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Abstract

A fraction of tidal disruption events (TDEs) occur in active galactic nuclei (AGNs) whose black holes possess
accretion disks; these TDEs can be confused with common AGN flares. The disruption itself is unaffected by the
disk, but the evolution of the bound debris stream is modified by its collision with the disk when it returns to
pericenter. The outcome of the collision is largely determined by the ratio of the stream mass current to the
azimuthal mass current of the disk rotating underneath the stream footprint, which in turns depends on the mass
and luminosity of the AGN. To characterize TDEs in AGNs, we simulated a suite of stream–disk collisions with
various mass current ratios. The collision excites shocks in the disk, leading to inflow and energy dissipation orders
of magnitude above Eddington; however, much of the radiation is trapped in the inflow and advected into the black
hole, so the actual bolometric luminosity may be closer to Eddington. The emergent spectrum may not be thermal,
TDE-like, or AGN-like. The rapid inflow causes the disk interior to the impact point to be depleted within a
fraction of the mass return time. If the stream is heavy enough to penetrate the disk, part of the outgoing material
eventually hits the disk again, dissipating its kinetic energy in the second collision; another part becomes unbound,
emitting synchrotron radiation as it shocks with surrounding gas.

Key words: accretion, accretion disks – black hole physics – galaxies: nuclei – hydrodynamics – methods:
numerical

1. Introduction

A tidal disruption event (TDE) occurs when a star wanders
within the tidal radius of a black hole and is ripped apart by
tidal gravity; roughly half of the star is expelled as unbound
debris while the other half remains bound on highly eccentric
orbits. In the standard picture, general relativistic effects cause
the bound debris orbits to precess and self-intersect. Shocks at
the intersections dissipate kinetic energy, and the stream of
bound debris is promptly gathered into an accretion disk with
radius approximately twice the stream pericenter distance (e.g.,
Rees 1988). However, unless the stream pericenter is within
∼10 gravitational radii of the black hole, general relativistic
precession creates only weak, oblique shocks near apocenter
that dissipate energy inefficiently (Dai et al. 2015; Shiokawa
et al. 2015). Consequently, the disk may not form right away,
and most of the stream will return to large distances. These
weak shocks could be responsible for the emission in optical
TDEs (Piran et al. 2015).

This picture tacitly assumes that TDEs happen in vacuum.
However, the black hole in an active galactic nucleus (AGN) is
surrounded by an accretion disk. As a star heads toward the
black hole on a trajectory destined for tidal disruption, its initial
passage through the disk leaves no lasting impact on either the
star or the disk because the density contrast between the two is
immense. But after the star is tidally disrupted, the bound
debris stream has such a low density that, when it returns to
pericenter, it can interact with the disk in a more interesting
manner (Kochanek 1994; see also Kathirgamaraju et al. 2017).
The collision between the stream and the disk can potentially
dissipate much of the kinetic energy possessed by the stream
and the disk gas near the impact point, which can be radiated
away. The collision can also alter the subsequent evolution of
the stream and drastically damage the disk. The collision with
the disk likely produces a brighter signal and has a greater

effect on the stream than any other interaction with circum-
nuclear material (Bonnerot et al. 2016) because the disk is far
denser.
Several percent of galaxies harbor AGNs, so a similar

fraction of TDEs should take place in AGN hosts. This number
is made uncertain to the degree that the distribution of stellar
orbits near an AGN is systematically different from the center
of an inactive galaxy, and that the black hole in a galaxy with
an AGN tends to be more massive than a galaxy without one
(see also Karas & Šubr 2007; Kennedy et al. 2016). Because
both TDEs and AGNs vary on timescales of weeks to months,
and because a TDE in an AGN presents less contrast against
the prior state of the system than a TDE in an inactive galaxy,
deciding whether an increase in brightness is due to a TDE or is
merely AGN variability is not trivial (Komossa 2015; Kankare
et al. 2017; Auchettl et al. 2018; Trakhtenbrot et al. 2019b);
indeed, there are a number of cases in which the correct
identification of a particular episode of variation is disputed
(e.g., Campana et al. 2015; Grupe et al. 2015; Merloni et al.
2015; Saxton et al. 2015; Blanchard et al. 2017; Lin et al. 2017;
Wyrzykowski et al. 2017; Mattila et al. 2018; Shu et al. 2018).
It is therefore of interest to see if TDEs in AGNs have
distinctive observational characteristics that allow us to
recognize them more reliably.
Numerous physical processes interact in the course of these

events. Radiation is expected to contribute significantly to the
internal energy in the parts of the disk affected by the collision,
while magnetohydrodynamics (MHD) is critical to both radial
inflow and, at higher altitudes, vertical support. Consequently,
a proper study of the collision calls for simulations including
both general relativistic MHD and the interaction between gas
and radiation. Moreover, the collision is described by a number
of parameters: the black hole mass, the stellar mass, the disk
accretion rate, and the orientation of the stream with respect to
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the disk. A large suite of simulations covering the realizable
subset of the multidimensional parameter space is needed to
probe the full range of observational behavior. As an
exploratory step, here we present pure-hydrodynamics simula-
tions of one particular configuration of the collision. Our
simulations consider only the portion of the event when the
mass return rate is maximum, and they focus on the
dependence on one parameter, the ratio of the stream mass
current to the azimuthal mass current of the disk passing under
the stream footprint. Nonetheless, even these simulations
identify a number of key mechanisms and reveal the principal
issues that must be resolved before making definite observa-
tional predictions.

We start off by estimating the properties of stream–disk
collisions in Section 2. We introduce our simulation setup in
Section 3, present our results in Section 4 (see movie), and
discuss possible observational signatures in Section 5. Our
conclusions are summarized in Section 6.

2. Analytic Considerations

A star of mass M and radius r is torn apart when it flies by
a black hole of mass Mh on an orbit whose pericenter distance
rp is smaller than the tidal radius º -

 r r M Mt h
1 3( )

(Hills 1975). The tidal radius for a main-sequence star
interacting with a black hole commonly found in galactic
nuclei is only several tens of gravitational radii ºr GM cg h

2 of
the black hole, where G is the gravitational constant and c is the
speed of light:
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The portion of the debris remaining bound to the black hole
traverses a highly elliptical orbit and returns to pericenter as a
stream. Different parts of the stream have different semimajor
axes; the part with semimajor axis a returns to pericenter at
time p= -T GM a2 h

3 1 2( ) after disruption. The most bound

part has the smallest semimajor axis ~ a r rmb
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If the bound mass is uniformly distributed in specific binding
energy =E GM a2h ( ), that is, ~  dM dE M GM r r1

2 h p
2( )/ / / ,

the stream mass current, or the peak rate at which mass returns
to pericenter at early times, is
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Note that ~ M T Ms mb
1

3
˙ .

The black hole of an AGN has an accretion disk prior to the
TDE. The stream intersects the disk at two points, the line
joining which passes through the black hole as well. Because
stars originate from all directions, this line is randomly oriented
in the stream plane. Moreover, because the apocenter of a
highly eccentric orbit subtends only a small angle at the black

hole, the stream crosses the disk near pericenter much more
often than near apocenter. The configuration considered by
Kathirgamaraju et al. (2017), in which the stream travels within
a thick, very weakly accreting disk and interaction occurs most
strongly near apocenter, is special in comparison (see also
Blanchard et al. 2017). For simplicity, we consider a parabolic
stream slamming perpendicularly into the disk at pericenter.
The stream interacts with the azimuthal mass current of the

disk rotating underneath its footprint, given by
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where Rs is the stream width at pericenter and Sd is the disk
surface density at stream pericenter measured from the
midplane to infinity. A wider stream results in a larger Md˙ ,
but Ms˙ is unchanged because it is determined purely by orbital
dynamics. The disk accretion rate,
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with α the Shakura & Sunyaev (1973) parameter and H R d( )
the disk aspect ratio at stream pericenter, is much smaller
than Md˙ .
The ratio M Ms d˙ ˙ is the most important quantity governing

the outcome of the collision, and it is the parameter we vary in
our simulations. We would like to relate M Ms d˙ ˙ to the
observables Mh and L ;a here h=L M ca a

2˙ is the disk accretion
luminosity and η is the accretion efficiency. The value of Md˙
depends on the conditions of the disk. For typical TDEs in
AGNs, electron scattering dominates opacity in a Shakura &
Sunyaev (1973) disk at stream pericenter. The nature of
pressure switches from gas to radiation when
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where p k=L GM c4E h T is the Eddington luminosity and kT

is the cross section per mass for Thomson scattering. Now

µ -M M H Rd a d
2˙ ˙ ( ) , and µH R Md a

1 5( ) ˙ and µH R Md a( ) ˙
for gas- and radiation-dominated disks respectively; therefore,
Md˙ increases with L La E in a gas-dominated disk, then
decreases with L La E as the disk becomes radiation-
dominated.
Figure 1 shows the dependence of M Ms d˙ ˙ on Mh and L La E.

Holding Mh constant, a given level of M Ms d˙ ˙ can be realized in
either a weakly accreting, gas-dominated disk or a strongly
accreting, radiation-dominated disk. The value of M Ms d˙ ˙ tends
to stay above unity, dipping below only for the dimmest and
most massive AGNs; this is fortuitous because a number of our
simulation results (Figures 5, 6, 8, 9, and 11) depend weakly on
M Ms d˙ ˙ once it is large enough.
We can estimate time-integrated consequences of the

collision by comparing global measures of stream and disk

2

The Astrophysical Journal, 881:113 (14pp), 2019 August 20 Chan et al.

https://youtu.be/hF4tcCAFvA8


physical quantities. The mass ratio is
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Because the stream velocity at pericenter is 2 times the disk
orbital velocity there, the momentum ratio is of the same order
as the mass ratio. This means the stream carries enough mass
and momentum to potentially reshape and reorient the disk.
Similarly, the ratio of stream kinetic energy to disk binding
energy is of order the mass ratio; therefore, if all the stream
kinetic energy were dissipated, the stream could heat the disk
sufficiently to unbind it.

If the dissipated energy were instead radiated away
immediately, the collision could be quite luminous:
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corresponding to »M GM r L 6000s h p a˙ ( ) for a disk with
»L L 0.005a E . We shall discuss in Section 5.3.2 why the

actual luminosity could be very different.

3. Methods

The stream–disk collision is simulated with Athena++, a
rewrite of the finite-volume hydrodynamics code Athena
(Stone et al. 2008). We adopt the cylindrical coordinates

fR z, ,( ). Due to the coordinate singularity at R=0, we must
restrict the lower-radial boundary of our simulation domain to

>R 0, thus introducing a cylindrical cutout in the center of our
simulation domain. Gas directed toward the cutout is removed
from the simulation entirely. Other details of our numerical
setup follow.

3.1. Equations

The stream pericenter distance of typical TDEs is only tens
of rg (Section 2). Given other approximations used, it is
reasonable to neglect relativistic effects. The hydrodynamics
equations are

r
r

¶
¶

+  =v
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0, 9· ( ) ( )

r r r
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¶

+  + = - Fv vv
t

p , 10I( ) · ( ) ( )
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+  + = - Fv v
E

t
E p . 11· [( ) ] · ( )

Here ρ, v, and p are density, velocity, and pressure,
F = - +R z GM R z, h

2 2 1 2( ) ( ) is the gravitational potential
of the black hole, and I is the isotropic rank-two tensor. We use
an adiabatic equation of state. The total energy is

r r= +E v e1

2
2 , where r g= -e p 1( ) is the internal energy.

Disk pressure can be dominated by gas or radiation (Section 2);
for simplicity, we choose the adiabatic index to be g = 5

3
. As

we shall see later in Section 5.3.1, the thermodynamic
conditions of a realistic disk is likely more complicated than
a simple choice between gas and radiation pressure.

3.2. Code Units

Simulation quantities are expressed in code units of length
r0, time W º- -GM r0

1
h 0

3 1 2( ) , velocity º Wv r0 0 0, and density
r0. Because Newtonian gravity, unlike relativistic gravity, is
scale-free, the dimensionless versions of Equations (9)–(11) in
this unit system are independent of r0 and r0. With an
appropriate choice of these two quantities, our results can be
scaled to the conditions of any particular TDE.
We set =r r0 p, the characteristic length scale of the system.

Time is reported as the number of disk orbits at =R r0, or disk
orbits for short; one disk orbit is p r r2 p t

3 2( ) times the stellar
dynamical time. The mass return time in Equation (2) is
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The value of r0 will be determined in Section 3.5.

3.3. Fiducial Parameters

When translating simulation results from code units to
physical units, we adopt the same fiducial parameters as in
Section 2, to wit, =M M10h

6
, =M M, =r R, =r rp t,

= R rs , a = 0.1, and h = 0.1.

3.4. Stream and Disk Properties

The initial disk has a constant midplane density r0 and a
Gaussian scale height µR:

r r= -DF R z v, exp . 130
2

K
2( ) [ ( )] ( )

Here DF º F - FR z R z R, , , 0( ) ( ) ( ) is the gravitational

potential difference from the midplane and is » v z R1

2 K
2 2( ) for

our spherically symmetric Φ, where º ¶F ¶ =v R Rln zK
2

0( ) ( ) is
the square of the midplane Keplerian orbital velocity. The

Figure 1. Plot of the mass current ratio M Ms d˙ ˙ as a function of the black hole
mass Mh and the unperturbed disk Eddington ratio L La E for our fiducial
parameters =M M, =r R, =r rp t, = R rs , a = 0.1, and h = 0.1
(Section 3.3). Solid lines reach a minimum when pressure in the disk shifts
from gas-dominated on the left to radiation-dominated on the right. The
horizontal lines are the M Ms d˙ ˙ used in our simulations (Section 3.4).
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aspect ratio of the simulated disk is = 0.1; it is much larger
than the aspect ratio of a Shakura & Sunyaev (1973) disk for
numerical reasons, and the effect of this choice will be
considered in Section 3.5. The pressure of the disk is

r= p R z v, 2
K
2( ) . Its orbital velocity, given by

= + DF + ¶ ¶f v R z v v v R, ln ln , 142
K
2 2

K
2

K
2( ) ( )( ) ( )

is slightly sub-Keplerian to counteract pressure forces.
Our initial disk is not a Shakura & Sunyaev (1973) disk. For

example, its surface density profile is

ò r p rS = » R dz R, 15
z

0

1

2

1 2

0

max ( )( ) ( )

where zmax is the distance of the vertical boundaries of the
simulation domain from the midplane. This surface density
profile is neither theS µ -R 3 5 profile of a gas-dominated disk
nor the S µ R3 2 profile of a radiation-dominated disk,
although it is close to the latter. The advantage of our initial
disk is that it is scale-free, so we can scale our results to fit any
TDE of interest. As long as we pick r0 such that M Ms d˙ ˙ is the
same for our initial disk and for a Shakura & Sunyaev (1973)
disk, our results are not qualitatively affected.

Ideally, we would like our stream to travel on a parabolic
trajectory vertical to the midplane: The stream would approach
pericenter from f p= , cross the axis, reach pericenter at

f =R z r, , , 0, 00( ) ( ), and return to infinity along f p= .
Unfortunately, the trajectory would then cross the cylindrical
cutout in the center of the simulation domain. We solve this
problem in two ways. For lighter streams that are effectively
stopped by the disk, we can simply lower the upper-vertical
boundary of the simulation domain until the stream intersects
the boundary at f = 0; if the stream is injected as a boundary
condition from the intersection, it will not encounter the cutout
before it terminates at pericenter. For heavier streams that can
punch through the disk, we additionally rotate the trajectory
0.15 rad from the vertical to make it avoid the cutout altogether.
The sense of the rotation is to make the trajectory prograde with
respect to the disk, increasing the likelihood that the outgoing
material will miss the cutout. Since the vertical and inclined
streams differ so little in inclination, we treat them as directly
comparable. We leave the exploration of streams of other
spatial orientations to future work.

We choose the stream boundary condition so that, if the
stream traveled ballistically to pericenter, its cross section there
would be circular and its transverse density profile would be a
Gaussian of radius r0, where = 0.02. The simulated
stream width is slightly wider than in typical TDEs. The
density at the center of the Gaussian is set by matching the
desired value of Ms˙ , and the pressure is - v10 6

0
2 times density.

Tracing orbits back to the upper-vertical boundary determines
the stream density, velocity, and pressure there.

The disk mass current is r»M r v0.01d 0 0
2

0˙ . We use
rÎ ´ -M r v0.5, 1, 2, 4, 8 10s

3
0 0

2
0˙ { } for the vertical stream

and rÎ ´ -M r v1, 2, 4 10s
2

0 0
2

0˙ { } for the inclined stream.
Altogether, we have Î » » » »M M 0.05, 0.1, 0.2, 0.4,s d˙ ˙ {
» » » »0.8, 1, 2, 4}. Combinations of Mh and La giving such
M Ms d˙ ˙ can be read off from Figure 1. Only the heaviest stream
pertains to our fiducial parameters (Section 3.3); the lighter
streams are also valid if Mh is larger or α is smaller.

The initial disk and the stream have respectively j∣ ∣
r v0.2 0 0 and j r v1.4 0 0, where j is the specific angular

momentum in the f p= 1

2
direction. For the purpose of

separating disk-like gas from stream-like gas when analyzing
our results in Section 4, we adopt the conservative cutoff
=j r v1.1 0 0.

3.5. Stream and Disk Density

The aspect ratio of a Shakura & Sunyaev (1973) disk at
stream pericenter, ~H R 0.003d( ) , and the stream width,

~ R rs , are both difficult to resolve spatially; this is why the
simulated disk height and stream width are artificially increased
to r0 and r0 respectively, with = 0.1 and = 0.02
(Section 3.4). To preserve the mass currents under such a
modification, we simultaneously adjust the midplane density of
the disk and the central density of the stream. We demand that
the simulated disk mass current, Sr r v4 0 0 0( ) , be equal to Md˙
of a realistic disk. This, together with Equations (3) and (15),
yields

r
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Similarly, the central density of the stream is determined by
matching the desired Ms˙ . Because the mass currents involved in
the collision are independent of the particular values of  and
 provided both are 1 , the outcome of the collision should
not be severely affected by our choices for these quantities.
Volume-integrated quantities in our simulations, such as the
inflow rate (Section 4.2.2) and the energy dissipation rate
(Section 4.3), are likewise genuine. Although the simulated
disk is unrealistically thick at the beginning, any structure
created in the course of the simulations with aspect ratio  is
realistic because its thickness is due to the injection of internal
energy much greater than the artificial internal energy in the
initial condition.

3.6. Other Numerical Considerations

Periodic boundary conditions are used for the azimuthal
direction. Outflow boundary conditions are used for the radial
and vertical directions: Velocity is copied from the last physical
cell into the ghost zone and inward-pointing velocity compo-
nents are zeroed, while density and pressure are isothermally
extrapolated such that the pressure gradient balances gravita-
tional and centrifugal forces in the ghost zone. On the upper-
vertical boundary, the stream injection condition (Section 3.4)
supersedes this boundary condition wherever the former predicts
a larger density.
The numerical vacuum is an axisymmetric hydrostatic torus.

Its density is determined by the constraint

r= -F +
-

-
G

G -
f G-R z

v

q
Kconstant ,

2 2 1
, 17

2
v

v
1( )

( )
( )

its velocity is = f
-v ev R r q

v 0 0
1( ) ˆ , and its pressure is

r= Gp Kv v . The parameters in these equations are q= 1.75,

r= -GK v0.5 0
1

0
2, and G = 0.9; the constant on the left-hand

side of Equation (17) follows from requiring that rv attain a
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maximum of r-10 6
0 at =R z r, , 00( ) ( ). As the simulation

progresses, we keep the density and pressure of every cell
greater than or equal to its vacuum value at all times. In
addition, whenever the density of a cell drops to x< <0 1
times vacuum, we simultaneously modify its velocity to
x x+ -v v1 v( ) so as to prevent velocities from erroneously
growing in low-density regions.

The simulation domain spans p p´ - ´r r0.15 , 5 ,0 0[ ] [ ]
- r r3.2 , 1.60 0[ ] in fR z, ,( ). The inner-radial boundary at
=R r0.15 0 encloses a cylindrical cutout in the center of the

simulation domain, introduced to exclude the coordinate
singularity at R=0. The radius of the cutout in physical units
is » - -

 r M M M M r R r r7 10g h
6 2 3 1 3

p t[ ( )] ( ) ( )( )   , which
is just outside the innermost stable circular orbit of a
nonrotating black hole; therefore, we are simulating the entire
disk interior to the stream pericenter, and we may regard gas
entering the cutout as falling into the black hole. The lower-
vertical boundary is twice as far below the midplane as the
upper-vertical boundary so that we can follow as much of the
gas leaving the lower side of the disk as feasible.

The number of grid cells is ´ ´200 200 300. We employ a
power-law grid in the radial direction for which D +Ri 1
D =R 1.01;i this policy gives us cells with approximately
square poloidal cross sections at =R r0. The pressure scale
height of the disk at stream pericenter, » r2 0, is resolved
with around nine vertical cells, and the stream width, r0, is
barely resolved with around two azimuthal cells at the injection
point.

The simulations run to 100 disk orbits which, according
to Equation (12), is ~ -

T M M M M0.3 10mb h
6 1 2 1 2[ ( )] ( ) 

-r rp t
3 2( ) . This means our simulations focus on the time when

the mass return rate is greatest, and the mass return rate varies
little over the course of our simulations.

4. Results

4.1. Overview

We use the »M M 0.2s d˙ ˙ simulation to illustrate how the
disk in any simulation evolves in general (see movie). The left
column of Figure 2 displays an early time, 10 disk orbits. The
incoming stream is visible above the disk in the poloidal slice.
The vertical structure near the center of the cylindrical slice is
the part of the stream closest to pericenter; it is bent because the
disk deflects the stream in the direction of disk rotation. The
stream opens an annular gap in the disk at R≈ r0, manifest in
the poloidal and midplane slices; the gap separates the inner
disk (Section 4.2) at R�r0 from the outer disk.

Nonaxisymmetric features appear in the midplane slice. The
most salient one is the curved bow shock with its tip at

f p»R r, , 0.1 ;0( ) ( ) here f > 0 because of stream deflection.
The inner half of the bow shock extends inward, forming a
prominent spiral shock in the inner disk. There are typically
multiple spiral shocks; together, they drive an extremely
powerful inflow that is orders of magnitude stronger than in the
unperturbed disk (Section 4.2.1).

Nonaxisymmetric features in the outer disk can be under-
stood with the help of the cylindrical slice. The incoming
stream pushes stream and disk gas out of the other side of the
disk. Part of this gas reaches as far as » -z r0 before gravity
pulls it back down to strike the disk at f p» - ;3

4
the impact

compresses the disk and launches a spiral shock stretching
outward from f p»R r, 1.2 , 0.80( ) ( ). The impacting gas

glances off the disk and falls back to it once again at
f p» 3

8
, launching another, much weaker, spiral feature. At the

time shown, the weak spiral feature is hidden from view by the
similarly located and much stronger bow shock, but it becomes
more conspicuous at late times when the bow shock is weaker.
Both spiral features are stationary in space.
The center column depicts an intermediate time, 25 disk

orbits. The gap widens and the spiral shocks deplete the inner
disk, as evidenced by the poloidal and midplane slices. The
reduction of disk gas at R r1.2 0 is the reason why the stream
suffers less deflection in the cylindrical slice. The collision
heats the inner disk, causing its gas to puff up and move to
larger radii, easily seen by comparing the poloidal slices of
early and intermediate times.
The intermediate time is taken during an episode of disk

evolution in which the outer edge of the gap, as witnessed in
the midplane slice, becomes highly nonaxisymmetric; as the
outer edge orbits around, acoustic waves are sent propagating
outward at the same frequency as its orbital frequency. These
waves have large enough amplitudes to obscure the spiral
features in the outer disk.
The right column presents a late time, 65 disk orbits. The

inner disk is largely cleared out; as a result, spiral shocks in the
inner disk are barely visible. The outer edge of the cavity
returns to approximate axisymmetry, so waves are no longer
launched and the two spiral features in the outer disk re-
emerge. The spiral shock extending outward from f »R,( )

pr1.5 , 0.80( ) remains well-defined, but the weak spiral feature
starting from f p»R r, 2.6 , 0.40( ) ( ) is merely a diffuse
density enhancement. The outer half of the bow shock appears
as a spur joining the weak spiral feature.
The incoming stream in the »M M 0.2s d˙ ˙ simulation is not

heavy enough to produce a perceptible stream of outgoing
material (Section 4.4); for a better view of the outgoing
material, we turn to the »M M 1s d˙ ˙ simulation. The slices
shown in Figure 3 roughly follow the orbital plane of the
outgoing material. The outgoing material exits the disk not as a
dense, collimated structure, but as a clumpy plume orders of
magnitude more dilute than the incoming stream. The plume is
more spread out in the orbital plane than perpendicular to it.

4.2. Inner Disk

4.2.1. Dynamics

Figure 4 displays three snapshots from three simulations.
The snapshots are selected from early times when the inner disk
is still largely intact, but our comments below hold for all
simulations at all times. At the times shown, the stream has
delivered the same amount of mass, momentum, and energy
across all simulations.
The top row demonstrates how the collision excites spiral

shocks in the inner disk. Spiral shocks vary in number,
position, and strength over time, but there is often a dominant
pair, one connected to the bow shock, the other located almost
directly opposite in the other half of the inner disk. The former
spiral shock is typically stronger and is marked with black arcs
in the figure.
Spiral shocks deflect orbiting gas. The stronger spiral shock

tends to deflect gas inward, giving rise to a region of inward
mass flux immediately after the shock in the middle row. The
net effect of the multiple spiral shocks is to remove angular
momentum from the orbiting gas; as a result, gas falls toward
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the black hole on gradually shrinking, tightly wound
trajectories. As is evident in the bottom row, rotation departs
more and more from Keplerian as gas moves inward. Gas
ultimately plunges into the cutout, most of it doing so over only
a small fraction of the circumference, and then into the
black hole.

4.2.2. Mass

The spiral shocks are extremely efficient at destroying the
inner disk. For a radiation-dominated, »M M 4s d˙ ˙ disk with
our fiducial parameters (Section 3.3), the inflow rate across the
inner-radial boundary given by Figure 5 is ∼1.2×103 to
1.2×104 times the unperturbed level, or ∼6 to 50 times
Eddington! In effect, the coherent spiral shocks exert an
extremely strong stress on the flow, leading to an inflow rate
much faster than ordinary disk processes, such as correlated
MHD turbulence, could cause.

For M M 0.2s d˙ ˙ , the inflow rate has a spike at early times
lasting a few disk orbits, then relaxes at late times to ~Ms˙ . For

M M 0.4s d˙ ˙ , the inflow rate rises in the first ∼1 to 20 disk
orbits, then decays gradually as the inner disk is depleted
(Section 4.1); the inflow rate at 50 disk orbits is nearly
independent of M Ms d˙ ˙ because the stream appears essentially
as a solid obstacle to the disk, deflecting a fixed fraction of the
inner disk toward the black hole every disk orbit.
For M M 1s d˙ ˙ , the inflow rate is quasiperiodically

modulated over at least part of the simulation. The quasiper-
iodic variation is particularly strong for  M M0.1 0.2s d˙ ˙
and is visible in the top panel throughout the simulation. This
quasiperiodicity is due to the interaction between the stationary
spiral shocks and some orbiting nonaxisymmetric feature, such
as the lopsided outer edge of the gap (Section 4.1).
Figure 6 shows the inflow time, or the time it takes a gas

packet in the inner disk to move into the cutout on its way to
the black hole. Thanks to the spiral shocks, the inflow time is

Figure 2. Orthogonal slices of the »M M 0.2s d˙ ˙ simulation (see movie). Each column presents one snapshot with the number n of disk orbits as indicated in the top
row. The top, middle, and bottom rows are respectively a poloidal slice at f = 0, a midplane slice, and a cylindrical slice at =R r0. The slices intersect at

f =R z r, , , 0, 0 ;0( ) ( ) this is where the stream would reach pericenter if the disk were absent, and approximately where the stream collides with the disk when the disk
is present. Colors plot density; the color scale is logarithmic in the top and bottom rows and linear in the middle row. The gray circle in the middle row marks =R r0.
Arrows in the bottom row show velocity; the arrow above the left panel has length v2 0.
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orders of magnitude shorter than that of an unperturbed Shakura
& Sunyaev (1973) disk measured at stream pericenter, which
is a~ ´ - -H R1.8 10 0.1 0.0035 1

d
2( ) [( ) ( )]/ / / disk orbits, but

the multistep nature of the shock-driven inflow mechanism
(Section 4.2.1) means the inflow time is still at least a few disk
orbits.

The inflow time is not the characteristic timescale on which
the inner disk mass decreases; this is because, as we shall see in
Section 4.4, the inner disk captures enough of the stream to
resupply itself. Figure 7 demonstrates this considerably slower
depletion of the inner disk. Although the surface density
declines monotonically with time, by the end of the simulations
at 100 disk orbits, which is~ T0.3 mb for our fiducial parameters
(Section 3.3), the surface density is only about an order of
magnitude lower than its unperturbed value. Because a
radiation-dominated, »M M 4s d˙ ˙ disk with our fiducial para-
meters (Section 3.3) starts out with a Thomson optical depth of
∼8000, it stays optically thick to electron scattering throughout
the simulations.

4.3. Energy Dissipation

Figure 8 tracks the time evolution of the energy dissipation
rate. For a radiation-dominated, »M M 4s d˙ ˙ disk with our
fiducial parameters (Section 3.3), the energy dissipation rate is
∼300 to 2000 times the unperturbed disk accretion luminosity,
or ∼1.5 to 10 times the Eddington luminosity.

For M M 0.2s d˙ ˙ , the energy dissipation rate is always close
to the stream kinetic energy current; therefore, energy
dissipation is well described as due to a perfectly inelastic
collision between the stream and an immovable disk. For

M M 0.8s d˙ ˙ , the energy dissipation rate initially rises but
eventually falls; the energy dissipation rate shows little
dependence on M Ms d˙ ˙ at 15 disk orbits. Because the disk
cannot fully stop the stream in these simulations, less of the

stream kinetic energy is dissipated. Instead, the heavy stream
acts as a stationary barrier to orbiting disk gas, and disk kinetic
energy is dissipated when disk gas runs into the stream or the
shocks created by the collision. The falloff in the energy
dissipation rate over time is the result of the disk density
decreasing (Section 4.1). For »M M 0.4s d˙ ˙ lying between the
two extremes, the behavior of the energy dissipation rate
switches from resembling lighter-stream simulations in the
beginning to resembling heavier-stream simulations later on,
suggesting that the stream takes time to clear out a gap in the
disk before it can go through with little impediment.

4.4. Outgoing Material

The top panel of Figure 9 plots the outgoing material mass
current, showing only the simulations for which the outgoing
material has a mass current �1% that of the incoming stream
throughout most of the simulation. A greater fraction of the
stream passes through at later times because the disk density is
lower (Section 4.1), but there are large and rapid fluctuations
about the overall rising trend.
The bottom panel displays the mass current of the incoming

stream stopped by the disk. For M M 0.2s d˙ ˙ , the stopped
mass current is»Ms˙ , which in turn is approximately the inflow
rate in Figure 5. We may therefore picture the stream as being
absorbed into the disk and deflected straight toward the black
hole; the latter part is consistent with the fact that the disk
removes all kinetic energy from lighter streams (Section 4.3).
For M M 0.8s d˙ ˙ , the disk shaves off only a fraction of the
incoming stream because the inner disk is cleared out early on
(Section 4.2.2).
In all cases, the stopped mass current is almost always larger

than the inflow rate in Figure 5. Mass loss from the inner disk
(Section 4.2.2) slows down significantly if just a fraction of this
mass current is diverted to resupply the inner disk. The inner
disk mass still decreases over time because the outer disk
receives part of the stopped mass current, because gas splashes
back from the upper side of the disk, and because the collision
heats up the inner disk (Section 4.1), causing it to expand out
through the upper-vertical boundary or outward in radius.
Since the outgoing material is rather cold when it reaches the

lower-vertical boundary, with sound speed v0.1 0, its dynamics
beyond the simulation domain is dictated by its mechanical
energy. Figure 10 shows the specific mechanical energy
distribution of the outgoing material, again only for simulations
with substantial outgoing material. The most bound part has
specific binding energy ~ GM r0.05 h 0, hence it flies out on an
elliptical orbit to ∼19 times the pericenter distance, then returns
to pericenter after ~ -

T M M M M0.09 10mb h
6 1 2 1 2[ ( )] ( ) 

-r rp t
3 2( ) .

Most of the outgoing material, having received a kick from
the disk during the collision, is unbound with specific
mechanical energy ~ GM r0.03 h 0. The outgoing material
carries much less energy than is dissipated in the collision
(Section 4.3), but is much more energetic than the debris
unbound during the initial disruption. The disk is less dense at
later times (Section 4.1) and imparts a smaller force on the
stream, thus the outgoing material is less and less unbound after
∼40 disk orbits.
Two caveats must be noted. First, we use a marginally bound

parabolic incoming stream in the simulations, whereas a realistic
incoming stream has specific binding energy ~ ´GM r0.01 h 0

- -
M M M M r r10h

6 1 3 1 3
p t

1[ ( )] ( ) ( )  . We therefore expect

Figure 3. Inclined slices of the »M M 1s d˙ ˙ simulation. Each panel presents
one snapshot with the number n of disk orbits as indicated in the bottom-left
corner. Both panels are slices passing through the origin and the stream
pericenter, but the top and bottom panels are rotated 0.35 rad and 0.15 rad
respectively from the vertical, to match the orbital plane of the outgoing
material. The stream is more strongly deflected at early times, so only at late
times can we pick a slice where both the incoming stream and the outgoing
material are simultaneously visible. Colors plot density.
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the specific mechanical energy distribution of realistic outgoing
material to be shifted toward lower energies by a similar amount,
changing the fraction of bound and unbound material. Second,
the bound outgoing material may not return to pericenter if it is
intercepted on the way by the large-scale disk (Kathirgamaraju
et al. 2017).

5. Discussion

5.1. Timescales

TDEs in AGNs are governed by several timescales. Here
we group them together in ways that allow meaningful
comparisons.

5.1.1. Timescales of Unperturbed Disk Flows

The shortest and longest timescales of the system both
pertain to the unperturbed disk. The disk dynamical time

at stream pericenter is p1 2( ) disk orbit or ~ ´days0.018
-

 M M r R r r1 2 3 2
p t

3 2( ) ( ) ( )/ / // / /
  . It is r rp t

3 2( ) times the
stellar dynamical time. Because outgoing waves (Section 4.1)
are launched into the outer disk by the time-varying conditions
near the impact point, the frequency of these waves is
approximately the inverse of the disk dynamical time.
The unperturbed accretion time of a Shakura & Sunyaev

(1973) disk at stream pericenter is ~ ´ -
M M60 yr 1 2( )

a - -
r R r r H R0.1 0.0033 2

p t
3 2 1

d
2( ) ( ) ( ) [( ) ( )] .

5.1.2. Timescales of Flows Caused by the TDE

The mass return time is given by Equation (12); in physical
units, it is ~ ´ -

 days M M M M r R40 10h
6 1 2 1 3 2[ ( )] ( ) ( )/ / // /

  
r rp t

3( )/ . This is the timescale on which the incoming stream,
and hence the energy dissipation rate in the collision, taper off.
Because this timescale is sufficiently longer than the duration

Figure 4. Zoomed-in midplane slices. Each column presents one snapshot with mass current ratio M Ms d˙ ˙ and the number n of disk orbits as indicated between the top
and middle rows. Colors in the top row plot density, in the middle row the radial mass flux, and in the bottom row the azimuthal velocity divided by the Keplerian
orbital velocity. The black arcs above the cutout trace where the radial mass flux, the quantity plotted in the middle row, is the most strongly inward.
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of our simulations, we can approximate the mass return rate to
be constant.

The inflow time is the time a gas packet takes to fall toward
the black hole, hence also the time over which the rest energy of
the gas packet is converted to internal energy. For heavier
streams, the inflow time declines slowly over time from ∼1 to
0.5 day´ -

 M M r R r r ;1 2 3 2
p t

3 2( ) ( ) ( )  for the lightest
stream, it decreases from ∼50 to 12 days ´ -

M M 1 2( )
r R r r3 2

p t
3 2( ) ( ) (Section 4.2.2).

If the stream is heavy enough to drill through the disk,
part of the outgoing material will be bound. The bound
material travels on an elliptical orbit of period ~ ´4 days

-
 M M r R r r1 2 3 2

p t
3 2( ) ( ) ( )/ / // / /

  (Section 4.4), which is
considerably shorter than the mass return time. The bound
material will encounter the disk a second time, but because it is
much more dilute than the incoming stream (Section 4.1), this
time it will simply adhere to the disk and not go through; a rise
in the energy dissipation rate accompanies this interaction. As
the incoming stream weakens over time and less outgoing
material is ejected, this extra energy dissipation ceases as well.

The collision leaves the disk in a very perturbed state. The
disk returns to its unperturbed state when the depleted inner
disk (Section 4.1) is refilled with gas from the outer disk. The
timescale is very uncertain because our simulations do not take
into account how magnetic stresses pull gas in. For a Shakura
& Sunyaev (1973) disk, the resupply time is simply the
unperturbed accretion time (Section 5.1.1). However, if gas
pressure falls sharply from the outer disk to the inner, magnetic
loops can stretch inward across the interface. Orbital shear then
creates magnetic stresses strong enough to pull gas along with
the loops, allowing gas to spiral inward over ∼10 disk orbits, or
~ ´ -

 M M r R r r1.2 days 1 2 3 2
p t

3 2( ) ( ) ( )  . Such effects
are seen generically in the initial transient phase of global
MHD disk simulations (Noble et al. 2011). Because the disk
already captures enough mass from the stream to greatly reduce
its mass loss rate (Section 4.4), even a small amount of
resupply could allow the mass and surface density of the inner
disk to reach steady state within a fraction of the mass
return time.

5.1.3. Timescales of Energy Release

The cooling time is the time it takes radiation originating
from the midplane to diffuse out of the geometrically
(Section 4.1) and optically (Section 4.2.2) thick inner disk; it
is t H cT , where H is the height of the perturbed inner disk
measured at stream pericenter. For an inner disk of aspect ratio
unity, the cooling time is

t
~ ´

-
 M

M

M

M

r

R

r

r
30 days

10 10
. 18h

6

1 3 1 3
p

t

T
4

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠ ( )

/ /

  

Here tT is the Thomson optical depth at stream pericenter
(Figure 7). For a radiation-dominated, »M M 4s d˙ ˙ disk with
our fiducial parameters (Section 3.3), the cooling time drops
from ∼21 to ∼1.4 days over the course of ≈12 days. The
cooling time is so long because tT is ∼0.1 times the
unperturbed Thomson optical depth (Section 4.2.2) but H rises
greatly due to sudden heating. How quickly tT declines
depends on the amount of resupply (Section 5.1.2).
Because the inner disk is optically thick to scattering, the

inflow time (Section 5.1.2) is also the time radiation has to

Figure 5. Plot of the disk-like (Section 3.4) inflow rate across the inner-radial
boundary as a function of time. The code unit is r r v0 0

2
0, where r0 is from

Equation (16), and r0 and v0 are from Section 3.2. The top and bottom panels
differ only in that the top panel looks at long-term behavior while the bottom
panel zooms in on early times. The horizontal lines mark the stream mass
current Ms˙ in ascending order from bottom to top, omitting the largest Ms˙ .

Figure 6. Plot of the inflow time, defined as the disk-like (Section 3.4) mass at
R � r0 divided by the disk-like inflow rate across the inner-radial boundary
(Figure 5), as a function of time.

9

The Astrophysical Journal, 881:113 (14pp), 2019 August 20 Chan et al.



escape before being swallowed. The ratio of the inflow time to
the cooling time is a rough estimate of the fraction of internal
energy generated in the collision that is released as radiation.
For a radiation-dominated, »M M 4s d˙ ˙ disk with our fiducial
parameters (Section 3.3), the ratio rises from ∼0.06 to ∼0.3
over » 12 days. Most of the energy is therefore advected into
the black hole, suppressing the collision luminosity. The
situation may change if the inner disk is further depleted and its
optical depth diminished accordingly.

5.1.4. Hierarchy

For a radiation-dominated, »M M 4s d˙ ˙ disk with our
fiducial parameters (Section 3.3), the shortest timescale is the
disk dynamical time, ∼0.018 days. Next in order is the inflow
time due to shocks, bottoming out at ∼0.5 to 1 day within
∼1 day from the beginning of the collision. Magnetic stresses
could bring gas from the outer disk into the inner disk over
∼1.2 days, while the bound outgoing material falls back to the
disk in ∼4 days. These timescales are followed by the cooling
time due to radiative diffusion from the inner disk, which starts
at ∼21 days but drops to ∼1.4 days within »12 days. Longer

still is the mass return time, ∼40 days. The unperturbed disk
accretion time, ∼60 yr, is much longer than all of the other
timescales and is therefore irrelevant.

5.2. Energetics

We present an inventory of the time-integrated amount of
energy we may expect over the course of the entire event,
including the energy from processes not directly simulated. All
items except the last are concerned with internal energy
production in the disk; the energy emitted as light from the disk
could be much smaller because radiation could be trapped in
the inflow and swallowed by the black hole (Section 5.1.3).
For lighter streams, the stream loses all of its kinetic energy

at the collision (Section 4.3); its gas assimilates into the disk
(Section 4.4) and moves inward to the black hole within an
inflow time. The energy dissipated in this whole process is the
same as if the stream were accreted directly onto the black hole,
that is, h~ ´ ´ E M M9 10 erg 0.152 ( )( ) . The energy
dissipated may be smaller because shocks in the inner disk may
send gas straight into the black hole (Section 4.2.1).
In the meantime, shocks excited by the collision inner disk

(Section 4.1). The energy produced is ~ ´ ´E M6 10 ergd
50

h[
a h- - -

 M M M r R r r10 0.1 0.16 1 3 7 6 7 2
p t

7 2 1 2( )] ( ) ( ) ( ) ( ) ( )  
-L L 0.005a E

1[( ) ] for a radiation-dominated inner disk. It can be
smaller if shocked gas plunges into the black hole (Section 4.2.1)
or if only part of the pre-existing inner disk is accreted.
After the event is over, magnetic stresses gradually replenish the

inner disk with gas from the outer disk (Section 5.1.3). Energy of
order the binding energy of the unperturbed inner disk is released,
which is ~ ´ ´ -

E M M M M9 10 erg 10r
49

h
6 1 3 5 6[ ( )] ( ) 

a h- -
r R r r L L0.1 0.1 0.0055 2

p t
5 2 1

a E
1( ) ( ) ( ) ( )[( ) ] if the

inner disk is radiation-dominated. Should magnetic stresses be
strong enough to keep the inner disk refilled even while the event
is in progress (Section 5.1.2), the continuous inflow of gas from the
outer disk to the black hole during the event may lead to a total
amount of energy dissipated exceeding Ed + Er.
For heavier streams, the situation is more complicated. The

inner disk is similarly flushed out by shocks, generating Ed of
internal energy in the process, and the inner disk is likewise
resupplied by the outer disk, yielding Er. The difference is that
the disk now captures only a fraction ~f 0.5c of the incoming
stream (Section 4.4), and the rest of the stream emerges on the
other side as outgoing material. The energy available from the
initial dissipation at the impact point and from the subsequent
inflow of stream gas is therefore only » f Ec . The value of fc
decreases with M Ms d˙ ˙ and time, the decrease being the
sharpest around ~M M 1s d˙ ˙ (Section 4.4).
Some of the outgoing material remains bound, with a range

of specific binding energy from ~ GM r0.05 h p to zero
(Section 4.4). Different parts of the bound material fly out to
their respective apocentric distances of  r19 p, at which point
they run into the disk again. Because the bound material is
much more diffuse than the incoming stream was at pericenter
(Section 4.1), we expect the disk to capture all of the bound
material. The kinetic energy dissipated is ´ ´2 10 erg49

- -
 M M r R r r f 0.52 1

p t
3

b( ) ( ) ( ) ( )  , with -f f1b c the
fraction of the incoming stream ending up in the bound
material; therefore, the second collision may be too dim to be
seen against the first collision and the background AGN. The
captured bound material accretes along with the disk, but the

Figure 7. Plot of the azimuthally averaged disk-like (Section 3.4) surface
density, defined as half of the integral of density from one side of the inner disk
to another, as a function of radius. The code unit is r r0 0, where r0 is from
Equation (16) and r0 is from Section 3.2. The dotted line shows the unperturbed
disk surface density given by Equation (15); the colored curves are time-
averages over the number n of disk orbits specified in the legend. Each panel
presents one simulation with mass current ratio M Ms d˙ ˙ as indicated in the top-
left corner.
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accretion energy can be neglected because the accretion
timescale is much longer than the mass return time.
The previous paragraph pertains to the particular stream

configuration used in our simulations, one where the
stream plane is perpendicular to the disk plane and the stream
pericenter is in the disk plane (Section 3.4). In the general case
where the two planes are oriented randomly, it is more
likely that the first and second collisions both occur near
pericenter. Such a second collision dissipates ~ ´ ´5 10 erg51

- -
 M M M M r R r r f10 0.25h

6 2 3 4 3 1
p t

1
b[ ( )] ( ) ( ) ( ) ( )   , much

greater than if the second collision were at apocenter. This
energy is a sizable fraction of that obtained by accreting the
bound material directly, f Eb , because r rt g is typically only a
few times h-1, according to Equation (1). The dissipation occurs
over large areas of the disk and possibly at high altitudes, both of
which have implications for how much of the dissipated energy
would emerge as radiation. The remainder of f Eb is liberated
when the bound material falls toward the black hole.
Some of the outgoing material is unbound by a kick from the

disk and carries specific kinetic energy~ GM r0.03 h p at infinity
(Section 4.4). The total energy is ~ ´ ´ M1.4 10 erg50

h[
- -

 M M M r R r r f10 0.256 2 3 4 3 1
p t

1
u( )] ( ) ( ) ( ) ( )   , where =fu

- -f f1 c b is the fraction of the incoming stream unbound by
the collision. Compared to the primary ejecta unbound as an
immediate consequence of the disruption (Guillochon et al.
2016; Krolik et al. 2016; Yalinewich et al. 2019), this secondary
ejecta has a fraction »fu of the mass, higher velocity
(Section 4.4), and a larger opening angle (Section 4.1). The
ejecta drives a bow shock while running into the surrounding
medium, and relativistic electrons accelerated in this shock can
produce synchrotron radiation (Krolik et al. 2016; Yalinewich
et al. 2019). At later times, the shock driven by the ejecta may
mimic a supernova remnant (Guillochon et al. 2016). The denser
medium around AGNs could mean that TDEs are more radio-
bright in AGNs than in vacuum. The prompt emission due to the
secondary ejecta could be more luminous than the primary ejecta
because the fastest material has higher velocity and a wider
interaction area (Krolik et al. 2016; Yalinewich et al. 2019). All
these may explain why the radio transient CygnusA-2 (Perley
et al. 2017), if interpreted as a thermal TDE happening in an
AGN (de Vries et al. 2019), is brighter in radio than typical
thermal TDEs in vacuum.

5.3. Inner Disk

5.3.1. Thermodynamics

Our simulations do not correctly track temperatures because
the adiabatic index used corresponds to gas pressure and not
radiation pressure. To estimate the gas and radiation tempera-
tures of the inner disk, we observe that shocks raise the sound
speed of the simulated inner disk to ∼0.2 to 0.5 times the
local Keplerian orbital velocity; this corresponds to a gas
temperature of

~ ´ ´
-

 M

M

M

M

r

R

R

r
2 10 K
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. 1910 h

6

2 3 1 3

t

1⎛
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⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

  

If gas and radiation in the inner disk had enough time to
thermalize, they would come into an equilibrium temper-
ature of

Figure 8. Plot of the energy dissipation rate, defined as the volume integral of
r r¶ ¶ +  + v ve t e p( ) · ( ) · over the simulation domain, as a function of

time. The code unit is r r v0 0
2

0
3, where r0 is from Equation (16), and r0 and v0 are

from Section 3.2. The horizontal lines mark the stream kinetic energy current
for different stream mass current Ms˙ in ascending order from bottom to top,
omitting the largest Ms˙ .

Figure 9. Top panel: plot of the mass current of the stream-like (Section 3.4)
outgoing material emerging from the bottom of the disk as a function of time.
The code unit is r r v0 0

2
0, where r0 is from Equation (16), and r0 and v0 are from

Section 3.2. Simulations with negligible outgoing material are hidden. The
horizontal lines mark the stream mass current Ms˙ for the simulations shown.
Bottom panel: plot of the stopped mass current, defined as Ms˙ minus the
outgoing material mass current depicted in the top panel. The horizontal lines
mark Ms˙ for each simulation. The stopped mass current is generally larger than
the inflow rate in Figure 5, implying that the stream carries enough mass to
potentially resupply the inner disk.
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where ρ is the inner disk density during the collision, and its
fiducial value is the typical density at the end of the »M M 4s d˙ ˙
simulation for a radiation-dominated disk with our fiducial
parameters (Section 3.3). In thermodynamic equilibrium, the
internal energy is dominated by radiation and variesµTeq

4 , hence
Teq is rather insensitive to the specific values of the parameters
on the right-hand side.

However, it may be difficult for gas raised to ~T 10 K10 to
reach thermodynamic equilibrium. Because the cross section
per mass for free–free absorption is rµ -T 7 2, gas this hot
would have essentially zero absorptivity and therefore, by
Kirchhoff’s law, essentially zero emissivity. The post-shock
gas could cool by inverse Compton scattering off photons
already present in the gas, but this, too, is problematic. The
cooling rate is proportional to the local radiation energy
density, which depends strongly on whether the gas originates
from the colder stream or the hotter unperturbed inner disk.
Even if Compton cooling is rapid, it creates no new photons, so

the temperature decrease it achieves may be limited. Sub-
stantial Compton cooling may be possible only at high
latitudes, where the post-shock gas is exposed to photons
radiated by the outer disk. Close to the midplane, Compton
cooling may create photons energetic enough to produce pairs,
which could hasten thermalization. For all these reasons,
without detailed calculations, we cannot make a firm statement
about how rapidly, or through what radiation mechanisms, the
inner disk may approach thermodynamic equilibrium.

5.3.2. Radiative Transfer

The collision converts a sizable fraction of the stream kinetic
energy to internal energy. For a radiation-dominated, »M M 4s d˙ ˙
disk with our fiducial parameters (Section 3.3), the shocks
dissipate energy ∼300 to 2000 times faster than internal stresses
in the disk, corresponding to ∼1.5 to 10 times the Eddington rate
(Section 4.3). How the large amount of internal energy created
translates to emission, however, is highly uncertain.
The critical comparison here is between the inflow time and

the cooling time (Section 5.1.3). Since the cooling time
depends on the inner disk mass, its value can be properly
determined only with MHD simulations that self-consistently
model the amount of resupply from the stream and the outer
disk (Section 5.1.2). But if the inflow time is indeed shorter
than the cooling time over a significant fraction of the mass
return time, as our hydrodynamics simulations suggest, then
radiative transfer in the inner disk is inherently time-dependent.
The relative shortness of the inflow time means radiation near

the midplane is trapped, so energy dissipation deep inside the
inner disk is completely hidden from view. The only regions that
can effectively cool are those so close to the photosphere that
radiation can diffuse out before being swept into the black hole;
consequently, the outgoing luminosity is a small fraction of the
total energy dissipation rate. Even in regions from which
radiation can escape, fluctuations shorter than the local diffusion
time do not imprint themselves on the light curve.
A more careful treatment calls for three-dimensional, time-

dependent radiative transfer calculations capable of handling the
high degree of asymmetry of the system: gas near shocks is denser
and hotter than gas elsewhere, and the outgoing material has high
enough optical depth to partially obscure one side of the inner disk.
More radiation could escape if vertical advection, for example

due to magnetic buoyancy (Jiang et al. 2014), is important in
transporting radiation outward. Exploring this possibility requires
time-dependent radiative MHD simulations.
The interaction among the processes above and thermalization

(Section 5.3.1) may depend sensitively on the specific parameters
of the system. The resulting emission may not resemble a regular
TDE or AGN, and may have complex temporal and spectral
behavior; different TDEs in AGNs could look entirely different.
Having laid out all these complications, we may nevertheless

crudely estimate the bolometric collision luminosity Lc as
proposed in Section 5.1.3: We take the ratio t tinfl cool of inflow
to cooling time to be roughly the fraction of energy that escapes
as radiation, and we scale the energy dissipation rate Q
(Section 4.3) by it. For heavy streams, Figure 11 shows that Lc
could be briefly very super-Eddington, then settle at a near-
Eddington level. For a radiation-dominated, »M M 4s d˙ ˙ disk
with our fiducial parameters (Section 3.3), the time to steady
state is ∼1 day. The fact that ~L Lc E is not surprising in
retrospect. If the inner disk had enough time to thermalize
(Section 5.3.1), then it would be supported vertically against

Figure 10. Histogram of the mass current-weighted specific mechanical energy
of stream-like (Section 3.4) outgoing material. Each panel presents one
simulation with mass current ratio M Ms d˙ ˙ as indicated in the top-left corner;
only simulations with the largest M Ms d˙ ˙ are included. The time intervals over
which the histograms are computed are given in the legend in terms of the
number n of disk orbits. Each histogram is normalized such that the area under
it is the fraction of the incoming stream ending up in the outgoing material;
these areas are given in the top-left corner underneath M Ms d˙ ˙ . Note that the
ordinate range varies from row to row. The vertical lines indicate the
characteristic energy spread the initial disruption imparts to the stellar material
for our fiducial parameters =M M10h

6
, =M M, and =r R

(Section 3.3).
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gravity by radiation pressure, and the characteristic luminosity
of such systems is LE (Krolik 2010).

5.4. Further Speculations

The corona of the unperturbed inner disk may be destroyed
along with the inner disk itself (Section 4.1) if MHD turbulence
is suppressed in the shock-driven inflow replacing it. This
could explain the dip in soft X-rays lasting for a few months in
the nuclear transient observed by Trakhtenbrot et al. (2019a).

The super-Eddington inflow (Section 4.2.2)may be connected
to the launching of a jet (Giannios & Metzger 2011; Krolik &
Piran 2012), which has been invoked to explain the hard X-ray
(Bloom et al. 2011; Burrows et al. 2011; Cenko et al. 2012) and
radio (van Velzen et al. 2016) emission of several TDEs. This
possibility can be tested using future MHD simulations.

Acoustic waves (Section 4.1) are launched when shocks in
the outer disk push orbiting gas radially outward. Bending
waves are generated when the stream delivers misaligned
angular momentum and exerts a torque on the disk. These
waves may have observable consequences on the outer disk
long after the stream has ended.

As the mass return rate dwindles toward the end of the event,
the shocks would become weaker, inner-disk gas would move
inward more slowly, and the gas may have enough time to
completely cool off before reaching the black hole (Section 5.1.3).

6. Conclusions

A small fraction of TDEs is expected to take place in AGNs.
As a first step toward understanding how TDEs in AGNs differ
observationally from TDEs in vacuum, we have conducted a
suite of simulations in which the bound debris stream of a TDE
collides perpendicularly with the pre-existing accretion disk of
an AGN. Our simulations show consistently that the collision
creates shocks in the disk, and shocks lead to extremely super-
Eddington dissipation and mass inflow rates; as a result, the
disk interior to the stream impact point is heated to high
temperatures and evacuated on timescales much shorter than
the mass return time. Lighter streams merge with the disk,
whereas heavier streams bore through; in the latter case, stream

gas shooting out of the other side of the disk may interact with
the disk again or with the surrounding gas.
The parameter we vary in our simulations is M Ms d˙ ˙ , the

mass current carried by the stream divided by the azimuthal
mass current of the disk passing under the stream footprint. It is
the most important parameter governing the dynamics of the
collision because it determines the relative rates at which mass,
momentum, and kinetic energy are brought to the impact point
by the stream and the disk. As the Eddington ratio of the AGN
rises at fixed black hole mass, M Ms d˙ ˙ decreases to a minimum
and then increases; any given value of M Ms d˙ ˙ above the
minimum can be achieved in either a weakly accreting, gas-
dominated disk or a strongly accreting, radiation-dominated
disk. Typical TDEs in AGNs have M M 1s d˙ ˙ .
A light stream with small M Ms d˙ ˙ is completely absorbed by

the disk and deflected toward the black hole. A heavy stream
with large M Ms d˙ ˙ penetrates the disk, shooting out fluffy
outgoing material on the other side. Part of the outgoing
material remains bound; it runs into the disk again eventually,
this time settling onto the disk instead of punching through
because its density is much lower than before. Part of the
outgoing material is unbound by a kick from the disk; it
escapes and interacts with the surrounding gas. All these
interactions are potential energy sources for emission.
The collision dissipates mostly the kinetic energy of the

stream when the stream is light, but mostly that of the disk
when the stream is heavy. The internal energy, generated at a
super-Eddington rate several orders of magnitude above that of
the unperturbed disk, raises the aspect ratio of the inner disk to
order unity.
The collision excites multiple shocks in the inner disk.

Repeated encounters with shocks remove angular momentum
from disk gas, causing it to move speedily inward. Heavier
streams create stronger shocks, so much so that the inflow rate
is enhanced to super-Eddington values orders of magnitude
above that of the unperturbed disk.
Rapid inflow drains the inner disk; meanwhile, the disk

replenishes itself by capturing part of the incoming stream. The
net effect is still a monotonic decline of the mass and surface
density of the inner disk over time, but much slower than if the
stream were not captured. For heavier streams, the surface density
is lowered by an order of magnitude within a fraction of the mass
return time. Resupply from the outer disk due to magnetic
stresses, not considered in our simulations, could help the inner
disk achieve mass balance within the mass return time.
The super-Eddington inflow and energy dissipation rate does

not automatically imply super-Eddington luminosity. Because
the inner disk flows inward faster than radiation can diffuse out
of it, only a small fraction of the energy dissipated in the
collision escapes as radiation, and the rest is advected inward to
the black hole. Nevertheless, the high rate at which kinetic
energy is dissipated means the bolometric luminosity may be
near-Eddington. It is uncertain in which energy band the
radiation emerges; the spectrum could be far from thermal and
may not look like a standard TDE or AGN at all. Because the
inflow time is short and the density distribution has a complex
geometry, robust observational predictions demand more care-
ful treatment of the three-dimensional, time-dependent radiative
transfer and the thermal evolution of the post-shock gas.
We do not know how soon the disk returns to the unperturbed

state once the stream has ended; it could take decades if inflow is
controlled by MHD turbulence in the usual way, or a much shorter

Figure 11. Plot of the bolometric collision luminosity Lc in Eddington units as
a function of time. The luminosity is estimated as ~L Qt tc infl cool, where Q is
the energy dissipation rate (Figure 8), tinfl is the inflow time (Figure 6), and tcool

is the cooling time (Section 5.1.3).
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time if the cavity interior to the impact point permits more coherent
magnetic stresses to act, as often seen in MHD simulations.

We caution that, as a first step toward understanding how
TDEs behave in AGNs, our simulations considered a very
restricted section of the parameter space. The properties of the
system as a function of time may depend on such detailed
parameters as the geometry and orientation of the stream
relative to the disk, the density and velocity structure of the
stream, and the properties of the unperturbed disk. Moreover,
our simulations did not run long enough to study what happens
when the mass return rate has fallen significantly, nor did they
have the ability to follow the radiative and MHD properties of
the stream and the disk. The exploration of the vast parameter
space and the wide range of physics will, no doubt, be the
subject of future work.
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