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We prove that the twisted property RD introduced in [2] fails to hold for all non-Kac

type, non-amenable orthogonal free quantum groups. In the Kac case we revisit property

RD, proving an analogue of the Lp − L2 non-commutative Khintchine inequality for free

groups from [29]. As an application, we give new and improved hypercontractivity and

ultracontractivity estimates for the generalized heat semigroups on free orthogonal

quantum groups, both in the Kac and non-Kac cases.

1 Introduction

The property of rapid decay (RD), also called Haagerup’s inequality is a fundamental

tool in the study of the reduced C∗-algebra of discrete groups, allowing one to control

the operator norm of convolution operators by means of the much simpler �2-norm (see

Section 2.4 for more details). It appeared in the seminal paper [19] where it was used

in conjunction with Haagerup’s approximation property (HAP) to establish the metric

approximation property (MAP) for reduced C∗-algebras of free groups.
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2 M. Brannan et al.

The definition of property RD was extended to discrete quantum groups in [32]

and was proved there to be satisfied by Kac-type (unimodular) orthogonal and unitary

free quantum groups. In [5], a quantum analogue of the HAP was established for these

free quantum groups, thus yielding a proof of the MAP for the corresponding reduced

C∗-algebras. Property RD was, moreover, used for the study of other aspects of discrete

quantum group operator algebras, see for example [6, 31, 33, 35]. Interesting connections

to quantum information theory, specific to the quantum framework, were also unveiled

in [7].

The definition of property RD used in [32] can only be satisfied by Kac-type

discrete quantum groups. In [2], the authors give a ”twisted” version of the definition

that holds for all (duals of) q-deformations of connected compact semi-simple Lie

groups and give applications to noncommutative geometry.

Hypercontractivity describes the regularization effect, in terms of Lp-norms, of

a given Markov semigroup. It has been studied extensively since the early 70’s, starting

with the work of Nelson and Gross [17, 26] and has found surprising applications in

harmonic analysis, information theory, and statistical mechanics. In the case of the

Ornstein–Uhlenbeck semigroup on the Clifford algebra with one generator, the two-

point inequality of Bonami, rediscovered by Gross [4, 18], already has deep applications

to (quantum) information theory [9, 16, 23, 24].

In the noncommutative framework, hypercontractivity problems for Orstein–

Uhlenbeck-like semigroups emerged from quantum field theory and optimal times have

been obtained in the fermionic case in [10, 26], using noncommutative Lp-theory. Moving

further away from the commutative situation, hypercontractivity results for free group

algebras were obtained in [3, 21] (with respect to different semigroups). Note that

the connection between hypercontractivity and property RD in that case was already

noticed by Biane [3].

The study of hypercontractivity for discrete quantum group algebras was

initiated in [14], where a natural analogue of the heat semigroup on the reduced

C∗-algebra of orthogonal free quantum groups was studied. In the Kac case, the

authors of [14] obtain the ultracontractivity of these semigroups (at all times),

as well as hypercontractivity with explicit upper bounds for the optimal time to

contractivity.

In the present article we pursue the study of property RD for non-Kac-type

discrete quantum groups. We prove that non-Kac and non-amenable orthogonal free

quantum groups do not satisfy the property RD introduced in [2] (Theorem 3.3). Then we

state and prove a weaker RD inequality (Proposition 3.4), which holds for all orthogonal
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Property RD and Hypercontractivity for Orthogonal Free Quantum Groups 3

free quantum groups and which was already used without proof in [31] in a slightly less

precise form.

In the 2nd part of the article we continue the study of ultra- and hypercon-

tractivity for the heat semigroup on free orthogonal quantum groups. We obtain in

particular the 1st known results in the non-Kac case, namely ultracontractivity with

a strictly positive optimal time (Proposition 4.1) and hypercontractivity for large time

(Proposition 4.2). In the Kac case we sharpen the upper bound of [14] for the optimal time

to hypercontractivity (Theorems 4.5, 4.6, and 4.7), using a non-commutative Khintchine-

type inequality (Theorem 4.4). We give as well a lower bound for the optimal time to

hypercontractivity (Lemma 4.3). Motivated by these results, we end the article with a

conjectural formula for the asymptotical behavior of the optimal time to hypercontrac-

tivity when the rank of the free orthogonal quantum group tends to infinity.

The article is organized as follows. In Section 2 we recall the necessary pre-

liminaries about compact quantum groups and property RD on their duals. Section 3

is devoted to the study of property RD on non-Kac-type orthogonal free quantum

groups. Finally, in Section 4 we produce applications to hypercontractivity as described

above.

2 Preliminaries

We assume that the reader is familiar with the basic notation and terminology on

compact and discrete quantum groups. For details, we refer the reader to the standard

references [25, 27, 30, 34]. In this paper we will mainly be concerned with the class of

free orthogonal quantum groups and their associated dual discrete quantum groups.

We now recall these objects.

2.1 Compact quantum groups

A compact quantum group G is given by a Woronowicz C∗-algebra C(G), which is in

particular a unital Hopf-C∗-algebra with co-associative coproduct � : C(G) → C(G) ⊗
C(G). We denote by h the Haar state on C(G), which is the unique state on C(G) satisfying

(h ⊗ id)� = (id ⊗h)� = h(·)1.

The Haar state induces the inner product 〈f , g〉 = h( f ∗g) and the norm ‖ f ‖2 = h( f ∗f )1/2

for f , g ∈ C(G). By completion we obtain the Gelfand-Naimark-Segal (GNS) space L2(G)

with canonical cyclic vector ξ0, and we denote πh : C(G) → B(L2(G)) the associated
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4 M. Brannan et al.

representation. The image of πh is the reduced Woronowicz C∗-algebra denoted Cr(G)

and the associated von Neumann algebra is L∞(G) = Cr(G)′′ ⊂ B(L2(G)).

We then define L1(G) as the predual of L∞(G) and consider the natural embed-

ding L∞(G) ↪→ L1(G) given by x �→ h( · x). Then (L∞(G), L1(G)) is a compatible pair of

Banach spaces, which allows one to define the non-commutative Lp-spaces Lp(G) =
(L∞(G), L1(G))1/p by the complex interpolation method [28]. When the Haar state is

tracial we have ‖a‖Lp(G) = h(|a|p)1/p for any 1 ≤ p < ∞ and a ∈ L∞(G).

A representation of G on a Hilbert space Hv is an invertible element v ∈
M(K(Hv) ⊗ C(G)) such that (id ⊗�)(v) = v12v13, using the leg-numbering notation. Here,

v12 = v ⊗ 1 and v13 = σ23(v12) in M(K(Hv) ⊗ C(G) ⊗ C(G)), where σ23 is the unique

extension of the ∗-homomorphism on K(Hv)⊗C(G)⊗C(G) given by T ⊗a⊗b �→ T ⊗b⊗a.

Furthermore, v is called a unitary representation if v∗v = IdHv
⊗ 1C(G) = vv∗. If

Hv is finite-dimensional and equipped with an orthonormal basis (ei)i, the associated

matrix elements of v are vi,j = (e∗
i ⊗ id)v(ej ⊗ id). Then we have v = ∑

eie
∗
j ⊗ vi,j and

�(vi,j) = ∑
vi,j ⊗ vk,j. For two unitary representations v ∈ M(K(Hv) ⊗ C(G)) and w ∈

M(K(Hw) ⊗ C(G)), the tensor product representation is v w = v13w23 ∈ M(K(Hv ⊗
Hw) ⊗ C(G)).

Furthermore, we say that v is irreducible if Mor(v, v) := {T ∈ B(Hv) : v(T ⊗ 1) =
(T ⊗ 1)v} = C·idHv

. We denote by Irr(G) the set of all irreducible unitary representations

of G up to unitary equivalence. For each α ∈ Irr(G) we choose u = uα ∈ α and denote

Hα = Hu (which is always finite-dimensional). The coefficients of uα with respect to

some orthonormal basis (ei)i ⊂ Hα are denoted uα
i, j. The multiplicity of an irreducible

representation u in another representation v is mult(u ⊂ v) = dim Mor(u, v).

There is, for each irreducible unitary representation u, a uniquely defined

positive element Qu ∈ B(Hu) such that du := Tr(Qu) = Tr(Q−1
u ) and such that the

following orthogonality relations hold

h(u∗
i,juk,l) = d−1

u δjl(ek | Q−1
u ei),

h(uk,lu
∗
i,j) = d−1

u δik(ej | Quel).
(2.1)

The number du is called the quantum dimension of u, as opposed to the classical

dimension nu = dim Hu. The compact quantum group G is said to be of Kac type if

Qα = idHα
for all α ∈ Irr(G). This is equivalent to the Haar state h being tracial.

The coefficients uα
i, j of irreducible unitary representations span a dense sub-

algebra O(G) ⊂ C(G), which is a Hopf algebra with respect to the restriction of the

coproduct �. We recall that h is faithful on O(G) and we shall identify O(G) with
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Property RD and Hypercontractivity for Orthogonal Free Quantum Groups 5

its image in Cr(G) through the GNS representation πh—in particular we identify a

representation v and its image (id ⊗πh)(v) ∈ B(Hv) ⊗ Cr(G). Note also that O(G) is dense

in Lp(G) for any 1 ≤ p < ∞.

A compact quantum group G is said to be a compact matrix quantum group

if there exists a finite generating subset
{
α1, · · · , αn

}
of Irr(G) in the sense that any

irreducible unitary representation uα appears as an irreducible component of a tensor

product representation uαm1 uαm2 · · · uαmk for some k ∈ N and 1 ≤ m1, m2, · · · , mk ≤
n. In this case, for any α, the minimal number k ∈ N0 required to generate uα as a

subrepresentation as above is called the length of α and denoted |α| = k. the length of

the trivial representation is 0. We say that a non-zero element f ∈ C(G) or Cr(G) has

length k if it can be written as a linear combination of coefficients uα
i, j with irreducible

representations α of length k. We denote pk ∈ B(L2(G)) the orthogonal projection onto

the subspace of L2(G) spanned by elements of length k.

2.2 Dual algebras

Associated to each compact quantum group G is its dual discrete quantum group Ĝ. For

us the main object of interest will be the algebra

�∞(Ĝ) = {a ∈∏α∈Irr(G) B(Hα) : (‖aα‖)α bounded}

and the subalgebras c00(Ĝ), c0(Ĝ) of sequences with finite support, resp. converging to

0. For each α ∈ Irr(G) we denote pα the corresponding minimal central projection in any

of these algebras. We use the same notation pα for the orthogonal projection onto the

subspace of L2(G) spanned by the GNS images of the coefficients uα
i, j—indeed there is a

natural representation of c0(Ĝ) on L2(G) which realizes this identification.

The algebras c0(Ĝ) and C(G) are related through the “multiplicative unitary”

V = ⊕
α uα ∈ M(c0(Ĝ) ⊗ C(G)). We endow c0(Ĝ) and �∞(Ĝ) with the coproduct �̂ such

that (�̂ ⊗ id)(V) = V13V23. By definition this coproduct is related to the tensor product

construction for representations, more precisely we have, for all α, β, γ ∈ Irr(G), a ∈
B(Hγ ) and T ∈ Mor(γ , α β), the following identity in B(Hγ , Hα ⊗ Hβ):

(pα ⊗ pβ)�̂(a)T = Ta.

There is a distinguished weight ĥ on �∞(Ĝ), called the left Haar weight, given by

ĥ(a) =
∑

α∈Irr(G)

dαTr(Qαaα) (a = (aα)α ∈ c00(Ĝ)).
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6 M. Brannan et al.

We denote again ‖a‖2 = ĥ(a∗a)1/2 the norm on c00(Ĝ) associated with this weight. By

restriction and tensor product one obtains as well norms, still denoted ‖·‖2, on B(Hα) and

B(Hβ⊗Hγ ), associated to the inner products 〈a1, a2〉 = dαTr(Qαa∗
1a2) for all a1, a2 ∈ B(Hα)

and 〈x1, x2〉 = dβdγ Tr((Qβ ⊗ Qγ )x∗
1x2) for all x1, x2 ∈ B(Hβ ⊗ Hγ ). Note that the collection

of matrices Qα defines an algebraic (in general unbounded) multiplier Q = (Qα)α of

c00(Ĝ), the modular element.

The analogue of the classical Fourier transform is the linear map F : c00(Ĝ) →
C(G) given by F(a) = (ĥ ⊗ id)(V(a ⊗ 1)). Explicitly, we have

F(a) =
∑

α∈Irr(G)

nα∑
i, j=1

dα(aαQα)j,iu
α
i, j ∈ Cr(G).

The Haar state h on G and the left Haar weight ĥ on Ĝ are related through the

Plancherel theorem, which asserts that for any a = (aα)α∈Irr(G) ∈ c00(Ĝ), we have

ĥ(a∗a) = h(F(a)∗F(a)).

Let us note the following algebraic properties of the Fourier transform. Recall

that for f ∈ O(G), ϕ ∈ O(G)∗ we denote f ∗ϕ = (ϕ ⊗ id)�( f ) and ϕ ∗ f = (id ⊗ϕ)�( f ). Then

we have, for a ∈ c00(Ĝ), ϕ ∈ O(G)∗:

ϕ ∗ F(a) = F(ba) and F(a) ∗ ϕ = F(abQ),

where b = (id ⊗ϕ)(V) is an algebraic multiplier of c00(Ĝ) and bQ = QbQ−1. On the other

hand for a, b ∈ c00(Ĝ) we have F(a)F(b) = F(a 
 b) where a 
 b is the unique element of

c00(Ĝ) such that (ĥ⊗ ĥ)(�̂(c)(a⊗b)) = ĥ(c(a
b)) for all c ∈ c00(Ĝ). The map a⊗b �→ a
b

defined above is referred to as the convolution product on c00(Ĝ).

We say that Ĝ is finitely generated when G is a compact matrix quantum group.

Having fixed a generating subset in Irr(G), we put pn = ∑
|α|=n pα ∈ c00(Ĝ). This is

compatible with the notation pn ∈ B(L2(G)) introduced previously, in the sense that we

have F(pna)ξ0 = pnF(a)ξ0 for any n ∈ N0 and a ∈ c00(Ĝ).

2.3 The free orthogonal quantum groups

We now come to the main objects of study in this paper. Let N ∈ N, N ≥ 2 and F ∈ GLN(C)

such that FF = ±1. The free orthogonal quantum group is the compact quantum group

O+
F = (C(O+

F ), �), where
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Property RD and Hypercontractivity for Orthogonal Free Quantum Groups 7

(1) C(O+
F ) is the universal unital C∗-algebra generated by N2 elements ui, j, 1 ≤

i, j ≤ N, satisfying the relations making u unitary and u = (F ⊗1)uc(F−1 ⊗1),

where u =
(
ui, j

)
1≤i, j≤N

∈ MN(C) ⊗ C(O+
F ) and uc =

(
u∗

i, j

)
1≤i, j≤N

.

(2) � : C(O+
F ) → C(O+

F ) ⊗ C(O+
F ) is the unital ∗-homomorphism determined by

�(ui, j) =∑N
k=1 ui,k ⊗ uk, j.

The compact quantum group O+
F is a compact matrix quantum group and we

choose the fundamental representation u = (ui, j)i, j ∈ B(CN) ⊗ C(O+
F ), coming from

the canonical generators of C(O+
F ), as the (unique) generating representation. Then it is

known from [1] that for each k ∈ N0 there is a unique irreducible representation (up

to equivalence) of length k, which is equivalent to its conjugate. We denote this class

k, yielding an identification of Irr(O+
F ) with N0. We have in particular u0 = 1C(G) (the

trivial representation), and u1 = u = (ui, j) ∈ B(H1) ⊗ C(G) with H1 = C
N .

One can check that Q1 = FtrF̄, so that d1 = Tr(F∗F). There exists a unique q ∈
(0, 1] such that d1 = q + q−1 and we denote also Nq = d1 = q + q−1. On the other hand

one can see that ‖Qk‖ = ‖Q1‖k = ‖F‖2k for all k ∈ N, and that O+
F is of Kac type iff F is

unitary. This is typically the case of F = IN and we denote in this case O+
N := O+

IN
.

It is, moreover, known that um un is unitarily equivalent to u|m−n| ⊕ u|m−n+2| ⊕
· · · ⊕ um+n. We denote by Pl = Pm,n

l the orthogonal projection from Hm ⊗ Hn onto Hl for

any one of l = |m − n|, |m − n| + 2, · · · , m + n. We have in particular n0 = 1, n1 = N,

n1nk+1 = nk+2 + nk for all k ∈ N0 and d0 = 1, d1 = Nq := Tr(F∗F), d1dk+1 = dk+2 + dk

for all k ∈ N0. Finally, it was also shown by Banica [1] that the fundamental character

χ1 =∑N
i=1 ui,i is a semicircular element (on [−2, 2]) with respect to the Haar state.

2.4 Property RD and its generalizations

In the case when Ĝ is a classical discrete group �, the property of rapid decay amounts

to controlling the norm of Cr(G) = C∗
r (�) from above by the 2-norm. More precisely a

discrete group � has Property RD if there exists a polynomial P such that

‖x‖C∗
r (�) ≤ P(k)‖x‖2 (2.2)

for all k ∈ N0 and all x ∈ C∗
r (�) supported on elements of length k in �, with respect to

some fixed length (for instance a word length if � is finitely generated). Note that the

reverse inequality ‖x‖2 ≤ ‖x‖C∗
r (�) is always true.

A quantum generalization of property RD was introduced in [32] by means of

the same inequality (2.2), with appropriate notions of length and support as introduced
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8 M. Brannan et al.

above. It was shown in the same article that property RD holds for the dual of O+
N but

fails for the dual of any compact quantum group G which is not of Kac type. Later, a

modification of the quantum definition was proposed in [2] so as to accommodate non-

Kac examples such as SUq(2) and more generally quantum groups G with (classical)

polynomial growth. This modification is obtained by replacing the 2-norm on the right-

hand side of (2.2) by a still “easily computable” twisted 2-norm.

In this setting, “easily computable” means a norm of the form ‖ f ‖ϕ = ‖ϕ 
 f ‖2 or

‖ f 
 ϕ‖2 for f ∈ O(G), with ϕ ∈ O(G)∗ fixed. Using the fact that the Fourier transform is

isometric, this can also be written ‖F(a)‖ϕ = ‖Da‖2 or ‖aDQ‖2 for a ∈ c00(Ĝ), where

D = (id ⊗ϕ)(V), and these norms can indeed be computed by multiplying matrices

and summing their traces. In this picture the twisted property RD takes the form

‖F(a)‖Cr(G) ≤ P(k)‖Da‖2 or ‖F(a)‖Cr(G) ≤ P(k)‖aD′‖2 if F(a) is of length k, for some

fixed algebraic multiplier D or D′ of c00(Ĝ). Observe that by polar decomposition one

can assume D > 0 (resp. D′√Q > 0) without changing the associated twisted norm.

Of course one could always achieve such inequalities by taking a central

multiplier D = (bαIHα
)α with weights bα growing sufficiently rapidly (see, e.g., [31] and

the discussion at the beginning of Section 3.1). However, for some applications (e.g.,

to the metric approximation property [5], and to non-commutative geometry [2]), it is

desirable to use “natural” or “optimal” elements D, D′.
We note that the authors of [2] choose the twisted 2-norm in such a way that{√

nαuα
i, j

}
1≤i, j≤nα

α∈Irr(G)

forms an orthonormal basis, as it is in the case of Kac-type compact

quantum groups. An easy inspection with our conventions shows that the only twisted

norm with this property is ‖F(a)‖ϕ := ‖a
√

C‖2, where

C =
(dα

nα

Qα

)
α

(2.3)

is the canonical element used in [2] to define their twisted 2-norms. In the following

definition we fix a multiplier D = (Dα)α∈Irr(G) of c00(Ĝ), we consider the associated

twisted norms ‖a‖2,D := ‖aD‖2 for a ∈ c00(Ĝ), and we put

‖ f ‖2,D := ‖F−1( f )‖2,D = ‖F−1( f )D‖2

for f ∈ O(G). Observe that D is uniquely determined by ‖ · ‖2,D if we assume D
√

Q ≥ 0.

Definition 2.1. Let G be a compact matrix quantum group with a fixed family of

generating irreducible representations and D a multiplier of c00(Ĝ). We say that Ĝ has
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Property RD and Hypercontractivity for Orthogonal Free Quantum Groups 9

Property RDD if there exists a polynomial P ∈ R+[X] such that for all k ∈ N0 and f ∈ O(G)

of length k, we have

‖ f ‖Cr(G) ≤ P(k)‖ f ‖2,D.

The property above can also be written ‖F(a)‖Cr(G) ≤ P(k)‖a‖2,D for all k ∈ N0

and a ∈ pkc00(Ĝ). Explicitly, property RDD asks that

∥∥∥∥∥∥
∑
|α|=k

nα∑
i, j=1

dα(aαQα)j,iu
α
i, j

∥∥∥∥∥∥
2

Cr(G)

≤ P(k)2
∑
|α|=k

dα Tr(DαQαD∗
αa∗

αaα). (2.4)

The property RD considered in [2] corresponds to the case D = √
C, which satisfies

D
√

Q ≥ 0 since C commutes with Q. If G is of Kac type, the property RD√
C coincides

with the property RD in [32]. In particular, if Ĝ is a discrete group �, then Property

RD√
C is exactly same with the property RD of �.

We now restate [32, Lemma 4.6] in a slightly more general form. Note that in the

case G = O+
F equipped with the canonical generating representation, there is only one

irreducible representation α = k ∈ Irr(G) for each given length k, and the inclusions

ul ⊂ uk un are multiplicity-free.

Lemma 2.2. Let G be a compact matrix quantum group with a fixed family of

generating irreducible representations. For k, n ∈ N0 and γ ∈ Irr(G) we denote

ν
γ

k,n =
∑

|α|=k,|β|=n

dαdβ

dγ

mult(uγ ⊂ uα uβ). (2.5)

Then the discrete quantum group Ĝ has property RDD with respect to a multiplier D

iff there exists a polynomial P such that we have, for any k, l, n ∈ N0 and for every

a ∈ pkc0(Ĝ), b ∈ pnc0(Ĝ):

∑
|γ |=l

ν
γ

k,n

∥∥�̂(pγ )(a ⊗ b)�̂(pγ )
∥∥2

2 ≤ P(k)2
∥∥aD ⊗ b‖2

2. (2.6)

Proof. The proof is a straightforward extension of the ideas in the proof of [32, Lemma

4.6] using our notation. Let us recall the main ideas for the convenience of the reader.

First of all, property RDD is equivalent to the fact that ‖ pl fpn‖Cr(G) ≤ P(k)‖ f ‖2,D

for all k, l, n ∈ N0 and f ∈ O(G) of length k, see [32, Proposition 3.5] and [2, Proposition
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10 M. Brannan et al.

3.4]. Using the Fourier transform, this means that we require

‖ pl F(a)F(b)ξ0‖2 ≤ P(k)‖a‖2,D‖b‖2 = P(k)‖aD ⊗ b‖2, (2.7)

for all a of length k and b of length n. Moreover, we have ‖plF(a)F(b)ξ0‖2 = ‖plF(a 


b)ξ0‖2 = ‖F(pl(a 
 b))‖2 = ‖pl(a 
 b)‖2 — indeed by definition of pl (in c0(Ĝ) and B(L2(G)))

and of V we have (1 ⊗ pl)V(1 ⊗ ξ0) = (pl ⊗ id)V(1 ⊗ ξ0). Then we can decompose into

orthogonal components: ‖pl(a 
 b)‖2
2 =∑|γ |=l ‖pγ (a 
 b)‖2

2.

Then by definition of the convolution product we can write, for any c ∈ c0(Ĝ):

ĥ(c∗pγ (a 
 b)) = (ĥ ⊗ ĥ)(�̂(c)∗�̂(pγ )(a ⊗ b))

= (ĥ ⊗ ĥ)((pk ⊗ pn)�̂(c)∗�̂(pγ )(a ⊗ b)�̂(pγ )).

Note that pγ is central in c0(Ĝ) and that �̂(pγ ) is (ĥ ⊗ ĥ)-central. To obtain the

expression of ‖pγ (a 
 b)‖2
2, which appears in the left-hand side of (2.6), it remains to

take the supremum over c ∈ pγ c0(Ĝ), with ‖c‖2 ≤ 1. We show below that we have in

fact ‖(pk ⊗ pn)�̂(c)‖2
2 = ν

γ

k,n‖c‖2
2, which yields the correct expression ‖pγ (a 
 b)‖2 =

(ν
γ

k,n)1/2‖�̂(pγ )(a ⊗ b)�̂(pγ )‖2 so that (2.6) results from (2.7).

Indeed we have �̂(Q) = Q⊗Q in the multiplier algebra of c00(Ĝ)⊗c00(Ĝ), and on

the matrix algebra pγ c0(Ĝ) = B(Hγ ) the ∗-homomorphism (pα ⊗pβ)�̂ is an amplification

with the same multiplicity as the inclusion uγ ⊂ uα uβ . Thus, we have

Tr
(
(Q ⊗ Q)(pα ⊗ pβ)�̂(d)

)
= mult(uγ ⊆ uα uβ) Tr(Qd) (2.8)

for any d ∈ B(Hγ ). As a result we can write

(ĥ ⊗ ĥ)
(
(pk ⊗ pn)�̂(pγ d)

)
=

∑
|α|=k,|β|=n

dαdβ(Tr ⊗ Tr)[(pα ⊗ pβ)(Q ⊗ Q)�̂(pγ d)]

=
∑

|α|=k,|β|=n

dαdβmult(uγ ⊂ uα uβ) Tr(Qpγ d) = ν
γ

k,nĥ(pγ d).

Taking d = c∗c we obtain ‖(pk ⊗ pn)�̂(c)‖2
2 = ν

γ

k,n‖c‖2
2 as claimed. �

3 On Property RDD for Ô+
F

In this section we turn our attention to the duals of the free orthogonal quantum

groups O+
F , establishing some necessary conditions for property RDD to hold for a given
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Property RD and Hypercontractivity for Orthogonal Free Quantum Groups 11

multiplier D. In this case property RDD with respect to a multiplier D and a polynomial

P is characterized by the following multiplicity-free version of (2.6):

‖�̂(pl)(a ⊗ b)�̂(pl)‖2 ≤
√

dl

dkdn
P(k)‖aDk ⊗ b‖2, (3.1)

for all k, l, n such that ul ⊂ uk un, a ∈ B(Hk) and b ∈ B(Hn).

Here the 2-norms are the ones coming from the weight ĥ, but one can use as

well the twisted Hilbert-Schmidt norms, for example, ‖a‖2
HS = Tr(Qka∗a) for a ∈ B(Hk),

since these two norms only differ by a scalar factor
√

dk. Moreover, if we fix an

isometric intertwiner (unique up to a phase) v = vk,n
l ∈ Mor(ul, uk ⊗ un) we have

‖�̂(pl)(a ⊗ b)�̂(pl)‖HS = ‖vv∗(a ⊗ b)vv∗‖HS = ‖v∗(a ⊗ b)v‖HS — notice that the last norm

is the twisted Hilbert–Schmidt norm on B(Hl).

We can moreover give an explicit form to the intertwiners vk,n
l as follows.

For each n ∈ N0 the tensor power representation u1 · · · u1 contains a unique copy

of un, we choose for Hn the corresponding subspace of H⊗n
1 and we denote Pn =

p⊗n
1 �̂n−1(pn) ∈ B(H⊗n

1 ) the corresponding orthogonal projection. We further fix an

intertwiner (unique up to a phase) tn ∈ Mor(1, un un) such that ‖tn‖ = √
dn and we

consider the intertwiners Ak,n
l = (Pk ⊗ Pn)(id ⊗ tr ⊗ id)Pl ∈ Mor(ul, uk ⊗ un), where

r = (k + n − l)/2. One can then take vk,n
l = ‖Ak,n

l ‖−1Ak,n
l .

The (operator) norm of Ak,n
l can be explicitly computed, see for example [32,

Lemma 4.8] or [7, Equation (6) and Proposition 3.1]. This norm happens to be controlled

from below and above, up to factors depending only the parameter 0 < q < 1 given by

q + q−1 = Tr(F∗F), as follows:

1

dr
≤ ‖Ak,n

l ‖−2 = 1

dr

r∏
s=1

(1 − q2+2s)(1 − q2l−2r+2s)(1 − q2m−2r+2s)

(1 − q2k+2+2s)(1 − q2s)2

≤ 1

[r + 1]q

( r∏
s=1

1

1 − q2s

)3 ≤ 1

dr

( ∞∏
s=1

1

1 − q2s

)3
,

where l = k + n − 2r. If we put

1 < C(q) = 1

(1 − q2)

( ∞∏
s=1

1

1 − q2s

)3
, (3.2)
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12 M. Brannan et al.

and use the inequality

(1 − q2)3 ≤ dkdn

dld
2
r

≤ (1 − q2)−2,

which follows from the dimension formula dn = qn+1−q−n−1

q−q−1 , we get

(1 − q2)3/2
( dl

dkdn

)1/2 ≤ ‖Al,m
k ‖−2 ≤ C(q)

( dl

dkdn

)1/2
. (3.3)

Inequality (3.3) shows that ‖Ak,n
l ‖−2 compensates exactly for the analogous

factor of the right-hand side of the RD inequality (3.1), which can thus be rewritten

in the equivalent formulation

‖(Ak,n
l )∗(a ⊗ b)Ak,n

l ‖HS ≤ P(k)‖aDk ⊗ b‖HS. (3.4)

In (3.4), it is important to use the twisted Hilbert–Schmidt norms since the matrix spaces

are no longer the same on both sides.

Remark. The universal constant C(q) defined in (3.2) will make several appearances

in the remainder of the paper.

Note that we have ul ⊂ uk un iff l ∈ {|n−k|, |n−k+2|, . . . , n+k}. One can obtain

necessary conditions for property RDD by fixing the value of l. More specifically, we say

that the dual of O+
F satisfies property RD0

D (resp. RDmax
D ) for some polynomial P if the

above inequality is satisfied for all k = n ∈ N0 and l = 0 (resp. for all k, n ∈ N0 and for

l = k + n).

In the case of RD0
D we have simply Ak,n

l = An,n
0 = tn : C → Hn ⊗ Hn so that

Property RD0
D, with respect to the polynomial P, is equivalent to the fact that

|t∗
n(a ⊗ b)tn| ≤ P(n)‖aDn ⊗ b‖HS. (3.5)

for all n ∈ N0 and a, b ∈ B(Hn). Note that tn can be written uniquely as

tn(1) = ∑
i ei ⊗ jn(ei), where the anti-linear map jn : Hn → Hn does not depend on the

chosen orthonormal basis (ei)i of Hn, and recall that we have Qn = j∗njn and j2
n = ± id.

Then one can compute (recalling that (ζ |jξ) = (ξ |j∗ζ ) for an anti-linear map j):

t∗
n(a ⊗ b)tn = Tr(j∗nb∗jna) (3.6)
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Property RD and Hypercontractivity for Orthogonal Free Quantum Groups 13

Summing everything up, one can reformulate property RD0
D as follows:

Definition 3.1. We say that Ô+
F has RD0

D if there exists a polynomial P such that

∣∣t∗
n(a ⊗ b)tn

∣∣ = Tr(j∗nb∗jna) ≤ P(n)‖aDn ⊗ b‖HS (3.7)

for all a, b ∈ B(Hn) and n ∈ N0.

It turns out that property RD0
D for the dual of O+

F can be explicitly characterized

in terms of the matrices Dn (and Qn), as follows.

Proposition 3.2. The discrete quantum group Ô+
F has RD0

D with respect to a polynomial

P if and only if

‖Q−1/2
n D−1

n Qn‖‖Q1/2
n ‖ ≤ P(n) for all n ∈ N. (3.8)

Proof. Note that (3.7) can be written as

| Tr(b∗a)|2 ≤ P(n)2‖aDn ⊗ j∗nbjn‖2
HS = P(n)2 Tr(D∗

nQnDna∗a) Tr(Qnj∗nb∗jnj∗nbjn).

We have, moreover, D∗
nQnDn = D̃2

n, where D̃n =Dn

√
Qn is positive, and Tr(Qnj∗nb∗jnj∗nbjn)=

Tr(jnj∗njnj∗nb∗jnj∗nb) = Tr(Q−1
n b∗Q−1

n bQ−1
n ). Now we note that, by the Cauchy–Schwarz

inequality (for the untwisted Hilbert–Schmidt scalar product), the maximum of

| Tr(b∗a)|2/ Tr(D̃2
na∗a) equals Tr(D̃−2

n b∗b), attained at a = bD̃−2
n , so that RD0

D is equivalent

to

Tr(D̃−2
n b∗b) ≤ P(n)2 Tr(Q−1

n b∗Q−1
n bQ−1

n ).

Replacing b with Q
1
2
nbQn, the above can be written as

Tr(QnD̃−2
n Qnb∗Qnb) ≤ P(n)2 Tr(b∗b).

We note that, for positive matrices M, N ∈ B(Hn)+,

max
b �=0

Tr(Mb∗Nb)

Tr(b∗b)
=
(

max
b �=0

‖N
1
2 bM

1
2 ‖HS

‖b‖HS

)2
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14 M. Brannan et al.

equals ‖M‖‖N‖, attained at b = ξη∗ ∈ B(Hn), where ξ , η are unit vectors chosen to satisfy

‖N
1
2 ξ‖ = ‖N

1
2 ‖ and ‖M

1
2 η‖ = ‖M

1
2 ‖. Therefore, RD0

D is equivalent to

‖QnD̃−2
n Qn‖‖Qn‖ = ‖D̃−1

n Qn‖2‖Q1/2
n ‖2 ≤ P(n)2 for all n ∈ N,

which gives us the desired conclusion. �

Remark. The same techniques apply if one tries to twist the 2-norm from the other

side, that is, if one considers inequalities of the form |t∗
n(a ⊗ b)tn| ≤ P(n)‖Dna ⊗ b‖HS.

Then one arrives at the condition ‖D−1
n Q1/2

n ‖‖Q1/2
n ‖ ≤ P(n), which is equivalent to the

condition of Proposition 3.2 if D and Q commute.

Recall that [2] take D2
k = Ck = dk

nk
Qk to verify RDD for SUq(2) (more generally,

the Drinfeld–Jimbo q-deformations Gq). It seems reasonable to consider a continuous

family of variants of this multiplier by taking Dk = (
dk
nk

)|s|/2Qs/2
k with s ∈ R. Recalling

that ‖Qk‖ = ‖Q−1
k ‖ = ‖Q1‖k, we see that in that case Proposition 3.2 reads

(
nk

dk

)|s|
‖Q1‖(|1−s|+1)k ≤ P(k)2 for all k ≥ 0.

However, the following theorem shows that this inequality is not satisfied for

any non-Kac O+
F as soon as N ≥ 3.

Theorem 3.3. Let N ≥ 3, s ∈ R and consider the multiplier D(s) = (Dk)k∈N0
, with

Dk = (
dk/nk

)|s|/2 Qs/2
k . Then Ô+

F has property RD0
D(s) if and only if O+

F is of Kac type. In

particular, all non-Kac O+
F do not have property RDD(s).

Proof. We only need to consider the case where O+
F is not of Kac type. That is, we

assume Q1 �= I. Since
(

nk
dk

)|s| ‖Q1‖(|1−s|+1)k ≥
(

nk
dk

‖Q1‖k
)|s|

for all k ∈ N, it suffices to

show that nk
dk

‖Q1‖k has exponential growth, that is,

lim inf
k→∞

(
nk‖Q1‖k

dk

) 1
k

> 1.

First of all, we have limk→∞ d
1
k
k = f (d1) and limk→∞ n

1
k
k = f (n1) where f (t) =

t+
√

t2−4
2 . Let us denote by λ1 ≤ · · · ≤ λN the eigenvalues of Q1. Then, since the spectrum

of Q1 is symmetric under inversion, we have λ1 < 1 and λ2 ≤ 1.
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Property RD and Hypercontractivity for Orthogonal Free Quantum Groups 15

Then, in the expansion of (λ1 +· · ·+λN)2 =∑N
i, j=1 λiλj, we have λ2

1, λ1λ2, λ2λ1 < 1,

λ2
2 ≤ 1 and the other terms are smaller than λ2

N . From this observation we obtain

d2
1 < 4 + (N2 − 4)λ2

N ,

which together with the obvious estimate d1 < NλN yields

f (d1) =
d1 +

√
d2

1 − 4

2
<

NλN +
√

(N2 − 4)λ2
N

2
= f (n1)‖Q1‖.

Hence, we have lim infk→∞
(

nk‖Qk‖
dk

) 1
k = f (n1)‖Q1‖

f (d1)
> 1. �

Remark. On the other hand, one might try to consider the ”opposite” case of RDmax
D ,

which is satisfied iff we have ‖Pk+n(a ⊗ b)Pk+n‖HS ≤ P(k)‖aDk ⊗ b‖HS for all k, n ∈ N0

and a ∈ B(Hk), b ∈ B(Hn). In fact, when D commutes with Q it turns out that RDmax
D is a

consequence of RD0
D, thank to Proposition 3.2.

Indeed we always have ‖Pk+n(a ⊗ b)Pk+n‖HS ≤ ‖a ⊗ b‖HS (using the fact that Pk+n

commutes with Qk ⊗ Qn), so that ‖a‖HS ≤ P(k)‖aDk‖HS implies RDmax
C . Performing the

same analysis as in the proof of Proposition 3.2 we see that this stronger condition

is equivalent to ‖D−1
k ‖ ≤ P(k) for all k. On the other hand when D commutes with Q

we can write ‖D−1
k ‖ = ‖Q−1/2

k D−1
k QkQ−1/2

k ‖ ≤ ‖Q−1/2
k D−1

k Qk‖‖Q−1/2
k ‖, which makes the

connection with the characterization of RD0
D given at Proposition 3.2 since ‖Q−1/2

k ‖ =
‖Q1/2

k ‖.

Remark. The analysis of the above two subcases of Property RDD leads us to ask

whether property RDD is equivalent to RD0
D for Ô+

F ? That is, is property RDD equivalent

to the inequalities ‖Q−1/2
k D−1

k Qk‖‖Q1/2
k ‖ ≤ P(k), at least when D and Q commute?

3.1 A weaker variant of property RD

Despite the failure of RD√
C for non-amenable, non-Kac-type orthogonal free quantum

groups, one can prove a weaker RD inequality (corresponding to a larger multiplier D),

which holds for all orthogonal free quantum groups, and also for all discrete quantum

groups with polynomial growth. This inequality was already stated (without proof) and

used in [31], see Remark 7.6 therein. We provide below a slightly more precise statement

and a proof. In the following section, we will see how this weakened property RD is
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16 M. Brannan et al.

applicable to find almost sharp optimal time estimates for ultracontractivity of heat

semigroups on O+
F .

Proposition 3.4. Let F ∈ GLN(C) be such that FF̄ = ±IN , N ≥ 2. Then for any k, l, n ∈ N0

and a ∈ B(Hk) ⊂ �∞(Ô+
F ) we have

‖plF(a)pn‖ ≤ C(q)‖F‖2k‖a‖2 and ‖F(a)‖ ≤ C(q)(k + 1)‖F‖2k‖a‖2,

where C(q) > 1 is the constant defined by (3.2) for 0 < q < 1 such that Tr(F∗F) = q + q−1.

Proof. We follow quite closely the proof of [32, Theorem 4.9], taking into account the

twisting of Hilbert–Schmidt norms. Starting again from (3.1) and taking into account

(3.3) as in the beginning of Section 3 the 1st inequality will follow if we prove

‖(Ak,n
l )∗(a ⊗ b)Ak,n

l ‖HS ≤ ‖F‖2k‖a ⊗ b‖HS (3.9)

for any k, l, n ∈ N0 such that ul ⊂ uk un, a ∈ B(Hk) and b ∈ B(Hn). Since Pl is an

orthogonal projection, the left-hand side admits ‖(id ⊗t∗
r ⊗ id)(a ⊗ b)(id ⊗tr ⊗ id)‖HS as

an evident upper bound, where r = (k + n − l)/2 and we are using the twisted Hilbert–

Schmidt norm on B(Hk−r ⊗ Hn−r). (Note that the projection Pl commutes with the matrix

Qk ⊗ Qn defining the twisting of the Hilbert–Schmidt norm.)

We decompose a = ∑
i ai ⊗ Ei and b = ∑

i j∗rEijr ⊗ bi, where ai ∈ B(Hk−r), bi ∈
B(Hn−r) and (Ei)i is the basis of matrix units in B(Hr) corresponding to an orthonormal

basis of eigenvectors of Qr in Hr. With this choice we have in particular that (Ei)i and

(j∗rEijr)i are orthogonal bases with respect to the twisted Hilbert–Schmidt scalar product

on B(Hr), and one can moreover compute, if Ei = epe∗
q and ep, eq are eigenvectors of Qr

with respect to eigenvalues λp, λq: ‖Ei‖2
HS = λq, ‖j∗rEijr‖2

HS = λ−2
q λ−1

p . In particular, we

note that

‖Ei‖−2
HS = λqλp‖j∗rEijr‖2

HS ≤ ‖Qr‖2‖j∗rEijr‖2
HS. (3.10)

According to (3.6), we can then write

‖(id ⊗t∗
r ⊗ id)(a ⊗ b)(id ⊗tr ⊗ id)‖HS = ‖∑i, j Tr(E∗

j Ei)(ai ⊗ bj)‖HS = ‖∑i ai ⊗ bi‖HS.
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Property RD and Hypercontractivity for Orthogonal Free Quantum Groups 17

Now we apply the triangle inequality and Cauchy–Schwartz inequality:

‖(Ak,n
l )∗(a ⊗ b)Ak,n

l ‖2
HS ≤ (∑i ‖ai ⊗ bi‖HS

)2 = (∑i ‖ai‖HS‖bi‖HS

)2
≤∑i ‖ai‖2

HS‖Ei‖2
HS

∑
i ‖bi‖2

HS‖Ei‖−2
HS = ‖a‖2

HS

∑
i ‖bi‖2

HS‖Ei‖−2
HS.

Finally, we have
∑

i ‖bi‖2
HS‖Ei‖−2

HS ≤ ‖Qr‖2∑
i ‖bi‖2

HS‖j∗rEijr‖2
HS = ‖Qr‖2‖b‖2

HS by (3.10).

Since ‖Qr‖ = ‖Q1‖r = ‖F‖2r ≤ ‖F‖2k we have proved (3.9).

The 2nd inequality in the statement follows from the 1st one by a standard

argument, see [32, Proposition 3.5], using the fact that for any n the tensor product

uk un has at most k + 1 irreducible subobjects. �

Remark. The property above can be interpreted as property RDD with respect to the

central multiplier D = ∑
k∈N0

‖F‖2kpk = ∑
k∈N0

‖Qk‖pk and the (constant) polynomial

P = C(q). Note that the element C in [2] satisfies
√

C ≤ D and thanks to [2, Proposition

4.2] this implies that property RDD, for this element D, is also satisfied by all discrete

quantum groups of polynomial growth, and still reduces to the usual property RD for

(classical) discrete groups.

4 Applications: Ultracontractivity and Hypercontractivity of the Heat Semigroup

on O+
F

In this section of the paper, we are interested in studying hypercontractivity and

ultracontractivity properties of the heat semigroup (Tt)t>0 on the free orthogonal

quantum groups O+
F . This heat semigroup was introduced and studied in [12, 14] in

the Kac-type setting (i.e., F = IN ), but a standard argument using results from [13, 15] on

monoidal equivalences and transference properties of central multipliers allows one to

define an appropriate heat semigroup on all free orthogonal quantum groups O+
F ’s. The

details of this are spelled out, for example, in [11, Section 6.1].

Let M be a von Neumann algebra equipped with a fixed faithful normal state

ϕ. In the following, a ϕ-Markov semigroup on M will mean a σ -weakly continuous

semigroup (Tt)t≥0 of normal unital completely positive ϕ-preserving maps Tt : M → M.

With a slight abuse of notation, we will identify M ⊂ L2(M) as a dense subspace

(via the GNS map associated to ϕ) also denote by Tt : L2(M) → L2(M) the canonical

extension of Tt to a contraction on the GNS space L2(M). The semigroup (Tt)t≥0 is called

ultracontractive if there exists some t∞ ≥ 0 such that Tt(L2(M)) ⊂ M for all t > t∞.

By the closed graph theorem, ultracontractivity is equivalent to that Tt : L2(M) → M is
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18 M. Brannan et al.

bounded for all t > t∞. We call (Tt)t≥0 hypercontractive if for each 2 < p < ∞, there

exists a tp > 0 such that for all t ≥ tp, we have:

‖Tt‖L2(M)→Lp(M) ≤ 1.

(In the above, we have used the standard fact [22] that the contractions Tt admit

canonical extensions to contractions Tt : Lp(M) → Lp(M) on the associated non-

commutative Lp-spaces for all p ∈ [1, ∞). We omit the precise details regarding these

extensions here because in the following we only consider hypercontractivity in the

tracial setting.) In the case of ultracontractive (resp. hypercontractive) semigroups (Tt)t

the optimal time to∞ (resp. to
p) for ultracontractivity (resp. hypercontractivity) is given by

to∞ = inf{t∞} (resp. to
p = inf{tp}).

Let us now consider the heat semigroup on O+
F .

4.1 The heat semigroup on O+
F

Fix N ∈ N and F ∈ GLN(C) with FF̄ = ±1. Let 0 < q < 1 be such that Nq := Tr(F∗F) =
q + q−1, and define

λ(k) = λq(k) = U ′
k(Nq)

Uk(Nq)
(k ∈ N0), (4.1)

where Uk is the k-th type-II Chebychev polynomial (defined by U0(x) = 1, U1(x) = x,

and xUk(x) = Uk+1(x) + Uk−1(x)). The heat semigroup on O+
F [11, 14] is the h-Markov

semigroup (Tt)t≥0 on L∞(O+
F ) given by

Tt

(
uk

i, j

)
= e−tλ(k)uk

i, j,

for all 1 ≤ i, j ≤ nk, and k ∈ N0.

Note that we have λ(0) = 0, λ(1) = 1/Nq and, moreover, from the estimates in [14]

we have k
Nq

≤ λ(k) ≤ k
Nq−2 for all k ∈ N.

4.2 Ultracontractivity of the heat semigroup on O+
F

We first consider the ultracontractivity of the heat semigroups. In the tracial case, the

ultracontractivity of the heat semigroup for all time (with t∞ = 0) is well known and

follows from standard tracial property RD estimates. See [14, Theorem 2.1]. In the case

of general O+
F , we show below that ultracontractivity still holds, but generally not for

all time.
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Property RD and Hypercontractivity for Orthogonal Free Quantum Groups 19

Proposition 4.1. The heat semigroup (Tt)t≥0 is ultracontractive for every free orthog-

onal quantum group O+
F . Moreover, if tF is the optimal time for ultracontractivity of the

heat semigroup of O+
F we have

2(Nq − 2) log ‖F‖ ≤ tF ≤ 2Nq log ‖F‖. (4.2)

Proof. First of all, let us suppose that t > 2Nq log ‖F‖ and take f ∈ L2(O+
F ). Then we

can write f =∑k≥0 fk, with fk ∈ span
{
uk

i, j : 1 ≤ i, j ≤ nk

}
. Using the exponential form of

property RD given by Proposition 3.4, we then have

‖Tt( f )‖∞ ≤
∑
k≥0

e−λ(k)t‖ fk‖∞

≤
∑
k≥0

e−λ(k)tC(q)(k + 1)‖F‖2k‖ fk‖2

≤ C(q)
(∑

k≥0

e−2λ(k)t(k + 1)2‖F‖4k
)1/2‖ f ‖2.

Hence, the conclusion follows if

e−2λ(k)t‖F‖4k ≤ e−Mk

for all k ∈ N0 by a universal constant M > 0. Indeed, let M = 2
Nq

t − 4 log ‖F‖ > 0. Then

inf
k∈N0

{
λ(k)

k
t − 2 log ‖F‖

}
≥ 1

Nq
t − 2 log ‖F‖ = M

2
> 0,

which completes the proof.

To prove the stated lower bound, let us assume that ‖Tt( f )‖L∞(O+
F ) ≤ K‖ f ‖L2(O+

F )

for a universal constant K > 0. Then for any k ≥ 0 and 1 ≤ i, j ≤ nk we have

e−tλ(k)‖(uk
i, j)

∗‖L2(O+
F ) ≤ e−tλ(k)‖(uk

i, j)
∗‖L∞(O+

F )

= e−tλ(k)‖uk
i, j‖L∞(O+

F ) ≤ K‖uk
i, j‖L2(O+

F ).

On the other hand, using (2.1) it is easy to compute ‖uk
i, j‖2

L2(O+
F )

= d−1
k (Q−1

k )ii and

‖(uk
i, j)

∗‖2
L2(O+

F )
= d−1

k (Qk)jj. Therefore, using a basis for Hk in which Qk is diagonal we
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obtain

‖F‖2k = √‖Qk‖‖Qk‖ = max
i, j

‖(uk
i, j)

∗‖L2(O+
F )

‖uk
i, j‖L2(O+

F )

≤ K · etλ(k) ≤ K · e
tk

Nq−2 ,

which implies t ≥ 2(Nq − 2) log ‖F‖ − (Nq−2) log(K)

k for all k. Then, taking the limit k → ∞
gives the desired conclusion. �

Remark. A closer examination of the above proof actually shows that Tt(L2(O+
F )) ⊂

Cr(O
+
F ) for all t > tF . That is, the heat semigroup on O+

F has some additional “smoothing”

properties beyond what is guaranteed by ultracontractivity.

Remark. Of course, it is natural to wonder if hypercontractivity holds for the heat

semigroups of all free orthogonal quantum groups O+
F . Actually we can show that

hypercontractivity is always obtained, although at this time we have no clue for optimal

estimates for the time to contraction.

Proposition 4.2. Let 2 < p < ∞. For sufficiently large t (depending on p), Tt : L2(O+
F ) →

Lp(O+
F ) is a contraction.

Proof. For any f ∈ L2(O+
F ), we have from [29, Theorem 1],

‖Tt( f )‖2
p ≤ ‖h(Tt( f ))1‖2

p + (p − 1)‖Tt( f ) − h(Tt( f ))‖2
p

≤ |h(f )|2 + (p − 1)
(∑

n≥1

e−λ(n)t‖ fn‖p

)2

≤ |h( f )|2 + (p − 1)
(∑

n≥1

e−λ(n)t‖ fn‖∞
)2

≤ |h( f )|2 + (p − 1)
(∑

n≥1

e−λ(n)tC(q)(n + 1)‖F‖2n‖fn‖2

)2

≤ |h( f )|2 + (p − 1)
(∑

n≥1

e−2λ(n)tC(q)2(n + 1)2‖F‖4n
)
‖ f − h( f )1‖2

2 ≤ ‖ f ‖2
2,

for all t large enough so that

∑
n≥1

(p − 1)e−2λ(n)tC(q)2(n + 1)2‖F‖4n ≤ 1.

�
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Property RD and Hypercontractivity for Orthogonal Free Quantum Groups 21

4.3 Improved hypercontractivity results for O+
N

For the remainder of the paper we turn our attention to the Kac setting and consider O+
N .

Our aim is to revisit the hypercontractivity results of [14], and obtain some improved

estimates (from above and below) on the optimal time to contraction for the heat

semigroup (Tt)t≥0. In the following we let tN,p be the optimal time for L2 → Lp

hypercontractivity of the heat semigroup on O+
N .

We begin with a necessary lower bound for tN,p.

Lemma 4.3. For each N ≥ 2 and 2 < p < ∞, we have

tN,p ≥ N

2
log(p − 1).

Proof. Let χ1 denote the character of the fundamental representation of O+
N . With fa =

1 + aχ1 ∈ L2(O+
N) and sufficiently small a > 0, we have

(1 + a2)
p
2 = ‖ fa‖p

L2(O+
N )

≥ ‖TtN,p
( fa)‖p

Lp(O+
N )

= 1

2π

∫ 2

−2
(1 + ae− tN,p

N x)p
√

4 − x2dx

= 2

π

∫ π
2

− π
2

(1 + 2ae− tN,p
N sin(θ))p cos2(θ)dθ .

Then, using Taylor expansion up to 2nd order, we can obtain

p

2
= lim

a↘0

(1 + a2)
p
2 − 1

a2 ≥ lim
a↘0

2
π

∫ π
2

− π
2
(1 + 2ae− tN,p

N sin(θ))p cos2(θ)dθ − 1

a2 = p(p − 1)e− 2tN,p
N

2
.

Equivalently, we have tN,p ≥ N
2 log(p − 1). �

4.3.1 Khintchine inequalities for Lp(O+
N)

Our next goal is to establish upper bounds for the optimal time to contraction tN,p. To

do this, we follow along the lines of [29, Lemma 7], establishing and then exploiting

a certain non-commutative Khintchine-type inequality over O+
N . More precisely, we are

interested in finding the optimal constants Km,p > 1 such that for all m ∈ N, p > 2, and

f ∈ O(G) of length m we have

‖ f ‖Lp(O+
N ) ≤ Km,p‖ f ‖L2(O+

N ).
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Theorem 4.4. For O+
N we have the following estimates for Km,p:

(1) Km,p ≤ (C(q)2(m + 1))
1− 3

p (4 < p ≤ ∞),

(2) Km,p ≤ (C(q)2(m + 1))
1
2 − 1

p (2 ≤ p ≤ 4).

Proof. For any admissible triple (l, m, n) ∈ N
3
0 let vm,n

l = ‖Am,n
l ‖−1Am,n

l ∈
MorO+

N
(Hl, Hm ⊗ Hn) be the isometric intertwiner considered in Section 3. If we repeat

the usual RD-type calculations for O+
N (e.g., [32, Section 4] or [8, Section 5]), one obtains

the following general inequality for the (untwisted) Hilbert–Schmidt norms

∥∥∥(vm,n
l )∗(y ⊗ z)vm,n

l

∥∥∥
HS

≤ ‖Am,n
l ‖−2‖y‖HS‖z‖HS ≤ C(q)

( dl

dmdn

)1/2‖y‖HS‖z‖HS

for any y ∈ B(Hm), z ∈ B(Hn). Note that the 2nd inequality above follows from (3.3).

We now consider the case p = ∞. In this case, we note that the above inequality

is exactly the required estimate (3.1) for property RD to hold: it says that ‖plfpn‖ ≤
C(q)‖ f ‖2 for each f ∈ span

{
um

i, j : 1 ≤ i, j ≤ nm

}
. This implies that ‖ f ‖Cr(O

+
N ) ≤ C(q)(m +

1)‖ f ‖2 for all m ∈ N0 and all f ∈ span
{
um

i, j : 1 ≤ i, j ≤ nm

}
. That is, we have Km,∞ ≤

C(q)(m + 1) ≤ C(q)2(m + 1).

Next, we consider p = 4. Now, we define an involution structure � on B(Hm) by

a� = J−1
m aJm for all a ∈ B(Hm), where Jm is the unique anti-unitary satisfying (um)c =

(Jm ⊗ 1)um(J−1
m ⊗ 1). Then, for any f =∑nm

i, j=1 aj,iu
m
i, j ∈ Cr(O

+
N), we have

f ∗f =
m∑

s=0

nm∑
i, j=1

[(vm,m
2s )∗(a� ⊗ a)vm,m

2s ]j,iu
2s
i, j.

Thus,

‖ f ‖4
L4(O+

N )
= ‖ f ∗f ‖2

L2(O+
N )

=
m∑

s=0

1

d2s

∥∥∥(vm,m
2s )∗(a� ⊗ a)vm,m

2s

∥∥∥2

HS

≤
m∑

s=0

C(q)2d2s

d2sd
2
m

‖a�‖2
HS‖a‖2

HS

= C(q)2 ‖a‖4
HS

d2
m

(m + 1)

= C(q)2(m + 1)‖ f ‖4
2.
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Thus, Km,4 ≤ √
C(q)(m + 1)1/4. The rest of the proof now follows from complex

interpolation theorem and our estimates for Km,∞, Km,4. �

Remark. The above bound for Km,4 is essentially optimal, since ‖χm‖4 = (m + 1)1/4

(the 4th moment of the mth type II Chebychev polynomial).

4.3.2 Applications to improved optimal time estimates

Theorem 4.5. Let p ≥ 4 and cp = 1 + 4
log(p−1)

. Then we have

tN,p ≤ cpN

2
log(p − 1) +

(
1 − 3

p

)
· 2N log(C(q)).

Proof. By the non-commutative martingale convexity inequality of [29, Theorem 1] and

our Theorem 4.4, we have

‖Tt( f )‖2
Lp(O+

N )
≤ h( f )2 + (p − 1)‖

∑
k≥1

e−tλ(k)fk‖2
Lp(O+

N )

≤ h( f )2 + (p − 1)

⎛⎝∑
k≥1

e−tλ(k)C(q)
2(1− 3

p )
(1 + k)

1− 3
p ‖ fk‖L2(O+

N )

⎞⎠2

≤ h( f )2 + (p − 1)

⎛⎝∑
k≥1

e−2tλ(k)C(q)
4(1− 3

p )
(1 + k)

2− 6
p

⎞⎠⎛⎝∑
k≥1

‖ fk‖2
L2(O+

N )

⎞⎠
for any f ∈ Lp(O+

N) and p ≥ 4.

Note that, for any c ≥ 1, the assumption t ≥ cN
2 log(p − 1) + 2N(1 − 3

p ) log(C(q))

implies

t ≥ cN

2
log(p − 1) + 2N

k

(
1 − 3

p

)
log(C(q))

≥ ck

2λ(k)
log(p − 1) + 2

λ(k)
·
(

1 − 3

p

)
log(C(q)).

Here, the 2nd inequality results from the estimate λ(k) ≥ k
N , where the λ(k) are the

coefficients (4.1) used in the definition of the generalized heat semigroup. Thus, we can

write e−2tλ(k)C(q)
4(1− 3

p ) ≤ (p − 1)−ck. Now, let us try to find c ≥ 1 satisfying

φ(c) :=
∑
k≥1

(p − 1)1−ck(1 + k)
2− 6

p ≤ 1.
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To do this, we will use the following estimation

φ(c) ≤
∑
k≥1

(p − 1)1−ck(1 + k)2

= (1 − (p − 1)−c)−3(p − 1)(4(p − 1)−c − 3(p − 1)−2c + (p − 1)−3c) =: ψ(c).

By setting t = 1
1−(p−1)−c , the problem to find c ≥ 1 satisfying ψ(c) ≤ 1 becomes

equivalent to solve the following inequality

2t3 − t2 − 1 ≤ 1

p − 1
⇔ t2(2t − 1) ≤ p

p − 1
.

Now, our claim is that the above inequality holds at t = 1 + a
p−1 with a = 1

24 .

Indeed, since (1 + x)3 ≤ 1 + 3x(1 + x)2 for all x > 0, we have

(
1 + a

p − 1

)2

·
(

1 + 2a

p − 1

)
≤
(

1 + 2a

p − 1

)3

≤ 1 + 6a

p − 1
· (1 + 2a

p − 1
)2 ≤ 1 + 24a

p − 1
= p

p − 1
.

Therefore, we can see that φ(c) ≤ ψ(c) ≤ 1 at c = 1 + log(24− 23
p )

log(p−1)
. Lastly, since

cp = 1 + 4
log(p−1)

≥ 1 + log(24)

log(p−1)
≥ c and φ is decreasing, we have φ(cp) ≤ φ(c) ≤ 1. �

Theorem 4.5 sharpens [14, Theorem 2.6] in the case when

1 + 4

log(p − 1)
≤ 2 log(1 + √

3)

log(3)
≈ 1.8297,

that is, when p ≥ 125.1085 approximately. However, even for 2 ≤ p ≤ 125.1085, we can

obtain an improved time to contractivity:

Theorem 4.6. Let c = 9
8 log(2) + 1 ≈ 1.7798 and p ≥ 4. Then

‖Tt( f )‖Lp(O+
N ) ≤ ‖ f ‖L2(O+

N )

for all t ≥ cN
2 log(p − 1) + (1 − 3

p ) · 2N log(C(q)).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa118/5840462 by Texas A&M

 U
niversity user on 20 August 2020



Property RD and Hypercontractivity for Orthogonal Free Quantum Groups 25

Proof. In the proof of Theorem 4.5, let φk(p) = (p − 1)1−ck(1 + k)
2− 6

p . Then

φ′
k(p) = (p − 1)−ck(1 + k)

2− 6
p ((1 − ck) + 6(p − 1)

p2 log(1 + k)).

Let us suppose that 1 ≤ c ≤ 2 and consider functions f (p) = 6(p−1)

p2 and g(k) = ck−1
log(1+k)

.

Then it is easy to check that g′(k) ≥ 0 for all k ≥ 1 and f ′(p) = 6p−3(2 − p).

Since f (4) = 9
8 ≤ g(1) = c−1

log(2)
for all c ≥ 9

8 log(2) + 1 ≈ 1.7798, the function φk is

decreasing on [4, ∞) for each k ≥ 1. Therefore, φ =∑k≥1 φk is decreasing on [4, ∞) and

φ(4) = 3
∑
k≥1

3−ck(1 + k)
1
2

≤ 3

⎛⎝∑
k≥1

3−ck(1 + k)

⎞⎠
1
2
⎛⎝∑

k≥1

3−ck

⎞⎠
1
2

= 3(1 − 3−c)−
3
2 3−c(2 − 3−c)

1
2 ≤ 1

if and only if 3−c ≤ X0, where X0 is the 2nd largest solution of the equation 8X3 −15X2 −
3X + 1 ≥ 0. Hence, φ(p) ≤ 1 for all p ≥ 4 whenever c ≥ − log3(X0) ≈ 1.547326. �

In [29], their Lp − L2 Khintchine inequalities were used in conjunction with a

clever choice of conditional expectation onto the subalgebra generated by a semicircular

system to find the optimal time tN,p for heat semigroups of free groups. However, it is

not clear what would be the right choice of subalgebra to play the same game for the free

orthogonal quantum groups O+
N . Nevertheless, our Khintchine inequalities (Theorem 4.4)

enable us to get an almost optimal time to contraction under the additional assumption

that h( fui, j) = 0 for all 1 ≤ i, j ≤ N:

Theorem 4.7. Let N ≥ 3 and p ≥ 4. Then the following inequality

‖Tt( f )‖Lp(O+
N ) ≤ ‖ f ‖L2(O+

N )

holds

(1) if f ∈ L2(O+
N) satisfies h( fui, j) = 0 for all 1 ≤ i, j ≤ N and

(2) if t ≥ N
2 log(p − 1) + (1 − 3

p ) · 2N log(C(q)).
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Proof. By repeating the proof of Theorem 4.5, since c = 1 and f1 = 0, the calculation

can be distilled to show

φ(p) =
∑
k≥2

(p − 1)1−k(1 + k)
2− 6

p ≤ 1 for allp ≥ 4.

It is easy to check that φk(p) = (p − 1)1−k(1 + k)
2− 6

p is a decreasing function for

any k ≥ 3 and supp≥4 φ2(p) = supp≥4

{
(p − 1)−132− 6

p

}
≈ 0.60348. Thus,

φ(p) ≤ sup
p≥4

φ2(p) +
∑
k≥3

31−k
√

1 + k

= sup
p≥4

φ2(p) + 9
∑
k≥4

3−k
√

k

≤ sup
p≥4

φ2(p) + 9

⎛⎝ 6∑
k=4

3−k(
√

k − k) +
∑
k≥4

k3−k

⎞⎠
≈ 0.60348 + 0.38158 < 1.

�

Based on the above results, we are led to make the following conjecture on the

asymptotic behavior of the optimal time-to-contraction for the heat semigroups:

Conjecture 4.8. The optimal time to Lp-hypercontractivity for O+
N should be of the

form

tN,p = N

2
log(p − 1) + εN with lim

N→∞ εN = 0. (4.3)

Remark. The conjecture above is motivated by the following observations:

(1) We have tN,p ≥ N
2 log(p − 1) (Lemma 4.3).

(2) There exists c ≈ 1.83297 such that tN,p ≤ cN
2 log(p − 1) + εN for all p ≥ 4,

with εN → 0 [14, Theorem 2.6].

(3) The above c can be sharpened to 9
8 log(2) + 1 ≈ 1.7798 for all p ≥ 4

(Theorem 4.6).

(4) Let cp be the best constant c for fixed p ≥ 4. Then limp→∞ cp = 1

(Theorem 4.5).

(5) The constant c can be chosen to be 1 under the additional condition that

h( fui, j) = 0 for all 1 ≤ i, j ≤ N (Theorem 4.7).
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In the case of duals of discrete groups we have tp = 1
2 log(p − 1) for the Poisson

semigroup on T
N (Weissler and Bonami’s induction trick), on the dual of Z∗N

2 [21] and on

the dual of FN = Z
∗N [20, 29].
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