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REGULARITY OF BOLTZMANN EQUATION WITH EXTERNAL
FIELDS IN CONVEX DOMAINS OF DIFFUSE REFLECTION∗
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Abstract. We consider the Boltzmann equation with external fields in strictly convex domains
with diffuse reflection boundary condition. As long as the external fields satisfy some sign condi-
tion on the boundary E(t, x) · n(x) > CE > 0 for all t and all x ∈ ∂Ω, we construct classical C1

solutions away from the grazing set. As a consequence we construct solutions of the Vlasov–Poisson–
Boltzmann system having bounded derivatives away from the grazing set (weighted W 1,∞ estimate).
In particular this improves the recent regularity estimate of such system in weighted W 1,p space for
p < 6 in [Y. Cao, C. Kim, and D. Lee, Arch. Ration. Mech. Anal., 233 (2019), pp. 1027–1130].
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1. Introduction. The object of kinetic theory is the modeling of particles by
a distribution function in the phase space F (t, x, v) for (t, x, v) ∈ [0,∞) × Ω × R3,
where Ω is an open bounded subset of R3. Dynamics and collision processes of dilute
charged particles with a field E can be modeled by the Boltzmann equation

(1.1) ∂tF + v · ∇xF + E · ∇vF = Q(F, F ).

The collision operator measures “the change rate” in binary collisions and takes the
form of

Q(F1, F2)(v) := Qgain(F1, F2)−Qloss(F1, F2)

:=

∫
R3

∫
S2

B(v − u) · ω)[F1(u′)F2(v′)− F1(u)F2(v)]dωdu,
(1.2)

where u′ = u − [(u − v) · ω]ω and v′ = v + [(u − v) · ω]ω. Here, B(v − u, ω) =
|v−u|κq0( v−u

|v−u| ·ω) and 0 ≤ κ ≤ 1 (hard potential) and 0 ≤ q0( v−u
|v−u| ·ω) ≤ C| v−u|v−u| ·ω|

(angular cutoff).
The collision operator enjoys collision invariance: for any measurable function G,

(1.3)

∫
R3

[
1 v |v|2−3

2

]
Q(G,G)dv =

[
0 0 0

]
.

It is well known that a global Maxwellian µ satisfies Q(µ, µ) = 0, where

(1.4) µ(v) :=
1

(2π)3/2
exp

(
− |v|

2

2

)
.

Throughout this paper we assume that Ω is a bounded open subset of R3 and
there exists a C3 function ξ : R3 → R such that Ω = {x ∈ R3 : ξ(x) < 0} and
∂Ω = {x ∈ R3 : ξ(x) = 0}. Moreover we assume the domain is strictly convex :
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3196 YUNBAI CAO∑
i,j

∂ijξ(x)ζiζj ≥ Cξ|ζ|2 for all ζ ∈ R3 and for all x ∈ Ω̄ = Ω ∪ ∂Ω.

We assume that

(1.5) ∇ξ(x) 6= 0 when |ξ(x)| � 1,

and we define the outward normal as n(x) = ∇ξ(x)
|∇ξ(x)| at the boundary. The boundary

of the phase space γ := {(x, v) ∈ ∂Ω× R3} can be decomposed as

γ− = {(x, v) ∈ ∂Ω× R3 : n(x) · v < 0} (the incoming set),

γ+ = {(x, v) ∈ ∂Ω× R3 : n(x) · v > 0} (the outcoming set),

γ0 = {(x, v) ∈ ∂Ω× R3 : n(x) · v = 0} (the grazing set).

(1.6)

In general the boundary condition is imposed only for the incoming set γ− for general
kinetic PDEs. In this paper we consider a so-called diffuse boundary condition

(1.7) F (t, x, v) = cµµ(v)

∫
n(x)·u>0

F (t, x, u){n(x) · u}du, on (x, v) ∈ γ−

with cµ
∫
n(x)·u>0

µ(u){n(x) · u}du = 1. For other important boundary conditions,

such as the specular reflection boundary condition, we refer to [8, 13, 14] and the
references therein.

Due to its importance of the Boltzmann equation in mathematical theory and
application, there have been explosive research activities in analytic study of the
equation. Notably the nonlinear energy method has led to solutions of many open
problems including global strong solution of Boltzmann equation coupled with either
the Poisson equation or the Maxwell system for electromagnetism when the initial
data are close to the Maxwellian µ in periodic box (no boundary). See [5] and the
references therein. In many important physical applications, e.g., semiconductor and
tokamak, the charged dilute gas is confined within a container, and its interaction
with the boundary plays a crucial role both in physics and mathematics.

However, in general, higher regularity may not be expected for solutions of the
Boltzmann equation in physical bounded domains. Such a drastic difference of so-
lutions with boundaries has been demonstrated as the formation and propagation of
discontinuity in nonconvex domains [15, 4] and a nonexistence of some second order
derivative at the boundary in convex domains [6]. Evidently the nonlinear energy
method is not generally available to the boundary problems. In order to overcome
such critical difficulty, Guo developed a L2-L∞ framework in [8] to study global solu-
tions of the Boltzmann equation with various boundary conditions. The core of the
method lays in a direct approach (without taking derivatives) to achieve a pointwise
bound using trajectory of the transport operator, which leads substantial development
in various directions including [3, 4, 6, 7, 12]. In [6], with the aid of some distance
function towards the grazing set, the authors construct weighted classical C1 solutions
of Boltzmann equation (E ≡ 0 in (1.1)) with various boundary conditions away from
the grazing set. They also construct W 1,p solution for 1 < p < 2 and weighted W 1,p

solutions for 2 ≤ p <∞ as well.
In the first part of the paper, we extend a result of [6] to the Boltzmann equation

(1.1) with an external field (E 6= 0) satisfying a crucial sign condition on the boundary

(1.8) E(t, x) · n(x) > CE > 0 for all t and all x ∈ ∂Ω.

One of the major difficulties is that trajectories are curved and behave in a very
complicated way when they hit the boundary.
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REGULARITY OF BOLTZMANN EQUATION W/EXTERNAL FIELD 3197

We denote ‖ · ‖p the Lp(Ω×R3) norm, while | · |γ,p = | · |p is the Lp(∂Ω×R3; dγ)
norm, | · |γ±,p = | · 1γ± |γ,p, dγ = |n(x) · v|dSxdv with the surface measure dSx on ∂Ω.

Our main results are W 1,p(1 < p < 2) estimate, weighted W 1,p(2 ≤ p < ∞)
estimate, and weighted C1 estimate for the solution of (1.1) with diffuse boundary
condition (1.7) in a short time. For the W 1,p estimate with 1 < p < 2, the result is
the following theorem.

Theorem 1 (W 1,p estimate for 1 < p < 2). Suppose E satisfies (1.8), and
‖E‖∞ <∞. Assume the compatibility condition of F0 =

√
µf0 on (x, v) ∈ γ−,

f0(x, v) = cµ
√
µ(v)

∫
n(x)·u>0

f0(x, u)
√
µ(u)(n(x) · u)du.(1.9)

If ‖eθ|v|2f0‖∞ + ‖∇x,vf0‖p <∞ for some 0 < θ < 1/4 and any fixed 1 < p < 2, then
there exists a unique solution F (t) =

√
µf(t) for t ∈ [0, T ] with 0 < T � 1 to the

system (1.1), (1.7) that satisfies, for all 0 ≤ t ≤ T ,∥∥∥e−$〈v〉t∇x,vf(t)
∥∥∥p
p

+

∫ t

0

|e−$〈v〉s∇x,vf(s)|pγ,pds(1.10)

+
∥∥∥eθ′|v|2f(t)

∥∥∥
∞

.t
∥∥∥∇x,vf0

∥∥∥p
p

+ P
(∥∥∥eθ|v|2f0

∥∥∥
∞

)
for some polynomial P , 0 < θ′ < θ, and $ � 1.

In order to have weighted W 1,p estimate for p ≥ 2 and the weighted C1 estimate,
we introduce a distance function α(t, x, v) towards the grazing set γ0:

(1.11) α(t, x, v) ∼
[
|v·∇ξ(x)|2+ξ(x)2−2(v·∇2ξ(x)·v)ξ(x)−2(E(t, x)·∇ξ(x))ξ(x)

]1/2

for x ∈ Ω close to boundary, where x := {x̄ ∈ ∂Ω : d(x, x̄) = d(x, ∂Ω)} is uniquely
defined. The precise definition of α can be found in (2.45). Note that α|γ− ∼ |n(x) ·v|,
and a similar distance function towards γ0 was used in [6, 9, 11].

One of the crucial property α enjoys, under the assumption of the sign condition
(1.8), is the velocity lemma (Lemma 7):

e−C
∫ t
s
〈V (τ ′)〉dτ ′α(s,X(s), V (s)) ≤ α(t, x, v) ≤ eC

∫ t
s
〈V (τ ′)〉dτ ′α(s,X(s), V (s)).(1.12)

This can be seen by directly taking derivatives along the trajectory

(1.13) |{∂t + v · ∇x + E · ∇v}α2(t, x, v)| ∼ |v|α2 + C|v|ξ(x)

for some C .ξ,E 1. Now under (1.8), we get an extra stronger control for ξ(x) from
the last term of α2, and therefore the second term on the right-hand side (RHS) of
(1.13) can be bounded by

(1.14) C|v|ξ(x) ≤ C

infy∈∂ΩE(t, y) · ∇ξ(y)
|v|(E(t, x) · ∇ξ(x))ξ(x) ≤ C

CE
α2(t, x, v).

Thus combing (1.13) and (1.14) we obtain (1.12) from Gronwall. (1.12) tells that
α is almost invariant along the characteristics, especially for small t � 1, which is
crucially used for establishing the following theorems.

Theorem 2 (weighted W 1,p estimate for 2 ≤ p < ∞). Suppose E satisfies the
sign condition (1.8), and

(1.15) ‖E(t, x)‖∞ + ‖∇xE(t, x)‖∞ + ‖∂tE(t, x)‖∞ <∞.
Assume the compatibility condition (1.9). For any fixed 2 ≤ p < ∞ and p−2

p < β <
p−1
p , if ‖αβ∇x,vf0‖p + ‖eθ|v|2f0‖∞ < ∞ for some 0 < θ < 1

4 , then there exists a
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3198 YUNBAI CAO

unique solution F (t) =
√
µf(t) for t ∈ [0, T ] with 0 < T � 1 to the system (1.1),

(1.7) that satisfies, for all 0 ≤ t ≤ T ,

‖e−$〈v〉tαβ∇x,vf(t)‖pp +

∫ t

0

|e−$〈v〉sαβ∇x,vf(s)|pγ,pds(1.16)

+
∥∥∥eθ′|v|2f(t)

∥∥∥
∞

.t
∥∥αβ∇x,vf0

∥∥
p

+ P
(∥∥∥eθ|v|2f0

∥∥∥
∞

)
for some polynomial P , 0 < θ′ < θ, and $ � 1.

Theorem 3 (weighted C1 estimate). Suppose E satisfies (1.8) and (1.15). As-

sume the compatibility condition (1.9). If ‖α∇x,vf‖∞ + ‖eθ|v|2f0‖∞ < ∞ for some
0 < θ < 1

4 , then there exists a unique solution F (t) =
√
µf(t) for t ∈ [0, T ] with

0 < T � 1 to the system (1.1), (1.7) that satisfies for all 0 ≤ t ≤ T ,

‖e−$〈v〉tα∇x,vf(t)‖∞ +
∥∥∥eθ′|v|2f(t)

∥∥∥
∞

.t ‖α∇x,vf0‖∞(1.17)

+ P
(∥∥∥eθ|v|2f0

∥∥∥
∞

)
for all 0 ≤ t ≤ T,

for some polynomial P , 0 < θ′ < θ, and $ � 1. If α∇f0 ∈ C0(Ω̄ × R3) is valid for
γ−, then f ∈ C1 away from the gazing set γ0.

For the second part of this paper we consider a so-called Vlasov–Poisson–
Boltzmann system (VPB) where the potential consists of a self-generated electro-
static potential and an external potential, E = ∇φ, where

φ(t, x) = φF (t, x) + φE(t, x) with
∂φE
∂n

> CE > 0 on ∂Ω,(1.18)

−∆xφF (t, x) =

∫
R3

F (t, x, v)dv − ρ0 in Ω,
∂φF
∂n

= 0 on ∂Ω,(1.19)

with the same diffuse boundary condition (1.7). The coupled system (1.1), (1.18),
(1.19) describes the dynamics of collisional electrons in the presence of a external
field. With the help of the external field φE and its sign condition on the boundary
(1.8), we could construct a short time weighted W 1,∞ solution to the VPB system,
which improves the recent regularity estimate of such system in weighted W 1,p space
for p < 6 in [1, 2]. It is important to note that α in (2.45) only depends on E|∂Ω;
therefore ∇φE but not φF . Our main result is the following theorem.

Theorem 4 (weighted W 1,∞ estimate for the VPB system). Let φE(t, x) be a
given external potential with ∇xφE satisfying (1.8), and

(1.20) ‖∇xφE(t, x)‖∞ + ‖∇2
xφE(t, x)‖∞ + ‖∂t∇xφE(t, x)‖∞ <∞.

Assume that

(1.21)
∥∥∥eθ|v|2α∇x,vf0

∥∥∥
∞

+
∥∥∥eθ|v|2f0

∥∥∥
∞

+
∥∥∥eθ|v|2∇vf0

∥∥∥
L3
x,v

<∞

for some 0 < θ < 1
4 . Then there exists a unique solution F (t, x, v) =

√
µf(t, x, v) to

(1.1), (1.18), (1.19) for t ∈ [0, T ] with 0 < T � 1, such that for some 0 < θ′ < θ,
$ � 1,

sup
0≤t≤T

∥∥∥eθ′|v|2f(t)
∥∥∥
∞
<∞.(1.22)
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Moreover

sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∇x,vf (t, x, v)
∥∥∥
∞
<∞,(1.23)

and

sup
0≤t≤T

‖e−$〈v〉t∇vf(t)‖L3
x(Ω)L1+δ

v (R3) <∞ for 0 < δ � 1.(1.24)

We now illustrate the main ideas in the proof of the theorems. The intrinsic
difficulty of regularity estimates stems from the singularity of the spatial normal
derivative of F at the boundary. From (1.1), formally we have

(1.25)
∂F

∂n
∼ 1

n · v

{
Q(F, F )− E · ∇vF − ∂tF −

2∑
i=1

τi∂τiF

}
on ∂Ω,

where τ1(x) and τ2(x) are unit tangential vectors to ∂Ω satisfying

τ1(x) · n(x) = 0 = τ2(x) · n(x) and τ1(x)× τ2(x) = n(x).(1.26)

We note that the nonlocal term Q(F, F ) prevents the RHS of (1.25) from vanishing,
and hence this singularity persists in general.

The proofs of Theorems 1–3 devote a nontrivial extension of the argument of [6] in
the presence of external fields with the crucial sign condition (1.8). For Theorem 1, we
establish Green’s identity for transport equation with external field and apply it to the
derivatives ∇x,vf . Clearly, the v derivatives behave nicely for the diffuse boundary
condition. For the x derivatives on the boundary, one can decompose ∇x as the
tangential derivatives ∂τ and normal derivative ∂n. As in [6], we use the Boltzmann
equation and the diffuse boundary condition to find a formula of ∂nf on γ−:

(1.27)

∂nf ∼
1

n · v

∫
n·u>0

{
−u · ∇xf +

2∑
i=1

∂τif +∇vf + lower order terms

}
(n(x) · u) du.

Due to the crucial factor |n(x) · u| in the integral of (1.27), the boundary integral of
Lp in Green’s identity has integrand with singularity as order

1

(n · v)p−1
∈ L1

loc(v) for 1 < p < 2.

The distance function α plays a crucial role in the proofs of Theorem 2, Theorem
3, and Theorem 4, which can be controlled along the characteristics via the geometric
velocity lemma (Lemma 7). Note that in the presence of external fields and (1.13),
(1.14), we can prove the velocity lemma only when the sign condition (1.8) holds.
Because of the nonlocal nature of the Boltzmann collision operator, which mixes up
different velocities u ∈ R3, we establish a delicate estimate for the interaction of
αβ(t, x, v) with the collision kernel in (3.24), where, by the way α is defined, we can
control∫

|u|<1

1

{α(s, x, u)}
βp
p−1

du .
∫
|u|<1

1

|n(x) · u|
βp
p−1

du <∞ for β <
p− 1

p
.
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3200 YUNBAI CAO

On the other hand, the appearance of |n(x) · v|βp−p+1 in the boundary estimate will

need an additional requirement β > p−2
p to control the boundary singularity in (3.27).

These estimates are sufficient to treat the case for β < 1 but unfortunately fail for
the use β = 1, which accounts for the important C1 estimate.

In order to establish the C1 estiamte, we employ the Lagrangian viewpoint, esti-
mating along the trajectory. Even though one cannot hope to control the regularity
near γ0 due to the nonlocal nature of the collision operator, one can control its sin-
gular behavior (i.e., with weight α) with an important dynamical nonlocal-to-local
estimate (Lemma 11). The crucial gain of α, which only can be obtained for expected
singular behavior with negative power of α, is due to a combination of two facts: the
gain of power 1 is due to a velocity average, and gain of the local behavior of α is due
to time integration and convexity.

The proof of such nonlocal-to-local estimates is a combination of analytical and
geometrical arguments. The first part (Lemma 10) is a precise estimate of the ve-

locity integration which is bounded by |ξ(X(s))|−
β−1

2 ; here one may roughly regard
ξ(X(s)) ∼ dist(X(s), ∂Ω). In this part of the proof we make use of a series of change
of variables to obtain the precise power β−1

2 . The second part is to relate the time
integration back to 1

α . For this part of proof, we first have the velocity lemma (Lemma
7) and the boundedness of the external field to ensure the monotonicity of |ξ(X(s))|
near the boundary, where we can use the change of variable

dt ' dξ

|v · ∇ξ|

and recover a power of α as in the bound of ξ-integration through the velocity lemma
(Lemma 7). On the other hand, we use the sign condition (1.8) crucially to establish
a lower bound for |ξ(X(s))| when it’s away from the boundary, which helps to recover
a power of α as wanted.

In Theorem 4, we apply the idea of weighted C1 estimate, essentially the nonlocal-
to-local estimate (Lemma 11), to the VPB system. Here the argument is more delicate
as the potential is no longer fixed as in the previous case. Thus in the bulk we have
to control the quadratic nonlinear term

∂∇φ · ∇vf.

In order to handle this term we need a bound for φF (t) in C2
x. Unfortunately such

estimate is a borderline case of the well-known Schauder elliptic regularity theory in
(1.19) when F is merely continuous or bounded. A key observation is that∥∥∥∥∫

R3

∇xf(t)
√
µdv

∥∥∥∥
Lp(Ω)

.
∥∥∥e−$〈v〉tα∇xf(t)

∥∥∥
∞

∥∥∥∥∫
R3

e$〈v〉t
√
µ

1

α
dv

∥∥∥∥
Lp(Ω)

,

which leads to the C2,0+ bound of φF by the Morrey inequality for p > 3 as we can
bound

∥∥∫
R3 e

$〈v〉t√µ 1
αdv

∥∥
Lp(Ω)

<∞ in (5.7).

For constructing a solution and proving its uniqueness, we need some stability
estimate of the difference of the solutions f − g. The difficulty again comes from the
term of ∇xφF · ∇vf . To prove Lq-stability for q = 1 + δ with 0 < δ � 1 we have, by

Sobolev embedding ∇xφf−g ∈W 1,q(Ω) ⊂ L(Ω)
3q

3−q ,∫∫
|∇xφf−g · ∇vf ||f − g|q−1 . ‖∇xφf−g‖

L
3q

3−q
x

∥∥‖∇vf‖Lqv∥∥L3
x

∥∥|f − g|q−1
∥∥
L

q
q−1
x,v

.
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Note that ∇vf is bounded from the boundary condition (1.7). However the equation
of ∇vf has ∇xf as a forcing term. Therefore the key term to bound ‖‖∇vf‖Lqv‖L3

x

for q = 1 + δ is∥∥∥∥∥
∥∥∥∥∫ t

0

∇xf(s,X(s; t, x, v), V (s; t, x, v))ds

∥∥∥∥
L1+δ
v

∥∥∥∥∥
L3
x

. sup
t

∥∥∥∥∥e−
θ′
2 |v|

2

α

∥∥∥∥∥
L3
xL

1+δ
v

∥∥∥eθ′|v|2e−$〈v〉tα∇xf∥∥∥
∞
<∞,

as supt ‖ e
− θ
′

2
|v|2

α ‖L3
xL

1+δ
v

<∞.

2. Traces and inflow problems with external fields. Now let F (t, x, v) =√
µf(t, x, v). Then the corresponding problem to (1.1), (1.7), is(

∂t + v · ∇x + E · ∇v −
v

2
· E + ν(

√
µf)

)
f = Γgain(f, f),(2.1)

(2.2) f(t, x, v) = cµ
√
µ(v)

∫
n(x)·u>0

f(t, x, u)
√
µ(u){n(x) · u}du, on (x, v) ∈ γ−.

Here

ν(
√
µf)(v) : =

1
√
µ(v)

Qloss(
√
µf,
√
µf)(v)

=

∫
R3

∫
S2

|v − u|κq0

(
v − u
|v − u|

· w
)√

µ(u)f(u)dωdu,

and

Γgain(f1, f2)(v) : =
1

√
µ(v)

Qgain(
√
µf1,
√
µf2)(v)

=

∫
R3

∫
S2

|v − u|κq0

(
v − u
|v − u|

· w
)√

µ(u)f1(u′)f2(v′)dωdu.

Throughout this paper we extend f for a negative time. Let

(2.3) f(s, x, v) := esf0(x, v) for −∞ < s < 0.

Note that this allows φF to solve (1.19) for a negative time.
For (t, x, v) ∈ (−∞, T ]×Ω×R3, let (X(s; t, x, v), V (s; t, x, v)) denote the charac-

teristics

(2.4)
d

ds

[
X(s; t, x, v)
V (s; t, x, v)

]
=

[
V (s; t, x, v)

E(s,X(s; t, x, v))

]
for −∞ < s, t ≤ T,

with (X(t; t, x, v), V (t; t, x, v)) = (x, v).
We define the backward exit time tb(t, x, v) as

(2.5) tb(t, x, v) := sup{s ≥ 0 : X(τ ; t, x, v) ∈ Ω for all τ ∈ (t− s, t)}.

Furthermore, we define xb(t, x, v) := X(t− tb(t, x, v); t, x, v) and vb(t, x, v) := V (t−
tb(t, x, v); t, x, v). We also define the the forward exit time tf (t, x, v) as tf (t, x, v) :=
sup{s ≥ 0 : X(τ ; t, x, v) ∈ Ω for all τ ∈ (t, t+ s)}.

For the rest of the section we prove some estimates for the initial boundary prob-
lems of the transport equation with a given time dependent potential E(t, x) which
is defined for all t ∈ R.
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∂tf + v · ∇xf + E · ∇vf + νf = H,(2.6)

where H = H(t, x, v) and ν = ν(t, x, v) are given.

Lemma 1. Let D = sup{|x − y| : x, y ∈ Ω̄} be the diameter of the domain Ω.
Suppose ‖E‖∞ <∞, and let 0 < T < 1 be fixed. Then for any (t, x, v) ∈ [0, T ]× Ω̄ ×
R3 we have ∫ t

max{0,t−tb}
|V (s)|ds < 5t(‖E‖∞ +D) + 4D.(2.7)

Proof. Let

Mv = 4(‖E‖∞ +D).(2.8)

If |v| > Mv, then

|V (s; t, x, v)| ≤ |v|+ T‖E‖∞ < |v|+ |v|
4
< 2|v|(2.9)

and

V (s) · v
|v|

= v · v
|v|
−
∫ t

s

(
E(τ,X(τ)) · v

|v|

)
dτ ≥ |v| − t‖E‖∞ >

|v|
2
.(2.10)

Thus from (2.10) we have

D >

∫ t

max{0,t−tb}
V (s) · v

|v|
ds >

∫ t

max{0,t−tb}

|v|
2
ds ≥ t|v|

2
.(2.11)

Therefore (2.9), (2.11) imply∫ t

max{0,t−tb}
|V (s)|ds <

∫ t

max{0,t−tb}
2|v|ds < 2t|v| < 4D.

On the other hand if |v| ≤Mv, then∫ t

max{0,t−tb}
|V (s)|ds ≤

∫ t

max{0,t−tb}
(|v|+ t‖E‖∞) ds< tMv + t2‖E‖∞<5t(‖E‖∞+D),

as wanted.

Lemma 2. For fixed s with t− tb(t, x, v) < s < t, the map

(t, x, v) ∈ (s, T ]× γ+ 7→ (X(s; t, x, v), V (s; t, x, v)) ∈ Ω× R3(2.12)

is injective with determinant

det

(
∂(X(s; t, x, v), V (s; t, x, v))

∂(t, x̄, v)

)
= |n(x) · v|.(2.13)

Proof. First from (1.5), we have that locally for any p ∈ ∂Ω, there exists suffi-
ciently small δ1 > 0, δ2 > 0 and an one-to-one and onto C2-map

ηp : {x‖ ∈ R2 : |x‖| < δ1} → ∂Ω ∩B(p, δ2),

x‖ = (x‖,1, x‖,2) 7→ ηp(x‖,1, x‖,2).
(2.14)
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Now the map (2.12) is injective as the characteristics are deterministic. From
(2.14), we can compute the determinant of this change of variable:

∂(X(s; t, η(x‖), v), V (s; t, η(x‖), v))

∂(t, x‖, v)

=

[
∂tX(s; t, η(x‖), v) ∇x‖X(s; t, η(x‖), v) ∇vX(s; t, η(x‖), v)
∂tV (s; t, η(x‖), v) ∇x‖V (s; t, η(x‖), v) ∇vV (s; t, η(x‖), v)

]
=

[
∂tX(s; t, η(x‖), v) ∇x‖η(x‖) · ∇xX(s; t, η(x‖), v) ∇vX(s; t, η(x‖), v)
∂tV (s; t, η(x‖), v) ∇x‖η(x‖) · ∇xV (s; t, η(x‖), v) ∇vV (s; t, η(x‖), v)

]
.

(2.15)

Note that

X(s; t+ ∆, X(t+ ∆; t, η(x‖), v), V (t+ ∆; t, η(x‖), v)) = X(s; t, η(x‖), v),

V (s; t+ ∆, X(t+ ∆; t, η(x‖), v), V (t+ ∆; t, η(x‖), v)) = V (s; t, η(x‖), v).

Therefore

[∂t + v · ∇x −∇xφ(t, η(x‖)) · ∇v]X(s; t, η(x‖), v) = 0,

[∂t + v · ∇x −∇xφ(t, η(x‖)) · ∇v]V (s; t, η(x‖), v) = 0.

Equivalently

[
∂tX(s; t, η(x‖), v)
∂tV (s; t, η(x‖), v)

]
=

[
∇xX(s; t, η(x‖), v) ∇vX(s; t, η(x‖), v)
∇xV (s; t, η(x‖), v) ∇vV (s; t, η(x‖), v)

] [
−v

∇φ(t, η(x‖))

]
.

(2.16)

From (2.15) and (2.16) we conclude that

∂(X(s; t, η(x‖), v), V (s; t, η(x‖), v))

∂(t, x‖, v)

=

[
∇xX(s; t, η(x‖), v) ∇vX(s; t, η(x‖), v)
∇xV (s; t, η(x‖), v) ∇vV (s; t, η(x‖), v)

] [
−v ∂x̄η 03×3

∇φ(t, η(x‖)) 03×2 Id3×3

]
.

(2.17)

Since

det

[
∇xX(s; t, η(x‖), v) ∇vX(s; t, η(x‖), v)
∇xV (s; t, η(x‖), v) ∇vV (s; t, η(x‖), v)

]
= 1,

we conclude that

det

(
∂(X(s; t, η(x‖), v), V (s; t, η(x‖), v))

∂(t, x‖, v)

)
= det

[
−v ∂x̄η 03×3

∇φ(t, η(x‖)) 03×2 Id3×3

]
= −v · (∂1η(x‖)× ∂2η(x‖)).

(2.18)

From (2.14) the surface measure of ∂Ω equals dSx = |∂1η(x‖)× ∂2η(x‖)|dx‖; thus we
conclude (2.13).

Lemma 3. For any t ≥ tb(t, x, v), the map

(t, x, v) ∈ [0, T ]× γ+ 7→ (t− tb(t, x, v), xb(t, x, v), vb(t, x, v)) ∈ [0, T )× γ−(2.19)
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is injective and has determinant

det

(
∂(t− tb, xb, vb)

∂(t, x, v)

)
=
|n(x) · v|
|n(xb) · vb|

.(2.20)

For any T ≥ tb(T, x, v), the map

(x, v) ∈ Ω× R3 7→ (T − tb(T, x, v), xb, vb) ∈ [0, T )× γ−(2.21)

is injective and has determinant

det

(
∂(T − tb, xb, vb)

∂(x, v)

)
=

1

|n(xb) · vb|
.(2.22)

Proof. The map (2.19) is clearly injective as the characteristics is deterministic.
We first claim (2.20). Since x, xb ∈ ∂Ω, from (2.14) locally we have two functions
η, ηb such that x = η(x‖) = η(x‖,1, x‖,2) and xb = ηb(xb,‖) = ηb(xb,1, xb,2).

We now compute the Jacobian matrix J of the map (2.19):

J =
∂(t− tb, ηb−1(X(t− tb; t, η(x‖), v)), V (t− tb; t, η(x‖), v))

∂(t, x‖, v)

=

 1 − ∂x‖tb −∇vtb
02×1 ∇x(η−1

b ) · (∇xX · ∂x‖η − ∂sX · ∂x‖tb) ∇x(η−1
b ) · (∇vX − ∂sX · ∇vtb)

03×1 ∇xV · ∂x‖η − ∂sV · ∂x‖tb ∇vV − ∂sV · ∇vtb

 .

(2.23)

Let

M =

[
−∂sX(t− tb; t, η(x‖), v) ∂xb,‖ηb(xb,‖) 03×3

−∂sV (t− tb; t, η(x‖), v) 03×2 Id3×3

]
.(2.24)

Then we have

M · J

=

[
−∂sX ∂xb,‖ηb 03×3

−∂sV 03×2 Id3×3

]

·

 1 −∂x‖ tb −∇vtb
02×1 ∇x(η−1

b ) · (∇xX · ∂x‖η − ∂sX · ∂x‖tb) ∇x(η−1
b ) · (∇vX − ∂sX · ∇vtb)

03×1 ∇xV · ∂x‖η − ∂sV · ∂x‖tb ∇vV − ∂sV · ∇vtb


=

[
−∂sX ∂sX · ∂x‖tb + ∂xb,‖ηb · ∇x(η−1

b ) · (∇xX · ∂x‖η − ∂sX · ∂x‖tb
−∂sV ∂sV · ∂x‖tb +∇xV · ∂x‖η − ∂sV · ∂x‖tb)

∂sX · ∇vtb + ∂xb,‖ηb · ∇x(η−1
b ) · (∇vX − ∂sX · ∇vtb)

∂sV · ∇vtb +∇vV − ∂sV · ∇vtb

]
=

[
−∂sX ∇xX · ∂x‖η ∇vX
−∂sV ∇xV · ∂x‖η ∇vV

]
,

since

∂xb,‖ηb · ∇x(η−1
b ) = ∇x(ηb ◦ η−1

b ) = Id3×3.(2.25)

Now from (2.18) we have

det(M · J) = det

[
−∂sX ∇xX · ∂x‖η ∇vX
−∂sV ∇xV · ∂x‖η ∇vV

]
= det

[
−v ∂x‖η 03×3

−E 03×2 Id3×3

]
= −v · (∂1η(x‖)× ∂2η(x‖)).
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Since

det(M) = det

[
−∂sX ∂xb,‖ηb 03×3

−∂sV 03×2 Id3×3

]
= −vb · (∂1ηb(xb,‖)× ∂2ηb(xb,‖)),

therefore

det(J) =
v · (∂1η(x‖)× ∂2η(x‖))

vb · (∂1ηb(xb,‖)× ∂2ηb(xb,‖))
,

and we conclude (2.20).
The map (2.21) is also injective as the characteristics are deterministic. We then

claim (2.22). Let J ′ be the Jacobian matrix of (2.21); then

J ′ =
∂(t− tb, ηb−1(X(t− tb; t, x, v)), V (t− tb; t, x, v))

∂(x, v)

=

 −∂xtb −∇vtb
∇x(η−1

b ) · (∇xX − ∂sX · ∂xtb) ∇x(η−1
b ) · (∇vX − ∂sX · ∇vtb)

∇xV − ∂sV · ∂xtb ∇vV − ∂sV · ∇vtb

 .(2.26)

Let

M ′ =

[
−∂sX(t− tb; t, η(x), v) ∂xb,‖ηb(xb,‖) 03×3

−∂sV (t− tb; t, η(x), v) 03×2 Id3×3

]
.(2.27)

Then

M ′ · J ′ =

[
∇xX ∇vX
∇xV ∇vV

]
.(2.28)

Since det(A′ ·M ′) = 1 and det(M ′) = −vb · (∂1ηb(xb,‖)× ∂2ηb(xb,‖)),

det(J ′) =
1

−vb · (∂1ηb(xb,‖)× ∂2ηb(xb,‖))
,

and we conclude (2.22).

Lemma 4. Suppose h(t, x, v) ∈ L1([0, T ]× Ω× R3); then

∫ T

0

∫∫
Ω×R3

h(t, x, v)dvdxdt

=

∫∫
Ω×R3

∫ 0

−min(T,tb(T,x,v))

h(T + s,X(T + s;T, x, v), V (T + s;T, x, v))dsdvdx

+

∫ T

0

∫
γ+

∫ 0

−min(t,tb(t,x,v))

h(t+ s,X(t+ s; t, x, v), V (t+ s; t, x, v))dsdγdt.

(2.29)

Proof. The region {(t, x, v) ∈ [0, T ]× Ω× R3} is the disjoint union of

A := {(t, x, v) ∈ [0, T ]× Ω× R3 : tf (t, x, v) + t ≤ T}

and
B := {(t, x, v) ∈ [0, T ]× Ω× R3 : tf (t, x, v) + t > T}.
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Now let
A′ := {(t, s, x, v) ∈ [0, T ]2 × γ+ : s < tb(t, x, v), s ≤ t}

and
B′ := {(s, x, v) ∈ [0, T ]× Ω× R3 : s < tb(T, x, v)}.

Consider the map A : A′ → A with

A(t, s, x, v) = (t− s,X(t− s; t, x, v), V (t− s; t, x, v)).

Since tf (t− s,X(t− s; t, x, v), V (t− s; t, x, v)) + (t− s) = s+ (t− s) = t ≤ T , A is well
defined. And since the characteristic flow is deterministic, α is injective. And for any
(t, x, v) ∈ A, since tf ≤ t + tf and tb(t + tf , X(t + tf ; t, x, v), V (t + tf ; t, x, v)) > tf as
x ∈ Ω is in the interior, we have

(t+ tf (t, x, v), tf (t, x, v), X(t+ tf (t, x, v); t, x, v), V (t+ tf (t, x, v); t, x, v)) ∈ A′.

Moreover
A(t+ tf , tf , X(t+ tf ; t, x, v), V (t+ tf ; t, x, v)) = (t, x, v),

so A is surjective. Therefore A is bijective with inverse A−1(t, x, v) = (t+ tf , tf , X(t+
tf ; t, x, v), V (t+ tf ; t, x, v)).

Suppose locally at x ∈ ∂Ω we have x = η(x‖) as in (2.14), and let

JA =
(t− s,X(t− s; t, x, v), V (t− s; t, x, v))

∂(t, s, x‖, v)

be the Jacobian matrix of A.
Then we have

JA =

 1 −1
∂sX(t− s; t, x, v) + ∂tX(t− s; t, x, v) −∂sX(t− s; t, x, v)
∂sV (t− s; t, x, v) + ∂tV (t− s; t, x, v) −∂sV (t− s; t, x, v)

01×2 01×3

∂x‖X(t− s; t, x, v) ∂vX(t− s; t, x, v)

∂x‖V (t− s; t, x, v) ∂vV (t− s; t, x, v)

 .
Let J ′A be the matrix obtained by adding the first column of JA to its second

column, so from (2.18) and (2.13) we have

det(JA) = det(J ′A)

= det


 1 0
∂sX(t− s; t, x, v) + ∂tX(t− s; t, x, v) ∂tX(t− s; t, x, v)
∂sV (t− s; t, x, v) + ∂tV (t− s; t, x, v) ∂tV (t− s; t, x, v)

01×2 01×3

∂x‖X(t− s; t, x, v) ∂vX(t− s; t, x, v)

∂x‖V (t− s; t, x, v) ∂vV (t− s; t, x, v)


= det

{[
∂tX(t− s; t, x, v) ∂x‖X(t− s; t, x, v) ∂vX(t− s; t, x, v)

∂tV (t− s; t, x, v) ∂x‖V (t− s; t, x, v) ∂vV (t− s; t, x, v)

]}
= det

{[
∇xX(t− s; t, η(x‖), v) ∇vX(t− s; t, η(x‖), v)
∇xV (t− s; t, η(x‖), v) ∇vV (t− s; t, η(x‖), v)

] [
−v ∂x‖η 03×3

∇φ(t, η(x‖)) 03×2 Id3×3

]}
= det

[
−v ∂x‖η 03×3

∇φ(t, η(x‖)) 03×2 Id3×3

]
= − v · (∂1η(x‖)× ∂2η(x‖)).

(2.30)
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Therefore∫∫∫
A

h(t, x, v)dtdxdv

=

∫ T

0

∫
γ+

∫ min(tb(t,x,v),t)

0

h(t− s,X(t− s; t, x, v), V (t− s; t, x, v)dsdγdt.

Now consider the map B : B′ → B with

B(s, x, v) = (T − s,X(T − s, T, x, v), V (T − s, T, x, v)).

Since tf (T − s,X(T − s, T, x, v), V (T − s, T, x, v)) + (T − s) > s + (T − s) = T , B is
well defined. And since the characteristic flow is deterministic, β is injective. And
for any (t, x, v) ∈ B, since tb(T,X(T ; t, x, v), V (T ; t, x, v)) > T − t as x ∈ Ω is in the
interior, we have

(T − t,X(T ; t, x, v), V (T ; t, x, v)) ∈ B′.
Moreover

B(T − t,X(T ; t, x, v), V (T ; t, x, v)) = (t, x, v),

so B is surjective. Therefore B is bijective with inverse B−1(t, x, v) = (T − t,
X(T ; t, x, v), V (T ; t, x, v)). And since B is a measure preserving change of variable
we have∫∫∫

B

h(t, x, v)dtdxdv

=

∫∫
Ω×R3

∫ min(T,tb(T,x,v))

0

h(T − s,X(T − s;T, x, v), V (T − s;T, x, v)dsdxdv.

Thus∫ T

0

∫∫
Ω×R3

h(t, x, v)dvdxdt =

∫∫∫
A

h(t, x, v)dtdxdv +

∫∫∫
B

h(t, x, v)dtdxdv

=

∫∫
Ω×R3

∫ 0

−min(T,tb(T,x,v))

h(T + s,X(T + s;T, x, v), V (T + s;T, x, v))dsdvdx

+

∫ T

0

∫
γ+

∫ 0

−min(t,tb(t,x,v))

h(t+ s,X(t+ s; t, x, v), V (t+ s; t, x, v))dsdγdt,

so we conclude (2.29).

Lemma 5. (Green’s identity) For p ∈ [1,∞) assume f , ∂tf + v ·∇xf +E ·∇vf ∈
Lp([0, T ];Lp(Ω × R3)) and fγ− ∈ Lp([0, T ];Lp(γ)). Then f ∈ C0([0, T ];Lp(Ω × R3))
and fγ+ ∈ Lp([0, T ];Lp(γ)) and for almost every T ′ ∈ [0, T ]

‖f(T ′)‖pp +

∫ T ′

0

|f |pγ+,p = ‖f(0)‖pp +

∫ T ′

0

|f |pγ−,p(2.31)

+

∫ T ′

0

∫∫
Ω×R3

p{∂t+v·∇xf+E·∇vf}|f |p−2f.

Proof. For almost every T ′ ∈ [0, T ], by Hölder’s inequality we have

‖(∂tf + v · ∇xf + E · ∇vf)|f |p−2f‖L1([0,T ]×Ω×R3)

≤ ‖(∂tf + v · ∇xf + E · ∇vf)‖Lp([0,T ]×Ω×R3)‖|f |p−1‖Lp/(p−1)([0,T ]×Ω×R3) <∞.
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Thus by Lemma 4 we have∫ T ′

0

∫
Ω×R3

p(∂tf + v · ∇xf + E · ∇vf)|f |p−2fdxdvdt

=

∫∫
Ω×R3

∫ 0

−min(T ′,tb(T ′,x,v))

p(∂tf + v · ∇xf

+ E · ∇vf)|f |p−2f(T ′ + s,X(T ′ + s;T ′, x, v), V (T ′ + s;T ′, x, v))dsdvdx

+

∫ T ′

0

∫
γ+

∫ 0

−min(t,tb(t,x,v))

p(∂tf + v · ∇xf

+ E · ∇vf)|f |p−2f(t+ s,X(t+ s; t, x, v), V (t+ s; t, x, v))dsdγdt.

Since

d

ds
|f |p(T ′ + s,X(T ′ + s;T ′, x, v), V (T ′ + s;T ′, x, v))

= p(∂tf+v·∇xf + E · ∇vf)|f |p−2f(T ′ + s,X(T ′ + s;T ′, x, v), V (T ′ + s;T ′, x, v))

and

d

ds
|f |p(t+ s,X(t+ s; t, x, v), V (t+ s; t, x, v))

= p(∂tf + v · ∇xf + E · ∇vf)|f |p−2f(t+ s,X(t+ s; t, x, v), V (t+ s; t, x, v)),

we have

∫ T ′

0

∫
Ω×R3

p(∂tf + v · ∇xf + E · ∇vf)|f |p−2fdxdvdt

=

∫∫
Ω×R3

∫ 0

−min(T ′,tb(T ′,x,v))

d

ds
|f |p(T ′+s,X(T ′+s;T ′, x, v), V (T ′+s;T ′, x, v))dsdvdx

+

∫ T ′

0

∫
γ+

∫ 0

−min(t,tb(t,x,v))

d

ds
|f |p(t+ s,X(t+ s; t, x, v), V (t+ s; t, x, v))dsdγdt

=

∫∫
Ω×R3

|f |p(T ′, x, v)dxdv −
∫∫

Ω×R3

1{T ′≥tb(T ′,x,v)}|f |p(T ′ − tb, xb, vb)dxdv

−
∫∫

Ω×R3

1{T ′<tb(T ′,x,v)}|f |p(0, X(0;T ′, x, v), V (0;T ′, x, v))dxdv

+

∫ T ′

0

∫
γ+

|f |p(t, x, v)dγdt−
∫ T ′

0

∫
γ+

1{t≥tb(t,x,v)}|f |p(t− tb, xb, vb)dγdt

−
∫ T ′

0

∫
γ+

1{t<tb(t,x,v)}|f |p(0, X(0; t, x, v), V (0; t, x, v))dγdt.

(2.32)

First consider the map

A1 : {(x, v) ∈ Ω× R3 : T ′ < tb(T ′, x, v)} → {(x, v) ∈ Ω× R3 : tf (0, x, v) > T ′},
(x, v) 7→ (X(0;T ′, x, v), V (0;T ′, x, v)).

This map is well defined as tf (0, X(0;T ′, x, v), V (0;T ′, x, v)) > T ′ since x ∈ Ω is in the
interior. A1 is injective as the characteristic flow is unique. And for any (x, v) ∈ Ω×R3
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such that tf (0, x, v)>T ′, we have X(T ′; 0, x, v)∈Ω andA1(X(T ′; 0, x, v), V (T ′; 0, x, v))
= (x, v), so A1 is surjective. Therefore A1 is a bijection. And since the trajectory of
this change of variable is measure preserving, we have∫∫

Ω×R3

|f0|p1{tf (0,x,v)>T ′}dxdv(2.33)

=

∫∫
Ω×R3

|f0|p(X(0;T ′, x, v), V (0;T ′, x, v))1{T ′<tb(T ′,x,v)}dxdv.

Next, we consider the map

A2 : {(t, x, v) ∈ (0, T ′]× γ+ : t < tb(t, x, v)} → {(x, v) ∈ Ω× R3 : tf (0, x, v) ≤ T ′},
(t, x, v) 7→ (X(0; t, x, v), V (0; t, x, v)).

This map is well defined as tf (0, X(0; t, x, v), V (0; t, x, v)) = t ≤ T ′. A2 is injective as
the characteristic flow is unique. And for any (x, v) ∈ Ω × R3 such that tf (0, x, v) ≤
T ′, we have (tf , X(tf ; 0, x, v), V (tf ; 0, x, v)) ∈ (0, T ′] × γ+ and tb(tf , X(tf ; 0, x, v),
V (tf ; 0, x, v)) > tf as x ∈ Ω is in the interior; moreover, A2(tf , X(tf ; 0, x, v),
V (tf ; 0, x, v)) = (x, v), so A2 is surjective. Therefore A2 is a bijection. So by our
change of variable computation (2.18) we have∫∫

Ω×R3

|f0|p1{tf (0,x,v)≤T ′}dxdv(2.34)

=

∫ T ′

0

∫
γ+

|f0|p(X(0; t, x, v), V (0; t, x, v))1{t<tb(t,x,v)}dγdt.

Therefore we have∫∫
Ω×R3

|f0|pdxdv =

∫∫
Ω×R3

|f0|p1{tf (0,x,v)>T ′}dxdv +

∫∫
Ω×R3

|f0|p1{tf (0,x,v)≤T ′}dxdv

=

∫∫
Ω×R3

|f0|p(X(0;T ′, x, v), V (0;T ′, x, v))1{T ′<tb(T ′,x,v)}dxdv

+

∫ T ′

0

∫
γ+

|f0|p(X(0; t, x, v), V (0; t, x, v))1{t<tb(t,x,v)}dγdt.

Then consider the map

A3:{(t, x, v) ∈ [0, T ′]×γ+ : t≥tb(t, x, v)} → {(s, x, v)∈[0, T ′)×γ− : T ′ ≥ s+tf (s, x, v)},
(t, x, v) 7→ (t− tb(t, x, v), xb, vb).

This map is well defined as tf (t − tb, xb, vb) + (t − tb) = tb + t − tb = t ≤ T ′. A3

is injective as the characteristic flow is unique. And for any (s, x, v) ∈ [0, T ′) × γ−
such that s + tf (s, x, v) ≤ T ′, we have (s + tf , X(s + tf ; s, x, v), V (s + tf ;x, v)) ∈
[0, T ′]× γ+ and tb(s+ tf , X(s+ tf ; s, x, v), V (s+ tf ; s, x, v)) = tf ≤ s+ tf ; moreover,
A3(s+ tf , X(s+ tf ; s, x, v), V (s+ tf ; s, x, v)) = (s, x, v), so A3 is surjective. Therefore
A3 is a bijection. With the determinant of this change of variable computed in (2.20)
we conclude ∫ T ′

0

∫
γ−

|f |p(t, x, v)1{T ′≥s+tf (s,x,v)}dγds(2.35)

=

∫ T ′

0

∫
γ+

|f |p(t− tb(t, x, v), xb, vb)1{t≥tb(t,x,v)}dγdt.
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Finally, consider the map

A4:{(x, v)∈Ω× R3 : T ′≥tb(T ′, x, v)} → {(s, x, v) ∈ [0, T ′)× γ− : T ′ < s+ tf (s, x, v)},
(x, v) 7→ (T ′ − tb(T ′, x, v), xb, vb).

This map is well defined as tf (T
′− tb, xb, vb)+(T ′− tb) > tb +(T ′− tb) = T as x ∈ Ω

is in the interior. A4 is injective as the characteristic flow is unique. And for any
{(s, x, v)∈ [0, T ′)×γ− such that T ′<s+tf (s, x, v), we have (X(T ′; s, x, v), V (T ′; s, x, v))
∈ Ω×R3 and tb(T ′, X(T ′; s, x, v), V (T ′; s, x, v))= T ′−s ≤ T ′; moreover, A4(X(T ′; s, x,
v), V (T ′; s, x, v)) = (s, x, v), so A4 is surjective. Therefore A4 is a bijection.

Therefore by the computation of the change of variable (2.22) we have∫ T ′

0

∫
γ−

|f |p(t, x, v)1{T ′<s+tf (s,x,v)}dγdt(2.36)

=

∫∫
Ω×R3

|f |p(T ′ − tb(T ′, x, v), xb, vb)1{T ′≥tb(T ′,x,v)}dxdv.

Now substitute all these identities (2.33), (2.34), (2.35), (2.36) into (2.32), and
we finally get∫ T ′

0

∫
Ω×R3

p(∂tf + v · ∇xf + E · ∇vf)|f |p−2fdxdvdt

=

∫∫
Ω×R3

|f |p(T ′, x, v)dxdv −
∫∫

Ω×R3

1{T ′≥tb(T ′,x,v)}|f |p(T ′ − tb, xb, vb)dxdv

−
∫∫

Ω×R3

1{T ′<tb(T ′,x,v)}|f |p(0, X(0;T ′, x, v), V (0;T ′, x, v))dxdv

+

∫ T ′

0

∫
γ+

|f |p(t, x, v)dγdt−
∫ T ′

0

∫
γ+

1{t≥tb(t,x,v)}|f |p(t− tb, xb, vb)dγdt

−
∫ T ′

0

∫
γ+

1{t<tb(t,x,v)}|f |p(0, X(0; t, x, v), V (0; t, x, v))dγdt

=

∫∫
Ω×R3

|f |p(T ′, x, v)dxdv −
∫ T ′

0

∫
γ−

|f |p(t, x, v)1{T ′<s+tf (s,x,v)}dγdt

−
∫∫

Ω×R3

|f0|p1{tf (0,x,v)>T ′}dxdv

+

∫ T ′

0

∫
γ+

|f |p(t, x, v)dγdt−
∫ T ′

0

∫
γ−

|f |p(t, x, v)1{T ′≥s+tf (s,x,v)}dγds

−
∫∫

Ω×R3

|f0|p1{tf (0,x,v)≤T ′}dxdv

=

∫∫
Ω×R3

|f |p(T ′, x, v)dxdv +

∫ T ′

0

∫
γ+

|f |p(t, x, v)dγdt

−
∫∫

Ω×R3

|f0|pdxdv −
∫ T ′

0

∫
γ−

|f |p(t, x, v)dγdt,

so we conclude (2.31).
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Note that the left-hand side of the above equality is finite, and by our as-

sumption all the terms on the RHS except
∫ T ′

0

∫
γ+
|f |p(t, x, v)dγdt are finite; thus

f ∈ Lp([0, T ];Lp(γ+)).

We now define γε+ to be the set of almost grazing velocities or large velocities

γε+ = {(x, v) ∈ γ+ : n(x) · v < ε or |v| > 1/ε}.(2.37)

Lemma 6 (trace theorem for bounded potential). Let 0 < T < 1 be fixed.
Assume that |ν(t, x, v)| . 〈v〉 and ‖E‖∞ < ∞. Then for any 0 < ε � 1, there exists
a CΩ > 0 depending only on Ω such that for all 0 ≤ t ≤ T ,

∫ t

0

∫
γ+\γε+

|h|dγds

≤ CΩe
T‖E‖∞ 1 + ε2‖E‖2∞

ε3

[
‖h0‖1+

∫ t

0

(‖h(s)‖1+‖[∂t+v·∇x+E · ∇v+ν]h(s)‖1) ds

]
.

(2.38)

Proof. For (t, x, v) ∈ [0, T ]× γ+ \ γε+, we claim

inf
(t,x,v)∈[0,T ]×γ+\γε+

tb(t, x, v) &Ω
ε3

1 + ε2‖E‖2∞
.(2.39)

Since

∇ξ(x) · v = |∇ξ(x)|n(x) · v > |∇ξ(x)|ε &Ω ε, ∇ξ(xb) · vb < 0

and

d

ds
(∇ξ(X(s)) · V (s)) = V (s) · ∇2ξ(X(s)) · V (s) +∇ξ(X(s)) · E(s,X(s))

.Ω (|V (s)|2+‖E‖∞) .Ω (|v|2+‖E‖2∞+1) .Ω

(
1

ε2
+‖E‖2∞+1

)
for all t− tb ≤ s ≤ t,

tb(t, x, v) ≥ ε

CΩ( 1
ε2 + ‖E‖2∞ + 1)

≥ ε3

CΩ(1 + ε2‖E‖2∞)
.

This proves (2.39). Let

ε1 =
ε3

CΩ(1 + ε2‖E‖2∞)
.

Now if h solves (2.6), then for (t, x, v) ∈ [0, T ]× γ+ and −min{t, tb(t, x, v)} ≤ s ≤ 0,
we have

h(t, x, v) = h(t+ s,X(t+ s), V (t+ s))e−
∫ 0
s
ν(V (t+τ ′))dτ ′

+

∫ 0

s

e−
∫ 0
τ
ν(V (t+τ ′))dτ ′H(τ,X(t+ τ), V (t+ τ))dτ,

(2.40)

where X(t+ τ) = X(t+ τ ; t, x, v), and V (t+ τ) = V (t+ τ ; t, x, v).
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Then by Lemma 1

min{t, tb(t, x, v)}|h(t, x, v)| =
∫ 0

−min{t,tb(t,x,v)}
|h(t, x, v)|ds

≤ C ′Ωe
T‖E‖∞

(∫ 0

−min{t,tb(t,x,v)}
|h(t+ s,X(t+ s), V (t+ s))|ds

+

∫ 0

−min{t,tb(t,x,v)}

∫ 0

s

|H(τ,X(t+ τ), V (t+ τ))|dτds

)

≤ C ′Ωe
T‖E‖∞

(∫ 0

−min{t,tb(t,x,v)}
|h(t+ s,X(t+ s), V (t+ s))|ds

+T

∫ 0

−min{t,tb(t,x,v)}
|H(τ,X(t+ τ), V (t+ τ))|dτ

)
.

We then integrate (2.40) over
∫ T
ε1

∫
γ+\γε+

∫ 0

−min{t,tb(t,x,v)} to get

ε1×
∫ T

ε1

∫
γ+\γε+

|h(t, x, v)|dγdt

≤ min
[ε1,T ]×[γ+\γε+]

{t, tb(t, x, v)} ×
∫ T

ε1

∫
γ+\γε+

|h(t, x, v)|dγdt

≤ C ′Ωe
T‖E‖∞

∫ T

0

∫
γ+\γε+

∫ 0

−min{t,tb(t,x,v)}
|h(t+ s,X(t+ s), V (t+ s))|dsdγdt

+ C ′Ωe
T‖E‖∞T

∫ T

0

∫
γ+\γε+

∫ 0

−min{t,tb(t,x,v)}
|H(τ,X(t+ τ), V (t+ τ))|dτdγdt

≤ C ′Ωe
T‖E‖∞

(∫ T

0

‖h(t)‖1dt+

∫ T

0

‖[∂t + v · ∇x + E · ∇v + φ]h(t)‖1dt

)
,

(2.41)

where in the last inequality we have used the identity (2.29).
On the other hand, because of our choice ε and ε1, by (2.39) we have tb(t, x, v) > t

for all (t, x, v) ∈ [0, ε1]× γ+ \ γε+. Then

|h(t, x, v)| ≤ |h0(X(0), V (0))|+
∫ 0

−t
|H(t+ τ,X(t+ τ), V (t+ τ))|dτ.

Integrating over
∫ ε1

0

∫
γ+\γε+

we get

∫ ε1

0

∫
γ+\γε+

|h(t, x, v)|dγdt ≤
∫ ε1

0

∫
γ+\γε+

|h0(X(0), V (0))|dγdt

(2.42)

+

∫ ε1

0

∫
γ+\γε+

∫ 0

−t
|H(t+ τ,X(t+ τ), V (t+ τ))|dτdγdt.

where the second term is bounded, again from (2.29), by
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0

∫
γ+\γε+

∫ 0

−t
|H(t+τ,X(t+ τ), V (t+τ))|dτ ≤

∫ ε1

0

‖[∂t+v · ∇x+E · ∇v+φ]h(t)‖1dt.

And by (2.34) the first term is bounded by∫ ε1

0

∫
γ+\γε+

|h0(X(0; t, x, v), V (0; t, x, v))|dγdt

≤
∫ T

0

∫
γ+

|h0|(X(0; t, x, v), V (0; t, x, v))1{t<tb(t,x,v)}dγdt

=

∫∫
Ω×R3

|h0|1{tf (0,x,v)≤T ′}dxdv ≤ ‖h0‖1.

Combining (2.41) and (2.42) we conclude (2.38).

We need a cutoff function for our weight function.
For any ε > 0, let χε : [0,∞)→ [0,∞) be a smooth function satisfying

χε(x) = x for 0 ≤ x ≤ ε

4
,

χε(x) = Cε for x ≥ ε

2
,

χε(x) is increasing for
ε

4
< x <

ε

2
,

χ′ε(x) ≤ 1.

(2.43)

Let d(x, ∂Ω) := infy∈∂Ω ‖x− y‖. And for any δ > 0, let

Ωδ := {x ∈ Ω : d(x, ∂Ω) < δ}.

Since ∂Ω is C2, we claim that if δ � 1 is small enough we have

for anyx ∈ Ωδ there exists a unique x̄ ∈ ∂Ω such that d(x, x̄) = d(x, ∂Ω); moreover,

(2.44)

sup
x∈Ωδ

|∇xx̄| <∞.

To prove the claim, we have that by (2.14) without loss of generality locally we
can assume η takes the form η(x‖) = (x‖,1, x‖,2, η̄(x‖,1, x‖,2)) and x̄ = η(x̄‖) =

(x̄‖,1, x̄‖,2, η̄(x̄‖,1, x̄‖,2)). Denote ∂iη̄ = ∂
∂x‖,i

η̄(x‖,1, x‖,2) and ∂i,j η̄ = ∂2

∂x‖,i∂x‖,j
η̄(x‖,1,

x‖,2).
Now since |η(x̄‖)− x|2 = infy∈∂Ω |y − x|2, x̄‖ satisfies

ω(x1, x2, x3, x̄‖,1, x̄‖,2) =

[
(x̄‖,1 − x1) + (η̄(x̄‖,1, x̄‖,2)− x3)∂1η̄(x̄‖,1, x̄‖,2)
(x̄‖,2 − x2) + (η̄(x̄‖,1, x̄‖,2)− x3)∂2η̄(x̄‖,1, x̄‖,2)

]
= 0.

Since

det

(
∂ω

∂x‖

)
= det

[
1 + (∂1η̄)2 + (η̄ − x3)∂1,1η̄ ∂2η̄∂1η̄ + (η̄ − x3)∂1,2η̄
∂1η̄∂2η̄ + (η̄ − x3)∂1,2η̄ 1 + (∂2η̄)2 + (η̄ − x3)∂1,2η̄

]
= (1 + (∂1η̄)2)(1 + (∂2η̄)2)− (∂1η̄∂2η̄)2 +O(|η̄ − x3|)
= 1 + (∂1η̄)2 + (∂2η̄)2 +O(|η̄ − x3|) > 0
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3214 YUNBAI CAO

if |η̄(x‖) − x3| is small enough. By the implicit function theorem, (x̄‖,1, x̄‖,2) are
functions of x1, x2, x3 if x is close enough to ∂Ω.

Moreover,

∂x̄‖

∂xj
= −

(
∂ω

∂x̄‖

)−1

· ∂ω
∂xj

=
1

det
(
∂ω
∂x̄‖

) [1 + (∂2η̄)2 + (η̄ − x3)∂1,2η̄ −∂2η̄∂1η̄ − (η̄ − x3)∂1,2η̄
−∂1η̄∂2η̄ − (η̄ − x3)∂1,2η̄ 1 + (∂1η̄)2 + (η̄ − x3)∂1,1η̄

]
· ∂ω
∂xj

is bounded as ∂ω
∂xj

is bounded, and det( ∂ω∂x ) is bounded from below if x is close enough

to the boundary. Therefore |∇xx̄| is bounded. This proves (2.44).
Now define

β(t, x, v) =

[
|v · ∇ξ(x)|2 + ξ(x)2 − 2(v · ∇2ξ(x) · v)ξ(x)− 2(E(t, x) · ∇ξ(x))ξ(x)

]1/2

for all (x, v) ∈ Ωδ × R3. Let δ′ := min{|ξ(x)| : x ∈ Ω, d(x, ∂Ω) = δ}, and let χδ′ be a
smooth cutoff function satisfies (2.43); then define

α(t, x, v) :=

{
(χδ′(β(t, x, v))), x ∈ Ωδ,

Cδ′ , x ∈ Ω \ Ωδ.
(2.45)

Lemma 7 (velocity lemma near boundary). Suppose E(t, x) satisfies (1.15) and
the sign condition (1.8). Then α is continuous, and for δ � 1 small enough, we
have, for any 0 ≤ s < t and trajectory X(τ), V (τ) solving (2.4), if X(τ) ∈ Ω for all
s ≤ τ ≤ t, then α satisfies

e−C
∫ t
s

(|V (τ ′)|+1)dτ ′α(s,X(s), V (s)) ≤ α(t,X(t), V (t))(2.46)

≤ eC
∫ t
s

(|V (τ ′)|+1)dτ ′α(s,X(s), V (s))

for any C ≥ Cξ(‖E‖∞+‖∇E‖∞+‖∂tE‖∞+1)
CE

, where Cξ > 0 is a large constant depending
only on ξ.

Similar estimates have been used in [9] and then in [11, 6].

Proof. Since β(t, x, v) ≥ |ξ(x)| for all x ∈ ∂Ω, β(t, x, v) ≥ δ′

2 on an open neigh-
borhood U of {x ∈ Ω : d(x, ∂Ω) = δ}. So by (2.43), α = Cδ′ on U , and therefore α is
continuous.

Now let’s first claim that if X(τ) ∈ Ωδ for all τ , then β2 satisfies

−C(|V (τ)|+ 1)β2(τ,X(τ), V (τ)) ≤ d

dτ
β2(τ,X(τ), V (τ))(2.47)

≤ C(|V (τ)|+ 1)β2(τ,X(τ), V (τ))

for any C ≥ Cξ(‖E‖∞+‖∇E‖∞+‖∂tE‖∞+1)
CE

.
By direct computation
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{∂t + v · ∇x + E · ∇v}β2(t, x, v)

(2.48)

= 2(v · ∇ξ(x))(E(t, x) · ∇ξ(x)) +
((((((((((((
2(v · ∇ξ(x))(v · ∇2ξ(x) · v) + 2ξ(x)(v · ∇ξ(x))

− 2(E(t, x) · (∇2ξ(x) +∇2ξ(x)t) · v)ξ(x)−
((((((((((((
2(v · ∇ξ(x))(v · ∇2ξ(x) · v)

− 2v · (v · ∇3ξ(x) · v)ξ(x)

− 2(E(t, x)·ξ(x))(v·∇ξ(x))−2(∇xx)
[
v·∇xE(t, x)·∇ξ(x)+v·∇2ξ(x)·E(t, x)

]
ξ(x)

− 2(∂tE(t, x) · ∇ξ(x))ξ(x).

Since

(E(t, x) · ∇ξ(x)) = E(t, x) · ∇ξ(x) +∇x(E · ∇ξ)(x′) · (x− x)(2.49)

= E(t, x) · ∇ξ(x) +

[
∇x(E · ∇ξ)(x′) · (x− x)

ξ(x)

]
ξ(x).

We claim that x−x
ξ(x) is bounded for all x ∈ Ω. This is obvious when x is away from

the boundary ∂Ω. When x is close to ∂Ω, since

(2.50) ξ(x) = ξ(x) +∇ξ(x′′) · (x− x) = ∇ξ(x′′) · (x− x) = |∇ξ(x′′)||x− x| cos(θ),

then ∣∣∣∣x− xξ(x)

∣∣∣∣ =
1

|∇ξ(x′′)|| cos(θ)|
,

where x′′ is a point on the line segment linking x and x and θ is the angle between
the two vectors −∇ξ(x) and ∇ξ(x′′) by our choice of x.

Now since we have |∇ξ(x)| > c > 0 when x is close to ∂Ω, we can choose δ so
small that if d(x, ∂Ω) = d(x, x∗) < δ, the angle between ∇ξ(x) and ∇ξ(x∗) will be
small enough such that | cos(θ)| > 1/2.

Therefore ∣∣∣∣x− xξ(x)

∣∣∣∣ . 1

c
(2.51)

for all x ∈ Ω as claimed. From (2.48), (2.50), and (2.51) we have

{∂t + v · ∇x + E · ∇v}β2(t, x, v)

(2.52)

=
(((((((((((((
2(v · ∇ξ(x))(E(t, x) · ∇ξ(x)) + C 1

c ,‖∇E‖∞,‖ξ‖C2
(v ·∇ξ(x))ξ(x) + 2ξ(x)(v ·∇ξ(x))

− 2(E(t, x) · (∇2ξ(x) +∇2ξ(x)t) · v)ξ(x)− 2v · (v · ∇3ξ(x) · v)ξ(x)

−
((((((((((((
2(E(t, x) · ξ(x))(v · ∇ξ(x)) − 2(∇xx) [v · ∇xE(t, x) · ∇ξ(x)

+ v · ∇2ξ(x) · E(t, x)
]
ξ(x)− 2(∂tE(t, x) · ∇ξ(x))ξ(x).

From (1.8) and (2.44),

|{∂t+v · ∇x+E · ∇v}β2(t, x, v)| ≤ Cξ(‖E‖∞+‖∇E‖∞+‖∂tE‖∞ + 1)
(
|v|+|v|3

)
|ξ(x)|

≤ Cξ(‖E‖∞ + ‖∇E‖∞ + ‖∂tE‖∞ + 1)

CE
|v|β2(t, x, v).
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Since
d

dτ
β2(τ,X(τ), V (τ)) = {∂t + v · ∇x + E · ∇v}β2(τ,X(τ), V (τ)),

we conclude (2.47).
Next we show that α2(τ,X(τ), V (τ)) satisfies

−C(|V (τ)|+ 1)α2(τ,X(τ), V (τ)) ≤ d

dτ
α2(τ,X(τ), V (τ))

≤ C(|V (τ)|+ 1)α2(τ,X(τ), V (τ)).

This is clearly true if X(τ) ∈ Ω \ Ωδ as α is constant there. For X(τ) ∈ Ωδ we have

if β(τ,X(τ), V (τ)) ≥ δ′

2 ,

d

dτ
α2(τ,X(τ), V (τ)) =

d

dτ
χδ′(β

2(τ,X(τ), V (τ)))

= χ′δ′(β
2(τ,X(τ), V (τ))

d

dτ
β2(τ,X(τ), V (τ)) = 0,

so the inequalities are automatically true. If β(τ,X(τ), V (τ)) < δ′

2 , we have by (2.43)
β(τ,X(τ), V (τ)) < 2χδ′(β(τ,X(τ), V (τ))). Therefore by (2.47) and χ′δ′ ≤ 1 we have

−2C(|V (τ)|+ 1)α2(τ,X(τ), V (τ)) ≤ d

dτ
α2(τ,X(τ), V (τ))(2.53)

≤ 2C(|V (τ)|+ 1)α2(τ,X(τ), V (τ)).

Finally, by the Gronwall inequality we have

e−2C
∫ t
s

(|V (τ ′)|+1)dτ ′α2(s,X(s), V (s)) ≤ α2(t,X(t), V (t))

≤ e2C
∫ t
s

(|V (τ ′)|+1)dτ ′α2(s,X(s), V (s)).

Taking the square root we get the desired inequality.

Lemma 8. If E(t, x) ∈ C([0, T ];C1(R3)) and n(xb(t, x, v)) · vb(t, x, v) 6= 0, then
(tb, xb, vb) is differentiable and

∂tb
∂xi

=
1

n(xb) · vb
n(xb) ·

[
ei +

∫ t−tb

t

∫ s

t

(
∂X(τ)

∂xi
· ∇
)
E(τ,X(τ))dτds

]
,

∂xb
∂xi

= ei −
∂tb
∂xi

vb +

∫ t−tb

t

∫ s

t

(
∂X(τ)

∂xi
· ∇
)
E(τ,X(τ))dτds,

∂vb
∂xi

= − ∂tb
∂xi

E(t− tb, xb) +

∫ t−tb

t

(
∂X(τ)

∂xi
· ∇
)
E(τ,X(τ))dτ,

∂tb
∂vi

=
1

n(xb) · vb
n(xb) ·

[
ei +

∫ t−tb

t

∫ s

t

(
∂X(τ)

∂vi
· ∇
)
E(τ,X(τ))dτds

]
,

∂xb
∂vi

= − tbei −
∂tb
∂vi

vb +

∫ t−tb

t

∫ s

t

(
∂X(τ)

∂vi
· ∇
)
E(τ,X(τ))dτds,

∂vb
∂vi

= ei −
∂tb
∂vi

E(t− tb, xb) +

∫ t−tb

t

(
∂X(τ)

∂vi
· ∇
)
E(τ,X(τ))dτ.

(2.54)

Proof. The equalities are derived from direct computations and an implicit func-
tion theorem. For details see [6].
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Denote∫∫
∂x,vE =

∫ t

t−tb

∫ t

s

∂x,vE(X(τ))dτds =

∫ t

t−tb

∫ t

s

∇xE(X(τ)) · ∇x,vX(τ)dτds,∫
∂x,vE =

∫ t

t−tb
∂x,vE(X(s))ds =

∫ t

t−tb
∇xE(X(s)) · ∇x,vX(s)ds.

Let τ1(x) and τ2(x) be unit tangential vector to ∂Ω satisfying (1.26). And let
∂τig be the tangential derivative at direction τi for g defined on ∂Ω. Define

∇xg =
2∑
i=1

τi∂τig −
n

n · vb

{
∂tg +

2∑
i=1

(vb · τi)∂τig + νg −H + E · ∇vg

}
.(2.55)

Proposition 5. Assume the compatibility condition

f0(x, v) = g(0, x, v) for (x, v) ∈ γ−.

Let p ∈ [1,∞) and 0 < θ < 1/4. |ψ(t, x, v)| . 〈v〉. ‖E‖∞ + ‖∇xE‖∞ <∞.
Assume

∇xf0,∇vf0 ∈ Lp(Ω× R3),

∇vg, ∂τig ∈ Lp([0, T ]× γ−),

n(x)

n(x) · v

{
∂tg +

2∑
i=1

(v · τi)∂τig + νg −H + E · ∇vg

}
∈ Lp([0, T ]× γ−),

n(x) ·
∫∫

∂xE

n(x) · v

{
∂tg +

2∑
i=1

(v · τi)∂τig − νg +H

}
∈ Lp([0, T ]× γ−),

∇xH,∇vH ∈ Lp([0, T ]× Ω× R3),

e−θ|v|
2

∇xν, e−θ|v|
2

∇vν ∈ Lp([0, T ]× Ω× R3),

eθ|v|
2

f0 ∈ L∞(Ω× R3), eθ|v|
2

g ∈ L∞([0, T ]× γ−),

eθ|v|
2

H ∈ L∞([0, T ]× Ω× R3).

Then for any T > 0, there exists a unique solution f to (2.6) such that f, ∂t,∇xf,∇vf
∈ C0([0, T ];Lp(Ω× R3)) and their traces satisfy

∇vf |γ− = ∇vg,∇xf |γ− = ∇xg on γ−,

∇xf(0, x, v) = ∇xf0,∇vf(0, x, v) = ∇vf0 in Ω× R3,

∂tf(0, x, v) = ∂tf0 in Ω× R3,

(2.56)

where ∇xg is given by (2.55).

Proof. Consider the case t ≤ tb and t > tb separately and integrate along the
trajectory X(s), V (s); we have for t < tb

f(t, x, v) = f0(X(0), V (0))e−
∫ t
0
ν −

∫ t

0

d

ds

(
f(t− s,X(t− s), V (t− s))e−

∫ s
0
ν
)
ds

= f0(X(0), V (0))e−
∫ t
0
ν +

∫ t

0

e−
∫ s
0
νH(t− s,X(t− s), V (t− s))ds,
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where H = {∂t + v · ∇x + E · ∇v + ν}f , ν = ν(t − τ,X(t − τ), V (t − τ)). And for
t > tb,

f(t, x, v) = e−
∫ tb
0 νg(t− tb, xb, vb) +

∫ tb

0

e−
∫ s
0
νH(t− s,X(t− s), V (t− s))ds.

We can rewrite it as

f(t, x, v) = 1{t≤tb}e
−
∫ t
0
νf0(X(0), V (0)) + 1{t>tb}e

−
∫ tb
0 νg(t− tb, xb, vb)

+

∫ min{tb,t}

0

e−
∫ s
0
νH(t− s,X(t− s), V (t− s))ds.

.

By direct computation we have

∇xf(t, x, v)1{t6=tb}

= 1{t<tb}e
−
∫ t
0
ν

[
∇xf0 · ∇xX(0) +∇vf0 · ∇xV (0)

− f0

∫ t

0

(∇xν · ∇xX +∇vν · ∇xV )(t− τ)

]

+ 1{t>tb}e
−
∫ tb
0 ν

{
−∇xtbν(t− tb)g(t− tb) +∇xtbH(t− tb)

− g(t− tb)

∫ tb

0

(∇xν · ∇xX +∇vν · ∇xV )(t− τ)

}
+ 1{t>tb}e

−
∫ tb
0 ν∂x(g(t− tb, xb, vb))

+

∫ min{t,tb}

0

e−
∫ s
0
ν

[
∇xH(t− s) · ∇xX(t− s) +∇vH(t− s) · ∇xV (t− s)

−H(t− s)
∫ s

0

(∇xν · ∇xX +∇vν · ∇xV )(t− τ)

]
ds.

∇vf(t, x, v)1{t6=tb}

= 1{t<tb}e
−
∫ t
0
ν

[
∇xf0 · ∇vX(0) +∇vf0 · ∇vV (0)

− f0

∫ t

0

(∇xν · ∇vX +∇vν · ∇vV )(t− τ)

]

+ 1{t>tb}e
−
∫ tb
0 ν

{
−∇vtbν(t− tb)g(t− tb) +∇vtbH(t− tb)

− g(t− tb)

∫ tb

0

(∇xν · ∇vX +∇vν · ∇vV )(t− τ)

}
+ 1{t>tb}e

−
∫ tb
0 ν∂v(g(t− tb, xb, vb))

+

∫ min{t,tb}

0

e−
∫ s
0
ν

[
∇xH(t− s) · ∇vX(t− s) +∇vH(t− s) · ∇vV (t− s)

−H(t− s)
∫ s

0

(∇xν · ∇vX +∇vν · ∇vV )(t− τ)

]
ds.
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Regarding g(t − tb, xb(t, x, v), v) as a function on [0, T ] × Ω̄ × R3, we obtain from
(1.26) that

∂x[g(t− tb, xb, vb)] = ∇τg · ∇xxb = (τ1∂τ1g + τ2∂τ2g) · ∇xxb.

Thus from (2.54) we have

∂x[g(t− tb, xb, vb)]

= −∇xtb∂tg +∇τg∇xxb +∇vg∇xvb

= − n(xb)

n(xb) · vb
∂tg −

n(xb) ·
∫∫

∂xE

n(xb) · vb
∂tg

+ τ1∂τ1g + τ2∂τ2g −
n(xb)

n(xb) · vb
(vb · τ1∂τ1g + vb · τ2∂τ2g)

−
n(xb) ·

∫∫
∂xE

n(xb) · vb
(vb · τ1∂τ1g + vb · τ2∂τ2g)

− n(xb)

n(xb) · vb
(E · ∇vg)−∇vg ·

∫
∂xE,

∂v[g(t− tb, xb, vb)]

= −∇vtb∂tg +∇vxb∇τg +∇vg∇vvb

= − tbn(xb)

n(xb) · vb
∂tg −

n(xb) ·
∫∫

∂vE

n(xb) · vb
∂tg

− tb(τ1∂τ1g + τ2∂τ2g)− tb
n(xb)

n(xb) · vb
(vb · τ1∂τ1g + vb · τ2∂τ2g)

−
n ·
∫∫

∂vE

n · vb
(vb · τ1∂τ1g + vb · τ2∂τ2g)

− tbn(xb)

n(xb) · vb
(E · ∇vg)−∇vg ·

∫
∂vE +∇vg.

Plugging into the previous equation we eventually have

∇xf(t, x, v)1{t6=tb}

(2.57)

= 1{t<tb}e
−
∫ t
0 ν

[
∇xf0 · ∇xX(0) +∇vf0 · ∇xV (0)−f0

∫ t

0

(∇xν · ∇xX+∇vν · ∇xV )(t−τ)

]
+ 1{t>tb}e

−
∫ tb
0 ν

{
2∑
i=1

τi∂τig −∇vg ·
∫
∂xE − g

∫ tb

0

(∇xν · ∇xX +∇vν · ∇xV )(t− τ)

− n

n · vb

{
∂tg +

2∑
i=1

(vb · τi)∂τig + νg −H + E · ∇vg

}

−
n ·
∫∫

∂xE

n · vb

{
∂tg +

2∑
i=1

(vb · τi)∂τig − νg +H

}}
(t− tb, xb, vb)

+

∫ min{t,tb}

0

e−
∫ s
0 ν

[
∇xH(t− s) · ∇xX(t− s) +∇vH(t− s) · ∇xV (t− s)

−H(t− s)
∫ s

0

(∇xν · ∇xX +∇vν · ∇xV )(t− τ)

]
ds,
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∇vf(t, x, v)1{t6=tb}

= 1{t<tb}e
−
∫ t
0 ν

[
∇xf0 · ∇vX(0)+∇vf0 · ∇vV (0)−f0

∫ t

0

(∇xν · ∇vX+∇vν · ∇vV )(t−τ)

]
− 1{t>tb}tbe

−
∫ tb
0 ν

{
2∑
i=1

τi∂τig −
n

n · vb

{
∂tg +

2∑
i=1

(vb · τi)∂τig

+ νg −H + E · ∇vg

}}
(t− tb, xb, vb)

+ 1{t>tb}e
−
∫ tb
0 ν

{
∇vg − g

∫ tb

0

(∇xν · ∇vX +∇vν · ∇vV )(t− τ)−∇vg ·
∫
∂vE

+
n ·
∫∫

∂vE

n · vb

{
∂tg +

2∑
i=1

(vb · τi)∂τig − νg +H

}}
(t− tb, xb, vb)

+

∫ min{t,tb}

0

e−
∫ s
0 ν

[
∇xH(t− s) · ∇vX(t− s) +∇vH(t− s) · ∇vV (t− s)

−H(t− s)
∫ s

0

(∇xν · ∇vX +∇vν · ∇vV )(t− τ)

]
ds.

From (2.4) with replacing −∇xφf by E,

d

ds

[
∇x,vX(s; t, x, v)
∇x,vV (s; t, x, v)

]
=

[
03×3 Id3×3

∇xE(s,X(s; t, x, v)) 03×3

] [
∇x,vX(s; t, x, v)
∇x,vV (s; t, x, v)

]
.

Then by Gronwall’s inequality, we easily have

|∇x,vX(s; t, x, v)|+ |∇x,vV (s; t, x, v)| . e(1+‖∇xE‖∞)|t−s|.

Therefore by the change of variables from Lemma 2 and Lemma 3 and (2.7) we have

‖f(t)1{t6=tb}‖p . et(‖E‖∞+1)

‖f0‖p +

[∫ t

0

∫
γ−

|g|pdγds

]1/p

+

[∫ t

0

‖H‖ppds
]1/p

 ,

‖∇xf(t)1{t6=tb}‖p

. et(‖E‖∞+1)

(
‖∇xf0‖p + ‖∇vf0‖p +

[∫ t

0

‖∇xH‖pp + ‖∇vH‖pp
]1/p

+

[∫ t

0

∫
γ−

|∇vg|pdγds

]1/p

+

{∥∥∥eθ|v|2f0 ‖∞+‖ eθ|v|
2

H
∥∥∥
∞

+
∣∣∣eθ|v|2g∣∣∣

∞

}

×
[∫ t

0

‖e−θ|v|
2

∂tν‖pp + ‖e−θ|v|
2

∇vν‖pp
]1/p

+

[∫ t

0

∫
γ−

dγds

∣∣∣∣∣
{

2∑
i=1

τi∂τig −
n

n · vb

{
∂tg +

2∑
i=1

(vb · τi)∂τig

+ νg −H + E · ∇vg

}

−
n ·
∫∫

∂xE

n · vb

{
∂tg +

2∑
i=1

(vb · τi)∂τig − νg +H

}∣∣∣∣∣
p]1/p)

,
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and

‖∇vf(t)1{t6=tb}‖p

. et(‖E‖∞+1)

(
‖∇xf0‖p + ‖∇vf0‖p +

[∫ t

0

‖∇xH‖pp + ‖∇vH‖pp
]1/p

+

[∫ t

0

∫
γ−

|∇vg|pdγds

]1/p

+

{∥∥∥eθ|v|2f0

∥∥∥
∞

+
∥∥∥eθ|v|2H∥∥∥

∞
+
∣∣∣eθ|v|2g∣∣∣

∞

}

×
[∫ t

0

‖e−θ|v|
2

∂tν‖pp + ‖e−θ|v|
2

∇vν‖pp
]1/p

+

[∫ t

0

∫
γ−

dγds

∣∣∣∣∣
{

2∑
i=1

τi∂τig−
n

n · vb

{
∂tg +

2∑
i=1

(vb · τi)∂τig

+ νg −H + E · ∇vg

}

−
n ·
∫∫

∂vE

n · vb

{
∂tg +

2∑
i=1

(vb · τi)∂τig − νg +H

}∣∣∣∣∣
p]1/p)

.

From our hypothesis, these terms on the RHS are bounded; therefore,

∂f1{t6=tb} ≡ [∂tf1{t6=tb},∇xf1{t6=tb},∇vf1{t6=tb}] ∈ L
∞([0, T ];Lp(Ω× R3)).

On the other hand, thanks to the compatibility condition, we need to show f has the
same trace on the set

M≡ {t = tb(x, v)} ≡ {(tb(x, v), x, v) ∈ [0, T ]× Ω× R3}.

We claim the following fact: Let φ(t, x, v) ∈ C∞c ((0, T )× Ω× R3); then we have∫ T

0

∫∫
Ω×R3

f∂φ = −
∫ T

0

∫∫
Ω×R3

∂f1{t6=tb}φ

so that f ∈W 1,p with weak derivatives given by ∂f1{t6=tb}.
Proof of claim. We first fix the test function φ(t, x, v). There exists δ = δφ > 0

such that φ ≡ 0 for t ≥ 1
δ or dist(x, ∂Ω) < δ, or |v| ≥ 1

δ . Let φ(t, x, v) 6= 0 and
(t, x, v) ∈M, so t = tb(t, x, v). We have n(xb(t, x, v)) · vb(t, x, v) ≤ 0.

Recall the velocity lemma. Since

α(t− tb(t, x, v), xb(t, x, v), vb(t, x, v)) ≤ |n(xb(t, x, v)) · vb(t, x, v)|

from the definition of α. And by (2.46) α satisfies

0 < α(t, x, v) ≤ eC
∫ t
0

(|V (τ ′)|+1)dτ ′α(t− tb(t, x, v), xb(t, x, v), vb(t, x, v))

≤ eC
∫ t
0

(|V (τ ′)|+1)dτ ′ |n(xb(t, x, v)) · vb(t, x, v)|.

So we have n(xb(t, x, v)) · vb(t, x, v) 6= 0. Therefore

n(xb(t, x, v)) · vb(t, x, v) < 0.

Now since {φ 6= 0} is compact, n(xb(t, x, v)) · vb(t, x, v) reaches a maximum.
Therefore |n(xb(t, x, v)) · vb(t, x, v)| > δ′ > 0, so {φ 6= 0} ∩ M is a smooth
6-dimensional hypersurface.
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We next take a C1 approximation of f l0, H l, and gl (by partition of unity and
localization) such that

‖f l0 − f0‖W 1,p → 0, ‖gl − g‖W 1,p([0,T ]×γ−\γδ
′
− ) → 0, ‖H l −H‖W 1,p([0,T ]×Ω×R3) → 0,

where W 1,p([0, T ]× γ− \ γδ
′

− ) is the standard Sobolev space in [0, T ]× γ− \ γδ
′

− . This
implies, from the trace theorem, that

f l0(x, v)→ f0(x, v) and gl(0, x, v)→ g(0, x, v) in Lp(γ− \ γδ
′

− ).

We define accordingly, for (t, x, v) ∈ [0, T ]× Ω× R3,

f l(t, x, v) = 1{t≤tb}e
−
∫ t
0
νf l0(X(0), V (0)) + 1{t>tb}e

−
∫ tb
0 νgl(t− tb, xb, vb)

+

∫ min{tb,t}

0

e−
∫ s
0
νH l(t− s,X(t− s), V (t− s))ds

and

f l−(t, x, v) = 1{t≤tb}e
−
∫ t
0
νf l0(X(0), V (0))

+

∫ min{tb,t}

0

e−
∫ s
0
νH l(t−s,X(t−s), V (t−s))ds,

f l+(t, x, v) = 1{t≥tb}e
−
∫ tb
0 νgl(t− tb, xb, vb)

+

∫ min{tb,t}

0

e−
∫ s
0
νH l(t−s,X(t−s), V (t−s))ds.

Therefore for all (x, v) ∈ γ−,

f l+(s,X(s; 0, x, v), V (s; 0, x, v))− f l−(s,X(s; 0, x, v), V (s; 0, x, v))

= e−
∫ s
0
ν
[
gl(0, x, v)− f l0(x, v)

]
.

Since {φ 6= 0} ∩M is a smooth hypersurface, we apply the Gauss theorem to f l to
obtain∫∫∫

∂eφf
ldxdvdt =

∫∫
[f l+ − f l−]φe · nMdM

−
{∫∫∫

t>tb

φ∂ef
l
+dxdvdt+

∫∫∫
t<tb

φ∂ef
l
−dxdvdt

}
,

where ∂e = [∂t,∇x,∇v] = [∂t, ∂x1
, ∂x2

, ∂x3
, ∂v1

, ∂v2
, ∂v3

] and

nM =
1√

(1− ∂ttb)2 + |∇xtb|2 + |∇vtb|2
(1− ∂ttb,−∇xtb,−∇vtb) ∈ R7.

Using (s,X(s; 0, x, v), V (s; 0, x, v)) and (x, v) ∈ γ− as our parametrization for the
manifold {φ 6= 0} ∩M, and from (2.14), letting x = η(x‖) = η(x‖,1, x‖,2) for x ∈ ∂Ω,
we have the Jacobian matrix

J =

 1 0 0
∂sX ∇x‖X ∇vX
∂sV ∇x‖V ∇vV

∣∣∣∣∣∣ (nM)T
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Then since |v · n(x)| > δ′, the surface measure of M is | det(J)|dx‖dvds which is
bounded from above; thus∫∫

[f l+ − f l−]φe · nMdM

≤
∫ T

0

∫
n(x)·v≥δ′

|f l+(s,X(s; 0, x, v), V (s; 0, x, v))

− f l−(s,X(s; 0, x, v), V (s; 0, x, v))|| det(J)|dx‖dvds

.T,φ,δ

∫
n(x)·v≥δ′

|gl(0, x, v)−f l0(x, v)| 1

|v · n(x)|‖∂1η×∂2η‖
|v · n(x)|‖∂1η × ∂2η‖dx‖dv

.T,φ,δ

∫
n(x)·v≥δ′

|gl(0, x, v)− f l0(x, v)||dγ → 0, as l→∞,

due to the compatibility condition f0(x, v) = g(0, x, v) for (x, v) ∈ γ−.
Clearly, taking the difference of f l−f and using the strong Lp estimate we deduce

that f l → f strongly in Lp({φ 6= 0}). Furthermore, due to the same estimate for ∇xf
and ∇vf we have a uniform-in-l bound of f l± in W 1,p({t 6= tb, φ 6= 0}). Therefore we
have, up to a subsequence, that ∂ef

l
± converges weakly. And since the weak limits

coincide with the pointwise limit we have

∂ef
l
+ ⇀ ∂ef1t>tb , ∂ef

l
− ⇀ ∂ef1t<tb .

Finally we conclude the claim by letting l→∞.
Now since we assume all the data are compactly supported in the velocity space, f

itself is compactly supported in the velocity space, so eθ|v|
2

f ∈ L∞ as f0, g,H ∈ L∞.
From this and the Lp bounds above, we conclude

{∂t + v · ∇x + E · ∇v + ν}∂f = ∂H − ∂v · ∇xf − ∂E · ∇vf − ∂νf ∈ Lp.

By the trace theorem, the traces of ∂tf,∇xf,∇vf exist. To evaluate these traces,
we use the fact that for almost every (t, x, v), ∂f is absolutely continuous along the
trajectory (t− s,X(t− s; t, x, v), V (t− s; t, x, v)).

First consider t > tb(t, x, v) > s, as s→ tb(t, x, v), tb(t− s,X(t− s), V (t− s)) =
tb(t, x, v)−s→ 0. Thus by our formulas for ∂f we have ∂f(t−s,X(t−s), V (t−s))→
∂g(t− tb, xb, vb) as s→ tb(t, x, v). Therefore ∂f |γ− = ∂g.

If tb(t, x, v) > t > s, again using the explicit formula for ∂f and the fact that
(∂x,vX)(0; t−s, x, v) = (id, 0) and (∂x,vV )(0; t−s, x, v) = (0, id) as s→ t, we have that
∂f(t−s,X(t−s), V (t−s))→ ∂f(0, X(0), V (0)) as s→ t. Therefore ∂f(0, x, v) = ∂f0.
This proves (2.56).

In order to remove the compact support assumption we employ a cutoff function
χ. Define fm = χ(|v|/m)f ; then fm satisfies

{∂t + v · ∇x + E · ∇v + (χ′(|v|/m)− E · ∇vχ(|v|/m))}fm = χ(|v|/m)H,

fm(0, x, v) = χ(|v|/m)f0, f
m
γ− = χ(|v|/m)g.

(2.58)

Now by previous argument we have that the traces of ∂fm exist and ∂fm(0, x, v) =
∂(χ(|v|/m)f0), ∂fm|γ− = ∂(χ(|v|/m)g). And ∂(χ(|v|/m)f0, g) = χ(|v|/m)∂f0, ∂g +
∂χ(|v|/m)f0, g → ∂f0, ∂g in Lp as m → ∞. On the other hand we have ∂fm =
χ(|v|/m)∂f + ∂χ(|v|/m)f , so the traces of ∂fm go to the traces of ∂f almost every-
where as m → ∞. Therefore we conclude ∂f(0, x, v) = ∂f0 and ∂f |γ− = ∂g|γ− as
desired.
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Proposition 6. Let f be a solution of (2.6). Assume f0(x, v) = g(0, x, v) for all
(x, v) ∈ γ−.

For any fixed p ∈ [2,∞], 0 < θ < 1/4, β > 0, and $ � 1 assume

αβ∇xf0, α
β∇vf0 ∈ Lp(Ω× R3),

e−$〈v〉tαβ∇vg, e−$〈v〉tαβ∂τig ∈ Lp([0, T ]× γ−),

e−$〈v〉tαβ

n(x) · v

{
∂tg +

∑
(v · τi)∂τig + νg −H + E · ∇vg

}
+
e−$〈v〉tαβn(x) ·

∫∫
∂xE

n(x) · v

{
∂tg +

∑
(vb · τi)∂τig − νg +H

}
∈ Lp([0, T ]× γ−),

e−$〈v〉tαβ∇vH, e−$〈v〉tαβ∇xH ∈ Lp([0, T ]× Ω× R3),

e−θ|v|
2

e−$〈v〉tαβ∇vν, e−θ|v|
2

e−$〈v〉tαβ∇xν ∈ Lp([0, T ]× Ω× R3),

eθ|v|
2

f0 ∈ L∞(Ω× R3), eθ|v|
2

g ∈ L∞([0, T ]× γ−), eθ|v|
2

H ∈ L∞([0, T ]× Ω× R3).

Then for ∂ ∈ {∇x,∇v}, we have e−$〈v〉tαβ∂f(t, x, v) ∈ L∞([0, T ];Lp(Ω× R3)) and

e−$〈v〉tαβ∂f |t=0 = e−$〈v〉tαβ∂f0, e
−$〈v〉tαβ∂f |γ− = e−$〈v〉tαβ∂g,

where ∂g is given in (2.55).

Proof. First we assume f0, g, and H have compact supports in {v ∈ R3 : |v| < m}.
By (2.46) we have for $ & (‖E‖∞+‖∇E‖∞)

CE
, and for any 0 ≤ s1, s2 ≤ t, and any

(x, v) ∈ Ω× R3 that

e
−$

∫ s2
s1
〈V (τ)〉dτ

α(s1, X(s1), V (s1)) ≤ α(s2, X(s2), V (s2))

≤ e$
∫ s2
s1
〈V (τ)〉dτ

α(s1, X(s1), V (s1)).

And since |
∫ t

max{0,t−tb}〈V (s; t, x, v)〉ds− 〈v〉t| ≤ ‖E‖∞t2, we have for any β > 0

sup
t≤tb

e−$〈v〉tαβ(t, x, v)

αβ(0, X(0), V (0))
≤ eβ$‖E‖∞t

2

,(2.59)

sup
t≥tb

e−$〈v〉tαβ(t, x, v)

e−$〈vb〉(t−tb)αβ(t− tb, xb, vb)
≤ e2β$‖E‖∞t2 ,

sup
max{t−tb,0}≤s≤t

e−$〈v〉tαβ(t, x, v)

e−$〈V (t−s)〉(t−s)αβ(t− s,X(t− s), V (t− s))
≤ e2β$‖E‖∞t2 .

Multiplying e−$〈v〉tαβ(t, x, v) by Lemma (2.57), and then using the change of variables
from 2 and Lemma 3, and the bound from (2.59), we get

‖e−$〈v〉tαβ∇xf(t)‖Lp .β e
$t2(‖E‖2∞+‖∇E‖2∞+1)

(
‖αβ∇xf0‖p + ‖αβ∇vf0‖p

+

[∫ t

0

∣∣∣∣e−$〈v〉sαβn(x) · v

{
∂tg +

∑
(v · τi)∂τig + νg −H + E · ∇vg

}

+
e−$〈v〉sαβn ·

∫∫
∂xE

n(x) · v

{
∂tg +

∑
(v · τi)∂τig − νg +H

}∣∣∣∣p
γ,p

dtb
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+

[∫ t

0

2∑
i=1

∣∣∣e−$〈v〉sαβ∂τig(s)
∣∣∣p
γ,p

+
∣∣∣e−$〈v〉sαβ∇vg(s)

∣∣∣p
γ,p

+ ‖e−$〈v〉sαβ∇xH(s)‖pp + ‖e−$〈v〉sαβ∇vH(s)‖ppds

]1/p

+ C ′

[∫ t

0

‖e−θ|v|
2

e−$〈v〉sαβ∇xv‖pp + ‖e−θ|v|
2

e−$〈v〉sαβ∇vv‖ppds

]1/p)
,

‖e−$〈v〉tαβ∇vf(t)‖Lp .β e
$t2(‖E‖2∞+‖∇E‖2∞+1)

(
‖αβ∇xf0‖p + ‖αβ∇vf0‖p

+

[∫ t

0

∣∣∣∣e−$〈v〉sαβn(x) · v

{
∂tg +

∑
(v · τi)∂τig + νg −H + E · ∇vg

}

+
e−$〈v〉sαβn(x) ·

∫∫
∂vE

n(x) · v

{
∂tg +

∑
(v · τi)∂τig − νg +H

}∣∣∣∣p
γ,p

ds

]1/p

+

[∫ t

0

2∑
i=1

∣∣∣e−$〈v〉sαβ∂τig(s)
∣∣∣p
γ,p

+
∣∣∣e−$〈v〉sαβ∇vg(s)

∣∣∣p
γ,p

+ ‖e−$〈v〉sαβ∇xH(s)‖pp + ‖e−$〈v〉sαβ∇vH(s)‖ppds

]1/p

+ C ′

[∫ t

0

‖e−θ|v|
2

e−$〈v〉sαβ∇xv‖pp + ‖e−θ|v|
2

e−$〈v〉sαβ∇vv‖ppds

]1/p)
,

where C ′ = ‖eθ|v|2f0‖∞ + ‖eθ|v|2H‖∞ + |eθ|v|2g|∞. By the hypotheses of the proposi-
tion, the RHSs are bounded, and hence e−$〈v〉tαβ∂f ∈ L∞([0, T ];Lp(Ω× R3)).

Since f0, g, and H are compactly supported inside {v ∈ R3 : |v| ≤ m} we have by
direct computation that if we let

ν̄ := ν +$〈v〉+$
v

〈v〉
· Et− βα−1(∂tα+ v · ∇xα+ E · ∇vα),

then

{∂t+v · ∇x + E · ∇v + ν}(e−$〈v〉tαβ∂f)

= e−$〈v〉tαβ [∂t + v · ∇x + E · ∇v + ν](∂f)

= e−$〈v〉tαβ [∂H − ∂ν · ∇xf − ∂E · ∇vf − ∂νf ] ∈ Lp.

Therefore by the trace theorem the traces of e−$〈v〉tαβ∂f exist, and by choosing a
test function multiplied by e−$〈v〉tαβ , we deduce e−$〈v〉tαβ∂f has the same trace as
e−$〈v〉tαβ [∂f |γ ].

Finally we use (2.58) to remove the compact support condition and pass to the
limit to conclude the proof.

3. W 1,p estimate. The goal of this section is to prove the W 1,p (1 < p < 2)
estimate and the weighted W 1,p (2 ≤ p <∞) estimate for the system (2.1), (2.2) with
E satisying (1.8).

D
ow

nl
oa

de
d 

08
/2

0/
20

 to
 1

28
.1

04
.9

3.
46

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3226 YUNBAI CAO

Let f0 =
√
µ. We apply Proposition 5 for m = 0, 1, 2, . . . to get(

∂t + v · ∇x + E · ∇v −
v

2
· E + ν(

√
µfm)

)
fm+1 = Γgain(fm, fm)(3.1)

with the initial data fm(0, x, v) = f0(x, v), and boundary conditions are for all (x, v) ∈
γ−

f1(t, x, v) = cµ
√
µ(v)

∫
n·u>0

f0(x, u)
√
µ(u)(n(x) · u)du,

fm+1(t, x, v) = cµ
√
µ(v)

∫
n·u>0

fm(t, x, u)
√
µ(u)(n(x) · u)du, m ≥ 1.

(3.2)

We first need a local existence result which is standard.

Lemma 9. (local existence) Suppose ‖E‖∞ <∞, and ‖eθ|v|2f0‖∞ <∞, 0 < θ <
1
4 . And f0 satisfies the compatibility condition for diffuse boundary condition. Then
there exists 0 < T � 1 small enough such that f ∈ L∞([0, T ) × Ω × R3) solves the
system (2.1) with diffuse boundary condition (2.2).

Proof. We first claim

(3.3) sup
m

sup
0≤t≤T

∥∥∥eθ′|v|2fm(t)
∥∥∥
∞

.
∥∥∥eθ|v|2f0

∥∥∥
∞
<∞,

where θ′ = θ − T . The proof of (3.3) is essentially the same as (and easier than) the
proof of the same bound in the case with self-generated potential. See the proof of
(5.10).

From (3.3) we have up to a subsequence the weak-∗ convergence

(3.4) eθ
′|v|2fm(t, x, v)

∗
⇀ eθ

′|v|2f(t, x, v)

in L∞([0, T )× Ω× R3) ∩ L∞([0, T )× γ) for some f .

Applying the same argument of (3.3) to the sequence e(θ−t)|v|2(fm+1 − fm) we

get that the sequence eθ
′|v|2fm(t, x, v) ∈ L∞([0, T ) × Ω × R3) ∩ L∞([0, T ) × γ) is a

Cauchy sequence and therefore

(3.5)
∥∥∥eθ′|v|2fm(t, x, v)− eθ

′|v|2f(t, x, v)
∥∥∥
∞
→ 0 as m→∞.

Now for any φ ∈ C∞c ([0, T )× Ω× R3) we have from (3.1) that∫ T

0

∫∫
Ω×R3

fm+1
[
∂t + v · ∇x + E · ∇v −

v

2
· E + ν(

√
µfm)

]
φ(3.6)

=

∫ T

0

∫∫
Ω×R3

−Γgain(fm, fm)φ.

Then from (3.4) and (3.5), by the standard argument we can pass the limit m → ∞
in (3.6) to conclude that∫ T

0

∫∫
Ω×R3

f
[
∂t + v · ∇x + E · ∇v −

v

2
· E + ν(

√
µf)

]
φ =

∫ T

0

∫∫
Ω×R3

−Γgain(f, f)φ.

This proves the lemma.

Now we are ready to prove Theorem 1.
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Proof of Theorem 1. Let ∂ ∈ {∇x,∇v}. Taking ∂[(3.1)] we have(
∂t + v · ∇x + E · ∇v −

v

2
· E + ν(

√
µfm)

)
∂fm+1

= ∂Γgain(fm, fm)− ∂v · ∇xfm+1 − ∂E · ∇vfm+1

− ∂
(v

2
· E
)
fm+1 − ∂(ν(

√
µfm))fm+1

:= Gm.

(3.7)

By direct computation we have from (3.7)(
∂t + v · ∇x + E · ∇v −

v

2
· E +$〈v〉+ t$

v

〈v〉
· E(3.8)

+ ν(
√
µfm)

)
e−$〈v〉t∂fm+1 = e−$〈v〉tGm.

And for $ > 4(‖E‖∞ + 1) and T < 1
4(‖E‖∞+1) , we have

νm$ :=
v

2
· E +$〈v〉+ t$

v

〈v〉
· E + ν(

√
µfm) ≥ $

2
〈v〉.

From (3.3) we have

|Gm| . |∂fm+1|+ e−
θ
2 |v|

2
∥∥∥eθ|v|2f0

∥∥∥2

∞
+P

(∥∥∥eθ|v|2f0

∥∥∥
∞

)
×
∫
R3

e−Cθ|v−u|
2

|v − u|2−κ
|∂fm(u)|du,

where P is a polynomial.
We need some estimates for the derivatives on the boudnary. We claim that for

(x, v) ∈ γ−

|∂fm+1(t, x, v)| .
√
µ(v)〈v〉

(
1 +

1

|n(x) · v|

)
(3.9) ∫

n(x)·u>0

|∂fm(t, x, u)|µ1/4(n(x) · u)du+
e−

θ
2 |v|2

|n(x) · v|
P
(∥∥∥eθ|v|2f0

∥∥∥
∞

)
.

Let τ1(x) and τ2(x) be unit tangential vectors to ∂Ω satisfying (1.26); then from (3.1),

∂nf
m+1(t, x, v)

=
−1

n(x) · v

{
∂tf

m+1 +
2∑
i=1

(v · τi)∂τifm+1

+ E · ∇vfm+1 − v

2
· Efm+1 + ν(

√
µfm)fm+1 − Γgain(fm, fm).

(3.10)

Define the orthonormal transformation from {n, τ1, τ2} to the standard bases
{e1, e2, e3}, i.e., T (x)n(x) = e1, T (x)τ1(x) = e2, T (x)τ2(x) = e3, and T −1 = T T .
Upon a change of variable: u′ = T (x)u, we have

n(x) · u = n(x) · T t(x)u′ = n(x)tT t(x)u′ = [T (x)n(x)]tu′ = e1 · u′ = u′1;

then the RHS of the diffuse BC (3.2) equals

cµ
√
µ(v)

∫
u′1>0

fm(t, x, T t(x)u′)
√
µ(u′){u′1}du′.
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Then we can further take tangential derivatives ∂τi as, for (x, v) ∈ γ−,

∂τif
m+1(t, x, v) = cµ

√
µ(v)

∫
n(x)·u>0

∂τif
m(t, x, u)

√
µ(u){n(x) · u}du

+ cµ
√
µ(v)

∫
n(x)·u>0

∇vfm(t, x, u)
∂T t(x)

∂τi
T (x)u

√
µ(u){n(x) · u}du.

(3.11)

We can take velocity derivatives directly to (3.2) and obtain that for (x, v) ∈ γ−,

∇vfm+1(t, x, v) = cµ∇v
√
µ(v)

∫
n(x)·u>0

fm(t, x, u)
√
µ(u){n(x) · u}du,(3.12)

∂tf
m+1(t, x, v) = cµ

√
µ(v)

∫
n(x)·u>0

∂tf
m(t, x, u)

√
µ(u){n(x) · u}du.

For the temporal derivative, we use (3.1) again to deduce that

∂tf
m+1(t, x, v) = cµ

√
µ(v)

∫
n(x)·u>0

{
−u · ∇xfm−E · ∇vfm+

u

2
· Efm

− ν(
√
µfm−1)fm + Γgain(fm−1, fm−1)

}√
µ(u){n(x) · u}du.

(3.13)

From (3.10)–(3.13) and (3.3), we conclude (3.9).
Now we claim that for 1 ≤ p < 2 and for T∗ small enough we have the uniformly-

in-m bound:

sup
0≤t≤T∗

‖e−$〈v〉t∂fm‖pp +

∫ T∗

0

|e−$〈v〉t∂fm|pγ,p .Ω,T∗ ‖∂f0‖pp + P (‖eθ|v|
2

f0‖∞).

(3.14)

We remark that the sequence (3.1) is shown to be a Cauchy sequence in L∞. Due to
the weak lower semicontinuity for Lp in case of p > 1, once we have (3.14), then we

pass a limit ∂fm ⇀ ∂f weakly in supt∈[0,T∗] ‖ · ‖
p
p and ∂fm|γ ⇀ ∂f |γ in

∫ T∗
0
| · |pγ,p (up

to a subsequence) to conclude that ∂f satisfies the same estimate of (3.14). Repeat
the same procedure for [T∗, 2T∗], [2T∗, 3T∗], . . . , to conclude the theorem.

Applying Green’s identity (Lemma 5) to (3.8) we have

‖e−$〈v〉t∂fm+1(t)‖pp + p

∫ t

0

|e−$〈v〉s∂fm+1|pγ+,p

. ‖∂f0‖pp + p

∫ t

0

|e−$〈v〉s∂fm+1|pγ−,p + p

∫ t

0

∫∫
Ω×R3

|Gm|e−p$〈v〉t|∂fm+1|p−1

. ‖∂f0‖pp +

∫ t

0

|e−$〈v〉s∂fm+1|pγ−,p

+ P (‖eθ|v|
2

f0‖∞)

∫ t

0

∫
Ω

∫
R3

e−p$〈v〉s|∂fm+1(v)|p−1(∫
R3

e−Cθ|v−u|
2

|v − u|2−κ
|∂fm(u)|du

)
dvdxds.

(3.15)
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By Hölder’s inequality we have

∫
R3

(
e−Cθ|v−u|

2

|v − u|2−κ

)1/p+1/q

|∂fm(u)|du

≤

(∫
R3

(
e−Cθ|v−u|

2

|v − u|2−κ

)
|∂fm(u)|pdu

)1/p(∫
R3

(
e−Cθ|v−u|

2

|v − u|2−κ

)
du

)1/q

.

(∫
R3

(
e−Cθ|v−u|

2

|v − u|2−κ

)
|∂fm(u)|pdu

)1/p

.

And since e−$〈v〉s

e−$〈u〉s
= es$(〈u〉−〈v〉) ≤ e2$s〈u−v〉, we have

∫ t

0

∫
Ω

∫
R3

(e−$〈v〉s)p|∂fm+1(v)|p−1

(∫
R3

e−Cθ|v−u|
2

|v − u|2−κ
|∂fm(u)|du

)
dvdxds

.
∫ t

0

∫
Ω

∫
R3

(e−$〈v〉s)p|∂fm+1(v)|p−1

(∫
R3

(
e−Cθ|v−u|

2

|v − u|2−κ

)
|∂fm(u)|pdu

)1/p

dvdxds

.
∫ t

0

∫
Ω

∫
R3

|e−$〈v〉s∂fm+1(v)|pdvdxds

+

∫ t

0

∫
Ω

∫
R3

∫
R3

(e−$〈v〉s)p

(
e−Cθ|v−u|

2

|v − u|2−κ

)
|∂fm(u)|pdudvdxds

=

∫ t

0

∫
Ω

∫
R3

|e−$〈v〉s∂fm+1(v)|pdvdxds

+

∫ t

0

∫
Ω

∫
R3

(∫
R3

(e−$〈v〉s)p

(e−$〈u〉s)p
e−Cθ|v−u|

2

|v − u|2−κ

)
dv)|e−$〈v〉s∂fm(u)|pdudxds

.
∫ t

0

∫
Ω

∫
R3

|e−$〈v〉s∂fm+1(v)|pdvdxds

+

∫ t

0

∫
Ω

∫
R3

(∫
R3

es$〈v−u〉−Cθ|v−u|
2

|v − u|2−κ

)
dv)e−$〈u〉s|∂fm(u)|pdudxds

.
∫ t

0

∫
Ω

∫
R3

|e−$〈v〉s∂fm+1(v)|pdvdxds+

∫ t

0

∫
Ω

∫
R3

|e−$〈u〉s∂fm(u)|pdudxds.

Thus

sup
0≤s≤t

‖e−$〈v〉s∂fm+1(s)‖pp +

∫ t

0

|e−$〈v〉s∂fm+1|pγ+,p

. ‖∂f0‖pp +

∫ t

0

|e−$〈v〉s∂fm+1|pγ−,p + P (‖eθ|v|
2

f0‖∞)

×
(∫ t

0

‖e−$〈v〉s∂fm+1(s)‖pp +

∫ t

0

‖e−$〈v〉s∂fm(s)‖pp
)
.

(3.16)

Now we consider the boundary contributions. We use (3.9) to obtain
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∫ t

0

∫
γ−

|e−$〈v〉s∂fm+1(s)|p

(3.17)

. sup
x∈∂Ω

(∫
n(x)·v<0

(e−$〈v〉s)p
√
µ(v)

p
〈v〉p

(
|n · v|+ 1

|n · v|p−1

)
dv

)

×
∫ t

0

∫
∂Ω

[∫
n(x)·u>0

|e−$〈u〉s∂fm(s, x, u)|e$〈v〉sµ1/4(u)(n · u)du

]p
dSxds

+ sup
x∈∂Ω

(∫
n(x)·v<0

(e−$〈v〉s)pe−
pθ
2 |v|

2

|n(x) · v|1−pdv

)
× tP (‖eθ|v|

2

f0‖∞)

.
∫ t

0

∫
∂Ω

[∫
n(x)·u>0

|e−$〈u〉s∂fm(s, x, u)|µ1/8(u)(n · u)du

]p
dSxds+tP (‖eθ|v|

2

f0‖∞).

Now we focus on
∫ t

0

∫
∂Ω

[
∫
n(x)·u>0

|e−$〈u〉s∂fm(s, x, u)|µ1/8(u)(n · u)du]pdSxds.

Recalling (2.37), we split the {u ∈ R3 : n(x) · u > 0} as∫ t

0

∫
∂Ω

[∫
n(x)·u>0

|e−$〈u〉s∂fm(s, x, u)|µ1/8(u)(n · u)du

]p
dSxds

.
∫ t

0

∫
Ω

[∫
(x,u)∈γ+\γε+

du

]p
+

∫ t

0

∫
Ω

[∫
(x,u)∈γε+

du

]p
.

(3.18)

By Hölder’s inequality we have[∫
(x,u)∈γε+

du

]p
≤

[∫
(x,u)∈γε+

µ
p

8(p−1) (n · u)du

]p−1

[∫
(x,u)∈γε+

|e−$〈u〉s∂fm(s, x, u)|p(n · u)du

]

and the term [
∫

(x,u)∈γε+
µ

p
8(p−1) (n · u)du]p−1 < ε′ � 1 if ε is small enough.

For the first term (nongrazing part), note that from (3.8) we have

(∂t + v · ∇x + E · ∇v + νm−1
$ )|e−$〈v〉t∂fm|p(3.19)

= p|e−$〈v〉t∂fm|p−2e−$〈v〉t∂fme−$〈v〉tGm−1.

So we can apply (2.38) to (3.19) to get∫ t

0

∫
Ω

[∫
(x,u)∈γ+\γε+

du

]p

. ‖∂f0‖pp +

∫ t

0

‖e−$〈v〉s∂fm(s)‖ppds+

∫ t

0

∫∫
Ω×R3

|Gm−1|e−$〈v〉s|p∂fm|p−1

. ‖∂f0‖pp +

∫ t

0

‖∂fm(s)‖ppds+ P (‖eθ|v|
2

f0‖∞)

×
(∫ t

0

‖e−$〈v〉s∂fm(s)‖pp +

∫ t

0

‖e−$〈v〉s∂fm−1(s)‖pp
)
.
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Putting together all the estimates (3.16) becomes

sup
0≤s≤t

‖e−$〈v〉s∂fm+1(s)‖pp +

∫ t

0

|e−$〈v〉s∂fm+1|pγ+,p

. ‖∂f0‖pp + ε′
∫ t

0

|e−$〈v〉s∂fm(s)|pγ+,pds

+ P
(∥∥∥eθ|v|2f0

∥∥∥
∞

)
×
(∫ t

0

‖e−$〈v〉s∂fm+1(s)‖pp

+ 2

∫ t

0

‖e−$〈v〉s∂fm(s)‖pp +

∫ t

0

‖e−$〈v〉s∂fm−1(s)‖pp
)

+ tP
(∥∥∥eθ|v|2f0

∥∥∥
∞

)
.

Choose ε� 1 and 0 < T ∗ � 1 we have

sup
0≤s≤T∗

‖e−$〈v〉s∂fm+1(s)‖pp +

∫ T∗

0

|e−$〈v〉s∂fm+1|pγ+,p

. ‖∂f0‖pp + P (‖eθ|v|
2

f0‖∞)

+
1

8
max

i=m,m−1

(
sup

0≤t≤T∗
‖e−$〈v〉s∂f i(s)‖pp +

∫ T∗

0

|e−$〈v〉s∂f i|pγ+,p

)
.

To conclude the proof we use the following fact: Suppose ai ≥ 0, D ≥ 0 and
Ai = max{ai, ai−1, . . . , ai−(k−1)} for fixed k ∈ N. If am+1 ≤ 1

8Am +D, then

Am ≤
1

8
A0 +

(
8

7

)2

D(3.20)

for m
k � 1.

Setting k = 2 and ai = sup0≤t≤T∗ ‖e−$〈v〉t∂f i(t)‖pp +
∫ T∗

0
|e−$〈v〉t∂f i|pγ+,p, D =

C(‖∂f0‖pp + P (‖eθ|v|2f0‖∞)), we complete the proof of the claim.
Next, we prove Theorem 2.

Proof of Theorem 2. By (3.7) and direct compuation, we have

{
∂t + v · ∇x + E · ∇v

+ ν(
√
µfm) +

v

2
· E +$〈v〉+ t$

v

〈v〉
· E

− βα−1(∂tα+ v · ∇xα+ E · ∇vα)

}
(e−$〈v〉tαβ∂fm+1)

= e−$〈v〉tαβ
(
∂t + v · ∇x + E · ∇v +

v

2
· E + ν(

√
µfm)

)
∂fm+1 = e−$〈v〉tαβGm.

(3.21)

And since βα−1(∂tα + v · ∇xα + E · ∇vα) . (‖E‖∞+‖∇E‖∞)
CE

, if we choose $ &
(‖E‖∞+‖∇E‖∞)

CE
large enough and T ≤ 1

4(‖E‖∞+1) , we have

ν(
√
µfm) +

v

2
· E +$〈v〉+ t$

v

〈v〉
· E − βα−1(∂tα+ v · ∇xα+ E · ∇vα) ≥ $

2
〈v〉.

Now fix p ≥ 2, p−2
p < β < p−1

p . We claim that there exists 0 < T∗ � 1 such that we
have the following estimates uniformly-in-m:
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sup
0≤t≤T∗

‖e−$〈v〉tαβ∂fm(t)‖pp +

∫ T∗

0

|e−$〈v〉sαβ∂fm|pγ,p

.Ω,T∗ P (‖eθ|v|
2

f0‖∞) + ‖αβ∂f0‖pp.
(3.22)

Once we have (3.22) then we pass to limit, e−$〈v〉tαβ∂fm(t) ⇀ e−$〈v〉tαβ∂f(t) weakly

with norms supt∈[0,T∗] ‖ · ‖pp and e−$〈v〉tαβ∂fm|γ ⇀ e−$〈v〉tαβ∂f |γ in
∫ T∗

0
| · |pγ,p and

e−$〈v〉tαβ∂f satisfies (3.22). Repeat the same procedure for [T∗, 2T∗], [2T∗, 3T∗], . . . ,
up to the local existence time interval [0, T ] in Lemma 9 to conclude Theorem 2.

We prove the claim by induction. Apply Proposition 5 to (3.21); ∂f1 exists.
Because of our choice of ∂f0, by Proposition 6 the estimate in the claim holds for
m = 1. Now assume that ∂f i exists and the estimate is valid for all i = 1, 2, . . . ,m.
From (3.3) we have the bound

e−$〈v〉tαβ |Gm|

. e−$〈v〉tαβ

{
|∇xfm+1|+P (‖eθ|v|

2

f0‖∞)

[
e−

θ
2 |v|

2

+

∫
R3

e−Cθ|v−u|
2

|v − u|2−κ
|∂fm(u)|du

]}
.

Applying Green’s identity to (3.21) we have

‖e−$〈v〉tαβ∂fm+1(t)‖pp + p

∫ t

0

|e−$〈v〉sαβ∂fm+1|pγ+,p

+ p

∫ t

0

‖〈v〉1/pe−$〈v〉sαβ∂fm+1‖pp

. ‖αβ∂f0‖pp+p
∫ t

0

|e−$〈v〉sαβ∂fm+1|pγ−,p+p
∫ t

0

∫∫
Ω×R3

[
e−$〈v〉sαβ

]p
|Gm||∂fm+1|p−1

. ‖αβ∂f0‖pp +

∫ t

0

|e−$〈v〉sαβ∂fm+1|pγ−,p

+ tP
(∥∥∥eθ|v|2f0

∥∥∥
∞

)
+ t sup

0≤s≤t
‖e−$〈v〉sαβ∂fm+1(s)‖pp

+ P
(∥∥∥eθ|v|2f0

∥∥∥
∞

)∫ t

0

∫∫
Ω×R3

[
e−$〈v〉sαβ

]p
|∂fm+1|p−1×

∫
R3

e−Cθ|v−u|
2

|v − u|2−κ
|∂fm(u)|du.

(3.23)

Step 1. Estimate for the nonlocal term. The key estimate is the following: For
0 < β < p−1

p , 0 < θ < 1
4 , and some C$,β,p > 0,

sup
x∈Ω

∫
R3

eCθ|v−u|
2

|v − u|2−κ

[
e−

$
β 〈v〉sα(s, x, v)

] βp
p−1

[
e−

$
β 〈u〉sα(s, x, u)

] βp
p−1

du .Ω,θ e
C$,β,ps

2

.(3.24)

Recall the definition of α in (2.45); we only have to show the claim for x ∈ Ωδ as
α is constant for x ∈ Ω \Ωδ. We decompose un = u ·n(x) and uτ = u−unn(x). Note
that [

e−
$
β 〈v〉s

] βp
p−1

[
e−

$
β 〈u〉s

] βp
p−1

. eC$s
2

× e
Cθ|v−u|

2

2(3.25)D
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for some C$ > 0. And since α ≤ C is bounded, for 0 ≤ κ ≤ 1, we have the bound

sup
x∈Ω

∫
R3

eCθ|v−u|
2

|v − u|2−κ

[
e−

$
β 〈v〉sα(s, x, v)

] βp
p−1

[
e−

$
β 〈u〉sα(s, x, u)

] βp
p−1

du

. eC$,p,Es
2

∫
R3

|v − u|−2+κe−Cθ|v−u|
2

e
Cθ|v−u|

2

2
1

|u · ∇ξ(x)|
βp
p−1

du

. eC$,p,Es
2

∫
R3

|v − u|−2+κe−
Cθ|v−u|

2

2 |un|
−βp
p−1 du

= eC$,p,Es
2

∫
R2

duτ

∫
R
|v − u|−2+κe−

Cθ|v−u|
2

2 |un|
−βp
p−1 dun.

Now if 0 < κ ≤ 1, we have∫
R2

duτ

∫
R
|v − u|−2+κe−

Cθ|v−u|
2

2 |un|
−βp
p−1 dun

≤
∫
R2

|vτ − uτ |−2+κe−
Cθ|vτ−uτ |

2

2 duτ

∫
R
e−

Cθ|vn−un|
2

2 |un|
−βp
p−1 dun . 1,

since we can split the last integration as
∫
R e
−Cθ|vn−un|

2

2 |un|
−βp
p−1 dun =

∫
|un|≤|vn−un|+∫

|un|>|vn−un| and both terms can be bounded together by∫
R

(
e−

Cθ|un|
2

2 |un|
−βp
p−1 + e−

Cθ|un|
2

2 |vn − un|
−βp
p−1

)
dun.

If κ = 0, first let u′ = v−u; then using the cylindrical coordinate u′τ = (r, θ), u′n =
z we can compute the integration,∫

R2

duτ

∫
R
|v − u|−2e−

Cθ|v−u|
2

2 |un|
−βp
p−1 dun

=

∫
R2

du′τ

∫
R
|u′|−2e−

Cθ|u
′|2

2 |u′n − vn|
−βp
p−1 du′n

=

∫ ∞
−∞

∫ ∞
0

r

r2 + z2
e−

Cθ(r2+z2)

2 |z − c|adrdz,

where we let a = −βp
p−1 > −1 and c = vn. Without loss of generality, we assume c ≥ 0.

Separating the integration into regions D = {(r, z) ∈ R2 : 0 ≤ r < 1, |z| < 1} and
R2 \D we have∫ ∞
−∞

∫ ∞
0

r

r2 + z2
e−

Cθ(r2+z2)

2 |z − c|adrdz

=

∫∫
M

r

r2 + z2
e−

Cθ(r2+z2)

2 |z − c|adrdz +

∫∫
R2\D

r

r2 + z2
e−

Cθ(r2+z2)

2 |z − c|adrdz

≤
∫ 1

−1

∫ 1

0

r

r2 + z2
|z − c|adrdz +

∫ ∞
−∞

∫ ∞
0

re−
Cθ(r2+z2)

2 |z − c|adrdz

=
1

2

∫ 1

−1

log

(
1

z2
+ 1

)
|z − c|adz +

1

Cθ

∫ ∞
−∞

e−
Cθz

2

2 |z − c|adz.
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For the second integration we can split as
∫
|z−c|<|z|+

∫
|z−c|≥|z|; then both terms

can be bounded by∫ ∞
−∞

(
e−

Cθ|z−c|
2

2 |z − c|a + e−
Cθz

2

2 |z|a
)
dz . 1.

For the first integration, since log(z2 + z4) < 1 for |z| < 1, we have log( 1
z2 + 1) <

2 log( 1
z2 ) + 1. So we only have to show∫ 1

−1

2 log

(
1

z2

)
|z − c|adz = −4

∫ 1

−1

log(|z|)|z − c|adz . 1.

Split the integral into
∫
|z−c|<|z|+

∫
|z−c|≥|z|; since we assume c ≥ 0, we have

−
∫ 1

−1

log(|z|)|z − c|adz ≤ −2

∫ 1

0

log(z)zadz +

∫ 1

0

| log(|z − c|)||z − c|adz.

Finally since
∫ 1

0
log(z)zadz = −1

(a+1)2 for a > −1, and since log(z)za < M is bounded

for z > 1, we therefore have for all c ∈ R,

−2

∫ 1

0

log(z)zadz +

∫ 1

0

| log(|z − c|)||z − c|adz ≤ 3
1

(a+ 1)2
+M,

and this proves ∫
R2

duτ

∫
R
|v − u|−2e−

Cθ|v−u|
2

2 |un|
−βp
p−1 dun . 1;

thus we conclude the claim.
Therefore

e−$〈v〉sαβ
∫
R3

e−Cθ|v−u|
2

|v − u|2−κ
|∂fm(u)|du

=

∫
R3

eCθ|v−u|
2

|v − u|2−κ

[
e−$〈v〉sα(s, x, v)

]β
[e−$〈u〉sα(s, x, u)]β

[
e−$〈u〉sα(s, x, u)

]β
|∂fm(u)|du

.

∫
R3

eCθ|v−u|
2

|v − u|2−κ

[
e−

$
β 〈v〉sα(s, x, v)

] βp
p−1

[
e−

$
β 〈u〉sα(s, x, u)

] βp
p−1

du


1/q

×

(∫
R3

eCθ|v−u|
2

|v − u|2−κ
|e−$〈u〉sα(s, x, u)β∂fm(u)|pdu

)1/p

. eCs
2

(∫
R3

eCθ|v−u|
2

|v − u|2−κ
|e−$〈u〉sα(s, x, u)β∂fm(u)|pdu

)1/p

.

Finally we use Young’s inequality to bound the last term (nonlocal term) of (3.23) by

CteCt
2

P
(∥∥∥eθ|v|2f0

∥∥∥
∞

)
sup

0≤s≤t

∫∫
Ω×R3

|e−$〈v〉sαβ∂fm|p

+ δP
(∥∥∥eθ|v|2f0

∥∥∥
∞

)∫ t

0

∫∫
Ω×R3

|e−$〈v〉sαβ∂fm+1|p.
(3.26)D
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Step 2. Boundary estimate. At the boundary, by (3.9), the contribution of γ− is∫ t

0

∫
γ−

|e−$〈v〉sαβ∂fm+1(s)|p

.
∫ t

0

∫
γ−

[
e−$〈v〉sαβ

]p√
µ(v)

p
〈v〉p

(
|n · v|+ 1

|n · v|p−1

)
dv

×

[∫
n(x)·u>0

|∂fm(s, x, u)|µ1/4(u)(n · u)du

]p
dSxds

+ P
(∥∥∥eθ|v|2f0

∥∥∥
∞

)∫ t

0

∫
γ−

[
e−$〈v〉sαβ

]p
e−

θp
2 |v|

2

|n(x) · v|p
dγds.

(3.27)

Since α(s, x, v) ≤ |∇ξ(x) · v| for x ∈ ∂Ω, the last term is bounded by

P
(∥∥∥eθ|v|2f0

∥∥∥
∞

)∫ t

0

∫
∂Ω

∫
R3

e−
θp
2 |v|

2

|n(x) · v|βp−p+1dγds .Ω,p,ξ tP
(∥∥∥eθ|v|2f0

∥∥∥
∞

)
as long as βp− p+ 1 > −1, i.e., β > p−2

p .

For the first term in (3.27) we split as[∫
n(x)·u>0

]p
.p

[∫
(x,u)∈γε+

]p
+

[∫
(x,u)∈γ+\γε+

]p
.

By Hölder’s inequality in u, the γε+ contribution (grazing part) is bounded as

∫ t

0

∫
γ−

[e−$〈v〉sαβ ]p
√
µ(v)

p
〈v〉p

(
|n · v|+ 1

|n · v|p−1

)
dv

×

[∫
(x,u)∈γε+

e−$〈u〉sαβ(s, x, u)|∂fm(s, x, u)| µ1/4(u)(n · u)

e−$〈u〉sαβ(s, x, u)
du

]p
dSxds

.
∫ t

0

∫
γ−

[e−$〈v〉sαβ ]p
√
µ(v)

p
〈v〉p

(
|n · v|+ 1

|n · v|p−1

)
dv

×

[∫
(x,u)∈γε+

[e−$〈u〉sαβ(s, x, u)]p|∂fm(s, x, u)|p(n · u)du

]

×

[∫
(x,u)∈γε+

[e−$〈u〉sαβ(s, x, u)]−qµq/4(n · u)du

]p/q
dSxds.

(3.28)

Again, since α(t, x, v) ≤ |∇ξ(x) · v| for x ∈ ∂Ω, we have∫ t

0

∫
γ−

[e−$〈v〉sαβ ]p
√
µ(v)

p
〈v〉p

(
|n · v|+ 1

|n · v|p−1

)
dv

.
∫ t

0

∫
γ−

µp/2〈v〉p
(
|n · v|βp+1 + |n · v|βp−(p−1)

)
dv <∞

if βp− (p− 1) < −1, i.e., β > p−2
p .
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Also, with p−1
p = 1

q . If 1− βq > 0, i.e., β < 1
q = p−1

p ,∫
(x,u)∈γε+

[
e−$〈u〉sαβ(s, x, u)

]−q
µq/4(n · u)du

.
∫
γε+

|n · u|−βq+1e
q

(
− |u|

2

8 +s$〈u〉
)
du

.
∫
n·u<ε

ε−βq+1e
q

(
− |u|

2

8 +s$〈u〉
)
du+

∫
|u|> 1

ε

|u|−βq+1e
q

(
− |u|

2

8 +s$〈u〉
)
du

. CΩ,p,sε
1−βq

when ε� 1.
Thus we have the bound for the grazing part:

∫ t

0

∫
γ−

[e−$〈v〉sαβ ]p
√
µ(v)

p
〈v〉p

(
|n · v|+ 1

|n · v|p−1

)
dv

×

[∫
(x,u)∈γε+

e−$〈u〉sαβ(s, x, u)|∂fm(s, x, u)| µ1/4(u)(n · u)

e−$〈u〉sαβ(s, x, u)
du

]p
dSxds

. Cε1−βq
∫ t

0

|e−$〈v〉sαβ∂fm|pγ+,pds.

(3.29)

Therefore the contribution for the grazing part could be absorbed by the left-hand
side of the inequality if ε is small enough.

On the other hand, for the nongrazing contribution γ+ \ γε+, by similar estimate
we get∫ t

0

∫
γ−

[e−$〈v〉sαβ ]p
√
µ(v)

p
〈v〉p

(
|n · v|+ 1

|n · v|p−1

)
dv

×

[∫
(x,u)∈γ+\γε+

e−$〈v〉sαβ(s, x, u)|∂fm(s, x, u)| µ1/4(u)(n · u)

e−$〈v〉sαβ(s, x, u)
du

]p
dSxds

. CΩ,p,s

∫ t

0

∫
γ+\γε+

|e−$〈v〉sαβ∂fm|pdγds,

where we used ∫
γ+

[e−$〈v〉sαβ(s, x, u)]−qµq/4(n · u)du < CΩ,p,s <∞.

Now we can apply the trace theorem so that the nongrazing part is further bounded by

∫ t

0

∫
γ+\γε+

|e−$〈v〉sαβ∂fm|pdγds

(3.30)

.ε ‖αβ(0)∂f0‖pp +

∫ t

0

‖e−$〈v〉sαβ∂fm‖pp +

∫ t

0

∫∫
Ω×R3

|Gm−1|[e−$〈v〉sαβ ]p|∂fm|p−1

. ‖αβ(0)∂f0‖pp +

∫ t

0

‖e−$〈v〉sαβ∂fm‖pp

+ tP (‖eθ|v|
2

f0‖∞) + t sup
0≤s≤t

‖e−$〈v〉sαβ∂fm(s)‖pp
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+ CteCt
2

P
(∥∥∥eθ|v|2f0

∥∥∥
∞

)
sup

0≤s≤t

∫∫
Ω×R3

|e−$〈v〉sαβ∂fm−1|p

+ δP (‖eθ|v|
2

f0‖∞)

∫ t

0

∫∫
Ω×R3

〈v〉|e−$〈v〉sαβ∂fm|p.

Finally, collecting all the terms (3.23), (3.26), (3.29), (3.30) we have

sup
0≤t≤T

‖e−$〈v〉sαβ∂fm+1(t)‖pp

+

∫ T

0

|e−$〈v〉sαβ∂fm+1|pγ+,p +

∫ T

0

‖〈v〉1/pe−$〈v〉sαβ∂fm+1‖pp

≤ CT,Ω,p,ε
(
‖αβ∂f0‖pp + P (‖eθ|v|

2

f0‖∞)
)

+ (CT,Ω,pε+ CT,Ω,p,εδ + CT,Ω,p,ε,δTe
CT 2

)P (‖eθ|v|
2

f0‖∞)

× max
i=m,m−1

{
sup

0≤t≤T
‖e−$〈v〉sαβ∂f i(t)‖pp +

∫ T

0

|e−$〈v〉sαβ∂f i|pγ+,p

+

∫ T

0

‖〈v〉1/pe−$〈v〉sαβ∂f i‖pp
}
.

Therefore we can first choose ε small enough, then choose δ small enough correspond-
ingly, and finally let T be small enough correspondingly; we have

sup
0≤t≤T

‖e−$〈v〉tαβ∂fm+1(t)‖pp +

∫ T

0

|e−$〈v〉sαβ∂fm+1|pγ+,p

+

∫ T

0

‖〈v〉1/pe−$〈v〉sαβ∂fm+1‖pp

≤ CT,Ω,p,ε
(
‖αβ∂f0‖pp + P (‖eθ|v|

2

f0‖∞)
)

+
1

8
max

i=m,m−1

{
sup

0≤t≤T
‖e−$〈v〉tαβ∂f i(t)‖pp +

∫ T

0

|e−$〈v〉sαβ∂f i|pγ+,p

+

∫ T

0

‖〈v〉1/pe−$〈v〉sαβ∂f i‖pp
}
.

Set

ai = sup
0≤t≤T

‖e−$〈v〉tαβ∂f i(t)‖pp +

∫ T

0

|e−$〈v〉sαβ∂f i|pγ+,p

+

∫ T

0

‖〈v〉1/pe−$〈v〉sαβ∂f i‖pp
}

D = CT,Ω,p,ε

(
‖αβ∂f0‖pp + P (‖eθ|v|

2

f0‖∞)
)

;

from (3.20) we complete the proof.

4. Weighted C1 estimate. In this section we prove some key lemmas which
will be used in the proof of Theorem 3 and Theorem 4, and then we prove Theorem 3.

Lemma 10. Suppose E satisfies (1.8); then for any y ∈ Ω̄, 1 < β < 3, 0 < κ ≤ 1,
and θ > 0 we have

(4.1)

∫
R3

e−θ|v−u|
2

|v − u|2−κ[α(s, y, u)]β
du ≤ C

(
1

(|v|2ξ(y) + c(y))
β−1

2

+ 1

)
,
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where c(y) = ξ(y)2 − CEξ(y).

Proof. Recall the definition of α(t, x, v) from (2.45). If α(s, y, u) = Cδ′ , then∫
R3

e−θ|v−u|
2

|v − u|2−κ[α(s, y, u)]β
du =

∫
R3

e−θ|v−u|
2

|v − u|2−κCβδ′
du < C.

For the case when α(s, y, u) < Cδ′ , we have |ξ(y)| ≤ δ′/2� 1. From the assump-
tion, we have ∇ξ(y) 6= 0, and therefore there is a uniquely determined unit vector

n(y) = ∇ξ(y)
|∇ξ(y)| . We choose two unit vectors τ1 and τ2 so that {τ1, τ2, n(y)} is an

orthonormal basis of R3.
We decompose the velocity variables u ∈ R3 as

u = unn(y) + uτ · τ = unn(y) +
2∑
i=1

uτ,iτi.

We note that uτ ∈ R2 are completely free coordinates. Therefore using Fubini’s
theorem we can rearrange the order of integration freely. Then we have

α2(s, y, u) ≥ β2(s, y, u)

4
=

1

4

[
∇ξ(y) · u+ 2(u · ∇2ξ(y) · u)ξ(y) + ξ(y)2

− 2E(s, ȳ) · ∇ξ(ȳ)ξ(y)] ≥ c(|un|2 + |u|2ξ(y) + c(y))

for some c > 0.
Now we split∫

R3

e−θ|v−u|
2

|v − u|2−κ[α(s, y, u)]β
du

≤C
∫
R2

∫
R

e−θ|v−u|
2

|v − u|2−κ[|un|2 + |ξ(y)||u|2 + c(y)]β/2
dunduτ

=

∫
|u|≤ |v|2

+

∫
|u|≥ |v|2

= (I) + (II).

If |u| ≤ |v|2 , then |v− u| ≥ |v| − |u| ≥ |v|2 ; applying the change of variable u 7→ |v|u we
have

(I) =

∫
|u|≤ |v|2

e−θ|v−u|
2

|v − u|2−κ[|un|2 + |ξ(y)||u|2 + c(y)]β/2
dunduτ

≤ 22−κ

|v|2−κ

∫
|v|(|un|+|uτ |)≤ |v|2

e−
θ
4 |v|

2 |v|3

[|v|2|un|2 + |v|2|ξ(y)||uτ |2 + c(y)]β/2
dunduτ

≤ 22−κe−
θ
4 |v|

2

|v|β−κ−1

∫
|uτ |≤ 1

2

∫
|un|≤ 1

2

1

[|un|2 + |ξ(y)||uτ |2 + c(y)
|v|2 ]β/2

dunduτ .

Now we apply the change of variables |un| = (|ξ||uτ |2 + c(y)
|v|2 )

1
2 tan θ for θ ∈ [0, π2 ] with

dun = (|ξ||uτ |2 + c(y)
|v|2 )

1
2

1
cos2 θdθ to have

(I) ≤ 22−κe−
θ
4 |v|

2

|v|β−κ−1

∫
|uτ |≤ 1

2

∫ π
2

0

(
|ξ||uτ |2 + c(y)

|v|2

) 1
2

dθ[(
|ξ||uτ |2 + c(y)

|v|2

)
(tan2 θ + 1)

]β/2
cos2 θ

duτ

=
22−κe−

θ
4 |v|

2

|v|β−κ−1

∫
|uτ |≤ 1

2

(
|ξ||uτ |2 +

c(y)

|v|2

) 1−β
2

duτ

∫ π
2

0

1

cos2−β dθ

D
ow

nl
oa

de
d 

08
/2

0/
20

 to
 1

28
.1

04
.9

3.
46

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REGULARITY OF BOLTZMANN EQUATION W/EXTERNAL FIELD 3239

≤C e−
θ
4 |v|

2

|v|β−κ−1

∫
|uτ |≤ 1

2

(
|ξ||uτ |2 +

c(y)

|v|2

) 1−β
2

duτ ,

as
∫ π

2

0
1

cos2−β dθ <∞ for β > 1.

We then use polar coordinates for uτ = (r, φ) with duτ = rdrdφ to have

(I) ≤C 2πe−
θ
4 |v|

2

|v|β−κ−1

∫ 1/2

0

r(
|ξ|r2 + c(y)

|v|2

) β−1
2

dr=
2πe−

θ
2 |v|

2

|v|β−κ−1


(
|ξ|r2+ c(y)

|v|2

)− β−1
2 +1

(
−β−1

2 +1
)

2|ξ|


r=1/2

r=0

=C
2πe−

θ
4 |v|

2

(3− β)|v|β−κ−1


(
|ξ|+ c(y)

|v|2

)
(
|ξ|+ c(y)

|v|2

) β−1
2 |ξ|

−
c(y)
|v|2(

c(y)
|v|2

) β−1
2 |ξ|



=C
2πe−

θ
4 |v|

2

(3− β)|v|β−κ−1

 1(
|ξ|+ c(y)

|v|2

) β−1
2

+

c(y)
|v|2(

|ξ|+ c(y)
|v|2

) β−1
2 |ξ|

−
c(y)
|v|2(

c(y)
|v|2

) β−1
2 |ξ|



≤C e−
θ
4 |v|

2

|v|β−κ−1

 1(
|ξ|+ c(y)

|v|2

) β−1
2


=C

e−
θ
4 |v|

2

|v|β−κ−1

|v|β−1

(|v|2|ξ|+ c(y))
β−1

2

= C
e−

θ
4 |v|

2 |v|κ

(|v|2|ξ|+ c(y))
β−1

2

≤ C 1

(|v|2|ξ|+ c(y))
β−1

2

for 1 < β < 3.

For the second term (II), we use the lower bound |u| ≥ |v|2 to have [|un|2+|ξ||u|2+

c(y)]β/2 ≥ [|un|2 + |ξ| |v|
2

4 + c(y)]β/2 ≥ 2−β [|un|2 + |ξ||v|2 + c(y)]β/2 and

(II) =

∫
|u|≥ |v|2

e−θ|v−u|
2

|v − u|2−κ[|un|2 + |ξ(y)||u|2 + c(y)]β/2
dunduτ

≤ 2−β
∫
R2

e−θ|vτ−uτ |
2

|vτ − uτ |2−κ
duτ

∫ ∞
0

1

[|un|2 + |ξ||v|2 + c(y)]β/2
dun

≤C
∫ ∞

0

1

[|un|2 + |ξ||v|2 + c(y)]β/2
dun,

as
∫
R2

e−θ|vτ−uτ |
2

|vτ−uτ |2−κ duτ < ∞ for κ > 0. Then apply a change of variables: |un| =

(|ξ||v|2 + c(y))1/2 tan θ for θ ∈ [0, π/2] with dun = (|ξ||v|2 + c(y))1/2 1
cos2(θ)dθ to have

(II) ≤ C
∫ ∞

0

1

[|un|2 + |ξ||v|2 + c(y)]β/2
dun

= C

∫ π
2

0

(|ξ||v|2 + c(y))1/2

(|ξ||v|2 + c(y))β/2(tan2(θ) + 1)β/2 cos2(θ)
dθ

=
C

(|ξ||v|2 + c(y))
β−1

2

∫ π
2

0

1

cos2−β(θ)
dθ ≤ C

(|ξ||v|2 + c(y))
β−1

2

,

(4.2)
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as
∫ π

2

0
1

cos2−β(θ)
dθ <∞ for β > 1.

Thus (I) + (II) ≤ C

(|ξ||v|2+c(y))
β−1

2

as wanted.

Lemma 11. Let (t, x, v) ∈ [0, T ] × Ω × R3, 1 < β < 3, 0 < κ ≤ 1. Suppose E
satisfies (1.8) and (1.15); then for $ � 1 large enough, we have for any 0 < δ � 1
small enough,∫ t

max{0,t−tb}

∫
R3

e−
∫ t
s
$
2 〈V (τ ;t,x,v)〉dτ e

−Cθ2 |V (s)−u|2

|V (s)− u|2−κ
1

(α(s,X(s), u))β
duds

. e
2Cξ

‖∇E‖∞+‖E‖2∞+‖E‖∞
CE

δ
3−β

2

C
β−1

2

E (α(t, x, v))β−2(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
3−β

2

+
(|v|+ ‖E‖∞ + ‖E‖2∞ + 1)β−1

Cβ−1
E δβ−1(α(t, x, v))β−1

2

$
.

(4.3)

Proof. We separate the proof into several cases.
In Step 1, Step 2, Step 3 we prove (4.3) for the case when x ∈ ∂Ω and t ≤ tb.
In Step 4 we prove (4.3) for the case when x ∈ ∂Ω and t > tb.
In Step 5 we prove (4.3) for the case when x ∈ Ω and t ≤ tb.
In Step 6 we prove (4.3) for the case when x ∈ Ω and t > tb.

Step 1. Let’s first start with the case t ≥ tb and prove (4.3). Let’s shift the time
variable, s 7→ t − tb + s, and let X̃(s) = X(t − tb + s), Ṽ (s) = V (t − tb + s). Then
s ∈ [0, tb], and from (4.1) we only need to bound the integral∫ tb

0

e
−
∫ t
t−tb+s

$
2 〈V (τ ;t,x,v)〉dτ 1[

|Ṽ (s)|2ξ(X̃(s)) + ξ2(X̃(s))− CEξ(X̃(s))
] β−1

2

ds.(4.4)

Let’s assume x ∈ ∂Ω and v · ∇ξ(x) > 0. Then by the velocity lemma (Lemma 7)
we have vb · ∇ξ(xb) < 0.

Claim. For any 0 < δ � 1 small enough, if we let

σ1 = δ
vb · ∇ξ(xb)

|v|2 + ‖E‖2∞ + ‖E‖∞ + 1
, and σ2 = δ

v · ∇ξ(x)

|v|2 + ‖E‖2∞ + ‖E‖∞ + 1
,(4.5)

then |ξ(X̃(s)| is monotonically increasing on [0, σ1] and monotonically decreasing on
[tb − σ2, tb]. Moreover, we have the following bounds:

|ξ(X̃(σ1))| ≥ δ(vb · ∇ξ(xb))2

2(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
, |ξ(X̃(σ2))| ≥ δ(v · ∇ξ(x))2

2(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
,

(4.6)

|ξ(X̃(s)| ≤ 3δ(vb · ∇ξ(xb))2

2(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
, s ∈ [0, σ1],

|ξ(X̃(s)| ≤ 3δ(v · ∇ξ(x))2

2(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
, s ∈ [tb − σ2, tb],

(4.7)

and

|Ṽ (s) · ∇ξ(X̃(s))| ≥ |vb · ∇ξ(xb)|
2

, s ∈ [0, σ1],

|Ṽ (s) · ∇ξ(X̃(s))| ≥ |v · ∇ξ(x)|
2

, s ∈ [tb − σ2, tb].

(4.8)D
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To prove the claim we first note that d
dsξ(X̃(s))|s=0 = vb · ∇ξ(xb) < 0 and

d2

d2s
ξ(X̃(s))) =

d

ds
(Ṽ (s) · ∇ξ(X̃(s))) = Ṽ (s)·∇2ξ(X̃(s))·Ṽ (s)

+ E(s, X̃(s))·∇ξ(X̃(s)) ≤ C(|Ṽ (s)|2 + ‖E‖∞)

≤ C(2|v|2 + 2(tb‖E‖∞)2 + ‖E‖∞)

≤ C1(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)

(4.9)

for some C1 > 0. Thus if δ small enough, we have d
dsξ(X̃(s)) < 0 for all s ∈

[0, δ |vb·∇ξ(xb)|
|v|2+‖E‖2∞+‖E‖∞+1 ]. Therefore ξ(X̃(s)) is decreasing on [0, σ1].

Similarly d
dsξ(X̃(s))|s=tb = v · ∇ξ(x) > 0, and since | d

2

d2sξ(X̃(s)))| . (|v|2 +

‖E‖2∞+‖E‖∞+1) we have that d
dsξ(X̃(s)) > 0 for all s ∈ [tb−δ |v·∇ξ(v)|

|v|2+‖E‖2∞+‖E‖∞+1 , tb]

if δ small enough. Therefore ξ(X̃(s)) is increasing on [tb − σ2, tb].
Next we establish the bounds (4.6), (4.7), and (4.8). By (4.9), we have

|ξ(X̃(σ1))| =
∫ σ1

0

−Ṽ (s) · ∇ξ(X̃(s))ds

=

∫ σ1

0

(∫ s

0

− d

dτ
(Ṽ (τ) · ∇ξ(X̃(τ)))dτ − vb · ∇ξ(xb)

)
ds

≥
∫ σ1

0

(
|vb · ∇ξ(xb)| − C1(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)s

)
ds

= σ1|vb · ∇ξ(xb)| − σ2
1

2
C1(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)

= σ1

(
|vb · ∇ξ(xb)| − δC1

2
|vb · ∇ξ(xb)|

)
≥ σ1

2
|vb · ∇ξ(xb)| = δ(vb · ∇ξ(xb))2

2(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
.

And by the same argument we have |ξ(X̃(σ2))| ≥ δ(v·∇ξ(x))2

2(|v|2+‖E‖2∞+‖E‖∞+1) for δ � 1.

This proves (4.6).
To prove (4.7), we have from (4.9), for s ∈ [0, σ1],

|ξ(X̃(s)| ≤ s
(
|vb · ∇ξ(xb)|+ δC1

2
|vb · ∇ξ(xb)|

)
≤ 3s

2
|vb · ∇ξ(xb)| ≤ 3δ(vb · ∇ξ(xb))2

2(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
,

and |ξ(X̃(s)| ≤ 3δ(v·∇ξ(x))2

2(|v|2+‖E‖2∞+‖E‖∞+1) for s ∈ [tb − σ2, tb]. This proves (4.7).

Finally for (4.8), again from (4.9),

|Ṽ (s) · ∇ξ(X̃(s))| ≥ |vb · ∇ξ(xb)| −
∫ σ1

0

C1(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)ds

≥ |vb · ∇ξ(xb)| − C1δ|vb · ∇ξ(xb)| ≥ |vb · ∇ξ(xb)|
2

.

And similarly |Ṽ (s) ·∇ξ(X̃(s))| ≥ |v·∇ξ(x)|
2 for s ∈ [tb− δ2, tb]. This proves the claim.
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Step 2. Recall the definition of σ1, σ2 in (4.5) and CE in (1.8). In this step we
establish the lower bound:

|ξ(X̃(s))| > CE
10

(σ2)2, for all s ∈ [σ1, tb − σ2].(4.10)

Suppose towards contradiction that I := {s ∈ [σ1, tb − σ2] : |ξ(X̃(s))| ≤ CE
10

(σ2)2} 6= ∅.
Then from (2.46) and (4.6) we have

CE
10

(σ2)2 ≤ δ2CE
10

(v · ∇ξ(x))2

|v|2 + ‖E‖2∞ + ‖E‖∞ + 1

≤ δ2CE
10

e
Cξ
‖∇E‖∞+‖E‖2∞+‖E‖∞

CE
(vb · ∇ξ(xb))2

|v|2 + ‖E‖2∞ + ‖E‖∞ + 1

≤ 2δ
CE
10

e
Cξ
‖∇E‖∞+‖E‖2∞+‖E‖∞

CE |ξ(X̃(σ1))|

< |ξ(X̃(σ1))|

if δ � 1. So σ1 /∈ I. Let s∗ := min{s ∈ I} be the minimum of such s. Then clearly

d

ds
ξ(X̃(s))|s=s∗ = Ṽ (s∗) · ∇ξ(X̃(s∗)) ≥ 0.

Now recall (2.49) and (2.51) from the proof of the velocity lemma; we have

E(s, X̃(s)) · ∇ξ(X̃(s)) = E(s, X̃(s)) · ∇ξ(X̃(s)) + c(X̃(s)) · ξ(X̃(s))(4.11)

with |c(X̃(s))| < Cξ(‖E‖∞+‖∇E‖∞)
CE

. Thus

d

ds
(Ṽ (s) · ∇ξ(X̃(s))) = Ṽ (s) · ∇2ξ(X̃(s)) · Ṽ (s) + E(s, X̃(s)) · ∇ξ(X̃(s))

= Ṽ (s) · ∇2ξ(X̃(s)) · Ṽ (s) + E(s, X̃(s)) · ∇ξ(X̃(s)) + c(X̃(s)) · ξ(X̃(s))

≥ CE −
Cξ(‖E‖∞ + ‖∇E‖∞)

CE
|ξ(X̃(s))|,

(4.12)

so

d

ds
(Ṽ (s) · ∇ξ(X̃(s)))|s=s∗

≥ CE − δ2Cξ(‖E‖∞ + ‖∇E‖∞)

CE

CE
10

(v · ∇ξ(x))2

|v|2 + ‖E‖2∞ + ‖E‖∞ + 1
≥ CE

2

for δ � 1 small enough. Then we have that d
ds (Ṽ (s) · ∇ξ(X̃(s))) is increasing on the

interval [s∗, tb] as |ξ(X̃(s))| is decreasing. So

d

ds
(Ṽ (s) · ∇ξ(X̃(s))) ≥ CE

2
, s ∈ [s∗, tb].

And therefore

|ξ(X̃(s∗))| =
∫ tb

s∗
Ṽ (s) · ∇ξ(X̃(s))ds

=

∫ tb

s∗

(∫ s

s∗

d

dτ
(Ṽ (τ) · ∇ξ(X̃(τ)))dτ + Ṽ (s∗) · ∇ξ(X̃(s∗))

)
ds

≥
∫ tb

s∗
(s− s∗)CE

2
ds =

CE
4

(tb − s∗)2 ≥ CE
4

(σ2)2,

which is a contradiction. Therefore we conclude (4.10).
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Step 3. Let’s split the time integration (4.4) as∫ tb

0

e
−
∫ t
t−tb+s

$
2 〈V (τ ;t,x,v)〉dτ 1[

|Ṽ (s)|2ξ(X̃(s)) + ξ2(X̃(s)− CEξ(X̃(s))
] β−1

2

ds

=

∫ σ1

0

+

∫ tb−σ2

σ1

+

∫ tb

tb−σ2

= (I) + (II) + (III).

(4.13)

Let’s first estimate (I), (III).
From Step 2 we have that |ξ(X̃(s)| is monotonically increasing on [0, σ1] and

[tb − σ2, tb], so we have the change of variables:

ds =
d|ξ|

|Ṽ (s) · ∇ξ(X̃(s))|
.

Using this change of variable and the bounds (4.7), (4.8), (I) is bounded by

(I) ≤
∫ σ1

0

1[
|Ṽ (s)|2ξ(X̃(s)) + ξ2(X̃(s)− CEξ(X̃(s))

] β−1
2

ds

≤
∫ 3δ(vb·∇ξ(xb))2

2(|v|2+‖E‖2∞+‖E‖∞+1)

0

1

|Ṽ (s) · ∇ξ(X̃(s))|(CE |ξ|)
β−1

2

d|ξ|

≤
∫ 3δ(vb·∇ξ(xb))2

2(|v|2+‖E‖2∞+‖E‖∞+1)

0

2

|vb · ∇ξ(xb)|(CE |ξ|)
β−1

2

d|ξ|

=
2

|vb · ∇ξ(xb)|C
β−1

2

E

[
|ξ|

3−β
2

] 3δ(vb·∇ξ(xb))2

2(|v|2+‖E‖2∞+‖E‖∞+1)

0

=
2
β−1

2 δ
3−β

2

C
β−1

2

E |vb · ∇ξ(xb)|β−2(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
3−β

2

. e
2Cξ

‖∇E‖∞+‖E‖2∞+‖E‖∞
CE

δ
3−β

2

C
β−1

2

E (α(t, x, v))β−2(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
3−β

2

.

(4.14)

And by the same computation we get

(III) . e
2Cξ

‖∇E‖∞+‖E‖2∞+‖E‖∞
CE

δ
3−β

2

C
β−1

2

E (α(t, x, v))β−2(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
3−β

2

.

(4.15)

Finally for (II), using the lower bound for |ξ(X̃(s))| in (4.10), we have

(II) =

∫ σ2

σ1

e
−
∫ t
t−tb+s

$
2 〈V (τ ;t,x,v)〉dτ 1[

|Ṽ (s)|2ξ(X̃(s)) + ξ2(X̃(s)− CEξ(X̃(s))
] β−1

2

ds

(4.16)

≤
∫ tb

0

e
−
∫ t
t−tb+s

$
2 〈V (τ ;t,x,v)〉dτ 1

|CEξ(X̃(s))| β−1
2

ds
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.
1

Cβ−1
E (σ2)β−1

∫ tb

0

e
∫ t
t−tb+s

$
2 dτds

.
(|v|+‖E‖∞+‖E‖2∞ + 1)β−1

Cβ−1
E δβ−1(α(t, x, v))β−1

∫ tb

0

e(s−tb)$2 ds

.
(|v|+ ‖E‖∞ + ‖E‖2∞ + 1)β−1

Cβ−1
E δβ−1(α(t, x, v))β−1

2

$
.

This proves (4.3) for the case x ∈ ∂Ω and t ≤ tb.

Step 4. Now suppose x ∈ ∂Ω and tb > t. It suffices to bound the integral:∫ t

0

e−
∫ t
s
$
2 〈V (τ ;t,x,v)〉dτ 1

[|V (s)|2ξ(X(s)) + ξ2(X(s)− CEξ(X(s))]
β−1

2

ds.(4.17)

Denote
X(0; t, x, v) = x0, V (0; t, x, v) = v0.

Let

σ2 = δ
v · ∇ξ(x)

|v|2 + ‖E‖∞ + ‖E‖2∞ + 1

as defined in (4.5). If
σ2 ≥ t,

then from Step 2 |ξ(X(s))| is decreasing on [0, t], and by (4.7), (4.8), and the bound
for (III) (4.15), we get the desired estimate. Now we assume

σ2 < t.

So from (4.6) we have

|ξ(X(σ2))| ≥ δ(v · ∇ξ(x))2

2(|v|2 + ‖E‖∞ + ‖E‖2∞ + 1)
.(4.18)

Now if |ξ(x0)| ≤ δ α2(t,x,v)
10(|v|2+‖E‖∞+‖E‖2∞+1) ,

α2(t, x, v) . e
Cξ
‖∇E‖∞+‖E‖2∞+‖E‖∞

CE α2(0, x0, v0)

. e
Cξ
‖∇E‖∞+‖E‖2∞+‖E‖∞

CE ((∇ξ(x0) · v0)2 + (|v0|2 + |ξ(x0)|+ ‖E‖∞)|ξ(x0)|)

. e
Cξ
‖∇E‖∞+‖E‖2∞+‖E‖∞

CE (∇ξ(x0) · v0)2 + δα2(t, x, v).

(4.19)

So

1

2
α(t, x, v) . e

Cξ
‖∇E‖∞+‖E‖2∞+‖E‖∞

CE |∇ξ(x0) · v0|(4.20)

if δ � 1 is small enough.

Claim.

∇ξ(x0) · v0 < 0.

Since otherwise by (4.12) we have

d

ds
|ξ(X(s))| < 0

for all s ∈ [0, t], so |ξ(X(s))| is always decreasing, which contradicts (4.18).
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Therefore ∇ξ(x0) · v0 < 0, and we can run the same argument from Step 1, Step
2, Step 3 with ∇ξ(xb) · vb replaced by ∇ξ(x0) · v0, and by (4.20) we get the same
estimate.

If |ξ(x0)| > δ α2(t,x,v)
10(|v|2+‖E‖2∞+‖E‖∞+1) , then we have

CEσ
2
2

10
= δ2CE

10

(v · ∇ξ(x))2

|v|2 + ‖E‖2∞ + ‖E‖∞ + 1
< CEδ|ξ(x0)| < |ξ(x0)|(4.21)

for δ � 1 small enough. Therefore by (4.18) and the same argument in Step 3 we get
the same lower bound

|ξ(s)| > CE
10

(σ2)2, for all s ∈ [0, t− σ2].(4.22)

And therefore we get the desired estimate.

Step 5. We now consider the case when x ∈ Ω and t ≥ tb. We need to bound the
integral (4.4). Let

σ1 = δ
vb · ∇(xb)

|v|2 + ‖E‖2∞ + ‖E‖∞ + 1
,

as defined in (4.6). If
σ1 ≥ t,

then from Step 2 |ξ(X̃(s))| is increasing on [0, tb], and by (4.7), (4.8), and the bound
for (I) in (4.14), we get the desired estimate.

Now we assume
σ1 < t.

So from (4.6) we have

|ξ(X̃(σ1))| ≥ δ(vb · ∇ξ(xb))2

2(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
.(4.23)

Now if

|ξ(x)| ≤ δ α2(t, x, v)

10(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
,(4.24)

we have

α2(t, x, v) ≤ (∇ξ(x) · v)2 + C(|v|2 + ‖E‖∞ + 1)|ξ(x)|

≤ (∇ξ(x) · v)2 + δα2(t, x, v) ≤ (∇ξ(x) · v)2 +
1

10
α2(t, x, v)

(4.25)

if δ � 1 is small enough. So

1

2
α(t, x, v) ≤ |∇ξ(x) · v|.(4.26)

Claim.

∇ξ(x) · v > 0.

Since otherwise by (4.12) we have

d

ds
|ξ(X̃(s))| > 0
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for all s ∈ [0, tb], so |ξ(X̃(s))| is always increasing; thus

|ξ(X̃(s))| ≤ δ α2(t, x, v)

10(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)

for all s ∈ [0, tb], which contradicts (4.23).

Therefore ∇ξ(x) · v > 0, and we can run the same argument from Step 2, Step 3,
Step 4, and by (4.26) we get the same estimate.

If

(4.27) |ξ(x)| > δ
α2(t, x, v)

10(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
,

we claim

|ξ(X̃(s))| ≥ δ2 α2(t, x, v)

|v|2 + ‖E‖2∞ + ‖E‖∞ + 1
(4.28)

for all s ∈ [σ1, tb]. Otherwise let

s∗ := min

{
s ∈ [σ1, t] : |ξ(X̃(s))| < δ2 α2(t, x, v)

|v|2 + ‖E‖2∞ + ‖E‖∞ + 1

}
.

From (4.23) we have s∗ > σ1 and

d

ds
|ξ(X̃(s∗))| < 0.

And from (4.12) we have
d2

ds2
|ξ(X̃(s))| < 0

for all s ∈ [s∗, t]. So |ξ(X̃(s))| is always decreasing on [s∗, tb]. Therefore

|ξ(x)| = |ξ(X̃(tb))| < |ξ(X̃(s∗))| < δ2 α2(t, x, v)

|v|2 + ‖E‖2∞ + ‖E‖∞ + 1
,

which contradicts (4.27). Therefore the lower bound (4.28) and the estimates (4.16),
(4.14) give the desired bound.

Step 6. Finally we consider the case x ∈ Ω and t < tb. First suppose

|ξ(x)| ≤ δ α2(t, x, v)

10(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
.

From (4.26) we have
α(t, x, v)

2
≤ |v · ∇ξ(x)|.

If v · ∇ξ(x) > 0, then by (4.12) we have ξ(X(t + t′)) = 0 for some t′ . δ
C2
E
< 1.

Therefore we can extend the trajectory until it hits the boundary and conclude the
desired bound from Step 3.

If v · ∇ξ(x) < 0, again by (4.12) we have that |ξ(X(s))| is increasing on [0, t]
and |V (s) · ∇ξ(X(s))| is decreasing on [0, t]. Therefore using the change of variable
s 7→ |ξ|,
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0

e−
∫ t
s
$
2 〈V (τ ;t,x,v)〉dτ 1

[|V (s)|2ξ(X(s)) + ξ2(X(s)− CEξ(X(s))]
β−1

2

ds

.
∫ δ

α2(t,x,v)

10(|v|2+‖E‖2∞+‖E‖∞+1)

0

1

|V (s) · ∇ξ(X(s))|(CE |ξ|)
β−1

2

d|ξ|

.
∫ δ

α2(t,x,v)

10(|v|2+‖E‖2∞+‖E‖∞+1)

0

1

|v · ∇ξ(x)|(CE |ξ|)
β−1

2

d|ξ|

.
∫ δ

α2(t,x,v)

10(|v|2+‖E‖2∞+‖E‖∞+1)

0

1

|α(t, x, v)(CE |ξ|)
β−1

2

d|ξ|

.
δ

3−β
2

C
β−1

2

E (α(t, x, v))β−2(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
3−β

2

,

(4.29)

which is the desired estimate.
Now suppose

|ξ(x)| > δ
α2(t, x, v)

10(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
(4.30)

and

|ξ(x0)| ≤ δ α2(t, x, v)

10(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
.

Then by (4.20) we have

α(t, x, v)

2
. e

Cξ
‖∇E‖∞+‖E‖2∞+‖E‖∞

CE |∇ξ(x0) · v0|.(4.31)

Now if v0 · ∇ξ(x0) > 0, then from (4.12) we have that |ξ(X(s))| is decreasing for all
s ∈ [0, t]. And this contradicts with (4.30). So we must have

v0 · ∇ξ(x0) < 0.

Then we can define σ1 = δ |v0·∇ξ(x0)|
|v|2+‖E‖2∞+‖E‖∞+1 as before. Now if σ1 ≥ t then |ξ(X(s))|

is increasing on [0, t], using the change of variable x 7→ |ξ| and the estimate (4.14)
and (4.31) we get the desired bound.

If σ1 < t, then from (4.6) we have

|ξ(X(σ1))| ≥ δ (v0 · ∇ξ(x0))2

2(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
.

And then from the argument for (4.28) we get

|ξ(X(s))| ≥ δ2 α2(t, x, v)

|v|2 + ‖E‖2∞ + ‖E‖∞ + 1

for all s ∈ [σ1, t]. This lower bound combined with the estimates (4.16), (4.14) gives
the desired bound.

Finally we are left with the case

|ξ(x0)| > δ
α2(t, x, v)

10(|v|2 + ‖E‖2∞ + ‖E‖∞ + 1)
.

Then again, from the argument for (4.28) we get
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|ξ(X(s))| ≥ δ2 α2(t, x, v)

|v|2 + ‖E‖2∞ + ‖E‖∞ + 1

for all s ∈ [0, t]. This lower bound combined with the estimate (4.16) gives the desired
bound.

Let β = 1 in (3.21), and denote

νm$ = ν(
√
µfm) +

v

2
·E +$〈v〉+ t$

v

〈v〉
·E − α−1(∂tα+ v · ∇xα+E · ∇vα) ≥ $

2
〈v〉.

Then (3.21) becomes{
∂t + v · ∇x + E · ∇v + νm$

}
(e−$〈v〉tα∂fm+1)

= e−$〈v〉tαGm := Nm(t, x, v)

. e−$〈v〉tα

{
|∂fm+1|+ e−

θ
2 |v|

2

‖eθ|v|
2

f0‖2∞ + P (‖eθ|v|
2

f0‖∞)

×
∫
R3

e−Cθ|v−u|
2

|v − u|2−κ
|∂fm(u)|du

}
.

(4.32)

And for (x, v) ∈ γ−, we have

e−$〈v〉tα|∂fm+1(t, x, v)|

.
√
µ(v)〈v〉2

∫
n(x)·u>0

|∂fm(t, x, u)|µ1/4〈u〉(n(x) · u)du+ e−
θ
2 |v|

2

P (‖eθ|v|
2

f0‖∞).

(4.33)

Let (x, v) /∈ γ0 and (t0, x0, v0) = (t, x, v). Define the stochastic (diffuse) cycles as

t1 = t− tb(t, x, v), x1 = xb(t, x, v) = X(t− tb(t, x, v); t, x, v),

v0
b = V (t− tb(t, x, v); t, x, v) = vb(t, x, v),

(4.34)

and v1 ∈ R3 with n(x1) · v1 > 0. For l ≥ 1, define

tl+1 = tl − tb(tl, xl, vl), xl+1 = xb(tl, xl, vl),

vlb = vb(tl, xl, vl),

and vl+1 ∈ R3 with n(xl+1) · vl+1 > 0. Also, define

X l(s) = X(s; tl, xl, vl), V l(s) = V (s; tl, xl, vl),

so X(s) = X0(s), V (s) = V 0(s). We have the following lemma.

Lemma 12. If t1 < 0, then

e−$〈v〉tα|∂fm+1(t, x, v)| . α(0, X0(0), V 0(0))∂fm+1(0, X0(0), V 0(0))

+

∫ t

0

Nm(s,X0(s), V 0(s))ds.(4.35)D
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If t1 > 0, then

e−$〈v〉tα|∂fm+1(t, x, v)|

. e−
θ
2
|v0

b|
2

P (‖eθ|v|
2

f0‖∞) +

∫ t

t1
Nm(s,X0(s), V 0(s))ds

+
√
µ(v0

b)〈v0
b〉2
∫
∏l−1
j=1 Vj

l−1∑
i=1

1{ti+1<0<ti}|α∂f
m+1−i(0, Xi(0), V i(0))| dΣl−1

i

+
√
µ(v0

b)〈v0
b〉2
∫
∏l−1
j=1 Vj

l−1∑
i=1

1{ti+1<0<ti}

∫ ti

0

Nm−i(s,Xi(s), V i(s))ds dΣl−1
i

+
√
µ(v0

b)〈v0
b〉2
∫
∏l−1
j=1 Vj

l−1∑
i=1

1{ti+1>0}

∫ ti

ti+1

Nm−i(s,Xi(s), V i(s))ds dΣl−1
i

+
√
µ(v0

b)〈v0
b〉2
∫
∏l−1
j=1 Vj

l−1∑
i=2

1{ti>0}e
− θ

2
|vi−1

b
|2P

(∥∥∥eθ|v|2f0

∥∥∥
∞

)
dΣl−1

i−1

+
√
µ(v0

b)〈v0
b〉2
∫
∏l−1
j=1 Vj

1{tl>0}e
−$〈vl−1

b
〉tlα(tl, xl, vl−1

b )|∂fm+1−(l−1)(tl, xl, vl−1
b )|dΣl−1

l−1,

(4.36)

where Vj = {vj ∈ R3 : n(xj) · vj > 0}, and

dΣl−1
i =


l−1∏
j=i+1

µ(vj)cµ|n(xj) · vj |dvj
{e$〈vi〉tiµ1/4(vi)〈vi〉dvi

}

i−1∏
j=1

√
µ(vjb)〈vjb〉µ

1/4(vj)〈vj〉e$〈v
j〉tjdvj

 ,

where cµ is the constant that
∫
R3 µ(vj)cµ|n(xj) · vj |dvj = 1.

Proof. For t1 < 0, we use (4.32) to obtain

e−$〈v〉tα|∂fm+1(t, x, v)|

≤ e−
∫ t
s
νm$ (τ,X0(τ),V 0(τ)dτα∂fm+1(0, X0(0), V 0(0))

+

∫ t

0

e−
∫ t
s
νm$ (τ,X0(τ),V 0(τ)dτNm(s,X0(s), V 0(s))ds

≤ α∂fm+1(0, X0(0), V 0(0)) +

∫ t

0

Nm(s,X0(s), V 0(s))ds.

(4.37)

Consider the case of t1 > 0. We prove, by induction on l, the number of iterations.
First for l = 1, along the characteristics, for t1 > 0, we have

e−$〈v〉tα|∂fm+1(t, x, v)|

≤ e−$〈v
0
b〉t

1

α(t1, x1, v0
b)|∂fm+1(t1, x1, v0

b)|+
∫ t

t1
Nm(s,X0(s), V 0(s))ds.

Now using the diffuse boundary condition, apply (4.33) to the first term above to
further estimate
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e−$〈v〉tα|∂fm+1(t, x, v)|

.
√
µ(v0

b)〈v0
b〉2
∫
V1

|∂fm(t, x1, v1)|µ1/4(v1)〈v1〉(n(x1) · v1)dv1

+ e−
θ
2 |v

0
b|

2

P
(∥∥∥eθ|v|2f0

∥∥∥
∞

)
+

∫ t

t1
Nm(s,X0(s), V 0(s))ds

=
√
µ (v0

b)〈v0
b〉2
∫
V1

e−$〈v
1〉t1α(t1, x1, v1)|∂fm(t, x1, v1)|e$〈v

1〉t1µ1/4(v1)〈v1〉dv1

+ e−
θ
2 |v

0
b|

2

P (‖eθ|v|
2

f0‖∞) +

∫ t

t1
Nm(s,X0(s), V 0(s))ds.

Now we continue to express e−$〈v
1〉t1α(t1, x1, v1)|∂fm(t, x1, v1)| via backward

trajectory to get

e−$〈v
1〉t1α(t1, x1, v1)|∂fm(t, x1, v1)|

≤ 1{t2<0<t1}

{
α(0, X1(0), V 1(0))|∂fm(0, X1(0), V 1(0))|+

∫ t1

0

Nm−1(s,X1(s), V 1(s))ds

}

+ 1{t2>0}

{
e−$〈v

1
b〉t

2

α(t2, x2, v1
b)|∂fm(t2, x2, v1

b)|+
∫ t1

t2
Nm−1(s,X1(s), V 1(s))ds

}
.

Plugging into the previous inequality we conclude that

e−$〈v〉tα(t, x, v)|∂fm+1(t, x, v)|

. e−
θ
2 |v

0
b|

2

P (‖eθ|v|
2

f0‖∞) +

∫ t

t1
Nm(s,X0(s), V 0(s))ds

+
√
µ(v0

b)〈v0
b〉2
∫
V1

1{t2<0<t1}α(0, X1(0), V 1(0))|∂fm(0, X1(0), V 1(0))|

× e$〈v
1〉t1µ1/4(v1)〈v1〉dv1

+
√
µ(v0

b)〈v0
b〉2
∫
V1

1{t2<0<t1}

∫ t1

0

Nm−1(s,X1(s), V 1(s))ds× e$〈v
1〉t1µ1/4(v1)〈v1〉dv1

+
√
µ(v0

b)〈v0
b〉2
∫
V1

1{t2>0}

∫ t1

t2
Nm−1(s,X1(s), V 1(s))ds× e$〈v

1〉t1µ1/4(v1)〈v1〉dv1

+
√
µ(v0

b)〈v0
b〉2
∫
V1

1{t2>0}e
−$〈v1

b〉t
2

α(t2, x2, v1
b)|∂fm(t2, x2, v1

b)|

× e$〈v
1〉t1µ1/4(v1)〈v1〉dv1,

and it equals (4.36) for l = 2.
Assume (4.36) is valid for l ≥ 2. We use diffuse boundary condition (4.33) to

express the integrand of the last term of (4.36) as

1{tl>0}e
−$〈vl−1

b 〉tlα(tl, xl, vl−1
b )|∂fm+1−(l−1)(tl, xl, vl−1

b )|

.
√
µ(vl−1

b )〈vl−1
b 〉2

∫
Vl

1{tl>0}e
−$〈vl〉tlα(tl, xl, vl)|∂fm+1−l(tl, xl, vl)|

× e$〈v
l〉tlµ1/4(vl)〈vl〉dvl + e−

θ
2 |v

l−1
b |2P

(∥∥∥eθ|v|2f0

∥∥∥
∞

)
.

Then we decompose 1{tl>0} = 1{tl+1<0<tl} + 1{tl+1>0} and estimate via backward
trajectory to get
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1{tl>0}e
−$〈vl〉tlα(tl, xl, vl)|∂fm+1−l(tl, xl, vl)|

≤ 1{tl+1<0<tl}

{
α(0, X l(0), V l(0))|∂fm+1−l(0, X l(0), V l(0))|

+

∫ tl

0

Nm+1−(l+1)(s,X l(s), V l(s))ds

}

+ 1{tl+1>0}

{
e−$〈v

l
b〉t

l+1

α(tl+1, xl+1, vlb)|∂fm+1−l(tl+1, xl+1, vlb)|

+

∫ tl

tl+1

Nm+1−(l+1)(s,X l(s), V l(s))ds

}
.

Plugging this into the previous inequality and integrate over
∏l−1
j=1 Vj , we obtain

a bound for the last term of (4.36) as√
µ(v0

b)〈v0
b〉2
∫
∏l−1
j=1 Vj

1{tl>0}e
−$〈vl−1

b
〉tlα

(
tl, xl, vl−1

b

) ∣∣∣∂fm+1−(l−1)
(
tl, xl, vl−1

b

) ∣∣∣ dΣl−1
l−1

.
√
µ(v0

b)〈v0
b〉2
∫
∏l−1
j=1 Vj

1{tl>0}e
− θ

2
|vl−1

b
|2P

(∥∥∥eθ|v|2f0

∥∥∥
∞

)
dΣl−1

l−1

+
√
µ(v0

b)〈v0
b〉2
∫
∏l
j=1 Vj

1{tl+1<0<tl}α
(

0, Xl(0), V l(0)
) ∣∣∣∂fm+1−l

(
0, Xl(0), V l(0)

) ∣∣∣
× e$〈v

l〉tlµ1/4(vl)〈vl〉dvl
√
µ
(
vl−1
b

)
〈vl−1

b 〉2 dΣl−1
l−1

+
√
µ(v0

b)〈v0
b〉2
∫
∏l
j=1 Vj

1{tl+1<0<tl}

∫ tl

0

Nm+1−(l+1)
(
s,Xl(s), V l(s)

)
ds

× e$〈v
l〉tlµ1/4(vl)〈vl〉dvl

√
µ
(
vl−1
b

)
〈vl−1

b 〉2 dΣl−1
l−1

+
√
µ(v0

b)〈v0
b〉2
∫
∏l
j=1 Vj

1{tl+1>0}e
−$〈vlb〉t

l+1

α
(
tl+1, xl+1, vlb

) ∣∣∣∂fm+1−l
(
tl+1, xl+1, vlb

) ∣∣∣
× e$〈v

l〉tlµ1/4(vl)〈vl〉dvl
√
µ(vl−1

b )〈vl−1
b 〉2 dΣl−1

l−1

+
√
µ(v0

b)〈v0
b〉2
∫
∏l
j=1 Vj

1{tl+1>0}

∫ tl

tl+1

Nm+1−(l+1)
(
s,Xl(s), V l(s)

)
ds

× e$〈v
l〉tlµ1/4(vl)〈vl〉dvl

√
µ
(
vl−1
b

)
〈vl−1

b 〉2 dΣl−1
l−1

=
√
µ(v0

b)〈v0
b〉2
∫
∏l
j=1 Vj

1{tl>0}e
− θ

2
|vl−1

b
|2P

(∥∥∥eθ|v|2f0

∥∥∥
∞

)
dΣll−1

+
√
µ(v0

b)〈v0
b〉2
∫
∏l
j=1 Vj

1{tl+1<0<tl}α
(

0, Xl(0), V l(0)
) ∣∣∣∂fm+1−l

(
0, Xl(0), V l(0)

) ∣∣∣ dΣll

+
√
µ(v0

b)〈v0
b〉2
∫
∏l
j=1 Vj

1{tl+1<0<tl}

∫ tl

0

Nm+1−(l+1)
(
s,Xl(s), V l(s)

)
ds dΣll

+
√
µ(v0

b)〈v0
b〉2
∫
∏l
j=1 Vj

1{tl+1>0}

∫ tl

tl+1

Nm+1−(l+1)
(
s,Xl(s), V l(s)

)
ds dΣll

+
√
µ(v0

b)〈v0
b〉2
∫
∏l
j=1 Vj

1{tl+1>0}e
−$〈vlb〉t

l+1

α
(
tl+1, xl+1, vlb

) ∣∣∣∂fm+1−l(tl+1, xl+1, vlb)
∣∣∣ dΣll.

Adding this to (4.36) we conclude the lemma.
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Lemma 13. Let 0 < T < 1; then there exists l0 � 1 such that for l ≥ l0 and for
all (t, x, v) ∈ [0, T ]× Ω̄× R3, we have

(4.38)

∫
∏l−1
j=1 Vj

1{tl(t,x,v,v1,...,vl−1)>0} dΣl−1
l−1 .Ω,‖E‖∞

(
1

2

)l
.

Proof. First, since

|vjb|
2 . |vj |2 + t2‖E‖2∞, 〈v

j
b〉 . 〈v

j〉+ t‖E‖∞

for some fixed constant C0 > 0,

dΣl−1
l−1 = e$〈v

l−1〉tl−1

µ1/4(vl−1)〈vl−1〉dvl−1
l−2∏
j=1

√
µ(vjb)〈vjb〉µ

1/4(vj)〈vj〉e$〈v
j〉tjdvj

≤ (C0)l
l−1∏
j=1

µ1/8(vj)dvj .

Choose a sufficiently small δ = δ(C0) > 0. Define

Vδj = {vj ∈ Vj : vj · n(xj) ≥ δ, |vj | ≤ δ−1},

where we have
∫
Vj\Vδj

C0µ
1/8(vj)dvj . δ.

On the other hand if vj ∈ Vδj , we claim that (tj − tj+1) & δ3.

Since Ω is C2 and convex, we have |x − y|2 &Ω |(x − y) · n(x)| for all x, y ∈ ∂Ω.
Thus∣∣∣∣∣

∫ tj

tj+1

V j(s)ds

∣∣∣∣∣
2

=
∣∣xj+1 − xj

∣∣2 &
∣∣(xj+1 − xj) · n(xj)

∣∣ =

∣∣∣∣∣
∫ tj

tj+1

V j(s) · n(xj)

∣∣∣∣∣
≥ |vj · n(xj)|(tj − tj+1)−

∣∣∣∣∣
∫ tj

tj+1

∫ s

tj+1

Ej(τ) · n(xj)dτds

∣∣∣∣∣ .
Therefore

1

tj − tj+1

∣∣∣∣∣
∫ tj

tj+1

V j(s)ds

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ tj

tj+1

∫ s

tj+1

Ej(τ) · n(xj)dτds

∣∣∣∣∣
 & |vj · n(xj)| > δ.

But

1

tj − tj+1

∣∣∣∣∣
∫ tj

tj+1

V j(s)ds

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ tj

tj+1

∫ s

tj+1

Ej(τ) · n(xj)dτds

∣∣∣∣∣


≤ 1

tj − tj+1

[
(tj − tj+1)2|vj |2 + (tj − tj+1)4‖E‖2∞ + (tj − tj+1)2‖E‖2∞

]
≤ (tj − tj+1)(δ−2 + ‖E‖2∞) + (tj − tj+1)3‖E‖2∞
≤ (tj − tj+1)(δ−2 + ‖E‖2∞ + t2‖E‖2∞)

≤ (tj − tj+1)(2δ−2).
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Therefore

(4.39) (tj − tj+1) ≥ δ3

CΩ(1 + δ2‖E‖2∞)
,

so (tj − tj+1) ≥ δ3/CΩ if we choose δ < 1
‖E‖∞ .

Now if tl ≥ 0 then there are at most
[
CΩ

δ3

]
+ 1 numbers of vm ∈ Vδm for 1 ≤

m ≤ l − 1. Equivalently there are at least l − 2−
[
CΩ

δ3

]
numbers of vmi ∈ Vmi \ Vδmi .

Therefore we have∫
∏l−1
j=1 Vj

1{tl(t,x,v,v1,...,vl−1)>0} dΣl−1
l−1

≤

[
CΩ
δ3

]
+1∑

m=1

∫there are exactly m of vmi ∈ Vδmi
and l − 1−m of vmi ∈ Vmi \ Vδmi


l−1∏
j=1

C0µ
1/8(vj)dvj

≤

[
CΩ
δ3

]
+1∑

m=1

(
l − 1

m

){∫
V
C0µ

1/8(v)dv

}m{∫
V\Vδ

C0µ
1/8(v)dv

}l−1−m

≤
([

CΩ

δ3

]
+ 1

)
(l − 1)

[
CΩ
δ3

]
+1

(δ)
l−2−

[
CΩ
δ3

]{∫
V
C0µ

1/8(v)dv

}[CΩ
δ3

]
+1

≤ Cδl/2 ≤ C
(

1

2

)l

(4.40)

if l� 1, say, l = 2
([
CΩ

δ3

]
+ 1
)2

.

Proof of Theorem 3. By Duhamel’s formulation, we use (4.32) to estimate
|e−$〈v〉tα∂fm+1| along the characteristic in a bulk; then from (4.3), (4.35), (4.36),
and (4.38) we can carry the same argument as in the proof of (5.18) to get

(4.41) sup
m

sup
0≤t≤T

‖e−$〈v〉tα∂fm(t, x, v)‖∞ . P (‖eθ|v|
2

f0‖∞) + ‖α∂f0‖∞ <∞.

Then by passing the limit and the weak-∗ lower semicontinuity of L∞, we conclude
(1.17).

Now we consider the continuity of e−$〈v〉tα∂f . From the explicit formulas of
∂fm from (2.57) and the assumption that α∇f0 ∈ C0, we have e−$〈v〉tα∂fm ∈
C0([0, T ]× (Ω̄× R3) \ γ0). Now since e−$〈v〉tα[∂fm+1 − ∂fm] satisfies{

∂t + v · ∇x + E · ∇v + ν(
√
µ(fm − fm−1))

− v

2
· ∇E +$〈v〉+$

v

〈v〉
· Et− α−1(∂tα+ v · ∇xα+ E · ∇vα)

}
(e−$〈v〉tα(∂fm+1 − αfm))

= e−$〈v〉tα(Gm − Gm−1),

(4.42)

we can follow the W 1,∞ estimate from (4.41) for e−$〈v〉tα[∂fm+1 − ∂fm] to show
that e−$〈v〉tα∂fm is a Cauchy sequence in L∞. Thus e−$〈v〉tα∂fm → e−$〈v〉tα∂f
strongly in L∞ so that e−$〈v〉tα∂f ∈ C0([0, T ]× (Ω̄× R3) \ γ0).
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3254 YUNBAI CAO

5. Weighted W 1,∞ estimate for the VPB equation. In this section we
construct the local-in-time weighted W 1,∞ solution of the system (2.1), (1.18), (1.19).

Let f0 =
√
µ. We start with the sequence for m ≥ 0(

∂t + v · ∇x −∇φm · ∇v +
v

2
· ∇φm + ν(

√
µfm)

)
fm+1 = Γgain(fm, fm),(5.1)

φm(t, x) = φFm(t, x) + φE(t, x),
∂φE
∂n

> CE > 0 on ∂Ω,(5.2)

−∆xφFm(t, x) =

∫
R3

√
µfmdv − ρ0,

∂φFm

∂n
= 0 on ∂Ω,(5.3)

with the initial data fm(0, x, v) = f0(x, v), and let boundary conditions for all (x, v) ∈
γ− be

f1(t, x, v) = cµ
√
µ(v)

∫
n·u>0

f0(x, v)
√
µ(u)(n(x) · u)du,

fm+1(t, x, v) = cµ
√
µ(v)

∫
n·u>0

fm(t, x, v)
√
µ(u)(n(x) · u)du, m ≥ 1.

Now let ∂ ∈ {∇x,∇v}. Taking ∂[(5.1)] we have(
∂t + v · ∇x −∇φm · ∇v +

v

2
· ∇φm + ν(

√
µfm)

)
∂fm+1

= ∂Γgain(fm, fm)− ∂v · ∇xfm+1 + ∂∇φm · ∇vfm+1

− ∂
(v

2
· ∇φm

)
fm+1 − ∂(ν(

√
µfm))fm+1

:= Gm.

(5.4)

Let Xm(s; t, x, v), V m(s; t, x, v) be the position and velocity at time s of the trajectory
starting from (t, x, v) corresponding to the potential −∇φm. So it satisfies

dXm(s; t, x, v)

ds
= V m(s; t, x, v),

dV m(s; t, x, v)

ds
= −∇φm(s,Xm(s; t, x, v)).

Also denote

t1 = t− tb(t, x, v), x1 = Xm(t1; t, x, v), v0
b = V m(t1; t, x, v),

and v1 ∈ R3 with n(x1) · v1 > 0,

and inductively for k ≥ 1,

tk+1 = tk − tb(tk, xk, vk), xk+1 = Xm−(k−1)(tk+1; tk, xk, vk),

vkb = V m−k(tk+1; tk, xk, vk), and vk+1 ∈ R3 with n(xk+1) · vk+1 > 0.

Before the local existence let’s first prove the following lemma.

Lemma 14. If (f, φF ) solves (1.19), then

‖φF (t)‖C1,1−δ .δ,Ω ‖eθ|v|
2

f(t)‖∞ for any 0 < δ < 1(5.5)

and

‖∇2φF (t)‖∞ . ‖eθ|v|
2

f(t)‖∞ + ‖e−$〈v〉tα∇xf(t)‖∞.(5.6)
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Proof. For any p > 3, from Morrey inequality and elliptic estimate we have

‖φF (t)‖C1,1−3/p .p,Ω ‖φF (t)‖W2,p(Ω) .

∥∥∥∥∫
R3

f(t, x, v)
√
µ(v)dv−ρ0‖Lp(Ω).‖eθ|v|

2

f(t)

∥∥∥∥
∞
.

Let p = 3/δ we conclude (5.5).
Next we show (5.6). By Schauder estimate, we have, for p > 3 and Ω ⊂ R3,

‖∇2φF (t)‖∞ ≤ ‖φF ‖
C

2,1− 3
p
.p,Ω

∥∥∥∥∫
R3

f(t)
√
µdv

∥∥∥∥
C

0,1− 3
p

.

Then by Morrey inequality, W 1,p ⊂ C0,1− 3
p with p > 3 for a domain Ω ⊂ R3 with a

smooth boundary ∂Ω, we derive∥∥∥∥∫
R3

f(t)
√
µdv

∥∥∥∥
C

0,1− 3
p

.

∥∥∥∥∫
R3

f(t)
√
µdv

∥∥∥∥
W 1,p

. ‖eθ|v|
2

f(t)‖∞
(∫

R3

√
µe−θ|v|

2

dv

)
+

∥∥∥∥∫
R3

∇xf(t)
√
µdv

∥∥∥∥
Lp(Ω)

. ‖eθ|v|
2

f(t)‖∞ + ‖e−$〈v〉tα∇xf(t)‖∞
∥∥∥∥∫

R3

e$〈v〉t
√
µ

1

α
dv

∥∥∥∥
Lp(Ω)

.

Note that e$〈v〉t
√
µ ≤ e− 1

8 |v|
2

for |v| � 1. So we only need to show that∥∥∥∥∫
R3

e−
1
8 |v|

2 1

α
dv

∥∥∥∥
Lp(Ω)

<∞.(5.7)

Since 1
α . 1

αβ
+ 1 for β > 1, it suffices to show that ‖

∫
R3 e
− 1

8 |v|
2 1
αβ
dv‖Lp(Ω) <∞ for

some β > 1.
Since α is bounded from below when x is away from the boundary of Ω, it suffices

to only consider the case when x is close enough to ∂Ω. From the computation in
(4.2), we get∫

R3

e−
1
8 |v|

2 1

αβ
dv .

1

(ξ(x)2 − 2E(t, x̄) · ∇ξ(x̄)ξ(x))
β−1

2

.
1

|ξ(x)| β−1
2

.(5.8)

So it suffices to show ∫
d(x,∂Ω)�1

1

|ξ(x)|
(β−1)p

2

dx <∞.(5.9)

Since ξ(x) = ξ(x̄) +∇ξ(x′)(x − x̄) = ∇ξ(x′)(x − x̄) for some x′ in between x and x̄
and |∇ξ(x)| > c for d(x, ∂Ω)� 1 by our assumption on ξ, we have

|ξ(x)| = |∇ξ(x′)||x− x̄| cos(θ) > c|x− x̄| cos(θ),

where θ is the angle between the vectors ∇ξ(x′) and x − x̄. And since x̄ satisfies
(x−x̄)2 = min{y∈R3:ξ(y)=0}(x−y)2, from Lagrange multiplier we have that the vectors
x− x̄ and ∇ξ(x̄) are parallel to each other. Therefore θ is the angle in between ∇ξ(x′)
and ∇ξ(x̄). And since ξ is C2, we have cos(θ) > 1

2 once d(x, ∂Ω)� 1. Thus
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3256 YUNBAI CAO∫
d(x,∂Ω)�1

1

|ξ(x)|
(β−1)p

2

dx .
∫
d(x,∂Ω)�1

1

|x− x̄|
(β−1)p

2

dx.

Now from (2.14), for any p ∈ ∂Ω we can locally define the parametrization:

ηp : {(x‖,1, x‖,2, xn) ∈ R3 : xn > 0} ∩B(0; δ1)→ Ω ∩B(p; δ2);

(x‖,1, x‖,2, xn) 7→ ηp(x‖,1, x‖,2, xn),

ηp(x‖,1, x‖,2, xn) = ηp(x‖,1, x‖,2, 0) + xn[−n(ηp(x‖,1, x‖,2, 0))]

with ηp(x‖,1, x‖,2, 0) ∈ ∂Ω, for sufficiently small δ1, δ2 � 1. Then∫
Ω∩B(p;δ2)

1

|x− x̄|
(β−1)p

2

dx .
∫
|xn|<δ1

1

|xn|
(β−1)p

2

dxn <∞

if we pick β < 2
p + 1. And since ∂Ω is compact, we can get (5.9) by covering ∂Ω with

finitely many such balls. And therefore we get (5.7).

Proof of Theorem 4. Step 1. For the sequence (5.1), we claim that there exists a
C1 � 1 large enough and 0 < T � 1 small enough such that if we let θ′ = θ − T ,

sup
m

sup
0≤t≤T

∥∥∥eθ′|v|2fm(t, x, v)
∥∥∥
∞
≤ sup

m
sup

0≤t≤T

∥∥∥e(θ−t)|v|2fm(t, x, v)
∥∥∥
∞
< C1

∥∥∥eθ|v|2f0

∥∥∥
∞
.

(5.10)

Suppose (5.10) is true for all 0 ≤ i ≤ m. Then from (5.5) we have

sup
m

sup
0≤t≤T

‖∇φm(t)‖∞ < CΩC1‖eθ|v|
2

f0‖∞ < M.(5.11)

Then if we choose

(5.12) T <
1

2(M2 +M + 1)
,

we have |V i(s; t, x, v)| ≤ |v|+ t‖∇φi‖∞ < |v|+ 1, and∫ t

0

∣∣∣∣V (s)

2
· ∇φm(s)

∣∣∣∣ ds < M

∫ t

0

(|v|+ tM)ds < tM |v|+ t2M2 < 〈v〉,(5.13)

and from (2.7)

∫ t

0

∣∣∣∣V (s)

2
·∇φm(s)

∣∣∣∣ ds<M ∫ t

0

|V (s)|ds<5Mt(M +D)+4MD<5tM2+9MD<CΩM

(5.14)

for 0 < t < T . Now from (5.13), (5.14) and following the argument in estimating
along the backward trajectories from Lemma 12 we have, for 1 ≤ l ≤ m, if t1 < 0,
then

e(θ−t)|v|2 |fm+1(t, x, v)|(5.15)

≤ e(θ−t)|v|2etM |v|+t
2M2

|fm+1(0, Xm(0), V m(0))|

+ e(θ−t)|v|2eCΩM

∫ t

0

Γgain(fm, fm)(s,Xm(s), V m(s))ds
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≤ eθ|v|
2

et(M |v|−|v|
2)+1|fm+1(0, Xm(0), V m(0))|+ e(θ−t)|v|2eCΩM∫ t

0

Γgain(fm, fm)(s,Xm(s), V m(s))ds

≤ eθ|v|
2

et
M2

4 +1|fm+1(0, Xm(0), V m(0))|+ e(θ−t)|v|2eCΩM∫ t

0

Γgain(fm, fm)(s,Xm(s), V m(s))ds

. eθ|v|
2

|fm+1(0, Xm(0), V m(0))|+ e(θ−t)|v|2eCΩM∫ t

0

Γgain(fm, fm)(s,Xm(s), V m(s))ds.

If t1 > 0, then

e(θ−t)|v|2 |fm+1(t, x, v)|

(5.16)

≤ e(θ−t)|v|2eCΩM

∫ t

t1
Γgain(fm, fm)(s,Xm(s), V m(s))ds

+ e(θ−t)|v|2e〈v〉cµ

√
µ(v0

b)

∫
∏l−1
j=1 Vj

l−1∑
i=1

1{ti+1<0<ti}e
(θ−ti)|vi|2

|fm+1−i(0, Xm−i(0), V m−i(0))| dΣl−1
i

+ e(θ−t)|v|2e〈v〉cµ

√
µ(v0

b)

∫
∏l−1
j=1 Vj

l−1∑
i=1

1{ti+1<0<ti}e
(θ−ti)|vi|2

∫ ti

0

Γgain(fm−i, fm−i)(s,Xm−i(s), V m−i(s))ds dΣl−1
i

+ e(θ−t)|v|2e〈v〉cµ

√
µ(v0

b)

∫
∏l−1
j=1 Vj

l−1∑
i=1

1{ti+1>0}e
(θ−ti)|vi|2

∫ ti

ti+1

Γgain(fm−i, fm−i)(s,Xm−i(s), V m−i(s))ds dΣl−1
i

+ e(θ−t)|v|2e〈v〉cµ

√
µ(v0

b)

∫
∏l−1
j=1 Vj

1{tl>0}e
(θ−tl−1)|vl−1|2fm+1−(l−1)(tl, xl, vl−1

b )|dΣl−1
l−1,

where Vj = {vj ∈ R3 : n(xj) · vj > 0}, and

dΣl−1
i =


l−1∏
j=i+1

µ(vj)cµ|n(xj) · vj |dvj
{e〈vi〉√µ(vi)〈vi〉e−(θ−ti)|vi|2dvi

}

i−1∏
j=1

e〈v
j〉
√
µ(vj)〈vj〉dvj

 ,

where cµ is the constant that
∫
R3 µ(vj)cµ|n(xj) · vj |dvj = 1.

Now we have for all 0 ≤ i ≤ l − 1,
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3258 YUNBAI CAO

e(θ−ti)|vi|2
∫ ti

0

Γgain(fm−i, fm−i)(s,Xm−i(s), V m−i(s))ds

= e(θ−ti)|vi|2
∫ ti

0

∫
R3

∫
S2

|V m−i(s)

− u|κq0

(
V m−i(s)− u
|V m−i(s)− u|

· w
)√

µ(u)fm−i(u′)fm−i(V m−i(s)′)dωduds

≤
(

sup
0≤s≤t

∥∥∥e(θ−s)|v|2fm−i(s)
∥∥∥
∞

)2

×
∫ ti

0

∫
R3

|V m−i(s)− u|κ
√
µ(u)e(θ−ti)|vi|2e−(θ−s)|u′|2e−(θ−s)|Vm−i(s)′|2duds

=

(
sup

0≤s≤t

∥∥∥e(θ−s)|v|2fm−i(s)
∥∥∥
∞

)2

×
∫ ti

0

∫
R3

|V m−i(s)− u|κ
√
µ(u)e(θ−ti)|vi|2e−(θ−s)|u|2e−(θ−s)|Vm−i(s)|2duds

.

(
sup

0≤s≤t

∥∥∥e(θ−s)|v|2fm−i(s)
∥∥∥
∞

)2

×
∫ ti

0

∫
R3

|V m−i(s)− u|κ
√
µ(u)e(s−ti)|Vm−i(s)|2e−(θ−s)|u|2duds

.

(
sup

0≤s≤t

∥∥∥e(θ−s)|v|2fm−i(s)
∥∥∥
∞

)2

×
∫ ti

0

e−(ti−s)|Vm−i(s)|2〈V m−i(s)〉{1|vi|>N + 1|vi|≤N}ds

.

(
sup

0≤s≤t

∥∥∥e(θ−s)|v|2fm−i(s)
∥∥∥
∞

)2

×
(

1

N
+ 2Nt

)
<ε

(
sup

0≤s≤t

∥∥∥e(θ−s)|v|2fm−i(s)
∥∥∥
∞

)2

if we choose sufficiently large N � 1 and then small 0 < T � θ, where we have

used |vi|
2 ≤ |V m−i(s)| ≤ 2|vi|, for |vi| > N � 1, and |V m−i(s)| ≤ 2N if |vi| ≤ N ,

and that e(θ−ti)|vi|2 ≤ eθt
2M2

e(θ−ti)|Vm−i(s)|2 < eθe(θ−ti)|Vm−i(s)|2 , and that |u′|2 +
|V m−i(s)′|2 = |u|2 + |V m−i(s)|2.

And by the same argument we have

e(θ−ti)|vi|2
∫ ti

ti+1

Γgain(fm−i, fm−i)(s,Xm−i(s), V m−i(s))ds

.

(
sup

0≤s≤t

∥∥∥e(θ−s)|v|2fm−i(s)
∥∥∥
∞

)2

×
(

1

N
+ 2Nt

)
.

Now from (4.39), we have tj − tj+1 ≥ δ3

CΩ(1+δ2‖E‖2∞) for vj ∈ Vδj . But from (5.12),

if tl ≥ 0, then there are at most
[
CΩ

δ3

]
+ 1 numbers of vm ∈ Vδm for 1 ≤ m ≤ l − 1.

Thus for l > 2
([
CΩ

δ3

]
+ 1
)2

, we have from (4.40) that∫
∏l−1
j=1 Vj

1{tl>0}e
(θ−tl−1)|vl−1|2dΣl−1

l−1 .Ω,M

(
1

2

)l
.

Therefore from the above estimates we have for (5.15) and (5.16) the following
estimate:
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e(θ−t)|v|2 |fm+1(t, x, v)|

≤ lCl
∥∥∥eθ|v|2f0

∥∥∥
∞

+ eCΩM lCl
(

max
1≤i≤l−1

sup
0≤s≤t

∥∥∥e(θ−s)|v|2fm+1−i(s)
∥∥∥
∞

)2 (
8N

N2
+ 2Nt

)
+ C max

1≤i≤l−1
sup

0≤s≤t

∥∥∥e(θ−s)|v|2fm+1−i(s)
∥∥∥
∞

(
1

2

)l
.

We can now choose a large l, then large C1, then large N , and finally small T to
conclude the uniform-in-m estimate

sup
0≤t≤T

∥∥∥eθ′|v|2fm+1(t)
∥∥∥
∞
≤ sup

0≤t≤T
‖e(θ−t)|v|2fm+1(t)‖∞ ≤ C1‖eθ|v|

2

f0‖∞(5.17)

with θ′ = θ − T . This proves (5.10).

Step 2. We claim that there exists 0 < θ′ � 1, $ � 1, T = T (‖eθ|v|2f0‖∞, $)�
1, and a C1 > 0 such that

sup
m

sup
0≤t≤T

‖eθ
′|v|2e−$〈v〉tα∂fm(t, x, v)‖∞≤C1

(
P (‖eθ|v|

2

f0‖∞) + ‖eθ|v|
2

α∂f0‖∞
)
<∞.

(5.18)

From (5.4) and direct computation we have

{
∂t + v · ∇x −∇φm · ∇v + ν(

√
µfm) +

v

2
· ∇φm + 2θ′v · ∇φm +$〈v〉

−$ v

〈v〉
· ∇φmt−α−1(∂tα+v · ∇xα−∇φm · ∇vα)

}
(eθ
′|v|2e−$〈v〉tα∂fm+1)

= eθ
′|v|2e−$〈v〉tα

(
∂t + v · ∇x −∇φm · ∇v +

v

2
· ∇φm + ν(

√
µfm)

)
∂fm+1

= eθ
′|v|2e−$〈v〉tαGm.

(5.19)

From (5.2), (5.3), φm satisfies

(5.20) − ∂φm

∂n
= −∂φF

m

∂n
− ∂φE

∂n
= −∂φE

∂n
> CE > 0

on ∂Ω for every m. Note that if we let E(t, x) = −∇φm(t, x) in the definition of
α(t, x, v) in (2.45), we have the same α(t, x, v) for all m, as ∇φFm(t, x) · ∇ξ(x) = 0
for all x ∈ ∂Ω. Therefore by (2.46) we have that

α−1(∂tα+ v · ∇xα−∇φm · ∇vα) ≤ Cξ
CE

(‖∇φm‖∞ + ‖∇2φm‖∞)〈v〉.(5.21)

By our choice of f0 we have φ0 = φE ; thus if we choose $ large enough, we have

v

2
· ∇φ0 + 2θ′v · ∇φ0 +$〈v〉+$

v

〈v〉
·∇φ0t−α−1(∂tα+ v · ∇xα−∇φ0 · ∇vα) ≥ ω̄

2
〈v〉.

Now if we let

ν̄m$ :=ν(
√
µf)+

v

2
·∇φm+2θ′v·∇φm+$〈v〉+$ v

〈v〉
·∇φmt−α−1(∂tα+v·∇xα−∇φm·∇vα)
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and
Nm = eθ

′|v|2e−$〈v〉tαGm,
we have

(∂t + v · ∇x −∇φm · ∇v + ν̄m$ )(eθ
′|v|2e−$〈v〉tα∂fm+1) = Nm.(5.22)

Now since

eθ
′|v|2Γgain(∂fm, fm) = eθ

′|v|2
∫ ∫

|v − u|κq0

√
µ(u)∂fm(u′)fm(v′)dωdu

≤ eθ
′|v|2‖e2θ′|v|2fm‖∞

∫ ∫
|v − u|κq0

√
µ(u)eθ

′|u′|2∂fm(u′)e−θ
′|u′|2e−2θ′|v′|2dωdu

≤ ‖e2θ′|v|2fm‖∞
∫ ∫

|v − u|κq0

√
µ(u)eθ

′|u′|2∂fm(u′)e−θ
′|v′|2e−θ

′|u|2dωdu

. ‖e2θ′|v|2fm‖∞Γgain

(
eθ
′|v|2∂fm, e−θ

′|v|2
)

. ‖e2θ′|v|2fm‖∞
∫
R3

e−Cθ′ |u−v|
2

|u− v|2−κ
|eθ
′|u|2∂fm(t, x, u)|du,

where we’ve used |v′|2 + |u′|2 = |v|2 + |u|2, and

eθ
′|v|2ν(

√
µ∂fm)fm+1 ≤ ‖e2θ′|v|2fm+1‖∞e−θ

′|v|2ν(
√
µ∂fm)

. ‖e2θ′|v|2fm+1‖∞
∫
R3

e−Cθ′ |u−v|
2

|u− v|2−κ
|∂fm(t, x, u)|du,

then from (5.10) we have the following bound for Nm:

|Nm(t, x, v)|

= eθ
′|v|2e−$〈v〉tα(t, x, v)

×
(
∂Γgain(fm, fm)− ∂v · ∇xfm+1 + ∂∇φ · ∇vfm+1

+ ∂
(v

2
· ∇φm

)
fm+1 − ∂(ν(

√
µfm))fm+1

)
. (1 + ‖∇2φm‖∞)[P (‖eθ|v|

2

f0‖∞) + |eθ
′|v|2e−$〈v〉tα∂fm+1(t, x, v)|]

+ ‖eθ|v|
2

f0‖∞e−$〈v〉tα(t, x, v)

∫
R3

e−Cθ|u−v|
2

|u− v|2−κ
|eθ
′|u|2∂fm(t, x, u)|du.

(5.23)

We claim that there exist C1 > 0, $ � 1, and T � 1 such that if

ν̄i$ = ν(
√
µf) +

v

2
· ∇φi + 2θ′v · ∇φi +$〈v〉

+$
v

〈v〉
· ∇φit− α−1(∂tα+ v · ∇xα−∇φi · ∇vα) ≥ $

2
〈v〉

(5.24)

for all 1 ≤ i ≤ m− 1 and

max
0≤i≤m

sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∂f i(t, x, v)
∥∥∥
∞

≤C1

(
P
(∥∥∥eθ|v|2f0

∥∥∥
∞

)
+
∥∥∥eθ′|v|2α∂f0

∥∥∥
∞

)
<∞,
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then

ν̄m$ = ν(
√
µf) +

v

2
· ∇φm + 2θ′v · ∇φm +$〈v〉

+$
v

〈v〉
· ∇φmt− α−1(∂tα+ v · ∇xα−∇φm · ∇vα) ≥ $

2
〈v〉

(5.26)

and

sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∂fm+1(t, x, v)
∥∥∥
∞
≤ C1

(
P
(∥∥∥eθ|v|2f0

∥∥∥
∞

)
+
∥∥∥eθ′|v|2α∂f0

∥∥∥
∞

)
.

(5.27)

To prove (5.26), note that from (5.21), (5.6), and (5.25) we have

α−1(∂tα+ v · ∇xα−∇φm · ∇vα)

. (‖∇φm‖∞ + ‖∇2φm‖∞)〈v〉

.
(∥∥∥eθ′|v|2fm(t)

∥∥∥
∞

+ ‖e−$〈v〉tα∇xfm(t)‖∞
)
〈v〉 . (P (‖eθ|v|

2

f0‖∞) + ‖α∂f0‖∞)〈v〉.

Therefore (5.26) can be achieved once we choose $ � 1 large enough.
First for t1 < 0, using Duhamel’s formulation we have from (5.22)

eθ
′|v|2e−$〈v〉tα|∂fm+1(t, x, v)|

≤ e−
∫ t
s
νm$ (τ,Xm(τ),Vm(τ)dτeθ

′|Vm(0)|2α∂fm+1(0, Xm(0), V m(0))

+

∫ t

0

e−
∫ t
s
νm$ (τ,Xm(τ),Vm(τ)dτNm(s,Xm(s), V m(s))ds.

(5.28)

Thus by (5.23) we have

sup
0≤t≤T

‖1{t1<0}e
−$〈v〉teθ

′|v|2α∂fm+1(t, x, v)‖∞

≤ sup
0≤t≤T

‖e−
∫ t
0 ν

m
$ (τ,Xm(τ),Vm(τ)dτeθ

′|Vm(0)|2α∂fm+1(0, Xm(0), V m(0))

+

∫ t

0

e−
∫ t
s ν

m
$ (τ,Xm(τ),Vm(τ)dτNm(s,Xm(s), V m(s))ds‖∞

≤
∥∥∥eθ′|v|2α∂f0

∥∥∥
∞

+ T (1 + ‖∇2φm‖∞)

[
P (‖eθ|v|

2

f0‖∞)

+ sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∂fm+1(t, x, v)
∥∥∥
∞

]
+ P

(
‖eθ|v|

2

f0‖∞
)

sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∂fm(t, x, v)
∥∥∥
∞

×
∫ t

0

∫
R3

e−
∫ t
s
$
2
〈Vm(τ ;t,x,v)〉dτ e

−$〈Vm(s;t,x,v)〉s

e−$〈u〉s
e−Cθ|V

m(s)−u|2

|V m(s)− u|2−κ
α(s,Xm(s), V m(s))

α(s,Xm(s), u)
duds.

Now since
〈u〉 − 〈V m(s; t, x, v)〉 ≤ 2〈u− V m(s; t, x, v)〉,

we have
e−$〈V

m(s;t,x,v)〉s

e−$〈u〉s
e−Cθ|V

m(s)−u|2 . e−
Cθ|V

m(s)−u|2
2 .
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Thus

∫ t

0

∫
R3

e−
∫ t
s
$
2 〈V

m(τ ;t,x,v)〉dτ e
−$〈Vm(s;t,x,v)〉s

e−$〈u〉s
e−Cθ|V

m(s)−u|2

|V m(s)− u|2−κ
α(s,Xm(s), V m(s))

α(s,Xm(s), u)
duds

.
∫ t

0

∫
R3

e−
∫ t
s
$
2 〈V

m(τ ;t,x,v)〉dτ e
−Cθ2 |V

m(s)−u|2

|V m(s)− u|2−κ
α(s,Xm(s), V (s))

α(s,Xm(s), u)
duds.

(5.29)

Note that, for any β > 1,

1

α(x,Xm(s), u)
.

1

(α(x,Xm(s), u))β
+ 1.

So from (5.20) we can let 1 < β ≤ 2 and apply (4.3) to (5.29) to have

∫ t

0

∫
R3

e−
∫ t
s
$
2 〈V

m(τ ;t,x,v)〉dτ e
−$〈Vm(s;t,x,v)〉s

e−$〈u〉s
e−Cθ|V

m(s)−u|2

|V m(s)− u|2−κ
α(s,Xm(s), V m(s))

α(s,Xm(s), u)
duds

. eC(‖∇φm‖2∞+‖∇2φm‖∞)

(
δ

3−β
2 (α(t, x, v))3−β

(|v|2 + 1)
3−β

2

+
(|v|+ 1)β−1(α(t, x, v))2−β

δβ−1$〈v〉

)

. eC(‖∇φm‖2∞+‖∇2φm‖∞)

(
δ

3−β
2 +

1

δβ−1$

)
,

(5.30)

where we used α(s,Xm(s), V m(s)) . eC(‖∇φm‖2∞+‖∇2φm‖∞)α(t, x, v).
If t1(t, x, v) ≥ 0, the backward trajectory first hits the boundary; then from (4.36)

we have the following line-by-line estimate:

|1{t1>0}e
θ′|v|2e−$〈v〉tα∂fm+1(t, x, v)|

. P (‖eθ|v|
2

f0‖∞) + T (1 + ‖∇2φm‖∞) sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∂fm+1(t, x, v)
∥∥∥
∞

+ l
(
CeCt

2
)l

max
1≤i≤l−1

∥∥∥eθ′|v|2α∂fm+1−i
0

∥∥∥
∞

+ P
(
‖eθ|v|

2

f0‖∞
)∥∥∥ sup

0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∂fm+1(t, x, v)
∥∥∥
∞

×
(
eCt
)2
∫ t

t1

∫
R3

e−
∫ t
s
$
2
〈Vm(τ ;t,x,v)〉dτ e

−Cθ
2
|Vm(s)−u|2

|V m(s)− u|2−κ
α(s,Xm(s), V m(s))

α(s,Xm(s), u)
duds.

+ T l
(
CeCt

2
)l

max
1≤i≤l−1

(1 + ‖∇2φm−i‖∞) max
1≤i≤l−1

sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∂fm+1−i(t, x, v)
∥∥∥
∞

+ T l
(
CeCt

2
)l

max
1≤i≤l−1

(1 + ‖∇2φm−i‖∞)P (‖eθ|v|
2

f0‖∞)

+ P
(
‖eθ|v|

2

f0‖∞
)

max
1≤i≤l−1

sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∂fm+1−i(t, x, v)
∥∥∥
∞

× l
(
CeCt

2
)l

max
1≤i≤l−1

∫ ti

0

∫
R3

e−
∫ ti
s

$
2
〈Vm−i(τ ;t,x,v)〉dτ

× e−
Cθ
2
|Vm−i(s)−u|2

|V m−i(s)− u|2−κ
α(s,Xm−i(s), V m−i(s))

α(s,Xm−i(s), u)
duds

+ P
(
‖eθ|v|

2

f0‖∞
)

max
1≤i≤l−1

sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∂fm+1−i(t, x, v)
∥∥∥
∞
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× l
(
CeCt

2
)l

max
1≤i≤l−1

∫ ti

ti+1

∫
R3

e−
∫ ti
s

$
2
〈Vm−i(τ ;t,x,v)〉dτ

× e−
Cθ
2
|Vm−i(s)−u|2

|V m−i(s)− u|2−κ
α(s,Xm−i(s), V m−i(s))

α(s,Xm−i(s), u)
duds

+ C

(
1

2

)l
sup

0≤t≤T
‖eθ
′|v|2e−$〈v〉tα∂fm+1−(l−1)(t, x, v)‖∞.

We again apply (4.3) to get

|1{t1>0}e
θ′|v|2e−$〈v〉tα∂fm+1(t, x, v)|

. Cle
Clt2

(
δ

3−β
2 +

1

δβ−1$

)
P (‖eθ|v|

2

f0‖∞) max
0≤i≤l−1

eC(‖∇φm−i‖2∞+‖∇2φm−i‖∞+‖∇φm−i‖∞)

× max
m−(l−2)≤i≤m

sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∂f i(t, x, v)
∥∥∥
∞

+ T
(
1 + ‖∇2φm‖∞

)
sup

0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∂fm+1(t, x, v)
∥∥∥
∞

+ T l
(
CeCt

2
)l

max
1≤i≤l−1

(1 + ‖∇2φm−i‖∞) max
1≤i≤l−1

sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∂fm+1−i(t, x, v)
∥∥∥
∞

+ T l
(
CeCt

2
)l

max
1≤i≤l−1

(1 + ‖∇2φm−i‖∞)P (‖eθ|v|
2

f0‖∞)

+ l
(
CeCt

2
)l
‖α∂f0‖∞ + P (‖eθ|v|

2

f0‖∞)

+ C

(
1

2

)l
max

m−(l−2)≤i≤m
sup

0≤t≤T
‖eθ
′|v|2e−$〈v〉tα∂f i(t, x, v)‖∞.

Now if we let P (‖eθ|v|2f0‖∞) + ‖eθ′|v|2α∂f0‖∞ = M1 < ∞, from (5.6) and the
induction hypothesis, from (5.24) we have

max
0≤i≤l−1

(1 + ‖∇2φm−i‖∞) . max
0≤i≤l−1

(
‖eθ|v|

2

fm−i(t)‖∞ + ‖e−$〈v〉tα∇xfm−i(t)‖∞
)

.C1M1.

Therefore we have

|1{t1>0}e
−$

∫ t
0
〈Vm(τ)〉dτα∂fm+1(t, x, v)|

. Cle
Clt2

(
δ

3−β
2 +

1

δβ−1$

)
P (‖eθ|v|

2

f0‖∞)eC1M+CM2

× max
m−(l−2)≤i≤m

sup
0≤t≤T

‖eθ
′|v|2e−$〈v〉tα∂f i(t, x, v)‖∞

+ TC1M sup
0≤t≤T

‖eθ
′|v|2e−$〈v〉tα∂fm+1(t, x, v)‖∞

+ T l
(
CeCt

2
)l
C1M max

1≤i≤l−1
sup

0≤t≤T
‖eθ

′|v|2e−$〈v〉tα∂fm+1−i(t, x, v)‖∞D
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+ T l
(
CeCt

2
)l
C1MP (‖eθ|v|

2

f0‖∞)

+ l
(
CeCt

2
)l
‖eθ

′|v|2α∂f0‖∞ + P (‖eθ|v|
2

f0‖∞)

+ C

(
1

2

)l
max

m−(l−2)≤i≤m
sup

0≤t≤T
‖eθ

′|v|2e−$〈v〉tα∂f i(t, x, v)‖∞.

Finally we choose a large l, then large C1, then small δ, then large $, and finally
small T to conclude the claim (5.27):

sup
0≤t≤T

‖e−$〈v〉tα∂fm+1(t, x, v)‖∞

≤ 1

8
max

m−(l−2)≤i≤m
sup

0≤t≤T
‖e−$〈v〉tα∂f i(t, x, v)‖∞

+
C1

2

(
‖eθ

′|v|2α∂f0‖∞ + P (‖eθ|v|
2

f0‖∞)
)

≤ 1

8
C1M +

1

2
C1M < C1M.

This proves (5.18).
Step 3. Now taking ∇v derivative of the sequence (5.1) and adding the weight

function e−$〈v〉t, we get

[
∂t+v · ∇x−∇xφm ·∇v +

v

2
· ∇xφm +$〈v〉 − v

〈v〉$t ·∇xφ
m + ν(

√
µfm)

]
(e−$〈v〉t∇vf)

= e−$〈v〉t
(
−∇vν(

√
µfm)fm+1 −∇xfm+1 − 1

2
∇xφmfm+1 +∇vΓgain(fm, fm)

)
,

(5.31)

with the boundary bound for (x, v) ∈ γ−

(5.32)
∣∣∇vfm+1

∣∣ . |v|√µ ∫
n·u>0

|fm|√µ{n · u}du on γ−.

And

v

2
· ∇xφm +$〈v〉 − v

〈v〉
$t · ∇xφm + ν(

√
µfm) >

$

2
〈v〉,

for $ � 1.
We claim

sup
m

sup
0≤t≤T

‖e−$〈v〉t∇vfm(t)‖L3
x(Ω)L1+δ

v (R3) <∞.(5.33)

Using Duhamel’s formulation, from (5.31) we obtain the following bound along the
characteristicsD
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|e−$〈v〉t∇vfm+1(t, x, v)|
≤ 1{tmb (t,x,v)>t}e

−
∫ t
0
−C2 〈V

m(τ)〉dτ |∇vfm+1(0, Xm(0; t, x, v), V m(0; t, x, v))|
(5.34)

+ 1{tmb (t,x,v)<t}e
−$〈vmb 〉tbµ(vmb )

1
4

∫
n(xmb )·u>0

|fm(t− tmb , xmb , u)|√µ{n(xmb ) · u}du

(5.35)

+

∫ t

max{t−tb,0}
e−
∫ t
s
−$2 〈V

m(τ)〉dτe−$〈V
m(s)〉s|∇xfm+1(s,Xm(s), V m(s))|ds

(5.36)

+

∫ t

max{t−tb,0}

(
1 +

∥∥∥eθ′|v|2fm∥∥∥
∞

+
∥∥∥eθ′|v|2fm+1

∥∥∥
∞

)
e−
∫ t
s
−$2 〈V

m(τ)〉dτe−$〈V
m(s)〉s

×
∫
R3

e−Cθ′ |V
m(s)−u|2

|V m(s)− u|2−κ
∇vfm(s,Xm(s), u)|duds

(5.37)

+ ‖eθ
′|v|2fm+1‖∞

∫ t

max{t−tb,0}
e−
∫ t
s
−$2 〈V

m(τ)〉dτe−$〈V
m(s)〉se−θ

′|Vm(s)|2

× |∇xφm(s,Xm(s; t, x, v))|ds.
(5.38)

We first have

‖(5.34)‖L3
xL

1+δ
v

(5.39)

.

(∫
Ω

(∫
R3

|eθ
′|Vm(0)|2∇vfm+1(0, Xm(0), V m(0))|3

)

×
(∫

R3

e−(1+δ) 3
2−δ θ

′|Vm(0)|2dv

) 2−δ
1+δ

)1/3

.

(∫∫
Ω×R3

|eθ
′|Vm(0)|2∇vfm+1(0, Xm(0; t, x, v), V m(0; t, x, v))|3dvdx

)1/3

. ‖eθ
′|v|2∇vf(0)‖L3

x,v
,

where we have used a change of variables (x, v) 7→ (Xm(0; t, x, v), V m(0; t, x, v)).
Clearly

(5.40) ‖(5.35)‖L3
xL

1+δ
v

. sup
0≤s≤t

‖eθ
′|v|2fm(s)‖∞.

From W 1,2(Ω) ⊂ L6(Ω) ⊂ L2(Ω) for a bounded Ω ⊂ R3, and the change of
variables (x, v) 7→ (X(s; t, x, v), V (s; t, x, v)) for fixed s ∈ (max{t− tb, 0}, t),

‖(5.38)‖L3
xL

1+δ
v

. ‖eθ
′|v|2fm+1‖∞

∫ t

max{t−tb,0}
‖e− θ

′
2 |v|

2

∇xφm(s,X(s; t, x, v))‖L3
x,v

(5.41)

× ‖e− θ
′

2 |v|
2

‖
L

3(1+δ)
2−δ

v

. ‖eθ
′|v|2fm+1‖∞

∫ t

max{t−tb,0}
‖∇xφm(s)‖L3

x
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. ‖eθ
′|v|2fm+1‖∞

∫ t

max{t−tb,0}
‖φm(s)‖W 2,2

x

. ‖eθ
′|v|2fm+1‖∞

∫ t

max{t−tb,0}

∥∥∥ ∫
R3

√
µfm(s)dv − ρ0

∥∥∥
2

. t‖eθ
′|v|2fm+1‖∞

∥∥∥eθ′|v|2fm∥∥∥
∞
.

Next we have from (5.8), (5.9), for 3δ
2(1+δ) < 1, equivalently 0 < δ < 2,

‖(5.36)‖
L3
xL

1+δ
v
≤

∥∥∥∥∥∥
∥∥∥∥∥
∫ t

max{t−tb,0}
∇xfm+1(s,Xm(s), V m(s))ds

∥∥∥∥∥
L1+δ
v (R3)

∥∥∥∥∥∥
L3
x

=

∥∥∥∥∥∥
∥∥∥∥∥
∫ t

max{t−tb,0}

eθ
′|Vm(s)|2e−$〈V

m(s)〉sα∇xfm+1(s,Xm(s), V m(s))

eθ′|Vm(s)|2e−$〈Vm(s)〉sα
ds

∥∥∥∥∥
L1+δ
v (R3)

∥∥∥∥∥∥
L3
x

≤ sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∇xfm+1
∥∥∥
∞

×

∥∥∥∥∥∥
∥∥∥∥∥
∫ t

max{t−tb,0}

e−θ
′|Vm(s)|2e$〈V

m(s)〉s

α(s,Xm(s), V m(s))
ds

∥∥∥∥∥
L1+δ
v (R3)

∥∥∥∥∥∥
L3
x

. eC(‖∇φm‖∞+‖∇φm‖2∞+‖∇2φm‖∞) sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∇xfm+1
∥∥∥
∞

× t
∫

Ω

(∫
R3

e−
θ′
2
|v|2

(α(t, x, v))1+δ
dv

) 3
1+δ

dx

. teC(‖∇φm‖∞+‖∇φm‖2∞+‖∇2φm‖∞) sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∇xfm+1
∥∥∥
∞
,

(5.42)

where we have used

α(s,Xm(s; t, x, v), V m(s; t, x, v)) ≥ e−C(‖∇φm‖∞+‖∇2φm‖∞)α(t, x, v).

Next, we consider (5.37). From (4.3) and the computations in (5.8), (5.9), we
have, for 1 < β < 2,

‖(5.37)‖L3
xL

1+δ
v

(5.43)

≤

∥∥∥∥∥
∥∥∥∥∥
∫ t

max{t−tb,0}
e−
∫ t
s
−$2 〈V

m(τ)〉dτe−$〈V
m(s)〉s

∫
R3

e−Cθ′ |V
m(s)−u|2

|V m(s)− u|2−κ
∇vfm(s,Xm(s), u)|duds

∥∥∥∥∥
L1+δ
v (R3)

∥∥∥∥∥
L3
x

≤ sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∇xfm∥∥∥
∞

×

∥∥∥∥∥
∥∥∥∥∥
∫ t

max{t−tb,0}
e−
∫ t
s
−$2 〈V

m(τ)〉dτ

∫
R3

e−Cθ′ |V
m(s)−u|2

|V m(s)− u|2−κ
e−θ

′|u|2e$〈V
m−1(s)〉s

α(s,X(s), u)
duds

∥∥∥∥∥
L1+δ
v (R3)

∥∥∥∥∥
L3
x
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. eC‖∇φ
m−1‖∞ sup

0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∇xfm∥∥∥
∞

×

∥∥∥∥∥
∥∥∥∥∥
∫ t

max{t−tb,0}
e−
∫ t
s
−$2 〈V

m(τ)〉dτ

∫
R3

e−Cθ′ |V
m(s)−u|2

|V m(s)− u|2−κ
e−

θ′
2 |u|

2

(α(s,X(s), u))β
duds

∥∥∥∥∥
L1+δ
v (R3)

∥∥∥∥∥
L3
x

. eC(‖∇φm−1‖∞+‖∇φm‖+‖∇φm‖2+‖∇2φm‖) sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∇xfm∥∥∥
∞

×

∥∥∥∥∥∥
∥∥∥∥∥ δ

3−β
2

(α(t, x, v))β−2(|v|2 + 1)
3−β

2

+
(|v|+ 1)β−1

δβ−1$〈v〉(α(t, x, v))β−1

∥∥∥∥∥
L1+δ
v (R3)

∥∥∥∥∥∥
L3
x

. eC(‖∇φm−1‖∞+‖∇φm‖+‖∇φm‖2+‖∇2φm‖) sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∇xfm∥∥∥
∞

×

O(δ
3−β

2 ) +
1

δβ−1$

∥∥∥∥∥
∥∥∥∥ 1

〈v〉2−β(α(t, x, v))β−1

∥∥∥∥
L1+δ
v (R3)

∥∥∥∥∥
L3
x


.C

(
δ

3−β
2 +

1

δβ−1$

)
eC(‖∇φm−1‖∞+‖∇φm‖∞+‖∇φm‖2∞+‖∇2φm‖∞)

sup
0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∇xfm∥∥∥
∞

for β satisfying (β−1)(1+δ)−1
2

3
1+δ < 1, which is equivalent to β < 5

3 + 1
1+δ . Therefore

any 1 < β < 5
3 would work.

Collecting terms from (5.34)–(5.38), and (5.39), (5.40), (5.41), (5.42), (5.43), we
derive

sup
m

sup
0≤s≤t

‖e−$〈v〉t∇vfm(s)‖L3
xL

1+δ
v

.
∥∥∥eθ′|v|2∇vf(0)

∥∥∥
L3
x,v

+ sup
m

∥∥∥eθ′|v|2fm∥∥∥
∞

)2 + sup
m
‖eθ

′|v|2fm‖∞

+ sup
m
eC(‖∇φm‖∞+‖∇φm‖2∞+‖∇2φm‖∞) sup

m
sup

0≤t≤T

∥∥∥eθ′|v|2e−$〈v〉tα∇xfm∥∥∥
∞

<∞.

(5.44)

This proves (5.33).
Step 4. Let hm = e−$〈v〉tfm, where fm is constructed in (5.1). We claim for

$ � 1, and 0 < T � 1 small enough, that

hm → h strongly in L∞((0, T );L1+(Ω× R3))(5.45)

for some h. By direction computation we get from (5.1) that

(
∂t+v · ∇x−∇xφm · ∇v+

v

2
· ∇xφm+$〈v〉− v

〈v〉
$t · ∇xφm + ν(

√
µfm)

)
(hm+1)

(5.46)

= e−$〈v〉tΓgain(fm, fm).
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Note that hm+1 − hm satisfies hm+1 − hm)|t=0 ≡ 0, so from (5.46) we have

[
∂t+v ·∇x −∇xφm ·∇v+

v

2
· ∇xφm+$〈v〉 − v

〈v〉
$t ·∇xφm+ ν(

√
µfm)

]
(hm+1− hm)

= (∇xφFm −∇xφFm−1) · ∇v(hm)−
(
v

2
− v

〈v〉
$t

)
· (∇xφFm −∇xφFm−1)hm

+ e−$〈v〉tΓgain(fm, fm)− e−$〈v〉tΓgain(fm−1, fm−1)− ν
(√
µ(fm − fm−1)

)
hm.

(5.47)

Now since

νm$ :=
v

2
· ∇xφm +$〈v〉 − v

〈v〉
$t · ∇xφm + ν(

√
µfm) >

$

2
〈v〉

for $ � 1, by Green’s theorem for L1+δ-space with 0 < δ � 1, we obtain from (5.47)
that

‖[hm+1 − hm](t)‖1+δ
1+δ +

∫ t

0

‖(νm$ )1/1+δ[hm+1 − hm]‖1+δ
1+δ +

∫ t

0

|[hm+1 − hm]|1+δ
1+δ,+

≤ ‖[hm+1 − hm](0)‖1+δ
1+δ +

∫ t

0

∫∫
Ω×R3

|RHS of (5.47)||hm+1 − hm|δ+

∫ t

0

|[hm+1 − hm]|1+δ
1+δ,−.

(5.48)

For 0 < δ � 1, by the Hölder inequality with 1 = 1
3(1+δ)

2−δ
+ 1

3 + 1
1+δ
δ

and the Sobolev

embedding W 1,1+δ(Ω) ⊂ L
3(1+δ)

2−δ (Ω) when Ω ⊂ R3,∫ t

0

∫∫
Ω×R3

|(∇xφFm −∇xφFm−1) · ∇vhm||hm+1 − hm|δ

.
∫ t

0

‖∇xφFm −∇xφFm−1‖
L

3(1+δ)
2−δ

x

‖∇vhm‖L3
xL

1+δ
v

∥∥|hm − hm−1|δ
∥∥
L

1+δ
δ

x,v

. sup
0≤s≤t

‖∇vhm(s)‖L3
xL

1+δ
v
×
∫ t

0

‖[hm − hm−1](s)‖1+δ
1+δds.

(5.49)

We also have∫ t

0

∫
Ω

∫
R3

e−(1+δ)$〈v〉sΓgain(fm, fm − fm−1)|(fm − fm−1)(v)|δdvdxds(5.50)

.
∫ t

0

∫
Ω

∫
R3

e−(1+δ)$〈v〉s‖eθ
′|v|2fm‖∞

(∫
R3

e−Cθ′ |v−u|
2

|v − u|2−κ |(f
m − fm−1)(u)|du

)
× |(fm − fm−1)(v)|δdvdxds

.
∫ t

0

∫
Ω

∫
R3

e−(1+δ)$〈v〉s‖eθ
′|v|2fm‖∞(∫

R3

(
e−Cθ′ |v−u|

2

|v − u|2−κ

)
|fm(u)− fm−1(u)|1+δdu

)1/(1+δ)

× |fm(v)− fm−1(v)|δdvdxds

. ‖eθ
′|v|2fm‖∞

∫ t

0

∫
Ω

∫
R3

e−(1+δ)$〈v〉s|fm(v)− fm−1(v)|1+δdvdxds
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+ ‖eθ
′|v|2fm‖∞

∫ t

0

∫
Ω

∫
R3

∫
R3

e−(1+δ)$〈v〉s

(
e−Cθ′ |v−u|

2

|v − u|2−κ

)
× |fm(u)− fm−1(u)|1+δdudvdxds

= ‖eθ
′|v|2fm‖∞

∫ t

0

∫
Ω

∫
R3

e−(1+δ)$〈v〉s|fm(v)− fm−1(v)|1+δdvdxds

+ ‖eθ
′|v|2fm‖∞

∫ t

0

∫
Ω

∫
R3

(∫
R3

(
e−$〈v〉s

e−$〈u〉s

)1+δ
e−Cθ′ |v−u|

2

|v − u|2−κ

)
dv

)
e−(1+δ)$〈u〉s

× |fm(u)− fm−1(u)|1+δdudxds

= ‖eθ
′|v|2fm‖∞

∫ t

0

∫
Ω

∫
R3

e−(1+δ)$〈v〉s|fm(v)− fm−1(v)|1+δdvdxds

+ ‖eθ
′|v|2fm‖∞

∫ t

0

∫
Ω

∫
R3

(∫
R3

e2(1+δ)$〈v−u〉−Cθ′ |v−u|
2

|v − u|2−κ

)
dv

)
e−(1+δ)$〈u〉s

× |fm(u)− fm−1(u)|1+δdudxds

. ‖eθ
′|v|2fm‖∞

∫ t

0

∫
Ω

∫
R3

e−(1+δ)$〈v〉s|fm(v)− fm−1(v)|1+δdvdxds

+ ‖eθ
′|v|2fm‖∞

∫ t

0

∫
Ω

∫
R3

e−(1+δ)$〈u〉s|fm(u)− fm−1(u)|1+δdudxds.

And similarly, we have

ν(
√
µ(fm − fm−1))e−(1+δ)$〈v〉s|fm(v)− fm−1(v)|δ

. ‖eθ
′|v|2fm‖∞

(∫
R3

e−Cθ′ |v−u|
2

|v − u|2−κ |(f
m − fm−1)(u)|du

)
e−(1+δ)$〈v〉s|(fm − fm−1)(v)|δ.

(5.51)

Thus we use (5.50), (5.51) to conclude that

∫ t

0

∫∫
Ω×R3

|RHS of (5.47)||hm+1 − hm|δ

.

(
max

i=m,m−1
sup

0≤s≤t
‖eθ
′|v|2f i(s)‖∞ + sup

0≤s≤t
‖∇vhm(s)‖

L3
xL

1+δ
v

)∫ t

0

‖[hm − hm−1](s)‖1+δ
1+δ.

(5.52)

Then following the argument of (3.17) and applying the trace theorem, we can
obtain

∫ t

0

|[hm+1 − hm]|1+δ
1+δ,− . o(1)

∫ t

0

|[hm+1 − hm]|1+δ
1+δ,+ + ‖[hm+1 − hm](0)‖1+δ

1+δ

+ sup
0≤s≤t

{
1 + ‖∇vhm−1(s)‖L3

xL
1+δ
v

+ ‖eθ
′|v|2fm−1(s)‖∞

+ ‖eθ
′|v|2fm−2(s)‖∞

}∫ t

0

‖[hm−1 − hm−2](s)‖1+δ
1+δ.

(5.53)

Now using [hm+1 − hm](0) = 0, and combining (5.48), (5.52), and (5.53) we
conclude that
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sup
0≤s≤t

‖hm+1(s)− hm(s)‖1+δ
1+δ

. t

(
1 + sup

0≤s≤t
sup
i
‖eθ

′|v|2f i‖∞ + sup
0≤s≤t

sup
i
‖∇vhi(t)‖L3

xL
1+δ
v

)
×
(

sup
0≤s≤t

‖hm(s)− hm−1(s)‖1+δ
1+δ + sup

0≤s≤t
‖hm−1(s)− hm−2(s)‖1+δ

1+δ

)
.

Then by (5.10), (5.33), we have for t� 1 small enough,

sup
0≤s≤t

‖hm+1(s)− hm(s)‖1+δ
1+δ + sup

0≤s≤t
‖hm+2(s)− hm+1(s)‖1+δ

1+δ

≤O(t)

(
sup

0≤s≤t
‖hm(s)− hm−1(s)‖1+δ

1+δ + sup
0≤s≤t

‖hm−1(s)− hm−2(s)‖1+δ
1+δ

)
.

Therefore, inductively we have

sup
0≤s≤t

‖hm+1(s)− hm(s)‖1+δ
1+δ

≤ sup
0≤s≤t

‖hm+1(s)− hm(s)‖1+δ
1+δ + sup

0≤s≤t
‖hm+2(s)− hm+1(s)‖1+δ

1+δ

≤ O(t)m.

Hence we derive stability

sup
0≤s≤t

‖hm(s)− hl(s)‖1+δ
1+δ ≤ O(t)min{m,l}.

Therefore we conclude

hm → h strongly in L∞((0, T );L1+(Ω× R3))

for some h, and this proves (5.45).
Step 5. From (5.10) we have up to a subsequence the weak-∗ convergence:

eθ
′|v|2fm(t, x, v)

∗
⇀ eθ

′|v|2f(t, x, v) in L∞([0, T ) × Ω × R3) ∩ L∞([0, T ) × γ) for some

f . By (5.45) the limit is unique; therefore (eθ
′|v|2fm(t, x, v), eθ

′|v|2fm+1(t, x, v))
∗
⇀

(eθ
′|v|2f(t, x, v), eθ

′|v|2f(t, x, v)).
Thus from (5.1), we have for any ϕ ∈ C∞c (R× Ω̄× R3),∫ T

0

∫∫
Ω×R3

fm+1
[
−∂t − v · ∇x +∇xφE · ∇v +

v

2
· ∇xφE

]
ϕ

+ fm+1
{
∇xφFm · ∇vϕ+

v

2
· ∇xφFmϕ

}
︸ ︷︷ ︸

(5.54)φ

=

∫ T

0

∫∫
Ω×R3

Γgain(fm, fm)ϕ︸ ︷︷ ︸
(5.54)gain

− ν(
√
µfm)fm+1ϕ︸ ︷︷ ︸
(5.54)loss

+

∫ T

0

∫
γ+

fm+1ϕ−
∫ T

0

∫
γ−

cµ
√
µ

∫
n·u>0

fm
√
µ{n · u}duϕ.

(5.54)

Except for the underbraced terms in (5.54) all terms converges to limits with f instead
of fm+1 or fm.
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We define, for (t, x, v) ∈ R× Ω̄× R3 and for 0 < δ � 1,

fmδ (t, x, v) := κδ(x, v)fm(t, x, v)

:= χ
( |n(x) · v|

δ
− 1
)[

1− χ(δ|v|)
]
fm(t, x, v).

(5.55)

Note that fδ(t, x, v) = 0 if either |n(x) · v| ≤ δ or |v| ≥ 1
δ . Now∣∣∣∣∣

∫ T

0

∫∫
(5.54)loss −

∫ T

0

∫∫
ν(
√
µf)ϕ

∣∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

∫∫
Ω×R3

∫
R3

|v − u|κq0{fm(u)− f(u)}
√
µ(u)dufm+1(v)ϕ(t, x, v)dvdxdt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

∫∫
Ω×R3

∫
R3

|v − u|κq0f(u)
√
µ(u)du{fm+1(v)− f(v)}ϕ(t, x, v)dvdxdt

∣∣∣∣∣ .
The second term converges to zero from the weak−∗ convergence in L∞ by (5.10).
The first term is bounded by, from (5.10),[∫ T

0

∥∥∥∥∫
R3

κδ(x, u)(fm(t, x, u)− f(t, x, u))〈u〉κ
√
µ(u)du

∥∥∥∥2

L2(Ω×R3)

]1/2

× sup
0≤t≤T

‖wϑfm+1(t)‖∞ +O(δ).

(5.56)

On the other hand, from Lemma 15, we have an extension f̄m(t, x, v) of κδ(x, u)
fm(t, x, u). Note that from (5.5) supm ‖∇φm‖∞ < ∞ and ∇φm−1 · ∇vfm = ∇v ·
(∇φm−1fm) with supm ‖∇φm−1fm‖L2 <∞. Thus we apply the average lemma (see
Theorem 7.2.1 on page 187 of [10], for example) to f̄m(t, x, v). From (5.10),

(5.57) sup
m

∥∥∥∥∫
R3

f̄m(t, x, u)〈u〉κ
√
µ(u)du

∥∥∥∥
H

1/4
t,x (R×R3)

<∞.

Then by H1/4 ⊂⊂ L2, up to subsequence, we conclude that∫
R3

κδ(x, u)fm(t, x, u)〈u〉κ
√
µ(u)du→

∫
R3

κδ(x, u)f(t, x, u)〈u〉κ
√
µ(u)du strongly in L2

t,x.

So we conclude that (5.56)→ 0 as m→∞.
For (5.54)gain let us use a test function ϕ1(v)ϕ2(t, x). From the density argument,

it suffices to prove a limit by testing with ϕ(t, x, v).
We use a standard change of variables (v, u) 7→ (v′, u′) and (v, u) 7→ (u′, v′) (for

example, see page 10 of [10]) to get∫ T

0

∫∫
(5.54)gain −

∫ T

0

∫∫
Γgain(f, f)ϕ

=

∫ T

0

∫∫
Γgain(fm − f, fm)ϕ+

∫ T

0

∫∫
Γgain(f, fm − f)ϕ
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(5.58)

=

∫ T

0

∫∫
Ω×R3

(∫
R3

∫
S2

(fm(t, x, u)− f(t, x, u))
√
µ(u′)|v − u|κq0ϕ1(v′)dωdu

)
× fm(t, x, v)ϕ2(t, x)dvdxdt

+

∫ T

0

∫∫
Ω×R3

(∫
R3

∫
S2

(fm(t, x, u)− f(t, x, u))
√
µ(v′)|v − u|κq0ϕ1(u′)dωdu

)(5.59)

× f(t, x, v)ϕ2(t, x)dvdxdt.

For N � 1 we decompose the integration of (5.58) and (5.59) using

1 = {1− χ(|u| −N)}{1− χ(|v| −N)}
+ χ(|u| −N) + χ(|v| −N)− χ(|u| −N)χ(|v| −N).

(5.60)

Note that {1−χ(|u| −N)}{1−χ(|v| −N)} 6= 0 if |v| ≤ N + 1 and |u| ≤ N + 1, and if
χ(|u| −N) + χ(|v| −N)− χ(|u| −N)χ(|v| −N) 6= 0, then either |v| ≥ N or |u| ≥ N .
From (5.10), the second parts of (5.58) and (5.59) from (5.60) are bounded by∫ T

0

∫∫
Ω×R3

∫
R3

∫
S2

[· · · ]× {χ(|u| −N) + χ(|v| −N)− χ(|u| −N)χ(|v| −N)}

≤ sup
`
‖wϑf `‖∞‖wϑf‖∞ ×

{
e−

ϑ
2 |v|

2

e−
ϑ
2 |u|

2
}
{1|v|≥N + 1|u|≥N}

≤ O

(
1

N

)
.

Now we only need to consider the parts with {1−χ(|u| −N)}{1−χ(|v| −N)}. Then

(5.58)

=

∫ T

0

∫∫
Ω×R3

∫
R3

(fm(t, x, u)− f(t, x, u))

× {1− χ(|u| −N)}
(∫

S2

√
µ(u′)|v − u|κq0ϕ1(v′)dω

)
du

× {1− χ(|v| −N)}fm(t, x, v)ϕ2(t, x)dvdxdt.

(5.61)

Let us define

(5.62) Φv(u) := {1− χ(|u| −N)}
∫
S2

√
µ(u′)|v − u|κq0ϕ1(v′)dω for |v| ≤ N + 1.

For 0 < δ � 1 we have O(N
3

δ3 ) number of vi ∈ R3 such that {v ∈ R3 : |v| ≤

N+1} ⊂
⋃O(N

3

δ3
)

i=1 B(vi, δ). Since (5.62) is smooth in u and v and compactly supported,
for 0 < ε� 1 we can always choose δ > 0 such that

(5.63) |Φv(u)− Φvi(u)| < ε if v ∈ B(vi, δ).

Now we replace Φv(u) in the second line of (5.61) by Φvi(u) whenever v ∈ B(vi, δ).
Moreover we use κδ-cutoff in (5.55). If v is included in several balls, then we choose
the smallest i. From (5.63) and (5.10) the difference of (5.61) and the one with Φvi(u)
can be controlled, and we conclude that
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(5.61) = {O(ε) +O(δ)} sup
m
‖wϑfm‖2∞

+

∫ T

0

∫
Ω

∑
i

∫
R3

1v∈B(vi,δ)

∫
R3

κδ(x, u)(fm(t, x, u)− f(t, x, u))Φvi(u)du

× {1− χ(|v| −N)}fm(t, x, v)ϕ2(t, x)dvdxdt.

(5.64)

From Lemma 15 and the average lemma

(5.65) max
1≤i≤O(N

3

δ3
)

sup
m

∥∥∥∥∫
R3

κδ(x, u)fm(t, x, u)Φvi(u)du

∥∥∥∥
H

1/4
t,x (R×R3)

<∞.

For i = 1 we extract a subsequence m1 ⊂ I1 such that
(5.66)∫

R3

κδ(x, u)fm1(t, x, u)Φvi(u)du→
∫
R3

κδ(x, u)f(t, x, u)Φvi(u)du strongly in L2
t,x.

Successively we extract subsequences I
O(N

3

δ3
)
⊂ · · · ⊂ I2 ⊂ I1. Now we use the last

subsequence m ∈ I
O(N

3

δ3
)

and redefine fm with it. Clearly we have (5.66) for all i.

Finally we bound the last term of (5.64) by

Cϕ2,N max
i

∫ T

0

∥∥∥∥∫
R3

κδ(x, u)(fm(t, x, u)− f(t, x, u))Φvi(u)du

∥∥∥∥
L2
t,x

sup
m
‖wϑfm‖∞

→ 0 as m→∞.

Together with (5.64) we prove (5.58)→ 0. Similarly we can prove (5.59)→ 0.
Now we consider (5.54)φ. From

−(∆φFm −∆φ) =

∫
κδ(f

m − f)
√
µ+

∫
(1− κδ)(fm − f)

√
µ,

we have

‖∇xφFm −∇xφ‖L2
t,x
≤
∥∥∥∥∫ κδ(f

m − f)
√
µ

∥∥∥∥
L2
t,x

+O(δ) sup
m
‖wϑfm‖∞.(5.67)

Then following the previous argument, we prove ∇xφFm → ∇xφ strongly in L2
t,x as

m → ∞. Combining with eθ
′|v|2fm

∗
⇀ eθ

′|v|2f in L∞, we prove
∫ T

0

∫∫
Ω×R3(5.54)φ

converges to
∫ T

0

∫∫
Ω×R3 f{∇xφ · ∇vϕ + v

2 · ∇xφϕ}. This proves the existence of a
(weak) solution f ∈ L∞.

Step 6. From (5.10) and the weak-∗ lower semicontinuity of L∞ we conclude

(1.22). To prove (1.23), we have from (5.18) that eθ
′|v|2e−$〈v〉t∂fm+1 has (up to

subsequence) a weak-∗ limit. So for any test function ϕ(t, x, v) we have

lim
m→∞

∫ T

0

∫∫
Ω×R3

eθ
′|v|2e−$〈v〉t∂fm+1ϕ

= lim
m→∞

(∫ T

0

∫∫
Ω×R3

∂(eθ
′|v|2e−$〈v〉tϕ)fm+1 +

∫ T

0

∫
γ+

eθ
′|v|2e−$〈v〉tfm+1ϕ

−
∫ T

0

∫
γ−

cµ
√
µeθ

′|v|2e−$〈v〉t
∫
n·u>0

fm
√
µ{n · u}duϕ
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=

∫ T

0

∫∫
Ω×R3

∂(eθ
′|v|2e−$〈v〉tϕ)f +

∫ T

0

∫
γ+

eθ
′|v|2e−$〈v〉tfϕ

−
∫ T

0

∫
γ−

cµ
√
µeθ

′|v|2e−$〈v〉t
∫
n·u>0

f
√
µ{n · u}duϕ

=

∫ T

0

∫∫
Ω×R3

eθ
′|v|2e−$〈v〉t∂fϕ.

Therefore eθ
′|v|2e−$〈v〉t∂fm+1 ∗

⇀ eθ
′|v|2e−$〈v〉t∂f ∈ L∞. And (1.23) is obtained by

the weak-∗ lower semicontinuity. And similarly, from (5.33) we conclude (1.24).
Finally, we prove the uniqueness of the solution. Assume G0(x, v) =

√
µg0(x, v)

satisfies (1.21) and G(t, x, v) =
√
µg(t, x, v) is a solution to (1.1), (2.1), (1.18) with

g(0, x, v) = g0(x, v). Now replace hm+1 − hm by e−$〈v〉tf − e−$〈v〉tg in (5.47), and
by the same argument as (5.49)–(5.53) we conclude

‖e−$〈v〉tf(t)− e−$〈v〉tg(t)‖L1+δ(Ω×R3) .t ‖f0 − g0‖L1+δ(Ω×R3)

and thus the uniqueness.

Appendix A. Recall κδ(x, v) in (5.55). Let us denote fδ(t, x, v) := κδ(x, v)
f(t, x, v). We assume that f(s, x, v) = esf0(x, v) for s < 0. Then ‖fδ‖L2(R×Ω×R3) .
‖f‖L2(R+×Ω×R3) + ‖f0‖L2(Ω×R3), ‖fδ‖L2(R×γ) . ‖fγ‖L2(R+×γ) + ‖f0‖L2(γ).

Lemma 15. Assume Ω is convex in (2.1) and sup0≤t≤T ‖E(t)‖L∞(Ω) < ∞. Let

Ē(t, x) = 1Ω(x)E(t, x) for x ∈ R3. There exists f̄(t, x, v) ∈ L2(R × R3 × R3), an
extension of fδ, such that

f̄ |Ω×R3 ≡ fδ and f̄ |γ ≡ fδ|γ and f̄ |t=0 ≡ fδ|t=0.

Moreover, in the sense of distributions on R× R3 × R3,

[∂t + v · ∇x + Ē · ∇v]f̄ = h,(A.1)

where

h(t, x, v) = κδ(x, v)1t∈[0,∞)[∂t + v · ∇x + E · ∇v]f
+ κδ(x, v)1t∈(−∞,0]e

t[1 + v · ∇x + E · ∇v]f0κδ(x, v)

+ f(t, x, v)[v · ∇x + E · ∇v]κδ(x, v),

(A.2)

where tEXb , xEXb , tEXf , xEXf are defined in (A.5).
Moreover,

‖h‖L2(R×R3×R3) . ‖[∂t + v · ∇x + E · ∇v]f‖L2(R+×Ω×R3) + ‖f‖L2(R×Ω×R3)

+ ‖[v · ∇x + E · ∇v]f0‖L2(Ω×R3).
(A.3)

Proof. In the sense of distributions

∂tfδ + v · ∇xfδ + E · ∇vfδ = h in (A.2).(A.4)

Clearly |[v · ∇x + E · ∇v]κδ(x, v)| .δ 1.
For x ∈ R3\Ω̄ we define

tEXb (x, v) := sup{s ≥ 0 : x− τv ∈ R3\Ω̄ for all τ ∈ (0, s)},
tEXf (x, v) := sup{s ≥ 0 : x+ τv ∈ R3\Ω̄ for all τ ∈ (0, s)},

(A.5)

and xEXb (x, v) = x− tEXb (t, x, v))v, xEXf (x, v) = x+ tEXf (t, x, v))v.
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We define, for x ∈ R3\Ω̄,

fE(t, x, v) = 1xEXb (t,x,v)∈∂Ωfδ
(
t− tEXb (x, v), xEXb (x, v), v

)
+ 1xEXf (t,x,v)∈∂Ωfδ

(
t+ tEXf (x, v), xEXf (x, v), v

)
.

(A.6)

Recall that, from (5.55), fδ ≡ 0 when n(x) · v = 0, and hence fE ≡ 0 for n(x) · v = 0.
Since Ω is convex if v 6= 0, then {xEXb (x, v) ∈ ∂Ω}∩{xEXf (x, v) ∈ ∂Ω} = ∅. Note that

(A.7) fE(t, x, v) = fγ(t, x, v) = fδ(t, x, v) for x ∈ ∂Ω.

And since for any s > 0,(
t+ s− tEXb (x+ sv, v), xEXb (x+ sv, v), v

)
=
(
t− tEXb (x, v), xEXb (x, v), v

)(
t+ s+ tEXf (x+ sv, v), xEXf (x+ sv, v), v

)
=
(
t− tEXf (x, v), xEXf (x, v), v

)
,

so in the sense of distribution, in R× [R3\Ω̄]× R3

(A.8) ∂tfE + v · ∇xfE = 0.

We define

(A.9) f̄(t, x, v) := 1Ω(x)fδ(t, x, v) + 1R3\Ω̄(x)fE(t, x, v).

From (A.4), (A.7), and (A.8) we prove (A.1). The estimates of (A.3) are a direct
consequence of Lemma 6.
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