁ),

which leads us to the conclusion we wanted.
If kK = [ + m, then we have r = 0 and

I,
@, (jm)(m|) = |m’)(m’|,
which is a pure state. Thus, we get the conclusion we wanted. O

We record examples of TL-channels with a precise formula for their MOEs.

Example 4.4 (MOE formula for d>}’§ ). From Example 3.4 (1) we can see that the O3;-

channel <I>i’2 satisfies the following covariance property:

ol 2(UXU*) = Ul (xX)U* (4.6)

for any unitary U € U(N). Since any pure state |£)(£| in B(H) can be written as of
the form U |&y) (§&o|U™* with U € U(N) and a fixed unit vector &y € Hj, we have

H(®2(1€)(ED) = H(P(1€0) (5ol))
_H (LIdN - ;@o)(sm)
NZ -1 NZ -1
=(N-1)- N 10g(N2_1)+ L log(N +1), (4.7)
N2 -1 N N+1 ’

and the above demonstrates that

12 N N N +1
log(N)—Hmin(q>1’)=N+110g N — log — — 0as N — oo,

which is the conclusion in Theorem 4.3.

Now we move to the case of other quantities. We will apply a similar argument for
the lower bound on the coherent information.

Theorem 4.5. For each admissible triple (k,1, m) € Ng we have

B log N — C(N) < V(@)
(4.8)

m=l - log N — D(N) < QM (&™)

with constants C(N), D(N) — 0 as N — oo. When k = | + m, we actually have the
following. i
I-log(N — 1) < 0D (@})
i 4.9)
m -log(N — 1) < QW (@}

[+m)‘
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Proof. Wesetr = l+”§*k and fix a specificindexn := (1,2, 1,...) € H,,_, C H]®m*’.

We first consider the estimates of Q(l)(Cbi’m). For any j € 1 ;&_r\(l) we use the same
argument as in the proof of Theorem 4.3 to get
04k, 1, m)
[k + 1]
= Y Glplji) - pmlin)in|p,
ijielr
= Y imGn+ Y GiIplji) - pulin)in|p,
ie(l,ji-r)/1L gL/ 1
 Gg(k, 1,m)
O Tk+ 1
1
(N — 1)[,,

oL (jm) (jnl) = Tr ®¢(AL" |jn) (jin|(AL™)*)

(Z(1,§) +Z(2,))).
Now we set p =

Z |jn) (jn| and we get
jerzn

Z (ZL)+Z2,) = Z() + Z(2),

i 1
I,m _
) = N Ty
JeIZ\m
1 . 1 .
where Z(l) = W Zjelig’\(l) Z(I,J) and Z(Z) = W Zjeli[’\(l) Z(Z,J)

Then

B k+1], .
=N e, nm 2. 2, [lmn

jerlmwieduji—n/1;

[k +1], .
(N— 10, (k, 1, m) Z Z [in) (in|

Ji—r=2ie(, ji-r)/1}

(N =2)[k+ 1], Z Yoy
[in) (in|.
(N— DO, (k, 1, m) e/

As before we use Lemma 4.2 to get

N =Dk+1y | (N = Dbk, 1 m)
(N = 1), (k, 1, m) (N —2)lk+1],
_a __) LN —2N'[k+1],  1og (N — 18, (k, 1, m)

N N—le(klm) (N = 2)lk + 1],

H(Z(1) =N -1

=1+ O(N))log[(l + O(N))N’]

and

(N=Dlk+1lg 1
(N — 1), (k,1,m) O(N)‘

Tr(Z(2) = 1 = Tr(Z(1)) = 1 — (N — 1)’



Temperley-Lieb Quantum Channels

By Lemma 4.1 again we still have

7 1
|H(®™ (p)) — H(Z(1)| < mlog N Te(Z(2)) + Te(Z(2) /2 < O(—=).
VN
For the complementary channel we similarly have
9 (k,l,m) N /e N . .
L2 2™ () (n)) = ¢ ® Tr(A" [jn) (in|(A}™)*)
[k + 1],
= Y pilid)Gi'1pi - (0l pmlin)
iiel”
= Y g+ Y (Inipulin) - plji) G| p
ie(lji-n/1 RERWInYIA
eq(k’ls m) . .
=220 Ty, §) + Y (2, §)).
k+1, XA, p+YQ2,j)
Thus, we have
7 1 . .
" (p) = W1 Z Y@L)+Y2,j) =Y1)+Y(Q2),
JellZN\m
which means
[k+1]4 e e
Y(1) = .
O N T Z X i i
jel#_’\(l)le(lyjl—r)/l#
Now we have
o [k+1] (N — D=0, (k, 1, m)
HY ()= (N —-2)(N - 1)1 g1, q
W) =V =DV = 1™ =l log T,
2 1 N'[k+1 N — D70, k, 1,
2(1__)(1__)r71 [k + 1], og( )  ( m)
N N 0,k 1, m) [k + 1],
1 1
=1+ O(N)) log[(1 + O(N))Nl]
and
Tr(¥Y2) =1-Te(¥(1)) =1-(1 2)(1 1),71—N’[k+1]q O( 1)
T = —_ T = — _ — —_ = -—).
N N' O,k 1,m) N

Thus, we similarly get, by Lemma 4.1, that |H (&} (0)) — H(Y (1))] < O(ﬁ).
Combining all the above estimates we get
. 1. 1. l+k—m
lim |H(®," (p)) — H(®) " (p)) — ———— -log N| =0,
N—oo 2

which gives us the desired lower estimate for Q(l)(dﬁc”h) as N — oo.

817
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For the case k = [ + m we actually have the following exact formulae.

; 1 1
(bl,m . . _ o e
i Ty > lin)Gn)) o > bl
Jell/M) Jell/ )
and
1

Im
((N -1

Pl > ljn){jn)) = [n)(n],
jerl/m
which tells us that QD(® ) > 1 - log(N — 1).

l+m

The estimates for Q1 (@f;m) can be obtained in a similar way. O

Combining Theorems 4.3 and 4.5, we obtain the following asymptotically sharp
Holevo information and coherent information:

Corollary 4.6. For each admissible triple (k,l, m) € Ng we have

l+k—m (0 1. 1. l+k—m
Tlog(N)—Cl(N)fQ (D7) < x(Py )§Tlog(N)+C2(N)
and

m+k—1 i i m+k—1
————log(N) — Di(N) < QD (®L™) < y(L™) < ——5— log(N) + Dy(N)
with constants C1(N), C2(N), D1(N), Do(N) - 0as N — oo.

Proof. Theorem4.5 directly gives us the wanted lower bounds, and Theorem 4.3 together
with a general fact (2.1) completes the conclusion. O

Remark 4.7. We note that Corollary 4.6 gives us asymptotically sharp private informa-
tion P(l)(GDf(’m) and P(l)(dﬁ(’m) since

0" = PM <y

in general. The private information P! is defined as

max {H(Z Pr®(p)) = Y P H(®(0)) = HO | pr®(p)) + Y pxH(®(py))

where the maximum runs over all ensembles of quantum states {(pyx), (ox)}. See [Will7,
Sect. 13.6] for details.

5. EBT/PPT and (Anti-)degradability of Kac Type Temperly-Lieb Channels

Since we have studied the coherent information Q! and the Holevo information x
for O3, -TL-channels in previous section, it is very natural to investigate their regular-
ized quantities Q and C. Since our O} -TL-channels are bistochastic, we know that the
classical capacity C is smaller than 2y asymptotically by Proposition 2.5:

C(OL™) < (1 +k —m)log(N), C(®L™) < (m +k — ) log(N).

Although the regularized quantities Q and C are computationally intractible for many
channels, some structural properties such as EBT/PPT/(anti-)degradability enable us to
handle the regularization issues (See Proposition 2.4). However, we will show that our
TL-channels associated with Oy, and SU (2) have no such structural properties in most
cases.
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5.1. The case of O},.

5.1.1. EBT property We now apply Theorem 3.3 to investigate EBT property for our
O3,-TL-channels CDZ'”. Before coming to our result characterizing the EBT property

for the channels dbi’m, we first need an elementary lemma. We say that a subspace of
Hy ® Hp is entangled if it does not contain a product vector £4 ® &p.

Lemma 5.1. Let Hy and Hp be finite dimensional Hilbert spaces, let0 # p € B(Ha ®
Hp) be an orthogonal projection, and let Hy C Hy ® Hp denote the range of p. If Hy
is an entangled subspace of Hy ® Hp, then the state p := m p is entangled.

Proof. We prove the contrapositive. If p is separable, then we can write

pP= ZI&)(%‘:’I ® mi)(nil (0 #8& € Ha, 0% n; € Hp).

For each i put x; = |&)(&| ® |n;)(ni|. Then since x; < p and p is a projection, it
follows that x; = px; p, which implies that the range of x; is contained in the range of
p. In particular, & ® n; € Hy, so Hy is separable. O

Theorem 5.2. Let (k,l, m) € NS be an admissible triple. If k # | —m, then the O},-TL-
channel @i’m is not EBT. Also, if k # m — I, then the O%-TL-channel @i’m is not EBT.

Proof. We have from Theorem 3.3 that C ;,, = [[I:—]l]t’alm’k(af”k)* € B(H, ® Hy).
k

Consider the orthogonal projection p = ozlm ’k(alm ok )*. The range of p is the subrepre-

sentation of H,, ® Hj equivalent to H;, and by [Theorem 3.2, [BC18]1 this subspace

is entangled iff [ # k + m. Applying Lemma 5.1, we conclude that @f{’m is not EBT
wheneverk [ —m. O

Remark 5.3. We note that Theorem 5.2 leaves open whether or not the channels CDEZ"m
are EBT. In this case, the corresponding Choi matrix is a multiple of the orthogonal
projection onto a separable subspace, and we do not know if this projection is a multiple

of an entangled state. One exception is the case of CIJ?’] = @1’2, which can be shown
to be EBT for all N > 2. Indeed, the covariance property (4.6) combined with the fact

N
Cq)?] = N1 p2 tells us that

1

_m:/ UN1U* @ T[2){21U"dU,
N2 -1 U(N)

which explains that @?’1 = @}’j is EBT.

5.1.2. PPT/(anti-)degradability As the next step, one might naturally ask if Oy -TL-
channels have the PPT property or are (anti-)degradable. In fact, Theorem 4.5 provides
a strong partial answer on these structural questions for large N as follows:

Corollary 5.4.(1) The channel CDZ’"% is not PPT ifk > m — [ and CIDf;’m is not PPT if

k > | — m for sufficiently large N. In particular, the channels Cbﬁ’jn and CDL:; are
not PPT for all N > 3.
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(2) The channels @55’;’ and @i’m are neither degradable nor anti-degradable if k >
|l — m| for sufficiently large N.

Proof. (1) Note that every PPT channel should have zero quantum capacity and that
Q(CDZ'") > 0if k > m — [ for sufficiently large N. Similar arguments are valid for
"

(2) Note that every anti-degradable channel must have zero quantum capacity, while

on the other hand both <I>§C"h and CDQ'" have strictly positive quantum capacities for
sufficiently large N if k > |l — m]|.

5.2. The case of SU(2). We have a much better understanding about the TL-channels
associated with SU (2) than the ones from O}, based on the following concrete descrip-

tion of Clebsch—Gordan coefficients. For an admissible triple (k, [, m) € Ng we consider
the associated isometry

a,lcm|l) = Z Z ir]”/]ﬂjj ).

j=0,"=0

We actually have a precise but complicated formula (e.g. [VK95, page 510]) for the
constant C* m, k, which is a sum with multiple terms. Thus, the general constant C Lim,
is difficult to handle but they satisfy several symmetries and some extremal cases can

be written in a simpler form.

Proposition 5.5. For any admissible triples (k,l, m), (i, j, j') € N(S) we have

(D) Cyyi =0 ifi+ k2 j 4+
e (DD =0, h—h#i=j  [o<iiji<l0<ij=<k
(W9 (DI =0, = jp#i—j |0Sizp=m 0<ij<k
I+m—k m,l,k
J st

)

3) C = (=1

1,m,k l+m k 1m,k
(4)C/’j”l_( DEEE Clm/m J k=i’
j=0,1
) chmk #0 zft++m—_ = j+j  andifone of the following is true: { j' = 0, m
JiJ'si 2 =J%J 8 : ] _O’k
i =0,

Proof. (2) We have (i1 |0} (1) (jD) 1) = Yoo C/5 CHml s = 0if iy — i # ji — j

~ i1,i2,0 7 j1,i2,]
by (1) and a similar argument holds for le "

(5) If one of the parameters i, j, j’ becomes extremal, then the constant C I can be
expressed in a single term, which is a ratio of several factorials by [VK95, Sect 8.2.6]
and the above symmetries (3) and (4). O

The SU (2)-TL-channel <I> " is of the following form.

O (1)) = (L ® Try (™ |i) (E 1 (™))
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(L®Tr)(Z Z chmACtm R G

7,J=0j',j’=0
= Z Zci'}”f ["-1,k 1)
//—OJ—
B3> IR CmIE 1 = o . 5.0
J'=0j,j=0

The fourth equality is due to (3) of Proposition 5.5.
Proposition 5.6. For any admzsszble triple (k,l, m) € N3 we have dD CDZ;"I. In

particular, we have de = dJk , So that the channel CI> is always degradable and
anti-degradable.

This allows us to restrict our attention to the case of [ > m.

5.2.1. EBT/PPT properties In this subsection, we completely characterize when the

SU (2)-TL-channels Cbi’m and d>§(’m are EBT or PPT. The main result of this subsection
is as follows.

Theorem 5.7. Let (k,l, m) € Ng be an admissible triple with | > m.

(1) The channel @5{”;’ is EBT if and only if it is PPT if and only if k = 0.

(2) The channel CDI"" is EBT if and only if it is PPT if and only ifk =1 —m
Proof. (1) If the channel CDk is PPT, then its Choi matrix

dg da
Croo = (To®®0(Y_ 1)@ (D= Y. Tod(i)j)® i)l
ij=1 ij=1

should be a positive definite matrix. In particular, for any orthogonal unit vectors
v1, v2 € Hp ® Hj we should have

(VilCroplvr) (VilCroalva) | _ [ab] _
(V2|Crop|v1) (V2|Crop|V2) be|= 7

We take a particular choice of vy, v, as follows.

{Iw) = |10}, |v2) = |0]) ifk>1

|
[v) = |10), |v2) = |l —k, k) ifk <[~

Now we have a = (v1|Croolv1) = 37 Cll ;’3 gCll ;'f(lj Since the channel d>l m
is trivially EBT (and PPT) we may assume k > 0, then [ + j/ # l+”% k from the
restriction that / > m. Thus, we get a = 0 by (1) of Proposition 5.5. Similarly, we

can check that b = L™k Ik for k > 1. By (5) of Proposition 5.5 we

O,H’g k,() l’lﬂg k,l

know that b # 0, so that det |:Z lc)i| = —|b|*> < 0, which is a contradition. The case

k <[ can be done by the same argument.
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(2) We apply a similar argument as before. By taking

lvi) = [m0),
lvr) = |m0),

lvy=Im—k, k) ifl—-m<k<m
|v2) = |Om) if k>mvIi—m
(1lCroo|v1) (V1ICro0|v2)
] (02[Crowlv1) (V2|Cron|V2)
definite, so that the channels CDZm isnot PPTifk >1—m
But the case k = [ — m is no longer trivial. Note that we can pick a product vector
e® f e H CH,®H_, withe € H,, and f € H;_,,. Then, by Theorem 3.3 and
Proposition 2.9, we have
1

- C i, =
I—m+1 o~ [+1

_ / o (6Nl () ® T1m (6~ VLY 1 (),
SUQ)

we can similarly check that the matrix |: ] is not positive

m,l—m , m,l—m
T (o) )*

where dx implies the normalized Haar measure on SU (2). This implies that the nor-

malized Choi matrix of <I> 18 a separable state since the set of separable states are
closed. O

5.3. (Anti-)degradability. We first present the following cases when SU (2)-TL-channels
are (anti-)degradable.

Theorem 5.8. Let (k,1, m) € Ng be an admissible triple with | > m.

(1) The channel CIJf,(’"_1 is degradable if (a)l = m or (b)k =1+m or (c)k=1—m
Moreover, we have a degrading channel for the case (b) as follows.

o ol — gl (5.2)

I+4m — Fl+m-

(2) The channel @i"h is not anti-degradable for | > m. Equivalently, CDQ'" is not
degradable forl > m.

Proof. (1) The first two cases (a) and (c) follow from Proposition 5.6 and Theorem 5.7,
respectively. For the identity (5.2) we need to show that for any 0 < i, j <[+ m and
for any s, such that max {0,i — j} < s» < min{m,m+i — j},

I—m, Lt ey s I, o
(@™ 0 @)L (1) (T D)syusarj—i = (R (D) (G 1) s 50—

by (2) of Proposition 5.5. Equivalently, let us show that for any max {0,i — j} < s2 <
min{m, m+i — j}

Cl m,l+m lm,l+m Cl—m,m,l l—m,m,l _ Cl,m,l+m Cl,m,l+m
i—in,ip,i j in,in,j Ti—in—s2,82,i—ip “i—ip—s2,82+j—i,j—in T Ti—s2,82,i “i—s2,82+j—1,j°’

where i runs over max {0,i —sp — [ +m} < ip < min{m,i — sp}. We use the follow-
ing explicit formula for Clebsch—Gordan coefficients to the highest weight case, namely

for any [, m
clmim _ s I'm! i +m— )
Jlajo.j T CNnt2.d T — it i
+m)\ jiljppld — jolm — j2)!
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Now, we have

Cl m,l+m ~l,m,l+m l—m,m,l l—m,m,l
Z i—ip,ip,0 ~ J—i,in, ] Ti—ip—s2,80,i—ip T i—ip—s2,80+]—1,]—I2
i2

_Itm! (1 —m)lm! id+m—=Dld+m— j)!
T (+m)! 1! sl (m — s)\(s2+ j — D)m — 50 — j+1)!
1
P lm—i)!i —ipg—s)Il —m+sy+ip—1)!

_I'm! i +m =D +m— j)! Z(m)( I —m )
Sl HmWY s2lm — ) s+ — D)m — 53 — j +1)! — \i2)\i =52 =02

_Im! +m—=0Dj1+m— j)! ( [ )
T +m) sl — )+ j— DN m—s2— j+iD)I\i — 5

Iim! 1 \/ i +m— DA +m — )

- U+m) @ =)' +s2 =D s2lm — )52+ j —i)l(m — 52— j+1i)!

_ 'm! il +m—1)!
TN A+m)V G =)l — i +$)(m — 52)!

['m! Jid+m— j)!
T+m)!\V @ =)o+ —DIA—i+s2)!(m—sp— j+10)!

Cl ml+m ~lml+m
i—82,82,i "i—S2,824+j—10,]"

The third equality in the above is from the following fact
TER SR SN o (et
i—s2) max(0.i—ss—l+m] =iy <min{m.i—sy) N2/ N 752 72 '
(2) By Proposition 2.5 and Proposition 2.8 we know that

0< log( ) < Q(l)(q)im)

which leads us to the conlusion we wanted. 0O

Remark 5.9. We remark that in the case of SU (2)-TL-channels, it is possible to show

that the channels CDQW can be non-degradable for intermediate [ —m < k < [ +m at
least in some low dimensional examples. The general strategy is to find an explicit state
0 € My, such that

0 < H(®L" (p)) — H@L™(p)) < 0D (@h™).

The inequality above implies that @ﬁ(’m is not anti-degradable, or equivalently @5;';’ is

not degradable. For a concrete example, let us consider the channel @g’z. For p =
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025 0 00
0 07500 h
0 0 00 , we have
0 0 00
3,2 3,2 0500 0€5025 8 8
H(®37(p) = H(®3 () = H(| 0 02 0 h=H(| o4 " o490
0 003 0 0 00
~ 0.0192,

where the first equality is obtained by the precise description of the associated isometry

3 2
ad? . Ct > ¢t ® C3, = _\/;12) +\/;|21)’

3
12) > —\/%13) —J15122) +,/ &131)
using the known formula of SU (2)-Clebsch—Gordan coefficients [BohO1]. Here, {| j) };f;ll
refers to the canonical orthonormal basis of H,, = C"*! and we have written the image
of ag 2 for the first two basis elements since they are the only relevant entries.

5.4. Remarks on associated classical and quantum capacities. In this subsection we
collect some immediate consequences of the already obtained results on associated clas-
sical and quantum capacities.

Proposition 5.10. Let O be one of the following TL-channels:

SU(2)-T L-channels ®™  @bm glm glm

[—m> T l—m> “l+m> l+m

Oy -T L-channels CD?’I.

(I = m),

Then we have
C(®) = x (D).

Moreover, for the SU (2)-TL-channels oL Cbg;r'::l we have

l+m>

C(®I) = x (@) =log +1) and C(@[n) = x(Pln) = loglm + 1),

[+m

and for the Oy -TL channel CID?’1 = CID}’j we have

5 5 N N N+1
C(@r7) = x (@) = N+llog<N—1) _10g< N )

Proof. For the SU (2)-TL channel cbgj”m | > m and the 07{,-TL-channel QD?’I we get
the conclusion by Proposition 2.4 since they are EBT by Theorem 5.7 and Remark 5.3.

Moreover for the O]*\', -TL channel CD%’l we have

C@2Y) = Y (@21) < log(N) — Hmin(®2) = —>— log [ —— ) — 1og X+
1 7= 1 N +1 N —1 N
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by Remark 2.2 and Remark 5.3. Then equality follows from the ensemble {[i) (i|}; <; <y
with the uniform distribution.

Now we consider the case of the SU (2)-TL-channels CI>§;fn and @gfn, | > m. By

combining the following two results [AN13, Theorem 2.16] and [Hol06], we have

log(m + 1) — 0 = log(m + 1) — Hynin (1) = x (@) ) < C(®L™) < log(m + 1) and
log(l +1) — 0 = log(l + 1) — Hyin(®)) = x(®)") < C(®)" ) < log(l +1).

For the remaining case of SU (2)-TL-channels GDLEm we have

_ 1 _
C(®;7,) =log(l +1) = lim ~Hin((®}7},)®")
[+1 .1 Tom \@n
=log| —— ) +loglm+1) — lim — Hpyin((®;_, )°")
m+1 n—-oo n

[+1 7
=1 — )+ (P
Og(m+l> (1)

= log(l + 1) + x(®}™ ) — log(m + 1)
=log (I + 1) — Hyin(®/™" )
=log (I +1) — Hyin(®/" ) = x (/" ).

Here, the 1st, 3rd, 5th and the last equalities come from [Hol06], the 2nd and 6th equal-
ities are due to the fact that Hyjn (V) = Hpin (V) for any quantum channel, and the 4th
equality is thanks to EBT and [Sho02]. O

Proposition 5.11. Let @ be one of the following TL-channels:
{SU(Z)-TL-channelsfbi’m @ith @k=1l+m, D)k =1l —m|or (c)l=m
O3 -T L-channels @}’2, <I>%’1.
Then we have
Q@) = oW (®).
Let W be one of the following TL-channels:
:SU(2)-TL-channels<I>2’m with(@)k =1+m, (b)k = |l —m|or ()l =m
O3 -T L-channels CD%’I, dJi’z.
Then we have
o) = QW) =0.

Proof. By Theorem 5.8 the above listed SU (2)-TL-channels cbiﬁ and cp%’" are degrad-
able and anti-degradable, respectively, which leads us to the conlusion by Proposition 2.4.

In the case of O} -TL-channels we can appeal to the fact that <I>i’2 = dD?’l is EBT (and
consequently anti-degradable) from Remark 5.3. O
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Proposition 5.12. Let ¢ > 0 be any fixed constant and ® be a O},-TL channel CDZ’W or
CD;{”". Then we have

C(P) = 2+e)x(P)

for sufficiently large N.

Proof. A proof follows by combining the bistochastic property of TL-channels, Propo-
sition 2.5 and Corollary 4.6. Indeed, we have

lim inf [2X(<1>§;W) _ C((Di’m)}

4k —
= lirnNinf {2 (X(Cbi”") — % log(N)>

—(C(@;™) = (I +k —m) log<N)>} >0,

which gives us the conclusion. Note that

[+ 114[k+ 1], 3 3
{log (—[m 1], ) (I+k—m) log(N)}

. [[+1] [k +1] [m +1]
:1\,11_r)noo{log( N q>+log( N q) —log<74>} =0.

And we can apply a similar argument for C[Dik’m. O

lim
N—o0

Example 5.13. Combining Propositions 5.10 and 5.11 we know that the SU (2)-TL chan-

nel CDZ_”; (I = m) satisfy the following extremal condition

Q™) =0 & C(®") = log(m + 1),

where the quantum capacity is smallest possible, namely zero and the classical capacity
is the largest possible in the sense that any quantum channel ® : B(H4) — B(Hp)
satisfies 0 < Q(®) < C(P) < logdp. Of course, it is rather straightforward to find
quantum channels satisfying the above extremal condition. An easy example would be
the completely dephasing channel

Dcp 1 My(C) — M, (C), [i){jl +— 8 jli){Jl.

Since ®¢p is clearly EBT (and consequently anti-degradable) we have Q(®cp) = 0
and the fact that C(®cp) = logn is trivial by considering the canonical classical-
quantum encoding to diagonal elements and the associated canonical quantum-classical
decoding. One big difference between the above two examples of channels is that ®¢p

belongs to the class of EBT channels, while the SU (2)-TL channel @g;":n (I > m)is
non-PPT by Theorem 5.7. Thus, we found a family of channels in the class of “anti-
degradable & non-PPT” channels exhibiting the extremal property “C =full & Q = 0".
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We believe this to be the first such example, to the best of our knowledge.

anti-degradable
&
non-PPT

°
DPERr,1)2

Note that the class of “anti-degradable & non-PPT” channels contains interesting
examples of channels, which have played crucial roles in QIT. For example, the 50%-

1
erasure channel ®ggr 1/2 : M, (C) — Mp41(C) givenby p — 3 |:Tr(()p ) 2i| belongs to

the class of “anti-degradable & non-PPT” channels and was used to discover superac-
tivation of quantum capacity [SYO08]. Note that the qubit 50%-erasure channel ®gg 1,2

does not have the full classical capacity since C(Pgg,1/2) = % < 1 [BDS97].

6. Tensor Products of Temperley-Lieb Channels and Outputs of Entangled
Covariant States

It is well known that additivity of Holevo information is equivalent to additivity of
minimum output entropies [Sho04] and Hastings [Has09] established non-additivity of
the minimum output entropy by exhibiting the existence of random unitary channels ®
such that

Hin(® ® @) < Hppin (®) + Hpnin (D), (6.1)

where @ is the conjugate channel of ®. In the proof of (6.1), the maximally entangled state
was used to estimate an upper bound of Hpi, (P@®P). Since we know the minimum output
entropies for single O}, -TL-channels in an asymptotic sense, it is natural to try to evaluate
the minimum output entropies for tensor products of Oy -TL-channels. Although we are
unable to fully evaluate such minimum output entropies for all tensor products, we do

establish upper bounds for the minimum output entropies Hmm(d>l1 R <I>l2 712y This

is achieved by evaluating the entropies H ((<I>l1 MR CDIZ "2 (p)) for certain entangled
states p. More precisely, we will present exp11c1t formulae for

H((CDII iy 12 mz)([ " 1] lkl,kz(af],kz)*))
q

for all admissible triples (i, k1, kp) € Ng.
In this section we use all the notation and planar string diagram formalism for
Rep(07,) introduced in Sect. 3.
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6.1. Tetrahedral nets and the quantum 6 j-symbols. Following [KL94], let A C Ng be

the set of all sextuples |:CCI Z ;i| with the property that each of the following triples

(a,d,i), (b,c,i), (a,b,)), d,c,}j)

is admissible. We define the tetrahedral net to be the function Tet, : A — C given by

b ; .. . .
Tet, [‘j d ﬂ =7 ((AP)" (, ® (A)) @ 1m) (A7 @ AY)YALD).

In terms of planar string diagrams, the Tet, functions are given by

Next, we introduce the quantum 6 j-symbols {-}, : A — C, which are defined in
terms of the tetrahedral nets as follows:

abi

{abi} _Tetq[cdj][i+l]q
q

cdjf, — 64a,d,i)0,b,c, i)

Remark 6.1. We note that there exist simple algebraic formulae that allow one to nu-
merically evaluate the tetrahedral nets (and hence also the quantum 6 j-symbols). See
[KL94, Sect. 9.11] for example.

The mostimportant geometric-algebraic feature of the quantum 6 j-symbols {Z fl ; }
q

is that they arise as the basis change coefficients for two canonical bases for the Hom-
space Homo; (H, ® Hy, H, ® H.). More precisely, Horn01+r (H, ® H;, H, ® H_) has
one linear basis given by the string diagrams

b c
(i € Ng such that (i, a, d), (i, b, c) admissible),

a d
and another linear basis given by

b c
fi (j € No such that (j, a, b), (J, c,d) admissible).
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We then have that the quantum 6 j-symbols are the basis change coefficients between
these two bases [KL94, Proposition 11]:

b c b c

i 1 I P 62)
i q

1

a d a d
and similarly by a rotational symmetry argument,

a b b

j =Z{?§;} - (6.3)
i q

1

d c a d

[

The following formula involving three-vertices and tetrahedral nets will be handy in
the next subsection.

bi
dj

Lemma 6.2. Let |:Ccl } € A. Then

abi
Tet, |:c d ji|

6,(i, b, c)

i i
Proof. Denote the quantity on the left hand side by B. Then B € Homo;(H,-, Hp ®

H) = (CA?’C, and so there exists A € C such that B = )\Af.”c (i.e., B is a multiple of a
three-vertex). But then we have

Tet, [‘Cl Z ;} = 5((AP)*B) = 1;(AP)*2.4P%) = 26,(i, b, ).

6.2. Tensor products of TL-channels and outputs of entangled states. Here we address

tensor products of the form <1>§(11’m1 ® be’ﬁ”, and compute explicitly the outputs of

Ot -covariant states of the form ,o(”’kz = L gfvke g kikys for all admissible triples
F i g% i P
(i, k1, k2). Note that in the special case of i = 0 and k1 = k», we have that pg’k is a

maximally entangled state, and in general, ,of k2 is an entangled state [BC17, Theorem
5.5]if ki, ko > 0.

In order to ease the notational burden on the following theorem, let us fix once
and for all admissible triples (i, k1, k2), (kj,lj,m;) € Ng (j = 1,2), and let X; =

I, I, i ki.k
((Dkllml ®®’(22m2)(pl1 2)
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Theorem 6.3. We have the following spectral decomposition for X;:

mi,lr _my,ly, my,l\x
X; = Z A 7 R

I,
l:m1+l2—2r
0<r<min{my,l>}
where
Aml,,z_< li + 1, lky + 1ylka + 11,6, m1, L) )
il [+ 1140, k1, I, m1)6y (k2, I, m2)0y (i, k1, k2)

ki ky j Iy my my ky j b|)miml
{kz ki i}q Tetq |:j ki k1:|Tetq |:lz myko| | b b jf,
0<tr<min{ky,k}

)

and occurs with multiplicity [l + 1],.

Proof. We have that, up to planar isotopy, the planar tangle representing X; is given by:

mi )

_ [i + 14ky + 1]y k2 + 1], ;
0, (k1, ka, )0, (11, my, k1)8y (L2, ma, kp) 1 m

i

nj b

Using the formulae (6.2)—(6.3) for the quantum 6 j-symbols together with Lemma 6.2,
we have

mi 153
I mj
mi I
mi 12
mi b
k k
_ ki ky j b -y ki ko j b~k
- ko ki i g ; m = ko ki i I J ma
- q J ; q ky k>
J ki ko J
mi l
mi b 2

Iy mp my ky j I
. Tet, | : Tet, mi 1}
_Z{klkzj eq|:1 ky Kk la I my ky 2
- ko ki i J
; 2 K] g

Qq(mlv mip, ])9q(l2, jv l2)
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Iy my my ky j I I
_ ZZ {kl ko J} Tetg |:j kq k]]Tetq |:12 my kz] {ml m l} " 2
5 ky ky i q Bgmi,mi, )64(l2, j, 12) h b < L

Iy myp my ky j I
) Tety [ &k Tety I mo k
_Z(Z{klkzj} J KK 2 M2 k2 {mlmll})
TG R R Oy my, 6y, jo ) L BT
Qq(lamlalz) mi,lr my,lp*

[+, 0

In the above, the summands run over [/ such that (I, m1,[;) is admissible, and j
such that both (j, k1, k1) and (J, k2, k2) are admissible. This corresponds exactly to
Il =my+1l —2r with0 < r < min{m1, [} and j = 2¢ with 0 < ¢ < min{ky, k2}.
The claimed formula for the eigenvalue )»;"’11’12 is now immediate. Note also that the

multiplicity of )\;'fll’lz is rank(ozlml’l2 (alml’lz)*) =dimH =[+1],. O

Remark 6.4. As remarked above, the element Xo € B(H,, ® H,) is the output of the

O7--covariant Bell state pg’k € B(Hy ® Hy). In this situation, the eigenvalue formula
for X simplifies greatly. This can be seen by using similar arguments to those in the
proof given above, or by directly using algebraic relations satisfied by the quantum
6j-symbols. In any case, we get

_ mi,ly mily my,lp*
Xo = Z Aoy ey ey

l=m]+lz—2r
O<r=min{my,l2}

with

my I 1
[k+1]qTetq|: el }

q

b _ my Iy k
2
ni ll [
[k +1]4 {m2 I k} 0,1, 11, m2)0, (1, my, Ip)

occurring with multiplicity [/ + 1],.

6.3. Remarks on the MOE additivity problem for certain O},-TL-channels. Given that
we have, on the one hand, asymptotically sharp estimates on the MOE of the O} -

TL-channels @f{’m, CI>§{’"_1 (given by Hmin(cbi’m), Hmin(cbi"ﬁ) ~ (%)logN - cf.
Theorem 4.3), and on the other hand, we have exact formulae for the outputs X; =

(@Ql’m' ® d>222”;’2)(,of ! ’kz) of entangled states under the tensor products of certain TL-
channels, it is natural to ask whether one can obtain a strict inequality of the form

[ —k l —k
H(X;) < (%) log N + (%) log N (for suitable i, kj,l;, m;).
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If this were the case, we would have obtained deterministic examples of pairs of quantum
channels which witness the non-additivity of their minimum output entropy.
Unfortunately, however, extensive numerical evaluations of H (X;) for suitable pa-

rameter choices always yield inequalities of the form H(X;) — (W) log N —
(W) log N > 0 with the difference going to zero as N — oo. We see this as

strong evidence that the pairs of quantum channels <I>§(‘1’m‘ , <I>§fz”;'2 are not MOE strictly
subadditive.

7. Comparing the Class of Kac Type TL-Channels with Other Classes of
Quantum Channels

In this final section we would like to compare the class of SU (2)-TL-channels and 0;,-
TL-channels (N > 3) with other previously well-known classes of non-trivial quantum
channels, which we recall as follows.

(1) (Quantum erasure channels) ForO < p < 1and H4 C Hp, |e) € Hp © H4 we set
@ERr.p: B(Ha) = B(Hp), p+—> (1—p)p+pTr(p)le){el.

(2) (Amplitude damping channels) For0 < y < 1 weset A1 = |1){1|+4/1 — ¥]2){2],
Ay = 711){2] and

®ap.y : B(CY — B(C?), pr> A1pA] + AypAl.

(3) (Dephasing channels) For 0 < p < 1 we set

pernp: BEC) = BEC). pr (1= D)o+ 522,

10
0-1[
(4) (Depolarizing channels) For 0 < p < 1 and H4 = Hp we set

where Z =

®pepop: B(HA) — B(Hp), p+> (1—p)p+ %Tr(pm.

We will consider 3 different types of comparision for quantum channels.

Definition 7.1. We say that two quantum channels ® : B(Hy) — B(Hp) and ¥ :
B(Hy') — B(Hp) are “identical” if H4 = Hs/, Hp = Hp and ®(p) = W (p) for any
p € B(Hy). We also say that ® and W are “unitarily equivalent” if H4 = Hu/, Hg =
Hp' and there are unitaries U € B(H4) and V € B(Hp) such that VO (U*pU)V* =
W (p) for any p € B(Hy). We say that “ @ can be transformed into W~ if H4 = Hy,
Hp C Hp and there are a unitary U € B(Hy) and an isometry V € B(Hp, Hp') such
that VO (U*pU)V* = W(p) for any p € B(Hy).

Proposition 7.2. None of the above mentioned channels can be transformed into SU (2)-
TL-channels or O;(,—TL—channels with N > 3.
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Proof. First of all, note that any CG-channels are bistochastic. Thus, we get the conclu-
sions immediately for non-bistochastic channels, which include quantum erasure chan-
nels and amplitude damping channels except the channels ®gg p,, p = #, which we
postpone the proof to the end.

Note also that a bistochastic channel can be transformed into another bistochastic
channel only when they are unitarily equivalent. Thus, for dephasing channels we need to

compare them with the only possible qubit channel, namely SU (2)-TL-channel @?’1 =

12 . |ab Ya+2d) -1b L
R |:cdi| — |:3 —%c %(2a3+d) . For any unitaries U, V € B(C?), we can

readily check the state p = V*CD%’I(U *|I1)(1|U)V satisfies the condition

5 5
Tr(p?) = Tr( @7 WH{U)?) = 3. (7.1)

On the other hand we can easily see that Tr(CDDgph,g(|1)(1|)2) = Tr((|1)(1))?) =

Tr(]1)(1]) = 1, which means that so that the channel CD%’I is not unitarily equivalent to
the channel ®p.pj, p.
The case of depolarizing channels are a bit more complicated. Since they are bis-

tochastic, we should compare them with Kac type TL-channels CD'{(’k, <I>§’l with k > 1.
When k£ > 2, we can use the same index m = (1,2, 1, ...) with the associated state
lm) € Hy C H1®k as in the proof of Theorem 4.3. We also consider a companion state

In) € Hy with the index n = (2, 1, 2, ...). For splittings m = m'm’ andn = n'n" we
note thatm’ #* n’. Since prIn) = |n) € Hy we can see that

(n|®;* (Im) (m])|n) = 0
from (4.5). On the other hand, for any unitaries U, V with appropriate size, we have

V® pepo.p(Umym[U*)V* = (1 — p)VU|m)(m|U*V* + dﬁu,
A

which we get (n|V®pepo, ,(Um)(m|U*)V*n) > 9 since p > 0. The case of_CD’,i’l_,
k > 2 is the same. Now we focus on TL-channels d>ll’1, especially the channel CID%’1 =

dﬁ’z since k = 1 forces / = 2. Note that for any unitaries U, V with appropriate size
we have

N s 14
V@pero p(UINJIUDVT = A= pVUIHGIUVT + T,
which is clear%y different from CD%’l(|j) (j|) for the case G = 01‘:, by (3.8). For SU (2)-
TL channel @%’1 we compare the image for | j)(j|, j = 1,2toget p = % and VU = I,
a b] . |:%(a+2d) 1b

. . * * .
which gives us V®p.p, ,(U - UH)V* : |:C d %C %(2a+d)

], which is

different from SU (2)-TL channel @?’1 .
Now we focus on the only remaining bistochastic channel ®gg ,, p = ﬁ, which

should be compared with TL-channels ®}*! or &/ Recall that ®¢**" is G-covariant
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with respect to (u®, u**+1D)_ We suppose that the channel W(-) = Vogpg ,(U-UHV*
is G-covariant with respect to («®, u**D) for any unitaries U, V with appropriate size.
Let us denote V = [V,,] and VU = W = [wyp], then for p = |m)(m’| € B(Hy) we
have

WP (pe Hu®)*

k
= WOl Y i ®ufy ()]
i,i'=1
nk
=(1-p) Z Wi W @ uly) ') )+ p D VieyelV* @ uln (u,)*
i,i'=1 i=1
Mk+1
=(1-p) Z > waiarla)ia’| ® uly (i)
i,i'’=1a,a’=1
ni R+l
P D vaelaela)@| ®ufy) (uff))*
i=1a,a=1
R+l

Z la)ta'l @ [(1 = p) Z w’”w“,’/u( )(u(k)’) +p2vaeva el )(M(k)/) 1

a,a'=1 ii'=1

Nk+1
> la)a | @ [ = pIWuS L[ @OV W yar + p - S VacVare].

a,a’'=1

We also have

u V1w () @ N D) = u™DIA = p)WoW* + p - 81w VIehel V@ D"

ni+l
=(U-p Y. wmwpmla)a@ | ®ul @y
a,a’,b,b'=1
ng+1
+p- ‘Sm,m’ Z vbcvb’e|a><a | ® u(k+l)( (]f;/]))*
a,a’,b,b'=1
Nie+1
= 3 1a)d | ® [ = P Wl W@ D) ),
a,a’'=1

+ P S [V [V @ D) ).
Comparing coefficients of |a){a’|, 1 < a, a’ < ng41 we get

(1= PIWuP L [@®)V W + D - S VaeVare
= (1 = ) DWW @Y+ p - 8 [0 DV 1 [V @)

for any 1 < m, m’ < ng. Summation over all m = m’ we have

(1 - P)‘Sa,a/ + P Vg Ve = (1 — p)‘sa,a/ +p 'nk[u(k+l)V]ae[v*(u(k+l))*]ea/



Temperley—-Lieb Quantum Channels 835

Since p # 0 we actually have v Uze = [* D V] [V*(u**D)*],,, which, in turn,
gives us

[Wu(k)]am[(u(k))*w*]m’a’ = [M(k+l) W]am[W*(u(k+l))*]m’a’

forany 1 <m,m’ < ngand 1 < a,a’ < ng4. Finally, we take the Haar state on both
sides to get 8a‘a/5m‘m/nk71 = Su,a/ém,mzn,;ll, which is a contradiction, so that we can
conculude that the channel ®gg p,, p = d,:ﬁ can not be transformed into a Kac type
TL-channels. O

We close this section by comparing Kac type TL-channels with a class of channels
called TRO-channels and their modifications recently introduced in [GJL18]. For a quan-
tum channel ® : B(H4) — B(Hp) with a Stinespring isometry V : H4 — Hp ® Hp
therange space RanV C Hp® HE is called a Stinespring space of ®. Note that the choice
of isometry V is not unique, but any associated Stinespring space is known to determine
the channel ®. For this reason we will fix a Stinespring isometry V and refer to the range
RanV as the Stinespring space. We say that the channel ® is a TRO-channel if its Stine-
spring spaceis a TRO, i.e. aternary ring of operators. Recall that a TRO is a subspace X of
B(H, K) for some Hilbert spaces H, K suchthat“x, y,z € X = xy*z € X”,1i.e. closed
under triple product. It is well-known that finite dimensional TRO’s are direct sums of
rectangular matrix spaces with mutiplicity. Since the Stinespring space determines the
channel it has been observed in [GJL18] that a TRO-channel ® : B(H4) — B(Hp) is
always of the following form: the channel ® has a Stinespring space X given by

X = @l‘ﬁilB((Cmiv (Cl’l,) ® ll,' g B(HEv HB)’
where
Hp =@M ,C" ®Ci and Hp = @M,C" @ C'.

Moreover, we have Hy = (X, (-, -) y,), where the inner product is given by (x, y) g, :=
Tre(y*x), x,y € X C B(Hg, Hp). Finally, the channel ® is given by

Q(x)(y]) = xy*, x,y € Ha = X € B(Hg, Hp).

Based on the above description we can define a variant of TRO-channels. We first fix
a symbol f € B(Hg), i.e. a positive matrix with 7(f) = TrdE—E(f)
independent of the right algebra R(X) = span{x*y : x,y € X}. Here, we say that
x € B(HE) is independent of R(X) if t(xy) = t(x)t(y) forall y € R(X) and strongly
independent of R(X) if x" is indepedent of R(X) for every n > 1. Then the modified
TRO-channel ® y with the symbol f is defined by

= 1 and strongly

@y : B(Ha) — B(Hp), |x)(y|+— xfy*.

The original TRO-channel @ corresponds to the case of ® ¢ with f = 1. It has been
proved in [GJL18] that we have exact calculations for various quantities of ® as follows.

0 (@) = PV (@) = Q(®) = P(®) = log(maxn;), x(®) = C(®) =log(}_ n;).

i
(7.2)
Moreover, we also have the following estimates for modified TRO-channels.

0V (@) < 0W(dy) < QV(®) + 7(flog f).
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The same estimates hold for other capacities, i.e. we may replace Q1 with PV 0, P,
and C. Important examples of (modified) TRO-channels include random unitary chan-
nels using projective unitary representations of finite (quantum) groups and generalized
dephasing channels [GJL18].

In this section we prove that some TL-channels do not belong to the class of modified
TRO-channels. We can even find an example with minimal non-trivial dimensions.

Proposition 7.3. The SU (2)-TL-channel @?’1 can not be transformed into any modified
TRO-channel.

Proof. We first observe that Randr'%’1 = B(C?), which is a full matrix algebra. Let ® ; be
a modified TRO-channel with the parameters n;, m;,l;, 1 <i < M as above. Since we
need to match the dimensions of the sender’s Hilbert spaces we only have the following
3 possible cases. (1) M = 1,ny =2,m; =1,2)M = 1,n; = 1, m; = 2 and (3)
M=2,n=n=my=mp =1.

Case (1): The corresponding modified TRO-channel becomes (after identifying the
orthonormal basis in a suitable way)

®s: B(C?) — B(CH) @ B(C"), [i)(jl — |i){j| ® %

If we assume that CD%I is equivalent to ® 7, then there are a unitary U : C? - C?% and
an isometry V : C2 — C? ® C' such that

VT (U p U)V* = ®s(p), p € B(Ha).

Since Ran@%’l = B(C?) we also have Ran®, = B(C?) as a subalgebra of B(C?» ®
B(C"), which forces g := % to be a pure state. This implies that g> = g, so that
Tr((|1)(1] ® g)%) = Tr(|1)(1]| ® %) — 1. However, the state p' = &3 (U*|1)(1|U)
satisfies Tr((p")?) = 5/9 # 1 as we have seen before in (7.1). Since X — VXV*isa

trace preserving map, we get a contradiction.
Case (2): The corresponding modified TRO-channel becomes

i

®;: BICY) > BECY), 1)l = 5
1

) fa fa2
Rancb%l = B(C?)weknow that/; > 2. We assume that there are aunitary U : C> — C?

and an isometry V : C> — C? ® C' such that VCD%’I(U*,O U)V* = ®r(p), p e
B(H,) as before. In this case we have R(X) = B(C?) ® Cly,. It is straightforward to
check that independence of f with respect to R(X) implies that Tr(f11) = [;. We also
know that f 2is independent of R(X), which means that Tr(( f 2)11) = I;. However, we
have

where f = [f“ f”} € B(C? ® B(C") with fij € B(C), 1 <i,j < 2. Since

5
I =Te((f)1) = Te(ff + fafa) = Te(f) = §l2’
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which is a contradiction. The above inequality is from f, = f; and the last equality is
from the fact that

Tr((%])% = Tr((p")?*) = 5/9.

Case (3): The corresponding modified TRO-channel becomes

ch . B((Cz) N B(Cll+12), |:all alZ] — |:a’]fl/:| ,
1<i,j<2

az1 axn /i1

where f = [21 gz] € B(Ch*2) with fi; € B(Cli,Ch), 1 < i,j < 2. Since

RantID%’1 = B(C?) we know that [; > 2. We assume that there are a unitary U :
C? — C? and an isometry V : C? — C2 @ Ch such that V(D%’I(U*,O u)v* =
®¢(p), p € B(Hy) asbefore. In this case we have R(X) = Cl;, ®Cl;, < B(Ch+h)y,
It is also straightforward to check that independence of f with respect to R(X) implies
that Tr(f11) = [1. We also know that f 2 s independent of R(X), which means that
Tr((f2)11) = ;. However, we have

5
h=Tr((f) =Tr(ff + fafor) = Tr(f) = Shi,
where the last identity is from the fact that

fu

Tr((f

it 2
W =Te(| I ) =Tr((0)?) = 5/9.

00
Thus, we can conclude that /1 = 1, which actually means that f1; = Tr(f11) =11 = 1.
Thus, we have Tr((%)z) =1 % 5/9, so that we get a contradiction.

Remark 7.4.(1) The canonical complementary channel r of amodified TRO-channel
® ¢ can be written as follows.

& : B(Ha) — B(Hg), |x)(y]— v fy*x/F.

Then, we can also show that the Temperley—Lieb channel ¢>%1 for G = SU(2) is

not equivalent to any canonical complementary channel ® 7 of a modified TRO-
channel @ . This time the argument is easier since we only need to observe that
rank (& ) < 2in all the 3 possible cases in the proof of Proposition 7.3.

(2) Note that TRO-channels provides examples with the extremal property “C = full &
Q = 0” considered in Example 5.13 by settingn; =---=ny=1= =--- =
Iy by (7.2). However, one can readily check that corresponding TRO-channels is
nothing but a completely dephasing channel.

m}
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