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REGULARITY OF BOLTZMANN EQUATION WITH EXTERNAL
FIELDS IN CONVEX DOMAINS OF DIFFUSE REFLECTION*
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Abstract. We consider the Boltzmann equation with external fields in strictly convex domains
with diffuse reflection boundary condition. As long as the external fields satisfy some sign condi-
tion on the boundary E(t,z) - n(z) > Cg > 0 for all t and all x € 99, we construct classical O
solutions away from the grazing set. As a consequence we construct solutions of the Vlasov—Poisson—
Boltzmann system having bounded derivatives away from the grazing set (weighted W1>° estimate).
In particular this improves the recent regularity estimate of such system in weighted WP space for
p < 6in [Y. Cao, C. Kim, and D. Lee, Arch. Ration. Mech. Anal., 233 (2019), pp. 1027-1130].
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1. Introduction. The object of kinetic theory is the modeling of particles by
a distribution function in the phase space F(t,z,v) for (t,z,v) € [0,00) x Q x R3,
where Q is an open bounded subset of R3. Dynamics and collision processes of dilute
charged particles with a field £ can be modeled by the Boltzmann equation

(1.1) OF +v-V F + E-V,F =Q(F,F).

The collision operator measures “the change rate” in binary collisions and takes the
form of

Q(FlyFQ)(U) anm F17F2) Qloss(FhFZ)

1.2
(1-2) / B(v—u) - w)[Fi(u)Fy(v") — Fi(u) F>(v)]dwdu,
RS Jg2
where v/ = u—[(u—v)- wlw and v = v + [(u — v) - W]w. Here B(v—uw) =
|v—u|"qo (2 Tooa] @ w) and 0 < k < 1 (hard potential) and 0 < QO(| ik w) < Ol r=nh |

(angular cutoff).
The collision operator enjoys collision invariance: for any measurable function G,

(1.3) /R [1 v "%3} QG,G)dv=1[0 0 0].

It is well known that a global Maxwellian p satisfies Q(p, 1) = 0, where

_ 1 [v]?
(1.4) w(v) = 2 exp <— 2).

Throughout this paper we assume that ) is a bounded open subset of R3 and
there exists a C® function ¢ : R® — R such that Q = {z € R3 : {(x) < 0} and
00N = {z € R3: {(z) = 0}. Moreover we assume the domain is strictly convez:
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> 0i6(x)¢i¢; > Cel¢|® for all ¢ € R® and for all 2 € Q = QU Q.
]

We assume that

(1.5) Vé(z) # 0 when |¢(z)| < 1,

and we define the outward normal as n(z) = @gég‘ at the boundary. The boundary

of the phase space v := {(z,v) € 9Q x R3} can be decomposed as
vo = {(z,v) €92 x R* : n(z) -v < 0} (the incoming set),
(1.6) e = {(x,v) € 9Q x R3 : n(z) -v >0} (the outcoming set),
Y0 = {(z,v) € Q2 x R®: n(z) -v =0} (the grazing set).

In general the boundary condition is imposed only for the incoming set y_ for general
kinetic PDEs. In this paper we consider a so-called diffuse boundary condition

(1.7 F(t,z,v) = cﬂu(v)/ F(t,z,u){n(x) - u}du, on (x,v) € v_
n(z)-u>0
with ¢, fn(z).u>0 w(w){n(z) - u}du = 1. For other important boundary conditions,

such as the specular reflection boundary condition, we refer to [8, 13, 14] and the
references therein.

Due to its importance of the Boltzmann equation in mathematical theory and
application, there have been explosive research activities in analytic study of the
equation. Notably the nonlinear energy method has led to solutions of many open
problems including global strong solution of Boltzmann equation coupled with either
the Poisson equation or the Maxwell system for electromagnetism when the initial
data are close to the Maxwellian g in periodic box (no boundary). See [5] and the
references therein. In many important physical applications, e.g., semiconductor and
tokamak, the charged dilute gas is confined within a container, and its interaction
with the boundary plays a crucial role both in physics and mathematics.

However, in general, higher regularity may not be expected for solutions of the
Boltzmann equation in physical bounded domains. Such a drastic difference of so-
lutions with boundaries has been demonstrated as the formation and propagation of
discontinuity in nonconvex domains [15, 4] and a nonexistence of some second order
derivative at the boundary in convex domains [6]. Evidently the nonlinear energy
method is not generally available to the boundary problems. In order to overcome
such critical difficulty, Guo developed a L?-L> framework in [8] to study global solu-
tions of the Boltzmann equation with various boundary conditions. The core of the
method lays in a direct approach (without taking derivatives) to achieve a pointwise
bound using trajectory of the transport operator, which leads substantial development
in various directions including [3, 4, 6, 7, 12]. In [6], with the aid of some distance
function towards the grazing set, the authors construct weighted classical C'! solutions
of Boltzmann equation (F = 0 in (1.1)) with various boundary conditions away from
the grazing set. They also construct W1 solution for 1 < p < 2 and weighted W1
solutions for 2 < p < 0o as well.

In the first part of the paper, we extend a result of [6] to the Boltzmann equation
(1.1) with an external field (E # 0) satisfying a crucial sign condition on the boundary

(1.8) E(t,z) -n(z) >Cg >0 foralltand all z € 0Q.

One of the major difficulties is that trajectories are curved and behave in a very
complicated way when they hit the boundary.
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We denote || - ||, the LP(Q x R?) norm, while |- |, , = |- |, is the LP(9Q x R3; dy)
norm, |- |y p = |- 1yyly.p, dy = |n(x) - v|dSydv with the surface measure dS; on 9f2.

Our main results are WhP(1 < p < 2) estimate, weighted W1P(2 < p < o0)
estimate, and weighted C! estimate for the solution of (1.1) with diffuse boundary
condition (1.7) in a short time. For the W? estimate with 1 < p < 2, the result is
the following theorem.

THEOREM 1 (WP estimate for 1 < p < 2). Suppose E satisfies (1.8), and
| Elloc < 00. Assume the compatibility condition of Fo = \/jifo on (z,v) € v_,

(1.9) folx,v) = cu/p(v) s fola,u)y/ p(u)(n(z) - u)du.

If ||60‘U|2f0Hoo + Ve folly < oo for some 0 < 0 < 1/4 and any fivzed 1 < p < 2, then
there exists a unique solution F(t) = /uf(t) fort € [0,T] with 0 < T < 1 to the
system (1.1), (1.7) that satisfies, for all0 <t <T,

P t
(1.10) o= p @]+ [ eV ol s

ol 0] IR - B

for some polynomial P, 0 < 0 <0, and w > 1.

In order to have weighted WP estimate for p > 2 and the weighted C! estimate,
we introduce a distance function «(t,x,v) towards the grazing set 7p:

1/2
(L.11) a(t,z,v) ~ [w-vw)|2+f<x>2—2<v-v25<x>~v>f<x>—2<E<t,x>~vs<x>>5<x>}

for z € Q close to boundary, where T := {Z € 9Q : d(z,Z) = d(z,00)} is uniquely
defined. The precise definition of « can be found in (2.45). Note that a|,_ ~ |n(x)-v|,
and a similar distance function towards -y was used in [6, 9, 11].

One of the crucial property « enjoys, under the assumption of the sign condition
(1.8), is the velocity lemma (Lemma 7):

(112) e CLVEDN o5 X (5),V(5) < alt,z,v) < eC LV 05 X(5), V(s)).
This can be seen by directly taking derivatives along the trajectory
(1.13) {0 +v -V, + E-V, a2 (t,z,0)| ~ |v|a® + Clv|é(z)

for some C' <S¢, g 1. Now under (1.8), we get an extra stronger control for {(x) from
the last term of a2, and therefore the second term on the right-hand side (RHS) of
(1.13) can be bounded by

C C
- V|(E(t,T) - VET))E(z) < =—a?(t, x,v).
BT EE ) V@) € fat(ta)
Thus combing (1.13) and (1.14) we obtain (1.12) from Gronwall. (1.12) tells that

« is almost invariant along the characteristics, especially for small ¢ < 1, which is
crucially used for establishing the following theorems.

(1.14)  Clof¢(z) <

THEOREM 2 (weighted WP estimate for 2 < p < o0). Suppose E satisfies the
sign condition (1.8), and

(1.15) 1E(,2)lloo + Ve E(t, 2)lloo + [[0:E(E, 7)|[oc < 0.
Assume the compatibility condition (1.9). For any fized 2 < p < oo and % <pB<

prl, if |08V g0 follp + €977 folloe < o0 for some 0 < 6 < 1. then there ezists a
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unique solution F(t) = \/uf(t) fort € [0,T] with 0 < T < 1 to the system (1.1),
(1.7) that satisfies, for all0 <t <T,

t
(1.16) eV, L ()15 + / e =0V, L f ()P ds
0

e 0] 5l entoll, + P (e 5 )

for some polynomial P, 0 <0 <0, and w > 1.

THEOREM 3 (weighted C! estimate). Suppose E satisfies (1.8) and (1.15). As-
sume the compatibility condition (1.9). If [[aVg.flleo + €917 follso < 00 for some
0 < 6 < 1, then there exists a unique solution F(t) = \/uf(t) for t € [0,T] with
0<T <1 to the system (1.1), (1.7) that satisfies for all 0 <t < T,

(1.17) le™ = aV o f () ]loo +

’ 2
@) S laVawfolls
+ P(Hem”?foH ) for all0<t<T,

for some polynomial P, 0 < ' < 0, and @ > 1. If aV fo € C°(Q x R?) is valid for
v_, then f € C' away from the gazing set 7.

For the second part of this paper we consider a so-called Vlasov—Poisson—
Boltzmann system (VPB) where the potential consists of a self-generated electro-
static potential and an external potential, £ = V¢, where

(1.18) o(t,x) = dp(t,z) + ¢pp(t,z) with agl > Cg > 0 on 09,
n
_ . opp
(1.19) —Ayopp(t,x) = F(t,x,v)dv — pg in £, e 0 on 092,
R3 n

with the same diffuse boundary condition (1.7). The coupled system (1.1), (1.18),
(1.19) describes the dynamics of collisional electrons in the presence of a external
field. With the help of the external field ¢ and its sign condition on the boundary
(1.8), we could construct a short time weighted W1>° solution to the VPB system,
which improves the recent regularity estimate of such system in weighted WP space
for p < 6 in [1, 2]. It is important to note that « in (2.45) only depends on FE|sq;
therefore Vo but not ¢r. Our main result is the following theorem.

THEOREM 4 (weighted W1 estimate for the VPB system). Let ¢g(t,z) be a
given external potential with V¢ satisfying (1.8), and

(1.20) IV2du(t @)l + V205t 2) oo + [10:Vadp(t, €)oo < oo.
Assume that
(1.21) Hea|”‘2avr,vf0H + Hee‘vlzfoH + Hee|”‘2vvfo’ L <@

x,v

for some 0 < 6 < i, Then there exists a unique solution F'(t,z,v) = \/uf(t,z,v) to
(1.1), (1.18), (1.19) for t € [0,T] with 0 < T < 1, such that for some 0 < 0" < 6,
w>1,

(1.22) sup He9"“|2f(t)Hoo < .
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Moreover

(1.23) sup Hea/l""ze_w@)tavgu’uf(t,x,v)H < o0,
0<t<T o0

and

(1.24) oiltlET ||efw<”>tvvf(t)||Lg(Q)L11)+5(R3) < oo for0 << 1.

We now illustrate the main ideas in the proof of the theorems. The intrinsic
difficulty of regularity estimates stems from the singularity of the spatial normal
derivative of F' at the boundary. From (1.1), formally we have

oF 1 &
(1.25) — ~—JQ(F,F)~E-V,F —,F - 7,0-,F ; on 0Q,

on  n-v P
where 71 () and 72(z) are unit tangential vectors to 02 satisfying
(1.26) 71(z) - n(z) =0 =m(x) n(z) and 71 (z) X ro(x) = n(x).

We note that the nonlocal term Q(F, F') prevents the RHS of (1.25) from vanishing,
and hence this singularity persists in general.

The proofs of Theorems 1-3 devote a nontrivial extension of the argument of [6] in
the presence of external fields with the crucial sign condition (1.8). For Theorem 1, we
establish Green’s identity for transport equation with external field and apply it to the
derivatives V, , f. Clearly, the v derivatives behave nicely for the diffuse boundary
condition. For the z derivatives on the boundary, one can decompose V, as the
tangential derivatives 0, and normal derivative 9,,. As in [6], we use the Boltzmann
equation and the diffuse boundary condition to find a formula of 9, f on ~vy_:

(1.27)

2
1
Opf ~ — {—u “Vaof + Z Or, f + Vouf + lower order terms } (n(x) - u) du.
n-u>0

n-v :
i=1

Due to the crucial factor |n(z) - u| in the integral of (1.27), the boundary integral of
LP in Green’s identity has integrand with singularity as order

1

W € Llloc(v) for 1 <p< 2.

The distance function « plays a crucial role in the proofs of Theorem 2, Theorem
3, and Theorem 4, which can be controlled along the characteristics via the geometric
velocity lemma (Lemma 7). Note that in the presence of external fields and (1.13),
(1.14), we can prove the velocity lemma only when the sign condition (1.8) holds.
Because of the nonlocal nature of the Boltzmann collision operator, which mixes up
different velocities u € R?, we establish a delicate estimate for the interaction of
a?(t,z,v) with the collision kernel in (3.24), where, by the way « is defined, we can
control

1 1 -1
/ —[,pduSJ/ —————du < oo for ,6’<L.
lul<1 {a(s, z,u)}r—T lul<1 |n(z) - u|P—T p
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On the other hand, the appearance of |n(z) - v|*?~P*! in the boundary estimate will

need an additional requirement 3 > 2=2 to control the boundary singularity in (3.27).
These estimates are sufficient to treat the case for 5 < 1 but unfortunately fail for
the use 8 = 1, which accounts for the important C' estimate.

In order to establish the C'! estiamte, we employ the Lagrangian viewpoint, esti-
mating along the trajectory. Even though one cannot hope to control the regularity
near 7y due to the nonlocal nature of the collision operator, one can control its sin-
gular behavior (i.e., with weight a) with an important dynamical nonlocal-to-local
estimate (Lemma 11). The crucial gain of «, which only can be obtained for expected
singular behavior with negative power of «, is due to a combination of two facts: the
gain of power 1 is due to a velocity average, and gain of the local behavior of « is due
to time integration and convexity.

The proof of such nonlocal-to-local estimates is a combination of analytical and
geometrical arguments. The first part (Lemma 10) is a precise estimate of the ve-

locity integration which is bounded by [£(X (s))|f%; here one may roughly regard
&(X(s)) ~ dist(X (s),09). In this part of the proof we make use of a series of change
of variables to obtain the precise power % The second part is to relate the time
integration back to é For this part of proof, we first have the velocity lemma (Lemma
7) and the boundedness of the external field to ensure the monotonicity of |£(X(s))]

near the boundary, where we can use the change of variable

d§
dt ~ ——
lv- V¢

and recover a power of « as in the bound of &-integration through the velocity lemma
(Lemma 7). On the other hand, we use the sign condition (1.8) crucially to establish
a lower bound for |£(X (s))| when it’s away from the boundary, which helps to recover
a power of o as wanted.

In Theorem 4, we apply the idea of weighted C'! estimate, essentially the nonlocal-
to-local estimate (Lemma 11), to the VPB system. Here the argument is more delicate
as the potential is no longer fixed as in the previous case. Thus in the bulk we have
to control the quadratic nonlinear term

oVe -V, f.

In order to handle this term we need a bound for ¢ (t) in C2. Unfortunately such
estimate is a borderline case of the well-known Schauder elliptic regularity theory in
(1.19) when F' is merely continuous or bounded. A key observation is that

)

Lr(Q)

H JRELNT

1
< He‘w@)tavmf(t)H H/ e”f’(U)lS\/ﬁ—dU
0 R3 (&7

Lr(Q)

which leads to the C?°F bound of ¢ by the Morrey inequality for p > 3 as we can
bound || [5s ew<”>t\/ﬁédv”m(m < oo in (5.7).

For constructing a solution and proving its uniqueness, we need some stability
estimate of the difference of the solutions f — g. The difficulty again comes from the
term of V,¢p -V, f. To prove Li-stability for ¢ =1+ § with 0 < § < 1 we have, by
Sobolev embedding Vo ;_, € WH(Q) C L(Q)37,

J] 192650 Fufllf = g1 S IV2050 ), 1905

3
x

17 =0,
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Note that V, f is bounded from the boundary condition (1.7). However the equation

forg=1+46is

t

/wa(s,X(s;t,m,v),V(s;t,x,v))ds
0 Lite L3
=G vl .
< sup 1! e_w<”>taV1fH < o0,
t (0% LiL,,lj+(5 [eS)

as sup, | e_ Al ”LsLH‘; < o0

2. Traces and inflow problems with external fields. Now let F(t,z,v) =
Vitf(t,z,v). Then the corresponding problem to (1.1), (1.7), is

(2.1) (at-l-v-vz—i—E-Vv—g~E+V(\/ﬁf))f=Pgain(faf)a
(2.2)  f(t,z,v) = co/av) /n s F(t, 2, w) /(@) {n(z) - u}du, on (z,v) € 7.
Here
V(VE)(0) : = fﬂ)@bss(ﬂf, ViD @)
Ag/szv—ul“qO<| — )Ff )dwdu,
and

Pyain(f1, f2)(0) : = \FI()anin(\/ﬁfu Vif2)(©)

/ v —ul"qo ( — ) v (w) f1(u Ndwdu.
Re Js2 lv—
Throughout this paper we extend f for a negatwe time. Let
(2.3) f(s,z,v) =€’ fo(x,v) for —oo < s<O.
Note that this allows ¢ to solve (1.19) for a negative time.
For (t,7,v) € (—oo0, T] x 2 x R3, let (X (s;t,x,v),V(s;t,7,v)) denote the charac-
teristics

d [ X(s;t,z,0)| V(s;t,z,v)
(29) ds [V(s;t,x,v)] o {E(S,X(s;t,a:,v)) for —co<st<T,

with (X (¢;t, z,0),V(t;t,x,v)) = (z,v).
We define the backward exit time ty(t, x,v) as

(2.5) to(t,z,v) :=sup{s > 0: X(7;t,z,v) € Q forall 7 € (t —s,t)}.

Furthermore, we define zp (¢, ,v) := X (t — tp(t, z,v);t,x,v) and vy (t, z,v) == V(t —
ty(t, z,v);t,z,v). We also define the the forward exit time t¢(t, x,v) as te(t, x,v) =
sup{s > 0: X(7;t,z,v) € Q forall T € (t,t +s)}.

For the rest of the section we prove some estimates for the initial boundary prob-
lems of the transport equation with a given time dependent potential E(¢,z) which
is defined for all ¢ € R.
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(2.6) Of+v-Vof +E-Vof +vf=H,

where H = H(t,z,v) and v = v(t, z,v) are given.

LEMMA 1. Let D = sup{|lz — y| : 2,y € Q} be the diameter of the domain €.
Suppose || E||loo < 00, and let 0 < T < 1 be fized. Then for any (t,z,v) € [0,T] x Q X
R3 we have

¢
(2.7) / V(s)|ds < 5t(||Ells + D) + 4D.
max{0,t—tp }
Proof. Let
(2.8) My = 4([|Elloc + D).

If |v| > M,, then

||

(2.9) [V (s;t,z,v)| < ||+ T||E]oo < |v|+ 1 < 2w

and

2100 V(s) L =02 —/ (E(T,X(T» . “) dr > o] - t|[ Bl > 1YL

[v] |v] |v] 2
Thus from (2.10) we have
t t
t
(2.11) D> / V(s)- —ds > / 1ol g > VL.
max{0,t—tp } |U| max{0,t—tp } 2 2
Therefore (2.9), (2.11) imply
t t
/ [V (s)|ds < / 2|vlds < 2t|v| < 4D.
max{0,t—tp } max{0,t—tp }
On the other hand if |v| < M, then
t t
/ vesas < [ (o] + 11 Bll) ds < (M, + 2]l <5t Bl o+ D),
max{0,t—tp } max{0,t—tp }
as wanted. ]
LEMMA 2. For fized s with t — tp(t,x,v) < s < t, the map
(2.12) (t,z,v) € (5,T) x 74 — (X(s;t,2,0),V(s;t,z,v)) € A x R3
is injective with determinant

O(X(s;t,z,v),V(s;t,z,v))\
a(t, z,v) ) = In() - vl.

(2.13) det (

Proof. First from (1.5), we have that locally for any p € 09, there exists suffi-
ciently small §; > 0,d2 > 0 and an one-to-one and onto C?>-map

np{z €R?: |z <61} — 00N B(p, ),

(2.14)
= (),1,2)2) = (@)1, 2)2)-
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Now the map (2.12) is injective as the characteristics are deterministic. From
(2.14), we can compute the determinant of this change of variable:

(2.15)
(X (s;t,m(x)),v), V(s;t,n(zy),v))
8(t,x”,v)
{@X(S;tﬂ?(m)»v) Vo, X (st m(2)), ) VvX(S;t,n(xﬂav)}
0V (s;t,n(x)),v) VIHV(S,tm(x”),v) VoV (s;t,n(x)),v)
_ {&X(s;t,n(m),v) VIHn(xH)~VrX(s;t,n(9:H),v) V,,X(s;t,n(:q),v)}

oV (sit,m(zy),v)  Ven(z)) VaV(sit,n(z)),v) Vi,V(sit,n(z)),v)]"

Note that

X(sit+ A, X(t+ Ast,n(x)),v), V(IE+ Ast,n(z)),v) = X(s;t,n(x)),v),
V(sit 4+ A, X(E+ Azt n(zy),v), V(E+ At n(z)),v) = V(sit,n(x)),v).

Therefore
[0r +v - Vo = Vao(t,n(z))) - Vo] X (558, m(z)),v) =0,
[0r +v - Ve = Vad(t,n(x))) - Vo]V (sit,n(z)),v) =
Equivalently
(2.16)

atX(s;t,n(m),v)} _ [VmX(s;t,n(aq),v) VUX(s;t,n(q),v)} { —v }
oV (s;t,m(z)),v) V. V(sit,n(z)),v) V.,V ( Vo( '

From (2.15) and (2.16) we conclude that

(2.17)
(X (st (@), v), V(sit,n(z)),v))
(9(1571'”,1))
:{VIX(s;t,n(q),v) VUX(s;t,n(m)m)}{ —v Oz 03%3 .
Vo V(sit,n(z)),v) Vo V(sit,n(x)),v)| |[Vo(t,n(z))) Osx2 Idsxs
Since

we conclude that

(2.18)
—v Oz 033
V¢(t,77(37|\)) O3x2  Id3xs

= —v- (Qin(z)) x dan(z))).

From (2.14) the surface measure of 92 equals dS, = |01n(x|) x O2n(x))|dz|; thus we
conclude (2.13). o0

LEMMA 3. For any t > tp(t,x,v), the map

det

(3(X(S; t,n(xy),v), V(sit,n(z)), ’U)))

8(75,3:”,11) det [

(2.19)  (t,z,v) € [0,T] X y4 = (t — tp(t, 2, v), xu(t, z,v), v6(t, z,v)) € [0,T) X y_
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is injective and has determinant

ot —t .

(2.20) det ( ( b’“””“) _ @ ol

ot,z,v) In(zp) - vb|
For any T > tp(T, z,v), the map
(2.21) (z,v) € QX R® = (T — ty (T, 2,v), Tp,vp) € [0,T) x v_
is injective and has determinant

T—1 1

(2.22) det (a( b’xb’“b)) = .

d(z,v) [n(zp) - b

Proof. The map (2.19) is clearly injective as the characteristics is deterministic.
We first claim (2.20). Since z,zp € 99, from (2.14) locally we have two functions
n,mp such that = n(z)) = n(z|1,2)2) and b = N(Tp,|) = N(Tb,1, b 2).

We now compute the Jacobian matrix J of the map (2.19):

(2.23)
a(t - tb7 nb_l(X(t - tb; ta n(xn)a U))a V(t - tb; tv ﬁ(xl\)7 U))
B ot,z,v)
1 - 8” tb — Vutp
= [02x1 Va(ny ') (VaX - 00y — 0:X - 0nytn) Va(n, ') - (VoX — 0,X - Vitp)
031 VoV 0y — 05V - O VoV =0,V - Vyty
Let
=0 X (t —tu;t,n(x)),v) Oy M(Tp,)) O3><3:|
2.24 M = g ) b, , _
(2.24) [3SV(t —tw;t,n(z)),v) O3x2 Id3xs

Then we have
M-J

:{—&;X Oz, Mo 03><3:|
—0sV  0O3x2  Idsxs

1 —8ZH tb —Vautb
02kt Ve ) (VaX - 0ayn — 0sX - 0uytn)  Valy ') - (VoX — 9:X - Vits)
03><1 Vzv-az“n—as‘/'az“tb VUV—GSV-VUtb
C[F0sX 0:X - O0p o+ Duyy o Valny ) - (VaX - 00y — 05X - Ouy s
A% OV - Oy yto + VoV - Ouy — 95V - Ou 1)

95X - Voty + 895b,||77b ) vz(nb_l) (Vo X = 0:X - Volp)
0sV - Viutp + Vo,V — 05V - Vitp
[0 X V.X- Ozyn  VuX
LAY VoV Oun VoV ]’

since
(2.25) Oy Mo Va(ny ') = Va(mom, ') = Idsys.
Now from (2.18) we have

—BSX sz . 896 n va —v 896 n 03><3
. — Il — Il
det(M - J) = det [—BSV v,V - 6:1:“77 VyV} det [—E Oy Idsrs

= —v- (Oin(x)) x an(z))).
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Since

_ _asX 8mb,H b 03)(3 _
det(M) = det OV Onry Idsas| = P (O1my(wp,)) X Oamp(Th,))),

therefore

v+ (Oin(x)) x Oan(z))))
vp - (01 (@) X Oamp(2p )’

det(J) =

and we conclude (2.20).
The map (2.21) is also injective as the characteristics are deterministic. We then
claim (2.22). Let J’ be the Jacobian matrix of (2.21); then

At —tp,mp H(X(t — tp;t,2,0)), V(t — tp;t,z,0))

J =
d(z,v)
(226) —8ztb —Vutp
= Vol ') - (VaX — 05X - 0uty)  Valny ') - (Vo X — 05X - Vyty)

V.V — 0,V - 0.ty V.,V -0,V - V,tp
Let

—0s X (t — tost,n(z),v)  Ony,  Mo(Tn)) 03><3:|
2.27 M = ) ) b, , '
(2:27) -0,V (t —tp;t,n(x),v) 032 Idsyxs
Then

oo | VaX VX

(2.28) M J = {VIV Vvv] .

Since det(A’ - M) = 1 and det(M') = —vp, - (O1mp(@p,|) X Domp(2n,))),

1
—tp - (D1 (1) X Dampy (@)

det(J') =
and we conclude (2.22). |
LEMMA 4. Suppose h(t,z,v) € L*([0,T] x Q x R?); then

(2.29)

T
/ // h(t, z,v)dvdxdt
0 QxR3

0
:// / MT+ s, X(T+s;T,2,0), V(T + s;T,x,v))dsdvdz
QxR3 J — min(T,tp (T,z,v))

T 0
+ / / / h(t+ s, X(t + s;t,2,0), V(t+ s;t,x,v))dsdvydt.
0 Jyq

— min(¢,tp (¢,2,v))
Proof. The region {(t,z,v) € [0,T] x Q x R?} is the disjoint union of
A={(t,z,v) €[0,T) x @ x R® : te(t,z,0) +t < T}

and
B = {(t,z,v) € [0,T] x Q x R® : t¢(t,x,v) +t > T}.
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Now let
A= {(t,s,2,v) €[0,T]? X vy : 5 < tp(t,z,v),s < t}

and
B' = {(s,2,v) € [0,T] x QxR : 5 < tp (T, z,v)}.
Consider the map A : A’ — A with
A(t,s,x,v) = (t— s, X(t — s;t,2,0), V(t— s;t,2,0)).

Since te(t — s, X (t —s;t,2,v), V(t—s;t,2,0))+(t—s) =s+(t—s) =t < T, Ais well
defined. And since the characteristic flow is deterministic, « is injective. And for any
(t,z,v) € A, since tg <t + t¢ and tp(t + tg, X (¢ + te;t, 2,0), V(E + te; t,x,0)) > tr as
x € ) is in the interior, we have

(t+tf(t,d?,U),tf(t,l‘,U),X(t—|—tf(t,.’L‘,’U);t,[E,U),V(t+tf(t,il?,1});t,1‘,11)) € A/'
Moreover
A(t+tfatfaX(t+tf;t7z7v)7v(t+tf;taxav)) = (t,x,v),

so A is surjective. Therefore A is bijective with inverse A7L(¢,x,v) = (t+t¢, te, X (t+
te;t,x,v), V(E+te; 6, z,0)).
Suppose locally at 2 € 0Q we have x = n(z|) as in (2.14), and let

(t—s,X({t—st,2,v),V(t—s;t,x,0v))

Ja= a(t,s,z,v)

be the Jacobian matrix of A.
Then we have
1 -1
Ja = |0:X(t —s;t,z,v) + 0 X(t — s;t,x,v) —0sX(t — s5t,2,0)
sV (t —s;t,x,v) + 0V (t —s;t,x,v) —0V(t—s;t,z,v)
O1x2 O1x3
Oz X(t = sit,z,0) 0w X(t—s3t,x,v)
Oz V(t—s;t,z,v) OV (t—s;t,x,v)

Let J/; be the matrix obtained by adding the first column of J4 to its second
column, so from (2.18) and (2.13) we have

(2.30)
det(J4) = det(J)

1 0
=det < |0: X (t — s;t,z,v) + 0 X(t — s;t,x,v) 0 X(t — s;t,x,v)
0sV(t —s;t,x,v) + 0 V(t—s;t,x,v) O V(t—s;t, z,v)

O1x2 O1x3
a"“7||‘Xv(t_S;tma’v) avX(t_S;t,$7U)
8I||V(t78;taxav) avV(t*S;t,Q],U)

_ det O X (t — s;t,z,v) 81HX(t—s;t,m,v) DX (t — s;t,2,v)
e V( 8V (

OV (t — s;t,x,v) Oz, t—s;t,x,v) t—s;t,x,v)
:det{{VxX(t—S;tyﬁ(xl\)w) VUX(t—s;t,n(xH),U)] [ —v aww 03><3}}
VeV (t—s;t,n(x)),v) VoV(t—sit,n(z)),v)| [Vt n(x))) Osxz Idsxs
—-v Ozym Osxs
= det I
° |:V¢(t,n(x”)) O3x2 Id3><3:|

— v (Bin(z)) x danlzy)).
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Therefore

/// h(t,z,v)dtdzdv
A
T min(tp (¢,2,v),t)
= / / / h(t—s, X(t—s;t,x,v), V(t — s;t,x,v)dsdydt.
0 Y+ 0

Now consider the map B : B’ — B with
B(s,z,v) = (T — s, X(T —s,T,x,v), V(T — s, T, z,v)).

Since t¢(T — s, X (T — 5, T,x,v), V(T — s, T,z,v))+ (T —s) >s+ (T —s) =T, B is
well defined. And since the characteristic flow is deterministic, § is injective. And
for any (t,z,v) € B, since tp(T, X(T;t,z,v),V(T;t,z,v)) >T —t as ¢ € ) is in the
interior, we have

(T —t,X(T;t,z,v),V(T;t,z,v)) € B'.

Moreover
B(T —t,X(T;t,z,v),V(T;t,z,v)) = (t,z,v),

so B is surjective. Therefore B is bijective with inverse B~!(t,z,v) = (T — t,
X(T;t,z,v),V(T;t,xz,v)). And since B is a measure preserving change of variable
we have

/// h(t,z,v)dtdzdv
B
min(T,ty,(T,z,v))
= // / T —s,X(T —s;T,2,v),V(T — 8; T, x,v)dsdzdv.
QxR3 JO

Thus

T
/ // h(t,z,v)dvdzdt = /// h(t, z,v)dtdzdv + /// h(t, z,v)dtdzdv
0 QxR3 A B

0
= // / T + s, X(T+s;T,2,v),V(T'+s;,T,2,v))dsdvdx
QxR3 J —min(T,tp(T,z,v))

T 0
+/ / / h(t+ s, X(t + s;t,2,v), V(t+ s;t, 2,v))dsdvdt,
0 Y+ 7 — min(t,ty (t,z,v))

so we conclude (2.29). 0

LEMMA 5. (Green’s identity) For p € [1,00) assume f, Oif +v-Vof+E-V,f €
LP([0,T); LP(Q2 x R®)) and f, € LP([0,T); LP(y)). Then f € C°([0,T]; LP(2 x R3))
and f,, € LP([0,T); LP(~y)) and for almost every T" € [0, T]

T T’
(231) AT+ / B = IO+ / e,

- /OT' //an@ {00V BV, f}FIP2F.

Proof. For almost every T’ € [0, T], by Holder’s inequality we have

1Of +v-Vaf + E-VuF)fIP 2 flln1 (0. 11x0xR?)
<N@ef +v-Vef + E-Vof)lrqoryxaxes) I 1P~  Lo/o-1 (0,11 xaxrs) < 00
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Thus by Lemma 4 we have

T/
/ / D@uf +v-Vof + E-Vof)|fIP2f dedvdt
OxR3

S o
QxR3 min(T’,ty (T7,z,v))

+ E-V OIfP2HT + 8, X(T + 5T, 2,0), V(T + 8T, 2,v))dsdvdz

T 0
] POnf +v-Vaf
0 Y+ 7 — min(t,ty (t,z,0))

+E-VoHIfIP2f(t+ 5, X(t+ s;t,2,0), V(t+ s;t,2,v))dsdydt.
Since
dis|f|p(T' +8,X(T' + 8T, 2,0), V(T + 5T, z,v))
= p(Orf+oNof + E-V o OIFP 2T + 5, X(T + T, 2,0), V(T + 5T, 2,v))

and
d
£|f|p(t+ s, X(t+ s;t,x,v), V(t+ s;t,z,v))
= p(Oif +v-Vof +E-V )|FIP2f(t+ 5 X(t+s;t,z,0), V(t+ s;t,2,0)),
we have
(2.3?)

[ [ w0t o ug BV poduds
QxR3
0 d
:// / —|fIP(T +s8, X (T'+8; T, x,0), V(T +s5; T, z,v))dsdvdx
QxR3J — min(T" ,tp (T’ ,z,v)) ds

+/ / / —|f|p(t+5 X+ s;t,z,v),V(t+ s;t,x,v))dsdvydt
Y+ min(t,ty (t,2,v)) ds

= // |fIP(T", 2z, v)dedv — // L7 >ty (10} [P (T = to, ©b, vp)dzdy
QxR3 QxR3
- // Lirctn (2,0} [ F1P(0, X (0; T 2, 0), V(0; T, 2, v) ) dwdw
XR3

PGt 2,0 dvdt—/ / st (v Pt — to, 20, vp)dydt
Y+

s

] ety PO X Ot 0,00, V0t
-

First consider the map

Ap{(x,0) € QxR T <t (T, 2,0)} — {(z,v) € 2 x R®: t(0,z,v) > T'},
(.’E,U) = (X(O;T/,J?,U), V(O;T/7$,U)).

This map is well defined as t¢(0, X (0; 7", x,v), V(0; T", z,v)) > T’ since = € Q is in the
interior. 4; is injective as the characteristic flow is unique. And for any (z,v) € QxR3

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/20/20 to 128.104.93.46. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

REGULARITY OF BOLTZMANN EQUATION W/EXTERNAL FIELD 3209

such that t¢(0, z,v)>T", we have X (T";0,z,v) €Q and A, (X (T";0,2z,v),V(T';0,x,v))
= (z,v), so A; is surjective. Therefore A; is a bijection. And since the trajectory of
this change of variable is measure preserving, we have

(2.33) // | folPLite(0,2.0)>1ydxdv
QxR3

_ // folP (X5 2,0), VO T, 0)) 1y 1,00y
QxR

Next, we consider the map
Ao {(t,z,v) € (0,T'] x v4 : t < tp(t,z,v)} = {(z,v) € A x R® : (0, z,v) < T'},
(t,z,v) — (X(0;t,2,v), V(0;t,2,v)).

This map is well defined as t¢(0, X (0; ¢, z,v), V(0;¢,z,v)) =t < T'. As is injective as
the characteristic flow is unique. And for any (z,v) €  x R? such that t¢(0,x,v) <
T', we have (tg, X (tg;0,2,v), V(te;0,z,v)) € (0,T'] x v and tp(ts, X (t£; 0,2, v),
V(tg;0,z,0)) > t¢ as * € Q is in the interior; moreover, As(te, X(t¢;0,z,v),
V(ts;0,2,v)) = (z,v), so Ay is surjective. Therefore As is a bijection. So by our
change of variable computation (2.18) we have

(2.34) // | fol"Lite(0,.2,0)<rrydady
QxR3

T/
- / / FolP(X(0: £, 2, 0), V(0: £, 2, 0) Lty 1m0y vl
0 Y+

Therefore we have

// | folPdwdv =// Ifol”l{tf<o,z,v>>T'}d$dv+// [fol"Lite(0,00) <17y ddv
QOxR3 QOxR3 QxR3
:// 5 |f0|p(X(O;T,7:CaU)aV(O;T/amaU))]-{T’<tb(T’,w,v)}dxd’U
QxR

T/
+ / / |f0|p(X(O;t,.I‘,’U),V(O;t,J,',’U))l{t<tb(t7w,v)}d’}/dt.
0 T+

Then consider the map

Az:{(t,z,v) € [0, T Xy : t>tp(t, x,0)} = {(s,2,0)€[0, T )xvy_ : T' > s+te(s,x,v)},

(t7 xz, U) = (t - tb(ta z, U)7 Th, Ub)'
This map is well defined as t¢(t — tp, Zb,Ub) + (t —tp) = tb +t —tp =t < T". As
is injective as the characteristic flow is unique. And for any (s,z,v) € [0,7") X ~v_
such that s + tg(s,z,v) < T', we have (s + tg, X (s + tg;8,2,0), V(s + tg;2,0)) €
[0,7] X v+ and tp(s + t5, X (s + t558,2,0), V(s + tg; s, 2,v)) = tg < s + tg; moreover,
As(s+te, X(s+tg;s,2,0),V(s+tg;s,2,0)) = (s,2,0), so Ag is surjective. Therefore
Aj is a bijection. With the determinant of this change of variable computed in (2.20)
we conclude

T/
(2.35) / / LIt 2 0) > st (s,0,0)y A VS
0

T/
= / / [fIP(t = tu(t, 2,v), To, Ub) L ety (t,0,0) 1 ddL.
0 Y+
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Finally, consider the map

Ag{(z,0)EQ x R : T' >t (T, z,v)} = {(s,2,v) € [0,T') x v_ : T' < s+ t¢(s,z,v)},
($7U) = (T/ - tb(T/7I,U),$b,’l]b)-

This map is well defined as t¢ (T —ty, Tp, vp) + (T —tp) > tp+ (T —tp) =T as x € Q
is in the interior. A4 is injective as the characteristic flow is unique. And for any
{(s,z,v) € [0,T")x~y_ such that T'<s+tg(s, x,v), we have (X (T"; s,z,v), V(T'; s,x,v))
€ OxR3 and tp (T, X (T"; 5, 2,v), V(T'; 5, 2,v)) = T'—s < T"; moreover, A4(X (T'; s, x,
v), V(T; s,x,v)) = (s,2,v), so Ay is surjective. Therefore A, is a bijection.
Therefore by the computation of the change of variable (2.22) we have

(236) / / |f|p(t71'7U)I{T’<s+tf(s,w,v)}d7dt
0 o
= // |f|p(T/ — tb(j—ﬂ7 Z, 'U), ITh, Ub)l{T’th(T”x,v)}dxdv'
QxR3

Now substitute all these identities (2.33), (2.34), (2.35), (2.36) into (2.32), and
we finally get

T/
/ / p(Ouf +v-Vof + E -V, f)|fIP2 fdadvdt
0 QxR3

[ r@ s = [ A 57Tt u, ) dade
QxR3 QOxR3
- // L ctn (12,03 | FIP(0, X (0; T 2, 0), V(0; T, 2, v) )dadv

|f|p t,x,v d’ydt _/ / 1{t>tb(tzv }‘f|p(t - tb7xb7vb)d’ydt
T+

L.
/ L (t<totzo)} [ FIF(0, X (058, 2,v), V(05 ¢, 2,v))dvydt

// FP(T 2, 0)ddv — / /|f| (62, 0) L2 <ty o.mmyp
QO xR3

- // |fo|p1{tf(0,x,v)>T/}d:vdv
QxR3
T/ T/
+/ / Iflp(t,x,v)dvdt—/ / FIP (8 2, 0) 17> gt (50,00 YD
0 T+ 0 vy

- // |f0|p1{tf(0,m,v)§T/}dmdv

QxR3

T/

=[] [© ] i v

QxR3 0 .

T/

7T o

QxR3 0 v

so we conclude (2.31).
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Note that the left-hand side of the above equality is finite, and by our as-
sumption all the terms on the RHS except fOT f’w |f|P(t,x,v)dydt are finite; thus
fe LP([0,T]; LP(7+))- O

We now define 7§ to be the set of almost grazing velocities or large velocities
(2.37) 7L ={(z,v) € v4 :n(z) v <eor |v] >1/e}.

LEMMA 6 (trace theorem for bounded potential). Let 0 < T < 1 be fized.
Assume that |v(t,z,v)| < (v) and ||E|leo < 00. Then for any 0 < € < 1, there exists
a Cq > 0 depending only on ) such that for all0 <t < T,

(2.38)

t
/ / |h|dyds
0 Jyi\§

TlEl 1 |23
3
€

t
< Co [ho||1+/(||h(8)||1+||[3t+v-vx+E-Vu+l/]h(8)||1)d8 :
0

Proof. For (t,x,v) € [0,T] x v4 \ 7%, we claim

€3

(2.39) (tw,v)E[é,nTlf]Xw\vi to(t,z,v) Za TTEL
Since
Vé(z) v = [VE(z)[n(z) - v > [VE(x)le Za € VE(zb) - vp <0
and
d

75 (VE(X(5)) - V(s)) = V(s) - V2E(X(5)) - V(s) + VE(X(5)) - B(s, X (5))

1
<o (VP El) Sa (oPHIEI%+1) <o (62+||E||Zo+1)

for all t — tp < s <'t,

€ 63

ty(t, z,v) > > ,
blhm0) 2 G T L + 1)~ Oali T B

This proves (2.39). Let

€3

T Ca(l+ E|E%)

Now if h solves (2.6), then for (¢,z,v) € [0,T] X 74+ and —min{¢, tp (¢, z,v)} < s <0,
we have

€1

h(t,z,v) = h(t + 5, X (t + 5), V(t + s))e~ 2 vV +7)dr’

(2'40) O 0 ’ ’
+/ e vV gr X (t+ 1),V (t+ 7))dT,

where X(t+7) = X(t + 7;t,z,v), and V(t+7) = V(t + 7;t,2,0).
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Then by Lemma 1

0
min{¢, ty(t, z,v) Hh(t, z,v)| = / |h(t, x,v)|ds

— min{¢,ty (t,z,v)}

0
< cpemens ( [ It 4, X (04 5),V e+ 5))lds
— min{¢,ty (t,z,v)}

0 0
+/ / H(r, X (t+7), V(1 +T))d7‘ds>

— min{¢,ty (t,z,v)}

0
< Cr TNl / Wt + 5, X(E+ 8), V(E+ 5))|ds
— min{¢,t, (t,z,0)}

0
+T/ H(T,X(t+T),V(t+T))dT>.

— min{¢,ty (¢,z,v) }
. T 0
We then integrate (2.40) over [ fw\vi JZ it (t.o0)) tO €L
(2.41)
T
elx/ / |h(t, z,v)|dydt
er Jyp\vL

T
min {t,tp(t,z,v)} x / / [h(t, x,v)|dydt

<
ler, TIX[v+\7§] er Jyp\vg

T 0
< ngeT“E“w/ / / \h(t 4 s, X (t +5), V(t + 5))|dsdydt
0 Jyp\vs J—min{t,ty(¢,z,0)}
T 0
+056T‘|E‘|MT/ / / |H(1, X (t+ 7),V(t + 7)) |drddt
0 Y+ \v§ /= min{t tp (t,2,0)}

T T
< CheTIPl (/ () dt + / ||[at+v~vm+E-vv+¢1h<t>1dt>,
0 0

where in the last inequality we have used the identity (2.29).
On the other hand, because of our choice € and €1, by (2.39) we have ¢y (¢, z,v) >t
for all (¢,z,v) € [0,€1] x v4 \ 7%. Then

0
|h(t, z,v)| < |ho(X(0),V(0))] + /_t |H(t+ 7, X (t+7),V(t+7))|dr.

Integrating over [ fw\ﬂ/é we get
it

(2.42)
€1 €1
[ mtewiades [T o, vola
0 Jyi\g 0 Jye\g
€1 0
+/ / |[Ht+7,X({t+7),V(t+7))|drdydt.
0 Y\ St

where the second term is bounded, again from (2.29), by
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€1 0 €1
/ / / |H(t+7, X (t+ 1), V(t+7))|dr < / [[0¢+v - Vot E - Vy+¢lh(t)|1dt.
0 Jyp\yg /-t 0
And by (2.34) the first term is bounded by
/ / |ho(X(0;t,2,v), V(0;t,z,v))|dvydt
0 Jyp\vg
T
< / / |hol (X (052, 2,v), V(05 1, 2,0)) 1 {1ty (¢,2,0)y dydl
0 Jvy

= //Q . 1ho|1{te0,2,0)<ydxdv < ||hol[1.
X

Combining (2.41) and (2.42) we conclude (2.38). O

We need a cutoff function for our weight function.
For any € > 0, let x. : [0,00) — [0, 00) be a smooth function satisfying

Xe(x) =z for 0 <z < i,
€
Xe(x) = C, for x > —,
(2.43) (@)
€ €
Xe(x) is increasing for — < = < 3
Xe(w) <1

Let d(z,09Q) = inf,caq ||z — y||. And for any § > 0, let
Q% = {x e Q:d(z,00) < J}.
Since 99 is G2, we claim that if § < 1 is small enough we have

(2.44)
for any z € Q° there exists a unique Z € dQsuch that d(z, z) = d(z, dQ); moreover,
sup |V,Z| < .
e’
To prove the claim, we have that by (2.14) without loss of generality locally we
can assume 7 takes the form n(z)) = (z),1,2)2,7(2)1,7)2)) and T = n(7)) =
— — —f — — — — — 2 —
('rHJ’x”)Q’n(x‘lfl’x‘lvz))' DenOte 87‘77 = 8;9“777(33”’1,3:“’2) and 617-777 = 63:”7?81“’_777(%‘”11’

x”ﬂ)'
Now since |n(z)) — |? = infyeaq |y — |2, 7| satisfies

(@)1 — 1) + (?(fn,hfu,z) - $3)5177(5€|,1»$|,2)] —o.
n

w(Z1,22,23,T) 1, =1,- _ _ o _
( 1,22, 23, 2,1 H72) {(:L‘|72—x2)+( (35||A,17$\|,2)_$3)8277(35|\,1,-T\|,2)

Since
det (&JJ) ~ det [1 + (0?2 + (7 —w3)0111  OofOnT] + (7] — x3)O1 2] ]
ox| NN0ai] + (7 — x3)01,27 1+ (821)* + (7 — 23) 1 ,27]
= (1+ (2)?)(1 + (927)%) — (17927)* + O(|7] — w3])
=1+ (017)* + (027)* + O(|7 — w3]) > 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/20/20 to 128.104.93.46. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

3214 YUNBAI CAO

if [7(z)) — 3| is small enough. By the implicit function theorem, (Z)1,7)2) are
functions of x1, z9, x3 if x is close enough to 0S.
Moreover,

0 _ _ (w\' w
83;‘j N 8i‘|| 8xj
_ 1 1+ (02n)? + (77— w3) 01,001 —0aijO17] — (] — x3)01 27 | Ow

et (%) { —70s0] — (77— x3)0101 1+ (017))> + (77 — 23)D1 17|  Daj
|

is bounded as aa—;j is bounded, and det(g—%) is bounded from below if x is close enough

to the boundary. Therefore |V,Z| is bounded. This proves (2.44).
Now define

1/2

Bt x,v) = {lv -VE(@) P +€(2)? = 2(v - VZE(2) - v)é() — 2(E(t,T) - VE(T))E(2)

for all (z,v) € Q% x R3. Let ¢ := min{|£(z)| : © € Q,d(x,09Q) = 6}, and let x5 be a
smooth cutoff function satisfies (2.43); then define

’ T.v T 5
(2.45) b, 2.0) = {(éis (B(t, z,v))), x§$\§25

LEMMA 7 (velocity lemma near boundary). Suppose E(t,x) satisfies (1.15) and
the sign condition (1.8). Then « is continuous, and for § < 1 small enough, we
have, for any 0 < s < t and trajectory X (1), V(7) solving (2.4), if X(7) € Q for all
s <1 <t, then «a satisfies

(2.46) e CLAVENEDIT (5 X (5),V(s)) < alt, X (1), V(1))
CLLVERNAT o (5 X (), V (5))

IN

Ce(|Ellc HIVE] oo +10: Bl o +1)
Cg

for any C >
only on &.

, where C¢ > 0 is a large constant depending

Similar estimates have been used in [9] and then in [11, 6].

Proof. Since B(t,z,v) > [£(x)| for all z € 99, B(t,z,v) > % on an open neigh-
borhood U of {z € Q : d(z,00) = 0}. So by (2.43), a = C, on U, and therefore « is
continuous.

Now let’s first claim that if X (7) € Q9 for all 7, then 32 satisfies

(2.47) —C(V ()| + )3 (1, X (1), V(7)) <

Ce(lBlloc+ IV Ell oo +[|19¢ Bl o +1)

for any C' > o
By direct computation
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(2.48)
{0 +v -V, + E-V,}3(tz,v)

=2(v- VE(x))(E(t, ) - VE(2)) + 2(v -V “V7E(x) - v) +26(2) (v - VE(x))

= 2(E(t, @) - (V*(2) + VZE(2)") - v)é(2) — 2(v -V VE(x) - v)
— 20+ (v V() - v)§(2)

= 2(E(t,7)-£(7)) (v VE(2))=2(VaT) [0V E(t,T) VE@)+0-VE(T) B(t,T)] £(2)
—2(0:E(t, ) - VE(T))§().

Since
(2.49) (E(t,z) - V&(x)) = B(t,T) - VE(T) + Vo (E - VE)(2') - (z — T)

— B(1,7) - VE@) + | V(B V() (”‘;(‘x )9” é(a).

We claim that ‘z(—j is bounded for all x € Q. This is obvious when z is away from
the boundary 9Q2. When z is close to 0f2, since

(2.50) &(z) = &(@) + VE(2") - (2 — ) = VE(@2") - (z = T) = [VE(2") ||z — | cos(0),

then

T—T| 1

§x) | V&)l cos(8)]”

where x” is a point on the line segment linking x and T and 6 is the angle between
the two vectors —V¢&(T) and VE(2) by our choice of Z.

Now since we have |[VE&(x)| > ¢ > 0 when z is close to 9f2, we can choose § so
small that if d(z,08) = d(x,z*) < §, the angle between V&(z) and VE(z*) will be
small enough such that | cos(0)| > 1/2.

Therefore

r—
§(x)
for all z € Q as claimed. From (2.48), (2.50), and (2.51) we have

1
2.51 < -
(2:51) <<

(2.52)
{0y +v -V, + E -V, }32(t,z,v)
=2(v- V{(z T) - VE(T) + C1 vE | lell. (v VE@))E(x) + 26(x) (v - VE(2))
—2(B(t,x) - (V*(2) + VZ(2)") - v)é(x) — 20 - (v- VZE(2) - v)E(2)
— 2(E(t,z) -&@ptv- VE(z)) — 2(VeT) [v- VL E(t,T) - VE(T)
+0- V(@) - B(t,7)] £(2) — 2(0,E(t,T) - VE(T))E(2).
From (1.8) and (2.44),
{00 - Vot B -V} B2(1,2,0)] < Ce(| Blloo HIVE oo Elloo + 1) ([o]+[v]) [€(2)]|

Ce(|Ellos + IVE| o + |0 Ell oo + 1
c(1Elloo + | gE 19:Bllce + 1)1 524, 2, 0).

IN
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Since

5182(7-7)((7—)7 V(T)) = {815 +v- VQL +FE- V’U}BQ(T’X(T)7 V(T))a

we conclude (2.47).
Next we show that o?(r, X (1), V(7)) satisfies

—C(V ()| +1)a?(r, X (7), V(7)) < %a2(T,X(T)aV(7))
< C(V ()| + 1)a’(r, X (1), V(7).

This is clearly true if X( ) € Q\ Q0 as a is constant there. For X(7) € Q° we have
it B(r, X (7), V(1) > &

_27

L o2 (7, X(7), V(7)) = X (8, X (7), V()

= Xy (B%(, X(7), V(T))%ﬁZ(T,X(T)y V() =0,

so the inequalities are automatically true. If (7, X (7), V(7)) < %, we have by (2.43)
B(r, X (1), V(1)) < 2xs (B(1, X (7),V(7))). Therefore by (2 47) and X5 < 1 we have

(283 —20(V(r)| + 1)a?(r, X(7), V(7)) < -0?(r, X(r), V(7))
T
< 20(|V (1) + 1) (1, X (1), V(1)).
Finally, by the Gronwall inequality we have

eIV (5, X (5), V(5) < (1, X (1), V(1))
< 2O LAV DT (25 X (5), V().

Taking the square root we get the desired inequality. ]

LEMMA 8. If E(t,x) € C([0,T]; CY(R?)) and n(zw(t, z,v)) - vp(t,z,v) # 0, then
(tb, T, vp) is differentiable and

Z’;‘;: (Ibl) oonlr) {ez / / ( o )E(T,X(T))drds},
=g [ (v sexcne
?;;f: g?ﬁ’f“ o, 7o) + / (am(l) ) E(7, X (1))dr,
R e () )

a.’I}b - t—1tp
5o, —tpe; — vb—i—/ / ( 90, )E(T,X(T))des,

ooy oty e 19X (T)
T = o E(t—tb,xb)+/t ( oo, V) E(mX(7))dr.

(2.54)

Proof. The equalities are derived from direct computations and an implicit func-
tion theorem. For details see [6]. d
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Denote

//5@E +E = / / Op 0 E(X des—/ / V.E(X - Vg o X(7)drds,
/amEz/ D0 o E(X ds—/ Vo E(X(5)) - Voo X (5)ds.
t—tp

Let 71(z) and 72(x) be unit tangential vector to 0N satisfying (1.26). And let
0,9 be the tangential derivative at direction 7; for g defined on 0f2. Define

2
(2.55) Ig—ZTZ g — {@g—i—z U T;)0ng+vg—H+E- va}
“Up

i=1

PROPOSITION 5. Assume the compatibility condition

fo(z,v) =g(0,z,v) for (x,v)€y_.

Letpe[l,00) and 0 < 0 < 1/4. [¢(t,z,v)| S (V). |Ellco + [|VaFlloo < 0.
Assume
vrchavva S Lp(Q X RB)v
Vg, 0,9 € LP([0,T] x v-),

n(x) - v

2
{(“)tg—i— Z(v -7)0r,9g+vg—H+E- va} € LP([0,T] x v—),

2
W {3tg+ ;(v.n)ang — I/g—|—H} € LP([0,T] x 1),
V.H,V,H € LP([0,T] x Q x R?),
eIy, ey, L € LP([0,T] x Q x R),

ee\vIQfO € L®(Q x R3)’69\U|2g € 1(0,T] x ),
PP H € Lo([0,T) x Q x R?).

Then for any T > 0, there exists a unique solution f to (2.6) such that f,0¢, Vi f,Vyf
€ CY([0,T); LP(Q x R3)) and their traces satisfy

vvf"y_ = Vg, vacfl'y_ =V.g9 on ~_,
(2.56) Vo f(0,2,0) = Vo fo, Vo f(0,2,0) = Vo fo in QxR3,
atf(0a$7v) = ath in £ x R37

where Vg is given by (2.55).

Proof. Consider the case t < t, and t > tp separately and integrate along the
trajectory X (s),V (s); we have for ¢ < tp

fta0) = J(X(O.VO) Y = [ (=X = 9.V =) ) s

S

- fO(X(O),V(O))e’fOt”+/ e~ RVH(E— 5, X(E— 8), V(L — 5))ds,

0
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where H = {0 +v -V, +E-V,+vif,v=vit—-7,X({t—-7),V(t—-7)). And for
t > tp,

s

t b
flt,x,v) =€~ Jo® Yg(t — tp, Tb, Vb) + / e VH(t — s, X(t —5),V(t— s))ds.
0
We can rewrite it as
f(tvxav) = 1{tStb}€7 Jo UfO(X(O)v V(O)) + 1{t>tb}ei Jo® Ug(t - tbvxbavb)
min{ty,t} s
+/ e o VH(t — s, X(t —5),V(t — s))ds.
0
By direct computation we have
sz(t,x,v)l{t;étb}

= Lyenye 20V | Vafo- Vo X(0) + Vo fo - VoV (0)

t
- fo/ (Vv - Vo X + Vv -V V) (¢t — 7')‘|
0
+ 1gisgye” Io" V{ — Vatpr(t —tp)g(t — tp) + Vatp H(t —t1)

—g(t—tp) /Otb(ku VX 4+ V-V, V)(t— 7')}

+ 1gsaye 107 Y0, (g(t — ty, 2b,vb))

min{¢,tp } .
+ / e oV IV H(t—5) VoX(t—5) 4+ VoH(t—s) - VoV(t—s)
0

—H(t—s) /OS(VIV~V$X +VUV-va)(t—T)1 ds.

vvf(ta €, v)l{t;ﬁtb}

—1penye 77| Vafo - Vo X (0) + Vo fo - Vo V(0)

t
— fo/ (VQLV . V’UX + vvl/ . VUV)(t - T)]
0
+ 1se e Jo® ”{ = Vautpr(t —t)g(t — tp) + Vil H(t — tp)

gt —tn) /Otb(vmy VX 4 Vv - Vo)t — T)}

F 1 e 070, (g(t — th, ab, b))

min{t,tp } R
+ / e ov [VIH(t —8) -V, X(t—s)+ V,H(t—s)-V,V(t—s)
0

—H(t—s) /Os(vmy VX 4 Vv V,V)(t — T)] ds.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/20/20 to 128.104.93.46. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

REGULARITY OF BOLTZMANN EQUATION W/EXTERNAL FIELD 3219

Regarding g(t — tp, 2p(t,2,v),v) as a function on [0,7] x Q x R3, we obtain from
(1.26) that

0z[9(t — b, Tb, V)] = Vo9 - Voan = (11059 + 7205,9) - VaTp.
Thus from (2.54) we have

aﬁ[g(t - tba Tp, vb)]
= —Vutp0ig + VrgVexy + VygVaup

n(mb) v — n(xb) . ff 33;E

- " n(zp) - vp tg n(xp) - vp %
+ TlaTlg + TQaTQQ - M (Ub : Tla'rlg + Up - 7-287'29)
n(a:b) * Upb
n(zp) - [ O F
- (n'zib{‘.fvb (vb - 7107, g + Vb - T20+,9)
- M(E “Vug) = Vg - /a:rEa
n(xp) - vp

av [g(t - tba Tb, Ub)]
= —Vutb0ig + Vo Vg + VogV,vp

_ ton(xp) S — n(zp) - ff O, F

1%,
n(xp) - b t n(Tp) - b t9
n(zp)
— (1107, 9 + T20r,9) — tb——-—— (Vb - T107, 9 + Vb - T207,9)
n(xy) - vp
n- [ O0,F
- L (vb - T107,9 + Vb - 7201, 9)
n-vp
t
_ M(E-va) —va-/avE—i—va.
n(zp) - Vb

Plugging into the previous equation we eventually have
(2.57)
vzf(t7 x, U)l{t;étb}

R P |:sz0 Va2 X(0) + Voo - VIV(O)—fO/
0

t

(Vev - Vo X4V, - VIV)(t—T):|

t 2 tp
+ 1lgsey€e Jo® V{ ZTiang - Vg - /azE — g/ (Vov - Vo X + Vv - Vo V)(t— 1)
i=1 0

2
{81&9 + Z(Ub -13)0r,g+vg—H+E - va}

n - Vb =1

. L E 2
— % {Btg + Z(vb - 73)0r, 9 — Vg + H} }(t — tb, Tb, Ub)

n-v —
min{¢,ty } s

+ / e Jov {VZH(t —5) - VoX({t—38)+VH({t—s) Vo, V(t— )
0

— H(t—s) /OS(VxV VX 4+ Vv - Vi, V)(t — 7'):| ds,
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Vﬂf(tv z, v)l{t¢tb}

t
=1qcp e fov [foo-v,,X(O)—&-vao~VUV(O)—f0/ (Vav - Vo X+V,v -V, V) (t—7)

— 1psepytoe Jo® {Zn@ng {&594— Z Ub - Ti)O0r, g

i=1

+1/g—H—i—E‘va}}(t—tb,xb,vb)
t th
+1{t>tb}e_f0b"{vvg—g/ (VxV-VUX-i-VUV-VvV)(t—T)—va-/&,E
0

OWE
+”H{ag+2vb 7:)0r,g — Vg+H}}( — b, Tb, Ub)

n - Vp =1
min{t,ty } B
+ / e Jov {VZH(t —5) Vo X(t—8)+ VoH(t —s)- V,V(t—s)
0

CH(t—s) / (Vv - Vo X + Vov - Vo V) (t — 7)} ds.
0
From (2.4) with replacing —V,¢s by E,

i VZ,UX(S;t7x7v) _ O3><3 Id3><3 va:,vX(S;t7$7v)
ds |V V(sit,z,v)|  |VoE(s, X(s;t,2,v)) Osxs | |VaeoV(sit,z,0) |’

Then by Gronwall’s inequality, we easily have

Vi oX (58, 2,0)| + Ve V(s t,z,0)| S e H1VaElloo)lt—s|

Therefore by the change of variables from Lemma 2 and Lemma 3 and (2.7) we have

1/p t 1/p
/ [ raras +[/ H||zds} ,
0
t 1/p
< etUlBlle+D) <|foo||p + Vo follp + [ / IV.H|E+ ||va||§}
0
T 1/p
2 2 2
- // IV og[Pdyds +{He“' fo llo|| €1 HH +’60‘“' g’ }
L 0 ,77 o0 o0
ropt ) ) 1/p
x / e 2 + eI vvunz}

+ / / d’}/dS {ZTz 9 — ) {atg+z Up * 7—7, ‘rlg

i=1

1F )L gy llp S e B0 ) £ )1, +

IVa f ()1 g3l

+1/g—H—|—E-va}

1/1)>

p

0 E
n”{@thrZ Vb T;)0r g — V9+H}

n-vp P
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and
Vo f ()1 ity llp

t 1/p
< tIBllot) <|v1f0p + |V follp + UO IV H|E+ ||VUH|§]
" 1/p
2 2 2
o ara] s el o] o]
| /0 Sy oS} oS} 00

ropt ) ) 1/p
| [ 1oy + e,

LJ O

[t 2 2
+ / dryds Z Tiang—L Org + Z(vb - 73)0r, g
L0y i=1 L i=1

—I—ug—H—&-E-VM}

1/P>

From our hypothesis, these terms on the RHS are bounded; therefore,

Of sy = 00f Liizeny, Vol Lzt VoS lzny) € L2([0,T]; LP(Q x R?)).

On the other hand, thanks to the compatibility condition, we need to show f has the
same trace on the set

M= {t =tp(z,0)} = {(tp(z,v),z,0v) € [0,T] x Q x R3}.
We claim the following fact: Let ¢(¢,x,v) € C°((0,T) x Q x R3); then we have

/oT //ngs job=- /OT //QW OfLiizn,) ¢

so that f € WP with weak derivatives given by Of Lgpre,y-

Proof of claim. We first fix the test function ¢(¢,z,v). There exists § = d4 > 0
such that ¢ = 0 for ¢ > 1 or dist(z,00) < 4, or [v| > . Let ¢(t,x,v) # 0 and
(t,z,v) € M, so t =tp(t,x,v). We have n(xp(t, z,v)) - vp(t,x,v) < 0.

Recall the velocity lemma. Since

p

n-vp =l

- [[0,E 2
- n”{&sg +> (vp-7:)0rg —vg + H}

a(t —tp(t,z,v), zp(t,z,v), vp(t,z,v)) < |n(zp(t,x,v)) - vp(t,z,v)|
from the definition of @. And by (2.46) « satisfies
0 < a(t,z,v) <e” fOt(W(Tl)Hl)dTloz(t — tp(t, z,v), 2p(t, x,v), vp(t, ,v))
< eCfJ(W(T/)Hl)dT/|n(mb(t,x,v)) op (L, x,v)|.
So we have n(xy(t,z,v)) - vp(t, z,v) # 0. Therefore
n(xp(t,x,v)) - vp(t, z,v) < 0.

Now since {¢ # 0} is compact, n(zp(t,z,v)) - vp(t, x,v) reaches a maximum.
Therefore |n(xp(t,z,v)) - vu(t,xz,v)] > ¢ > 0, so {¢ # 0} N M is a smooth
6-dimensional hypersurface.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/20/20 to 128.104.93.46. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

3222 YUNBAI CAO

We next take a C! approximation of f}, H!, and g’ (by partition of unity and
localization) such that

1£5 = follwre =0, llg" = gHWLp([O,T]X'y_\'yi/) =0, |H' - Hllw o, 11x0xr3) = 0,

where W2 ([0, 7] x y_ \ 7?) is the standard Sobolev space in [0,T] x v_ \ 7% . This
implies, from the trace theorem, that

fi(@,v) = fo(a,v)and g'(0,z,v) = g(0,2,v)in LP(v~ \~%).
We define accordingly, for (¢,z,v) € [0,T] x  x R3,
Pt 2, v) = Lgagye 907 f3(X(0),V(0) + Lmrye™ " Vgl (t — t, b, v0)

min{tp,t} .
—|—/ el VH -5, X(t —5),V(t — s))ds
0
and
Lt e 0) = Linye oV f3(X(0), V(0)
min{ty,t} .
+/ e~ o v H (t—s, X (t—s), V (t—s))ds,
0

fj»(t7 x, ’U) = 1{t2tb}e_ fob Vgl(t - tb7 T, ’Ub)

min{ty,t} .
+/ e o VH (t—s, X (t—s), V (t—s))ds.
0

Therefore for all (z,v) € v_,
fi(s,X(s;O,x,v),V(S;O,x,v)) - fl_(S,X(S;O,JZ,U),V(S;O,.T,U))
= e—fosu [gl(O,x,v) - f(l)(xvv)] '

Since {¢ # 0} N M is a smooth hypersurface, we apply the Gauss theorem to f! to
obtain

/// Do fldxdudt ://[fl+ — fLge - npdM
- { / / - $8e fL drdudt + / / - $e fl_d:cdvdt},

where 0e = [0¢, Vi, Vo] = [0ty Oy s Ongy Oxgy Opy s Oy Oug ] and

1

1 — dytp, —Vatp, —Vutp) € R7.
V(1= 0itp)2 + \thbP—i—lVUtbP( e b b)

nyp =

Using (s, X(s;0,2,v),V(s;0,2,v)) and (x,v) € - as our parametrization for the
manifold {¢ # 0} N M, and from (2.14), letting = = n(z|) = n(z) 1,2)2) for € 09,
we have the Jacobian matrix

10 0
J=|0,X VX V,X|(mpm)"
OV VoV Y,V

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/20/20 to 128.104.93.46. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

REGULARITY OF BOLTZMANN EQUATION W/EXTERNAL FIELD 3223

Then since |v - n(z)| > ¢, the surface measure of M is |det(J)|dzdvds which is
bounded from above; thus

//[fi — fL]pe - npdM

T
< / / |fi(s,X(s;O,x,v), V(s;0,z,v))
0 n(z)-v>4'

— fL(5,X(5;0,3,0),V(5;0,7,0))|| det(J)|dz dvds
1
|01 Dan]|

<ron / 16 (0,2, 0)— f(,v)| v - (@)1 x Do dary
¢ n(x)-v>8" 0 |”U ' n(x) ”

ST.6,6 / |gl(07x,v) — f(l)(x,v)Hd'y —0,as | — oo,
n(zx)-v>d6"

due to the compatibility condition fo(x,v) = ¢g(0,x,v) for (z,v) € vy_.

Clearly, taking the difference of f!'— f and using the strong LP estimate we deduce
that f! — f strongly in LP({¢ # 0}). Furthermore, due to the same estimate for V f
and V, f we have a uniform-in-I bound of fL in WP ({t # tp, ¢ # 0}). Therefore we
have, up to a subsequence, that Jof. converges weakly. And since the weak limits
coincide with the pointwise limit we have

aeler - aef]-t>tb7 aefi - aef1t<tb'

Finally we conclude the claim by letting I — oo.

Now since we assume all the data are compactly supported in the velocity space, f
itself is compactly supported in the velocity space, so 69|”|2f € L™ as fy,9,H € L™.
From this and the LP bounds above, we conclude

{0: +v- Vo +E-Vy,+v}0f =0H —0v-V,f—0E-V,f—0vf e LP.

By the trace theorem, the traces of 0;f, V. f, V., f exist. To evaluate these traces,
we use the fact that for almost every (¢, xz,v), df is absolutely continuous along the
trajectory (t — s, X(t — s;t,x,v), V(t — s;t,z,v)).

First consider t > tp(t,z,v) > s, as s = tp(t,x,v), tp(t — 5, X (t —5), V(t —s)) =
to(t,z,v)—s — 0. Thus by our formulas for 0f we have 0f(t—s, X (t—s),V(t—s)) —
dg(t — ty, xb, vp) as s — ty(t, z,v). Therefore 0f],_ = 0g.

If tp(t,z,v) > t > s, again using the explicit formula for df and the fact that
(02,0X)(0;t—s,z,v) = (id, 0) and (05, V) (0;t—s, x,v) = (0,id) as s — t, we have that
of(t—s, X (t—s),V(t—s)) — 9f(0,X(0),V(0)) as s — t. Therefore 9f(0,z,v) = 0fp.
This proves (2.56).

In order to remove the compact support assumption we employ a cutoff function
X- Define f™ = x(|v|/m)f; then f™ satisfies

{0+ v Vot E- Vo + (X (J0]/m) = E - Vox(|vl/m) }f™ = x([v]/m)H,
f7(0, 2, 0) = x(|v[/m) fo, " = x(|v/m)g.

Now by previous argument we have that the traces of @ f™ exist and 9f™ (0, z,v) =
O(x([ol/m) o), Of ™l = Dx([vl/m)g). And A(x(lel/m)fo,g) = x(|o|/m)Dfo; g +
ax(Jv|/m)fo,g — 0fp,0g in LP as m — oo. On the other hand we have 9f™ =
x([vl/m)of + Ox(Jv|/m)f, so the traces of Of™ go to the traces of 9f almost every-
where as m — oo. Therefore we conclude 0f(0,z,v) = dfy and 9f|,_ = O0g|,_ as
desired. O

(2.58)
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PROPOSITION 6. Let f be a solution of (2.6). Assume fo(x,v) = g(0,x,v) for all
(x,v) € y_.
For any fixed p € [2,00], 0 < 0 < 1/4, B3>0, and @w > 1 assume
Oéﬁvwfmaﬁvvfo S LP(Q X R3)7
e~ PV g, e PE, g e LP([0,T] x v-),
—w(v)t B
e a
@ {09+ m)ong+vg—H+E- V.9
e~=Wtalfn(z) . ([0, F
n(z) v

{Bg—i-z (Vb - 73)0r, g — Vg—l—H} € LP([0,T] x v-),
e~V H, e~ 0PV, H e LP([0,T] x Q x R3),
e_elvlze_w<”>taﬁvvu, e_elv‘ze_w(”ﬁaﬂvzu € LP([0,T] x Q x R?),
I fy e Lo x R, 1V g € L°([0,T] x v_), eI H € L=([0, T] x Q x R?).
Then for 8 € {V,,V,}, we have e~ alaf(t, x,v) € L>([0,T]; LP(Q x R3)) and
e—w(v)taﬁaf|tzo _ e—w(v)taﬁafo’ e—w(’u)taﬂaf|77 _ e—w(v)taﬁag,
where Og is given in (2.55).
Proof. First we assume fo, g, and H have compact supports in {v € R? : [v| < m}.
By (2.46) we have for w 2 w, and for any 0 < s1,82 < t, and any
(x,v) € Q x R3 that
eI VINIT o (51, X (51), V(1)) < als2, X (52), V(s2))
< eIV 0 (51, X (51), V(s1))-

And since \f; (V(s;t,x,v))ds — (v)t| < || E||ot?, we have for any 3 > 0

ax{0,t—tn }
—mtaf(t, )
€ Oé T,V 2
2.59) su < Pl Ellst
(2:59) sup 50, X( 0. V) *
sup it z,0) < 2P| Ellet?

t>ty e~=(v >(t tb)aﬁ( —tb, Tb, Ub)

. e =Wtalb(t, x,v) < 267 wt?
max{t—tp,0}<s<t e—w(V(t—s))(t—S)aﬂ(t -5, X(t - S), V(t - S)) a

Multiplying e~®{"*af (¢, z,v) by Lemma (2.57), and then using the change of variables
from 2 and Lemma 3, and the bound from (2.59), we get

eV, f(1)|| 1o Sp e EIRFIVEIL+D) (Ilaﬁvzfonp 110V fol

t efw<”>5a5
* /0 n(z)-v 8t9+Z(U‘Ti)ar,;g+1/g—H+E.vvg
eiw@)SOéﬁn'ffamE , 1/p
i 09+ (v-T)drg—vg+Hy| diy
n(x) - v .
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p

_|_

t 2
p
/ Z‘e—mwsaﬁang(s)‘ +‘e‘w<7’>saﬁvvg(8)
0 p P

VP

1/p
+ ||e_w<”>soz5VIH(s)Hg + ||e_w<”>5a5VUH(s)||gds]

1/p
t

+ ' /||69U|2€w<v>saﬁvrv||§+60|U2ew<v>sozﬁvvv||§d5‘| )7
0

lem= 0BV, £(#)1s Sp et IENHIVEE+D (aﬂvxfoﬂp + 1059, foll

t| ,—w(v)s, B
+ /0 7671(96) j {&g +Y (v-Ti)orngt+vg—H+E- Vug}
—w(v)s p 1/p
46 Wsabfn(z)- [f &;E{athr Z(U - 73)0r g — 1/g+H} ds]
n(x) v o
t 2
+ / Z ‘e—w@)saﬁang(s)‘p + ’efw(wsaﬂvvg(s) b
0 i 7P 7P
1/p
+lem= v, Hs)|| + ||6w<”>SOZBVuH(5)||ZdS]
t 1/p
+C’ / ||€_9‘”|2e_w<”>saﬂvmv||§ + e‘eIUQe_ww“aBVvagds] >7
0

where C' = ||e?1' fol| oo + [|?1"° H]|| o + /1" g| . By the hypotheses of the proposi-
tion, the RHSs are bounded, and hence e~ af0f € L>([0,T]; LP(2 x R?)).
Since fo, g, and H are compactly supported inside {v € R? : |v| < m} we have by
direct computation that if we let
v

) Et—ﬂa‘l(ata—i—v Vea+ E-Vya),
v

vi=v4+w()+w

then

{Oi+v- Vo + E-V, + 7} (e = a0 f)
= e 0B, vV, + E -V, +1](0f)
=e "GP OH — v -V, f —0E -V, f — dvf] € LP.

w

taBof exist, and by choosing a
PO f has the same trace as

Therefore by the trace theorem the traces of e~
test function multiplied by e~®{"*a? we deduce e~
e~ WtaBOf|,].

Finally we use (2.58) to remove the compact support condition and pass to the
limit to conclude the proof. 0

3. WP estimate. The goal of this section is to prove the WP (1 < p < 2)
estimate and the weighted W1 (2 < p < 00) estimate for the system (2.1), (2.2) with
E satisying (1.8).
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Let f° = /. We apply Proposition 5 for m =0,1,2,... to get

(3.1) <3t+v'vx+E'vv*%'E+V(\/ﬁfm)) ferl gam(fm ™)

with the initial data f™(0,z,v) = fo(z,v), and boundary conditions are for all (z,v) €
y_

Pt 2,0) = /1) (W) (n() - u)du,
(32) n- u>0

ot z,0) = e/ pl(v Mty x,u)y/ wlu)(n(x) - u)du, m > 1.

n- u>0
We first need a local existence result which is standard.

LEMMA 9. (local existence) Suppose || E|ls < 00, and [|e?I"* folos < 00, 0 < 8 <
%. And fo satisfies the compatibility condition for diffuse boundary condition. Then
there exists 0 < T < 1 small enough such that f € L>([0,T) x Q x R?) solves the
system (2.1) with diffuse boundary condition (2.2).

Proof. We first claim

(3.3) sup sup He‘gl"’lzfm(t)H S Hee‘”|2f0H < 00,
m 0<t<T 0 [e'S)

where 8’ = 0 — T. The proof of (3.3) is essentially the same as (and easier than) the
proof of the same bound in the case with self-generated potential. See the proof of
(5.10).

From (3.3) we have up to a subsequence the weak-* convergence

(3.4) eel‘vlzfm(t,x, v) = ee,lv‘zf(t,x,v)

in L*°([0,T) x Q x R®) N L>([0,T) x ~) for some f.

Applying the same argument of (3.3) to the sequence 6(94)‘”2(]””+1 — f™) we
get that the sequence /1" f (¢, 2, v) € L°([0,T) x © x R¥) N L>([0,T) x 7) is a
Cauchy sequence and therefore

(3.5) Hee,lv‘zfm(t,x,v) — eal‘”|2f(t,a:,v)H —0 as m — oo.

(oo}

Now for any ¢ € C2°([0,T) x Q x R3) we have from (3.1) that

(3.6) AT/AXRSfm+1[8t+v.vm+E.vv;~E+y(\/ﬁf’”)}¢

_ /O ! / /Q el e

Then from (3.4) and (3.5), by the standard argument we can pass the limit m — oo
n (3.6) to conclude that

/»//Qx]RS 8t+vV+EV77 B+ (Vi) ///QXR P on(F, )6

This proves the lemma. 0

Now we are ready to prove Theorem 1.
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Proof of Theorem 1. Let 0 € {V,,V,}. Taking 9[(3.1)] we have

(040 Vat B Vo= 2 E+u(af™)) 0"
_ argain(fm, fm) — v - vwfm+1 —9E - vvfm—i-l
—0(5-B) £ o)
=gm.

By direct computation we have from (3.7)

(3.8) (8t+v~V$+E~VU—%'E+w<v>+tw<%~E

+ y(\/ﬁfm))(g*w(U)taferl _ —wl)gm.

And for @ > 4(||E||ec +1) and T < we have

1
4([[Elle+1)?

ym ::%~E+w<v>+tw%-E+u(\/ﬁf"‘) >

SR

(v).

From (3.3) we have

—Colv—ul?

671 S 105 e HE e g |” P ([l ]| ) < / o a0 @ldu,

where P is a polynomial.
We need some estimates for the derivatives on the boudnary. We claim that for

(x,v) € v
(3.9)  |of"t Nt z,0)| S v lv)(v) <1 + W)

/(m)~u>0 8™ (t, 2, u)|p* (n(z) - u)du + Z(j)lvi P (Hee‘”FfOHOO) :

Let 71(x) and 72(z) be unit tangential vectors to 9 satisfying (1.26); then from (3.1),

anfm+1(t,x,v)

2
{&gfmﬂ + Z(v . 7'14)6T7.,fm+1

i=1
£ BV = S B u(af Y = T (7 7).

-1

(3.10) = W

Define the orthonormal transformation from {n,7;,72} to the standard bases
{e1,ez,e3}, ie., T(x)n(z) = ey, T(x)ri(z) = ez, T(v)m2(z) = e3, and T 1 =TT,

Upon a change of variable: v’ = T (z)u, we have

n(x)-u=n(z) T'z)w =n@)'T (z)u = [T(z)n(x)]'v = e -u = ul;
then the RHS of the diffuse BC (3.2) equals

Vi) [ e T ) R o

uy >0
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Then we can further take tangential derivatives d;, as, for (z,v) € v_,

Or, 7 (8,2,0) = ¢,/ i) Or, S (b, )/ () () - )

n(x)-u>0

cuv 1 / Vo f™(t,x,u) 87; x)ur/ pwuw){n(z) - u}du.

(z)-u>0

(3.11)

We can take velocity derivatives directly to (3.2) and obtain that for (z,v) € v_,

(3.12) V,f™ i (t,z,0) = ¢, V,/p / 7t x, u)/ p(u){n(z) - uldu,

(z)-u>0

O f ™ (t,2,v) = e/ p(v O fm(t,x, u)/ p(u){n(x) - uldu.

n(x)-u>0

For the temporal derivative, we use (3.1) again to deduce that

(3.13)
O™ (b ,0) = e /u(v) {~u- V"BV, 42 Bf"
0

n(x) u>

— V(RS I 4 Tgain (P 57 W) (o) - udu.

From (3.10)—(3.13) and (3.3), we conclude (3.9).
Now we claim that for 1 < p < 2 and for T} small enough we have the uniformly-
in-m bound:

(3.14)

T,
— (U m — (v m U2
sup [le"=1a ML + / =@M <o 0f0l2 + Pl folloo).
0

0<t<T,

We remark that the sequence (3.1) is shown to be a Cauchy sequence in L>°. Due to
the weak lower semicontinuity for L? in case of p > 1, once we have (3. 14) then we

pass — 9f] in fo b, (up
to a subsequence) to conclude that Jf satlsﬁes the same estimate of (3. 14) Repeat
the same procedure for [T, 27T.], [2T%, 3T%], . .., to conclude the theorem.

Applying Green’s identity (Lemma 5) to (3.8) we have
7w v t m+1 7w v s m+1|p
== a0+ p / =g
S ofol® +p/ e~ @sg e +p/ // |G P )| prp1
0 0o JJaxrs

t
(3.15) 5 ||8f0||§+/0 |e—w(v)safm+1lgﬂp

t
PU T foll) [ [ [ er=eiopm i

e—Co |v—ul?
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By Hoélder’s inequality we have
o—Calv—ul? 1/p+1/q
)£3<|v_~w2—n> 057 () du
o—Colv—ul? p o—Colv—ul? a
(L) mor) (L (2))
o—Colv—ul? 1/p
S (/RS <vu|2”> 8fm(u)|pdu> :

And since efw:vis — esw(u)=(v)) < G2ws(u—v)
e—w(u)s >~

—C’9|v—u|2
/ / /R IO Wl <43W|afm(u)|du> dvdzds
e—Colv— ul? 1/p
/ / /RS —w(v |aan+1( |p 1 (/ <|U u|2 n)'afnz(u)'pdu) d’Ud.’L’dS

5// le== @39 fmHL (v) [Pdvdads
0o JoJrs

f///< ey (LN o ) Pdudvdea
+ e~ w8 _— ™ (w)Pdudvdxds
o JoJr3 Jr3 [v — >~

t
= / / le== @39 fmHL (v) [Pdvdads
R3

(e==)e)p e~ Coloul® dv) e~ 59 £ () [P dudzd
/ .//]R\3 _/]R.’S 6 —w(u) 5)p |fu_u|2—fc 'U)|€ f (U)| udxds

5// le== W39 fmHL (v) [Pdvdads
0o JaJrs

t esw(v—u>_cs‘1}_u‘2
* / / / / 2— dv)e” =410 f ™ (u) P dudzds
0o JoJrs \ JRrs v —ul2—r

¢ ¢
5/ / |67w<”>58fm+1(v)\pdvdxds+/ / le= =W (u) [Pdudads.
0o JoJrs o JoJrs

, we have

Thus
su e wvsa m+1 p+/ efwvsa m+1|p
0<sgt || f | ‘ f ’Y+,p
—w v s m v|?
(3.16) <mmp/w O™+ P follao)

« </0 Hefw<v>safm+1(s)“£+/0 |€W(v>safm(s)g> )

Now we consider the boundary contributions. We use (3.9) to obtain
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(3.17)

t
/ / |67w(v>safm+l(s)|p
0 _
S ([ = (ol + o ) e
eI n(z)-v<0 |7’l ' ’U‘p_

t
x/ / / le= W59 ™ (s, 2, u)|e® 5 A () (n - w)du
0 JoQ n(z) u>0

+ sup (/ (e )= F 1P () ~v|1"’dv> < tP([[e”" folloo)
n(zx)-v<0

€N

p

dSzds

t P
s / / V |€_w<“>saf’"(s7x,u)lu”s(u)(n-u)du] dS,ds+tP (|| folloo)-
0 JoQ | Jn(z)u>0

Now we focus on f(f Joalln(eyuso le==Wsgfm (s, u)|u/®(u)(n - u)du]PdS,ds.
Recalling (2.37), we split the {u € R® : n(z) - u > 0} as

. P
/ / l/ le= s Fm (s, )|t/ (w) (n - u)du} dSzds
0 JoQ n(z)-u>0

t p t p
AT R W AT
0 JQ (zw)€v+\ 7§ 0 JQ (z,u)es

By Hoélder’s inequality we have

P p—1
l/ du] < [/ ey (n- u)du]
(@u)ETs (@u)ers

[/ le== WS F™ (s, x,u)|P(n - u)du]
(w’u)e’Yi

o) (n- u)du]p*1 < € < 1if € is small enough.

(3.18)

and the term [f(m’u)eijr w

For the first term (nongrazing part), note that from (3.8) we have

(3-19) (O +0- Vot BV, + Y=g pmpp
= p|e*w<v)tafm ‘p7267W<v>tafmefw<v>tgm71.

So we can apply (2.38) to (3.19) to get

¢ P
AT
0 Ja [J@uweri\ve
t t
< |1ofolz + / le== 59 7 (5) |2 + / // (g tem=@s[pg pmp-t
0 0 OQxR3

t
S ||<9fo||£+/O o™ (s)lIbds + Pl foll<)

t t
x ( [le=trorsiz+ [ ||ew<“>safm1<s>||§;).
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Putting together all the estimates (3.16) becomes

t
sup e =0y (o) + [ = o
0

0<s<t Y+,P

t
< |10fol2 + ¢ / =g (s)[P s
0
t
)v|? —w(v)s g pm+1 P
(el ) ([ 1o

t t
v [e=rarms+ |ew<“>58f’”1(8)||5)
0 0

o (e s )
Choose € < 1 and 0 < T* <« 1 we have

T
sup ||e—w(v>safm+1(8)||g_‘_/ ‘e—w(v)safm—&-lp
0

0<s<T* Y+5P

S 110 follf + Pl folloo)

1 4 T ,
+ - max ( sup ||e_w<”>58fz(s)\|§ —|—/ e~ =8 fi §+7p> .
0

8 i:m,mfl OStST*

To conclude the proof we use the following fact: Suppose a; > 0,D > 0 and
A; = max{a;,a;_1,...,0;_(p—1)} for fixed k € N. If a,,41 < %Am + D, then

(3.20) an<ias (8 b
. m = S 0 7
for 7t > 1.
. —wlv 7 T —w (v 7
Setting k = 2 and a; = supy<;<p- lle ( >t8f (t)||§ + fo e ( >taf ?;Jr’p, D=
C(llofollh + P(||e?1*F follso)), we complete the proof of the claim.
Next, we prove Theorem 2. 0

Proof of Theorem 2. By (3.7) and direct compuation, we have
(3.21)

{8t+v'Vm+E~VU

—l—l/(\/ﬁfm)—l—g-E—i-w(v)-i-tw%-E

— ,604_1(8750[ +v-Vya+ E- vva)}(e—w(v)taﬁafm-‘rl)
= mtes ((% +v- Vo, +E -V, + % B+ y(\/ﬁfm)) Qfmtt = emmWitafgm.

And since Ba (i + v - Vea + E - Vya) < w, if we choose w >

UE]oc+IVE] o)
Cg

1
large enough and T < E= Ve have

)

(%

v(/pf™) + % - FE + w(v) —l—tw@ -E—Ba (i +v-Vea+ E-Vya) > =(v).

Now fix p > 2, pp%? <p< pp%l. We claim that there exists 0 < Ty < 1 such that we
have the following estimates uniformly-in-m:

w
2
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T
—w(v)t ,Ba m () ||P / —w(v)s ﬂa m|p
su e (6] -+ e «
(3.22) Ogtng* | U )Hp 0 | ! P

S P> foll) + a0l
Once we have (3.22) then we pass to limit, e~ a9 f7 (1) — e~=tal 9 f(t) weakly
with norms sup,eo 7+ || - |5 and e~Z B fm|, — em=NaBIf|, in fOT* |- |7, and
e~ AP f satisfies (3.22). Repeat the same procedure for [T, 27, 2T, 3T.], .. .,
up to the local existence time interval [0, 7] in Lemma 9 to conclude Theorem 2.
We prove the claim by induction. Apply Proposition 5 to (3.21); df! exists.
Because of our choice of df°, by Proposition 6 the estimate in the claim holds for

m = 1. Now assume that 0f? exists and the estimate is valid for all i = 1,2,...,m.
From (3.3) we have the bound

e—w(v)taﬁ|gm|

) ) —Colv—ul?
el {'sz'"“HP(IIeM' foll= [egvl o o m(u)'du] } |
i

s v —ul2r
Applying Green’s identity to (3.21) we have
(3.23)

t
== atom i+ [ e=atorm,

t
4 [ e =atom
0
t t
p
< HOéBafng-i-p/ |e*w<“>sa53fm“\’;77p+p/// [e*w(wsaﬂ} ‘gm”aferl‘pfl
0 0J JOxR3

t
< Haﬂafo‘|§+/ |efw<v>saﬁ8fm+1|zﬂp
0

0P ([ fo| )+t sup flem =t )|
00 0<s<t
|2

5 t 3 ! p 3 e—Cg|v—u "
—i—P(He‘glv‘ fOH )///Q ) [e w(z)saﬁ] 9 fm 1P 1></]R mlaf (w)|du.
oo 0 xR3 3 -

Step 1. FEstimate for the nonlocal term. The key estimate is the following: For
0<B<E2 0<0< ], and some Cg 5, > 0,

Bp

GCS‘U_'U«F [67%@)5&(3’%@)} o c 2

(3.24) SUP/ | R o du S et
v—U = =1
e RS [67F<“>Sa(s,x,u)} r

Recall the definition of « in (2.45); we only have to show the claim for = € Q° as
a is constant for x € Q\ Q?. We decompose u,, = u-n(z) and u, = u —u,n(z). Note
that

(3.25)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/20/20 to 128.104.93.46. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

REGULARITY OF BOLTZMANN EQUATION W/EXTERNAL FIELD 3233

for some Cp > 0. And since o < C' is bounded, for 0 < k¥ < 1, we have the bound

Bp

ng|v7u|2 |:6_%<U>304(87:L’7’U)1| "
d
/]R3 |’U - u|2_K —Z(u)s %
{e s ‘a(s,%u)}

sup U

e

2 _ _ 2 Calv—ul? 1
g eCWmvES / "U _ u| 2+K’e C49|v ul e 2 7du
R3

u- VE(z)|7T

R / o |- S s
R3

2 _ _Cplo—u®  —8p
= eCmwBS / duT/ lv — u| "2 "e T |up |71 dug,.
R? R

Now if 0 < k¥ < 1, we have

Cylv—ul? -
/du7/|v—u|f2+”e* T \un\pffdun
R? R

_ _ Cglvr—ur|? _ Colon—unl? —Bp
§/ |vr — ., 2Hre p duT/e P |t | P=1 duy, S 1
R2 R

A

col“n*un‘

since we can split the last integration as [, e~ |y, | 7=

= f'“ﬂlf‘”n_un‘ +
and both terms can be bounded together by

Colunl? Colunl®
e~ T 4 e |V, — un| du,,.
R

If k = 0, first let v’ = v—u; then using the cylindrical coordinate u, = (r,0),u!, =
z we can compute the integration,

5 Cglv—u|? —Bp
/du7/|v—u| Ze T |ug| Pt duy,
R2 R
Colu’|? —Bp
_ I -2 —=2 I —£L
—/Qdu7/|u| e” " 2 |u, —vn| P 1du,,
R R
0 0 T _Cg(r2+z2) a
= 2 2¢ 2 |z —c|%drdz,
—o0 J O r z

where we let a = ;f’gf > —1 and ¢ = v,. Without loss of generality, we assume ¢ > 0.

f\un\>|v7ﬁun|

Separating the integration into regions D = {(r,z) € R? : 0 <r < 1,]z| < 1} and
R?\ D we have

C’a(r +22) a
/ / - z2 |z — c|*drdz
Ce(T +22) T Cs(T +22) a
://Mr2+22 |z — c|® drdz+//u§2\DT2+22 |z — c|*drdz
@ Cs<r2+z ) @
/ / 5 22|z—c\ drdz—l—/ / |z — c|*drdz
o T
1
25 log — +1 \z—c|adz+— =3 z—c|“dz
_ 22
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: then both terms

For the second integration we can split as flzch‘Z‘ + f‘|275|>‘z‘7

can be bounded by

o0 Cylz—c|? Cp22
/ e 2 |z—¢|+e Tz |2|)dz <1
— 00

For the first integration, since log(z? + 2%) < 1 for |z] < 1, we have log(% + 1) <
2log(Z5) + 1. So we only have to show

1 1 1
/ 2log (Z2> 2 — clods = —4/ log(|2))] — ¢|*d= < 1.
—1 —1

Split the integral into f\z—CI<|2| +f\z—c|>|z|? since we assume ¢ > 0, we have

1 1 1
—/ log(|z])|z — ¢|*dz < —2/ log(2)z%dz + / [log(|z — ¢|)||z — c|*dz.
1 0 0

Finally since fol log(z)z%dz = ﬁ for a > —1, and since log(z)z® < M is bounded

for z > 1, we therefore have for all ¢ € R,

1

1 1
) 1 ad +/ 1 — —c|%dz < 3—-— +Ma
/0 og(z)z%dz ; [log(|z — cf)||z — ¢|*dz < (a+1)2

and this proves

o _ Colv—ul? —Bp
/ duT/ [v—u|"%e"" 2z |uy|PTdu, <1;
R2 R

thus we conclude the claim.
Therefore

e—Cg\v—u|2
e Wsgh /]Rg ————10f™(u)|du

v — ul2—*

ece\v—u\2 [eiw@)Sa(‘S?xvv)]ﬂ —w(u)s B m
= /]R3 "U—U|27H [67w<u>sa(s,$7u)}ﬁ |:€ u) CY(S,{,E7U) ‘af (U)ld’u
Bp_ 1/4q
¢Colv—ul? {ef%msa(s,a:,v)} "
d
/]R3 |v_u‘2iﬁ —Z (u) pﬂfpl Y
[6 v Sa(s,z,u)}

C, | a2 1/p
eColv u|
X (/ K|e_m<“>sa(s,x,u)ﬁafm(uﬂpdu)

2 eCG\U*UP v
oot ([ ma(e g o)

Finally we use Young’s inequality to bound the last term (nonlocal term) of (3.23) by

CteCt' P (He"'”‘zfoH )Os<u1<>t// . lem= Wl o fmp
007 0<s< QxR

w0 (0l ) [ o
o0 X
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Step 2. Boundary estimate. At the boundary, by (3.9), the contribution of v_ is

t
/ / |e—w(v)sa[58fm+l(s)|p
0 _

(3.27) P
X / 0f™ (5,2, w)| u*(u)(n - w)du| dS.ds
(z)-u>0
P o=
e 2
+ P H olvf? foH / / dvyds.
v|P
Since a(s, z,v) < |VE(z) - v| for z € JQ, the last term is bounded by
(o a ) [ [, et s (5]
o9 Jr3 oo

aslongas Bp—p+1>—1,ie, 5> p%_
For the first term in (3.27) we split as

p p
L] = U, Jovern]
n(x)-u>0 (zu)evs (zu)Ev+\7L

By Holder’s inequality in u, the v$ contribution (grazing part) is bounded as

P
+

(3.28)

/Ot [ =ty il g (ool + o )

M () (n - w)
e~ = Wsab (s, z,u

<[ [ =t G e (el + i)

x l / [e==%08 (s, 0, w)P O F™ (s, 2, w)|P (- UW]
(zu)evs

P
X / e W30 B (5, u)|Af™ (s, x,u)| du| dSgds
(z u)e“/j )

r/q
X l/ [e== W30l (s, 2, u)] " 9u?*(n - u)du] dS,ds.
(z u)E"/Jr

Again, since a(t,z,v) < |V&(x) - v| for z € 99, we have

/Ot/ == 5B /o) (v)? <|n o] + mi'pl) dv

/ / P2y |n 0| 4 |n - o) (- 1)) dv < 00

if fpp—(p—1) < -1, ie, §> =2,
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Also, with 22 = 1 1f 1 — 8¢ > 0, ie, B < 1 = =4,

p
—q
/ [e_w<“>so/3(s, T, u)} uq/4(n -u)du
(w,u)evg

lui?
</ |n.u|75q+1eq< 8+Sw<u>)du
e

~

~

—tﬂz swlu —Mﬂi sw{u
</ E_Bq+1€q< e >)du+/ Iu\‘ﬁq“eq( e >>du
n-u<e K

S 097177861_5(1

when € < 1.
Thus we have the bound for the grazing part:

(3.29)

/ t [ =t i o (Ineol + ot ) do

1/4 .
X [/ e*w<“>5a5(s,m7u)|8fm(s,x,u)| p () - u)
(I7u)€7i

e~ = (Wsab (s, z,u

p
)du] dS,.ds

t
< Cel_ﬁq/ |e_’“’<”>sa[38fm 2+7pds.
0

Therefore the contribution for the grazing part could be absorbed by the left-hand
side of the inequality if € is small enough.

On the other hand, for the nongrazing contribution v, \ 7, by similar estimate
we get

[ [ e i o (1ol ) e

n-v
p

1/4 .
pr)nu) dS,ds

e~ = (sl (s, x,u)

X [/ e3P (s, u)|0f™ (s, 2, 1)
(a)eri\7s

t
S Caps / / |67w<“>saﬁ8fm\pd”yds,
0 Jyi\vs
where we used

/ [e== 0B (s, 2,u)] "% (n - u)du < Cqp.s < 0.
Y+

Now we can apply the trace theorem so that the nongrazing part is further bounded by
(3.30)

t
/ / le= W5 aPE Fm Pdyds
0 Jyi\vg
t t
<. ||04’8(0)8f0||£+/ ||e_w<“>saﬂ3meg+/ // |gm—1|[e—w<v)saﬁ]p|afm|p—1
0 0 QxR3

t
< [a?(0)fol + / le== sl o fmp

2 —w(v)s m
+tP ([ folloo) +t sup [le== @ alo ™ (s)|p
0<s<t
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2 2
+ Cte“t' P (Hef)\vl foH sup // <“>Sozﬁafm71|p
0<s<t QO xR3

t
P ol [ [ we=talap
0 OxR3

Finally, collecting all the terms (3.23), (3.26), (3.29), (3.30) we have

sup |[le==salfg rmri ()|
0<t<T

T T
+ /) |67w v) ﬂaferl L A ||<v>1/p67w(v)saﬂafm+1”g
< Crape (%015 + PUI"" folloo) )

2 2
+ (Crape + Craped + CrapesTe’™ )P(le”) follo0)

T
< { s je=atorl [ e=tator,,
0

i=m,m—1 0<t<T

T
+ [ Iere=tiatorp ).
0

Therefore we can first choose € small enough, then choose § small enough correspond-
ingly, and finally let T" be small enough correspondingly; we have

T
sup ||6 w(v)t ﬂafm-‘rl( )Hg_’_/ | —w(v)s ﬁafm-‘rl .
0

0<t<T

T
+/ H<U>1/p€_w<v>sa’88fm+lHg
0
2
< Crape (10205l + PI"" foll )

T
+gm { s = ator ol + [e=taory,,

8 i=m,m—1 | g<¢<T

T
+ [ ||<v>1/pe-w<v>8aﬁaf"|z}.
0

Set
()t B ’ 8 aP
a; = su e~ w(v)t 81 p+/ —w(v)s az
s et ol + [ e o
T
# [ o=t
0
2
D = Crape (Ia°0follh + Pl foll) ) ;
from (3.20) we complete the proof. 0

4. Weighted C' estimate. In this section we prove some key lemmas which
will be used in the proof of Theorem 3 and Theorem 4, and then we prove Theorem 3.

LEMMA 10. Suppose E satisfies (1.8); then for anyy € Q, 1< 8<3,0 <k <1,
and 6 > 0 we have

e—0|v—u|2 1
an | e <C <(|v2§(y) = 1) |
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where c(y) = £(y)? — Cp&(y).
Proof. Recall the definition of a(t,x,v) from (2.45). If a(s,y,u) = Css, then

e—@\v ul? e—9|v ul?
/ P Bduz/ s du<C.
rs [V — ul*~*als, y, u)] rs [v — ul|2=+Cj,
For the case when «a(s,y,u) < Cs, we have |{(y)| < ¢'/2 < 1. From the assump-
tion, we have V&(y) # 0, and therefore there is a uniquely determined unit vector

n(y) = ;28;‘. We choose two unit vectors 7 and 7o so that {7, 72, n(y)} is an

orthonormal basis of R3.
We decompose the velocity variables u € R? as

u= unn(y) +ur 7= unn(y) + Z Ur i Ti-

We note that u, € R? are completely free coordinates. Therefore using Fubini’s
theorem we can rearrange the order of integration freely. Then we have

ﬁiﬁ%ﬁz=i[v«w-u+2m-v%@wuxw»+aw2

—2B(s,5) - VE@EW)] = c(lunl® + [ul*(y) + c(y))

a®(s,y,u) >

for some ¢ > 0.
Now we split

—0lv—u]|
d
~/]Rs |U - u|2_n[a(szy7u)]ﬂ !

—0|v—u|
SC/ / du,du,
Rz JR |V — ul>7"] \un|2 + &) ul? + c(y)]F/2

/|u /u| L =+,

2
If Ju| < %, then |v —
have

vl
2

> |v|—|ul > %; applying the change of variable u — |v|u we

—0|lv—ul|?
I = / duy,du,
D= ctst o aPun 1 €@l + )P

L2 / e~ 1l |y|3 du,,d
<" Uy dttr
o gty Tl TGP

du,du, .

~ 21l 1
W ol / ;/ <1 [Jun? 2 B/2
furl<3 Jlunl<d [Jun]? + 16(0)|lur 2 + T3]

2 2

Now we apply the change of variables |u,| = (|¢||u-|? + ‘Cl(}?z) )% tan @ for 0 € [0, 7] with
duy = (|&]|u-|? + y)) 2 —1—df to have

[v]?

1
PR INE |£Hu7|2 “(y)>2d9
W< 1/ ardur
furl<5 |§\| T|2+7§f(2)(tan29+1)] cos? 0

1—

B x
92-re—qlvl® 2 c(y)\ ? 2 1
[v|f—r=1 /| |<i < o™+ v |2> uT/o cos?=F
2
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—&|v)? c(y) 2

€ 4

ot [ (e ) T
|v‘57,’{71 \UT\S% Ur | |2 T

as fO% —5—7df < oo for 5> 1.

We then use polar coordinates for u, = (r, ) with du, = rdrd¢ to have

3239

- ?J’_ r=1/2
(I) <C27r6*%‘”|2 1/2 r d 2mem sl (|§\r Jr(\:vll}2>
=Ygt A1 T_|U|5—~—1 ,
0 (|£| c(v) 2 _T+1 2|¢|
r=0
c 27re*%|v\2 (|£| + |v2) 1()y2)
(3= B)|u|pRt . B; o A1
G e+ ) T e (s2) T ke
_c ore— v’ 1 N ‘ B Tq(}?‘é)
B =Pt )\ T = =
(le+58) 7 (a+5%) T e (54
A0 1
e 1
ol ==t ew) T
(1g1+ )
e 4‘ |2 ‘Ulﬂ_l e_%lv‘2‘7j|” < 1

RPN (of2le] + ew) T

for 1 < B < 3.

(Jol?l€] + e(y) =

(Jvl2l¢] + e(y) =

For the second term (IT), we use the lower bound |u| > ‘%l to have [|u,|*+[¢||ul*+
v 2 —
)P > [Junl? + 16115 + e(®)]?2 > 27 [Jun[? + [€][v]? + ¢(y)]?/? and

2
670|v7u|

= /u|>“

|
2

C
= / [unl® + €0 + c(@)]P7

0lvr —ur|?

as f]R2 mduT < oo for K > 0. Then apply a change of variables:
(1€]|v]? + c(y)) /2 tan @ for 6 € [0,7/2] with du,, = (|¢]|v]? +

(I < C / h
(4.2) =C /

“[lunl® + [E()[Juf? + c(y)]?/?

du,du,

6_9‘7’7-_717"2

o0 1
<2—ﬁ/ 7@7/ dun
2 |Ur — Ur 2" o [unl?+ [E][vf? + c(y)]P/?

1

duy,

1

du,
[[wal? +1€]J0)2 + c(w)]P2 "

(€lvl* + c(y)'2

do

(IEllv]* + e(y)
C

))A/2(tan?(0) + 1)5/2 cos?(9)

™

(el + () F

2 1 C
do <
/o cos®2(8) " 7 (le[v]? + e(y) T

[un| =

c(y))'/? 0052(9 dé to have
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as fog Cosg%ﬁ(e)cw < oo for > 1.
Thus (I) + (IT) < ——Y———+ as wanted. |

(€llv|2+e(y)) 2
LEMMA 11. Let (t,z,v) € [0,T] x Q@ xR3, 1 < 3<3,0< r < 1. Suppose E
satisfies (1.8) and (1.15); then for w > 1 large enough, we have for any 0 < 6 < 1
small enough,

t — 201V (s)—ul?
/ / o= I BV (ritaw)dr € | | 1 duds
max{0,t—tp} /R [V (s) = ul>~ (a(s, X (s),u))”
2 3-8
(4.3) < 6205 HVE||OQ+|\CEI;|OO+||EHOO 7 0 2

3-8
2

B-1
Cg® (alt,z,0))"2(Jo]* + | El%, + [l + 1)
(o] + 1 Ello + I3 + 1) 2
CptobY(a(t,z,0))f~1 @
Proof. We separate the proof into several cases.
In Step 1, Step 2, Step 3 we prove (4.3) for the case when z € 9Q and t < tp.
In Step 4 we prove (4.3) for the case when x € 9 and t > tp.

In Step 5 we prove (4.3) for the case when x € 2 and ¢ < tp,.
In Step 6 we prove (4.3) for the case when x € 2 and ¢ > tp.

Step 1. Let’s first start with the case ¢ > ¢}, and prove (4.3). Let’s shift the time

variable, s +— t — tp, + 5, and let X(s) = X(t —tp + s), V(s) = V(t — tp + 5). Then
s € [0,1p], and from (4.1) we only need to bound the integral
tb L == .
(44) / e_ ftt—tb+s 7<V(T7ta$7"))>d7— 1 — ds.
0 - - - -
IV (9)126(X(s)) + €2(X(5)) — Cpe(X(9))]

Let’s assume x € 02 and v - V&(x) > 0. Then by the velocity lemma (Lemma 7)
we have vy, - V&(zp) < 0.

Claim. For any 0 < § < 1 small enough, if we let

vp - VE(2p)
2 + B2 + | Elloo + 17

then |£(X (s)| is monotonically increasing on [0, o;] and monotonically decreasing on
[tb — 02, tb]. Moreover, we have the following bounds:

(4.6)
£ (00| = 5

v- VE(x)
ol + B2 + [Elleo + 1

(45) 01:5 and 0'2:(5

d(vp - VE(ap))”
(I + 1E[I% + [1E]lo0 + 1)

35(1}1) . Vé(zb))Q

d(v- VE())?
(10 + 113 + | Elloe +1)°

(X)) 2 5

wn OO + e €
‘ 7 (s 36(v-VE(x))? . Y
R (Tl 2 e A
and
7()- Ve ()] = 2V g g
- )
7(s) - ve (e = LV ey g )
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To prove the claim we first note that %5(5((3))\3:0 = vp - V&(zp) < 0 and

2 ~ ~ ~ ~ ~ ~
L E(X () = = (V(s) - VE(K(5))) = V(s) V(X () V(5
(19 + B(s, X(s)) VE(K () < CUT () + 1 Bllo)

< C2Iv]* + 2(tb||Ellso)? + |1 Elloo)
< Ci(wP+1E|% + || Bl + 1)

for some C; > 0. Thus if ¢ small enough, we have d%f(f((s)) < 0 for all s €

[0,6 ‘“|2+‘vaigffﬁtgllloo+l]. Therefore £(X (s)) is decreasing on [0, o).

Similarly d%{(X(S)MS:tb = v - V&) > 0, and since |;%§(X(s)))\ < (v +

| E||2,+||E|c+1) we have that L£(X (s)) > 0 forall s € [tb—5wlu”gjl‘lgfﬁlgumﬂ,tb]

if § small enough. Therefore £(X (s)) is increasing on [ty — 02, tp).
Next we establish the bounds (4.6), (4.7), and (4.8). By (4.9), we have

(X (o)) = / " V() VR (s)ds
_ /Oal (/O —%(V(T) VE(R ()T — v - V§(xb)> ds
> / " (oo - VE(@w)| — ColloP + IE% + [ Elloo + 1)5) ds
0
= 01|os - VE(an)| = SO0 + [ EJ% + 1Bl + 1)

=1 (Jon - VeCaw)] ~ 25 - Vel )

S(vp - VE(xp))?
o2+ EI% + | Elle + 1)

> o - Ve = o

§(v-VE(x))?
2(lo P+ B2+ Elleo+1)

And by the same argument we have |£(X (03))| > for 0 < 1.
This proves (4.6).

To prove (4.7), we have from (4.9), for s € [0, 0],

RG] < 5 (Jon - VCaw)] + 25 - Telan)])

3(5(1]]; . Vﬁ(a:b))2
(W +E)% + |1 Elloo + 1)

3s
< Zoy, - <
< o V()] < 5

% S(v- z))? .
and [£(X (s)| < 2(|v\2i\|(E\|§ff—H)}%\lw+1) for s € [ty — 02, tp]. This proves (4.7).

Finally for (4.8), again from (4.9),
|V (5) - VEX ()] = |vb - VE(wn)| — /0 Ci(vl* + | Bll5 + | Elloc + 1)ds
> Jun - VE(a)] — Crdlon, - Ve(ap)| 2 12V

And similarly |V (s) - VE(X (s))] > % for s € [tp — 02, tp]. This proves the claim.
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Step 2. Recall the definition of o1,09 in (4.5) and Cg in (1.8). In this step we
establish the lower bound:

(4.10) E(X(s))] > %(02)2, for all s € [01,t, — 032).

Suppose towards contradiction that I := {s € [o1,tp — 02] : [E(X(5))] < %9
(02)%} # 0.
Then from (2.46) and (4.6) we have

Cp v« 52CE (v- VE(2))”
—(09)? < 622
10 10 [o2 +|E]1% + [[Elloo +1
géZ%eQ HVEHOCMCEJEQH\EMN i (Ub'yﬁ(:rb))Q
10 [0 + [1E1% + 1Bl + 1
C IV Elloo + I B2+ 11 Ell oo ~
S2gpe e (X (o)
< |g(X (o)

if 0 1. So oy ¢ 1. Let s* := min{s € I} be the minimum of such s. Then clearly
d v (7 % N[ oK
A (R (mae = V(") VEX () 2 0,
Now recall (2.49) and (2.51) from the proof of the velocity lemma; we have

(4.11) E(s,X(s)) - VE(X(5)) = E(s,X(s)) - VE(X(5)) + c(X(s)) - £(X(5))

with [e(X (s))] < CellEl=HIVEL=) g

L (V(s) - VER () = V(s) - V26K (5)) - V(s) + Els, X(5)) - VE(X(5))

ds
(4.12) = V(s) - VZ(X(5)) - V(s) + B(s, X(s)) - VE(X(5)) + (X (s)) - (X (5))
d -~ ~
V() - VEX(5))) o=
_ 52 CellEll + [VE] ) O (v VE(x))? - Cr
Cg 10 o2+ [|[E|2 + [|Elle +1 = 2

for § < 1 small enough. Then we have that %(f/(s) - VE(X (s))) is increasing on the
interval [s*,tp] as |€(X (s))| is decreasing. So

L) VeEe) = L, selst il
And therefore

(X (s%))] = / “V(s) - V(X (s))ds

*

= [T ([ e e+ V) Ve ) ds

4

which is a contradiction. Therefore we conclude (4.10).

s

tp
Z/ (s — 5*)%&5 = @(tb —5")?2 > %(02)2,
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Step 3. Let’s split the time integration (4.4) as

/tbe_ [y vs TV (rstaw)dr 1 s
(413) [W@)P«X(s))w% (5) — Cre(X(5))

/ / e /t B + (IT) + (III).

2
Let’s first estimate (I), (III).
From Step 2 we have that |¢(X(s)| is monotonically increasing on [0,0] and
[tb — 02, tb], 80 we have the change of variables:

dig]
V(s) - VE(X(s))]
Using this change of variable and the bounds (4.7), (4.8), (I) is bounded by

ds =

(4.14)

I < /01 ! s ds
O [PPSR () + £(X(s) - Coe(K(5)]

2
38(vp - VE(xp))?

/zu ZHIEIZ, I Ellcot+D) 1 d|§|
0 |V (s) - VE(X ()|(CEle]) =

38(vp - VE(rp))?

2([vIZ+ 1 EN 2+ Ellco+1) 2
< / —t
0 [vb - VE(2b)|(CElE]) =

38 (vy, - Veé(zp))?

2 [|£| }2<\v\2+IIEH2 Tl Elloe+1)
|Ub Vé(2b)|C o

B—1 .3-8
2 2

=1 _
C® o - VE(@n)P2(j0f + | Ell% + 1Bl + 1) 5"

2 3—8
20, HVEHMH\C;EHQOMEMW 0 2

E
~ —1

8
Cg? (alt,z,0)82(|o2 + || E|% + | E]los + 1) 72

And by the same computation we get

(4.15)

3-8
O Y Blloo +I B2, +1 Blloo 03

(III) < ¢ b

—1

- .
Cp? (alt,z,v)P~2([o]2 + | E|% + | E]l e + 1) "

Finally for (IT), using the lower bound for |£(X(s))| in (4.10), we have

(4.16)
(II) :/02 e~ ft,t—thrs Z(V(r;t,x,v))dT 1 — ds
" IV()126(X () + (X (5) — Cre(X(5)]
t
e 7ft7 Z(V(7it,z,w))dT 1
S e t—tp+s 2 ~—71d8
/o CEE(X ()|
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b B -
Cp o)1 Jo
< (WH B[t ElZ + 1) /tbe<stb>'-§ds
~oCBes-1(a(t,z,v)8-1 o
< (o[ + 1Bl + [IB]3 + 1) 2z
~oool Y a(t,x,0)l @
This proves (4.3) for the case z € 9 and t < tp.

Step 4. Now suppose = € 02 and t, > t. It suffices to bound the integral:

t
(4.17) / o B Virstam)dr 1 .

B—1

0 [V (s)[26(X (s)) + €2(X(s) = Cré(X(s))] 7

Denote
X(0;t,x,v) = x0, V(0;t,2,v) = vg.

Let
v-VE(x)

TP [[Ele + E% + 1

02
as defined in (4.5). If
02 2 tv

then from Step 2 |£(X (s))| is decreasing on [0, ¢], and by (4.7), (4.8), and the bound
for (ITT) (4.15), we get the desired estimate. Now we assume

o9 < t.
So from (4.6) we have

d(v- VE())?
(P + Bl + I1EIIZ, + 1)

. ag(t@,v)
Now if [€(20)| < d5rapyEr- FIEZ )

(4.18) EX @) > 5

(4.19)
IV Elloo + I EN 2+ Ellco
At z,v) < eCs S o?(0, 2o, vo)
Ce IV Elloo +1I B2+ Ell oo 5 )
Se RE ((V&(zo) - v0)” + ([vol” + [&(z0)| + | E][o0)[& (o))
C IV Elloo + I EN 2+ Ellco 9 5
<e’* CE (VE&(zg) - v9)” + da”(t, x,v).
So
1 C IV Elloo +IENZ, +1 Ell oo
(4.20) goltz.v) < e = VE(wo) - vol

if § < 1 is small enough.
Claim.
VE(zg) - v < 0.
Since otherwise by (4.12) we have
d
— (X 0
Lex(s)l <

for all s € [0,¢], so [€(X (s))| is always decreasing, which contradicts (4.18).
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Therefore VE(zg) - vp < 0, and we can run the same argument from Step 1, Step
2, Step 3 with V&(ap) - vp replaced by VE(zg) - v, and by (4.20) we get the same
estimate.

2 (b,
If [£(zo)| > 610(\v|2+|(\1E(Hgf:|?Elloo+1)’ then we have

CEO% 2CE (U' Vf(x))2
4.21 =0"— Cgé

for 6 <« 1 small enough. Therefore by (4.18) and the same argument in Step 3 we get
the same lower bound

(4.22) 1£(s)| > %(02)2, for all s € [0,¢ — o9].

And therefore we get the desired estimate.

Step 5. We now consider the case when x € Q and ¢t > t,. We need to bound the
integral (4.4). Let
o Up - V(l‘b)

W2+ [[El|Z + [ Elloc + 17

o1
as defined in (4.6). If
o1 > t7

then from Step 2 |¢(X (s))| is increasing on [0, tp], and by (4.7), (4.8), and the bound
for (I) in (4.14), we get the desired estimate.

Now we assume
o1 < t.

So from (4.6) we have

d(vb - VE(xb))?

4.23 (X (o)) > )
(4.23) X @D 2 ST B + 1B + D)
Now if
a?(t,z,v)
4.24 £a) <6 T ,
(4.24) S < P T TER + 1B + 1)
we have

a?(t,z,v) < (VE(@) - 0)? + C(jof + [|Elo + 1)IE ()]

) < (VE(w) - 0)* + 02(t2,0) < (V@) -0 + 0(ta,0)
if § < 1 is small enough. So
(4.26) %a(t,x,v) < |VE(@) - o).
Claim.
Vé(z)-v > 0.

Since otherwise by (4.12) we have

d

TIEX )] >0
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for all s € [0,tp)], so |£(X(s))] is always increasing; thus

a?(t,z,v)
10(jo? + B3 + [1Elloc +1)

€(X () <0

for all s € [0, t], which contradicts (4.23).

Therefore VE(z) - v > 0, and we can run the same argument from Step 2, Step 3,
Step 4, and by (4.26) we get the same estimate.

If
a?(t,x,v)
(427) > o T + Bl + 1
we claim
(4.28) E(X(s)] > 82 o {t,2,)

P HIEI Bl +1

for all s € [01,tp]. Otherwise let

- 2(t,x,v)
* . — mi € [or,t] : [6(X < 62 o(t,, }
S mln{S [0'1 ] |€( (5))| ‘v‘2+||E||go+HE”oo+1

From (4.23) we have s* > oy and

And from (4.12) we have

for all s € [s*,t]. So |¢(X(s))| is always decreasing on [s*,tp]. Therefore

a?(t,x,v)
012 + [1ElIZ + 1 Elloe +17

[€(@)] = [E(X(t))] < |E(X(57))] < 6

which contradicts (4.27). Therefore the lower bound (4.28) and the estimates (4.16),
(4.14) give the desired bound.

Step 6. Finally we consider the case x € Q and ¢ < ty,. First suppose

a?(t,z,v)
E(x)]| <9 . .
@ < R T TER + 1Bl + 1)

From (4.26) we have
a(t,x,v
b2 1y e
If v+ VE(z) > 0, then by (4.12) we have {(X(t +t')) = 0 for some ¢/ < & < 1.
E
Therefore we can extend the trajectory until it hits the boundary and conclude the
desired bound from Step 3.
If v-VE&(z) < 0, again by (4.12) we have that [£(X(s))| is increasing on [0, ]
and |V (s) - VE(X(s))| is decreasing on [0,t]. Therefore using the change of variable
s+ &,
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/te— JE=(V(rstaw))dr 1 — ds
0 (IV()[26(X (5)) + £2(X(s) — Cé(X(s))] =
< / 10<\v|2+ﬁz(\\t§:fu)EHx+1> 1 _de]
0 [V(s) - VEX () [(CEl]) =
(4.29) < /510<v|2+a;(t‘é:f)fzoo+1> 1 e
0 v VE@)(Crll) =
< /610<v|2+a;(t'~i:f)fsoo+1> 1 die]
T o [a(t, 7, v)(Crl¢]) =
< 5¥

)

— 3-8
2

- C;T (alt,z,v)P2(]? + | El% + | Bl + 1)
which is the desired estimate.
Now suppose
a?(t,z,v)
10(Jo]* + [ E[IZ, + [|Ell +1)

(4.30) €(x)[ > 6

and
a?(t,x,v)

WP+ I EIZ + 1Elle +1)°

<
Then by (4.20) we have

t IVElloo +IEIZ, +1 Blloo
(4.31) w < et Tx |VE(z0) - vol-

Now if vg - V&(xg) > 0, then from (4.12) we have that |£(X(s))| is decreasing for all
s € [0,t]. And this contradicts with (4.30). So we must have

Vo - Vﬁ(l’o) < 0.

Then we can define o1 = § ‘U|2+|‘|1}3“25_~(_ﬂ‘g|‘| +7 as before. Now if g1 > ¢ then [{(X (s))]
is increasing on [0,t], using the change of variable z — |{| and the estimate (4.14)
and (4.31) we get the desired bound.

If o1 < t, then from (4.6) we have

(vo - VE(20))?
(o2 +E% + |Ellee + 1)

And then from the argument for (4.28) we get

E(X(o1))] > b

a?(t,z,v)
€(X(5))] > 6 —
[0 + 1 EllZ + [1Elloo +1

for all s € [o1,t]. This lower bound combined with the estimates (4.16), (4.14) gives
the desired bound.
Finally we are left with the case
o?(t, z,v)
10(jo)? + 1 Bl% + |1 Elloo + 1)

Then again, from the argument for (4.28) we get

[€(xo)| >0
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a?(t,x,v)
£(X(s))] = 6° —
[l + 1 ElIZ + 1 Ellee +1

for all s € [0,¢]. This lower bound combined with the estimate (4.16) gives the desired
bound. |

Let 8 =11in (3.21), and denote

vy :V(\/ﬁfm)—l—g~E+w<v>+tw%~E—a_1(8ta+v-vma+E-Vva) >

ro| g

().
Then (3.21) becomes

{@ +v-Vo+E -V, + V;z}(ew@)taafmﬂ)

= e TG = N (t, 2, 0)

4.32 ol m _0)p2 oI2 oI2
(4:32) Se <>ta{8f ) e8P 101 12 4 ([l £y o)

e—Colv—ul®
x43m|8f7’L(u)|du .

And for (z,v) € y_, we have

(4.33)
e_w<”>ta|8fm+1 (t,z,v)]

SVW? [ jorm bl ) n(e) - wdu -+ TP ).

n(x)-u>0
Let (z,v) € v0 and (t°,2°,0°) = (t,2,v). Define the stochastic (diffuse) cycles as

th =t —ty(t,z,v), 2t = 2p(t,z,v) = X(t — tp(t,z,v);t,2,0),

(4.34) .
vy, =Vt —tp(t,z,0);t, 2,0) = vp(t, x,v),
and v! € R? with n(z!) - v! > 0. For [ > 1, define

tl+1 — tl _ tb(tl,xl,vl),le _ $b(tl,l‘l,1]l),

vy = vp(t, !, 0h),

and v!*1 € R? with n(2z'*1) - v!*1 > 0. Also, define
XU(s) = X(s;th, b oY), Vis) = Vst 2l ol),

so X (s) = X%(s),V(s) = V(s). We have the following lemma.
LEMMA 12. Ift! <0, then

e~ =Whalafm L (t x,0)| S a0, X0(0), VO(0)af ™ (0, X°(0), V°(0))

(4.35) + / t N™ (s, X(s), VO(s))ds.
0
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Ift* > 0, then

(4.36)
el of " (2, v)|
S e B P(le foll) / N (s, X°(5), V(s))ds
FyuR) e / s S Les cocrn 0D ™0, X4(0), VV(O)) a5t
J =1

/ 1 221“‘“@«1} /0 N (s, X' (s), V' (5))ds A=
+\/Fg) /
syroped? [

—w (vl et m
i ( )<Ub>2 /Hl 1 1{t1>0}e ot a(tl7x 7Ub )‘8.]0 s 1)(t ,1‘ 7vb )|d2§ }7
1y,

j=1Yi

21{%50}/ N™ s, X (s), V(s))ds dxi ™!

111

i—1
21{t1>0}e Zlvy, I2P(H60\v\2f0H )dzi:i

l1
lez

where V; = {v7 € R? : n(27) - v7 > 0}, and

st = H (w9, |n(z?) - v |dv? {ew@”“p”“(vi)<v">dvi}

J=i+1
H / 1/4 >ew(vj)tjdvj

where ¢, is the constant that [y p(v?)e,|n(x?) - v7|dv? = 1.

Proof. For t' < 0, we use (4.32) to obtain

e*w<”>ta|8fm+1(t z,v)|
f: ;L(TX (1), VO(T)dTOtafm+l<O,X0(O>7 VO(O))

(4.37) n / JIEEXOV T A (s X0(5) VO(s))ds
0

< adf™ (0, X°(0), VO(0)) + /tNm(S,XO(S)»VO(S))dS
0

Consider the case of t' > 0. We prove, by induction on I, the number of iterations.
First for [ = 1, along the characteristics, for t' > 0, we have

e~ ta| fm (L, z,v))|

t
<e—m<v8>t1a(t1,x1,vg)|afm+1(t1,a:1,vg)|+/ N™ (s, X(s),VO(s))ds.
tl

Now using the diffuse boundary condition, apply (4.33) to the first term above to
further estimate
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=D (1, 2, v)|
< \Jued) (o)) /v 0™ (1, 2, 01) [/ (0 ) o) () - 0o

‘6‘9|”‘2f0H00)+ A (s, XO(5), VO (s))ds

t1

—+ 67%‘U2‘2P (

—w ’U1 1 m wvl B
= u(vﬁ)<v8>2/v eI a2t oo (et oh) e p A (0 (0! do!
1

t
e P follc) + [ N7 6,300V 0
1

Now we continue to express e‘w<”1>t1a(t1,x1,vl)\afm(txl,vl)\ via backward
trajectory to get

e = a2t v os™ (tat ")

< Loty {06(07)(1(0)7Vl(O))Iafm(QX1(0)7V1(0))|+/ le(s,Xl(SLVl(S))dS}

0

tl
+ 1250y {e_mv‘l’)tza(tQ,xz,vé)lafm(tz,xz,vé)l +/ N (s, X (s), Vl(S))dS} :
12

Plugging into the previous inequality we conclude that

e =Wt x,0)[0f" T (t, 2, 0)]

9

5 e—iIUE),FP(“eGIvaOHOO) + /t/\/'m(s,XO(s)7V0(S))d8
1
+ \/M(Uﬁ)(vl?,)Q/v {2 <0<y (0, X1(0), V1(0))[2f™(0, X*(0), V(0))]
~ ew<”1>t1u1/4(v1)<v1>dv1

tl 1 1
+ \/u(vﬁ)<vﬁ>2/v 1 <ocn) / N™ (s, X (), V1 (8))ds x =D /4 (w0 (1)

tl
— w 1 1
A HDOR [ g [ A X0, Vs x = 0t
1 t
1 2
DR [ Lmge = D a2 o™ (0%, o)
b b Yy {t2>0} b b

~ 6w<v1>tly,1/4(1}1)<1}1>d1}1,

and it equals (4.36) for I = 2.
Assume (4.36) is valid for I > 2. We use diffuse boundary condition (4.33) to
express the integrand of the last term of (4.36) as

1{tl>0}€7w<vi;l>tla(tl, xl’ ,U{)—l)|afm+17(l71) (tl, Z‘l, UL—1)|
< H(UL—1)<UL—1>2/V l{tl>0}67w<vl>t"a(tl’ :L'l, vl)|afm+lfl(tl’xl’vl)|
1
« =W QL () () ol 4 e 81T p (Hengfou ) )

Then we decompose 150y = Lyp+1c0<sty + Lipt150y and estimate via backward
trajectory to get
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—w (vt /A Y B
l{tl>0}e =) a(t,x,v)|5‘fm+ (t7xav)|

< 1{tl+1<0<tl}{a(O’Xl(0)a Vl(o))‘afmleil(Ole(O)vVl(o))|
4
+/ Nm+1_(l+1)(s,Xl(s),Vl(s))ds}
0

+ 1{tl+1>0}{e—wwé)tl*la(tl—&-l’xl—&-l’w{))|afm+1—l(tl+1yxl+1’v{))
tl
+ NmH=D (5 X (s), Vl(s))ds}.

tl+1

Plugging this into the previous inequality and integrate over Hé;ll V;, we obtain
a bound for the last term of (4.36) as
-1,

() (10)? /
Hj:l J
_0 12 o2 _
,Sy/ﬂ(vg)(Ug)Q/Hlilv 1gisope zlvy | P(Heg‘ ! foHoo) dZLi
j=1"J
+ /(o) h) /H L Teraoana (0.X'0), V@) [ (0,X0),V'(0) |
j=1"J
I\, _ —
x e A oty (o) ()2 At
L vy

tl
SRR [ Lo [ IO (5 X6,V 0)
=1 0

X ew<vl>tlﬂl/4(vl)<vl>dvl\/,u (vfl) (Y2 dxl=t

ol yplHl _
n /N(Ug)@g)Q/l 1iio0ye (whyt+t (tl+1,xl+1,v{,) ‘8fm+1 1 (tl+1,xl+1,v{,) ‘
Hj Vj

=177

x AW ooy (o) A

tl
0N/ .0\2 1 mA+1—(1+1) x! 1
ot [ Ly, s [~ (5. X'(3), V'(5)) ds

I +1

-1
o= (1010 ) oD (8,0 [asth

Lyl
x e A ) (o) (o) A

P (5] ) ot

e, 0—1,2
= u(vg)@g)Q 1{tl>0}6 2lop
Hé:lv]'

Ffue) b [

ey [

j=

tl
0 0,2 1 Nm+1—(l+1) Xl Vl d dEl
S CCOL B P (5. X', V'(5)) ds

—w ’UL I+1 m —
+ u(vﬁ)(v3>2/l Lisisgpe =00 o (8 0 0L ) [ 2 )| s,
v.

j=1"Yi

Adding this to (4.36) we conclude the lemma. 0

" 1ot coepy o (0, Xl(0)7 VZ(O)) ‘afm""l—l (O, Xl(O), VZ(O)) ’ dZé
1

t
Liticocut) / N (5 X! (s), V! (s) ) ds d]
1V 0
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LEMMA 13. Let 0 < T < 1; then there exists lo > 1 such that for I > lo and for
all (t,x,v) € [0,T] x 2 x R3, we have

l
B 1
(4.38) /H Loty 00001500 AB] S0 B <2> :

j=1%3

Proof. First, since

o l* S 1712+ 21BN, (vh) S (07) + Bl

for some fixed constant Cy > 0,

dEﬁjf wv! Tyt 1/4( I— 1 o 1 s 1H / 1/4 >6w(v-7)t-7dvj

Choose a sufficiently small § = §(Cp) > 0. Define
VO ={vl €V, v -n(ad) >4, 0| <571,

where we have [, |, Cop/B(v7)dv? < 6.
i\V; , ) )
On the other hand if v’ € VJ‘-S, we claim that (#/ — t/+1) > §3.

Since Q is C? and convex, we have |z — y|> 2q |(z — y) - n(z)| for all z,y € 9.
Thus
t )
/ VI(s)ds
i+l

2

= |ait —:cj|2 > (@t —27) - n(a?)] =

~

/ Vi(s) - n(a?)

> o7 - n(a?)|(H — ) — / / EI(1) - n(2?)drds| .
ti+1 Jgi+1
Therefore
1 t! ) t/ s ) . . .
rr==d UV S VI(s)ds| + /t’_+1 . E’ (1) -n(z?)drds| | Z |[v7 - n(z?)| > 4.
But
1 o 2 t7 s ) i
e VIi(s)d E (1) -n(2?)drd
prprEs /tj+1 (s)ds| + /thrl . (1) - n(a?)drds
S g tJ+1 [(# =727 2+ (0 = DY BS + (¢ — )2 B ]
< (tj — YO B + (¢ = B
< (F =T+ EIS + P EIS)
< (¢ =267,
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Therefore

S 53
4.39 t— ) > ,
(4.39) ( )2 Gl ST

so (t4 — 1) > §3/Cq if we choose § < W
Now if # > 0 then there are at most [%] +

m < | — 1. Equivalently there are at least [ — 2 —
Therefore we have

/H“ Mttt 10} ¥

1 numbers of v™ € V;; for 1 <
%] numbers of v™ € V,,,, \me.

6 -1
/8 (3 do?
= — /there are exactly m of v™ € ani li[lcou (v))dv
" andl_l_mOf’Umievmi\Vgu =
(4.40) [S8]+1 . . o
S ( ) {/ COul/S(U)d’U} Colll/s(v)dv
m=1 m % V\Vs

it 1, say, 1 =2 ([S8] +1)° O
Proof of Theorem 3. By Duhamel’s formulation, we use (4.32) to estimate

le=® (v)tad f™H1| along the characteristic in a bulk; then from (4.3), (4.35), (4.36),
and (4.38) we can carry the same argument as in the proof of (5.18) to get

(441)  sup sup [le " adf " (t,2,0)llo0 < P folloo) + adfollo < oo.
m 0<t<T

Then by passing the limit and the weak-* lower semicontinuity of L°°, we conclude
(1.17).

Now we consider the continuity of e~ @"*adf. From the explicit formulas of
df™ from (2.57) and the assumption that aVfy € C° we have e”= ' adf™ €
CO([0,T] x (2 x R3)\ 70). Now since e~ Z{ta[afm+! — §f™] satisfies

v)t

{& +0-Vo+E-Vy+v(/u(f™— ")
(4.42) - % VE + @ (v) + wéj Et—a ' (Qa+v-Vya+ E- Vua)}
(7™ a(0f ™ — af™))
— e—w(v)ta(gm _ gm—l)7
we can follow the W1 estimate from (4.41) for e~ = ta[df™+1 — 9f™] to show

that e~ @t adf™ is a Cauchy sequence in L. Thus e~ @tag fm 5 e~ Wtaf
strongly in L> so that e~ f € C°([0,T] x (2 x R?)\ o). O

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/20/20 to 128.104.93.46. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

3254 YUNBAI CAO
5. Weighted W1 estimate for the VPB equation. In this section we

construct the local-in-time weighted W1:°° solution of the system (2.1), (1.18), (1.19).
Let f9 = V1. We start with the sequence for m >0

(5.1) (at +v-Vy— Vo™ -V, + % Vo™ + u(\/ﬁf"‘)) ST = Tgain(f7 f),

(52) ¢m(t7x) = (bF"‘(t?m) + ¢E(t7m)7 %LnE > CE >0 on 8Qa
- m dppm -
(5.3) —Agdpm(t,x) = Vifdv — po, o = 0 on 09,
R3

with the initial data f™(0,z,v) = fo(x,v), and let boundary conditions for all (z,v) €
v_ be

FH(t ) = cuv/n(v) fo(z, v)/ p(u)(n(z) - u)du,

n-u>0

FrENt @) = eun/pu(v) f (@ 0) v/ p(u)(n(e) - u)du, m > 1.

n-u>0

Now let 0 € {V,,V,}. Taking 9[(5.1)] we have
(at Y0V, — V™V, + g VM + u(\/ﬁfm)) gfmHl
- argain(fm, fm) - a'l) : vzferl + av¢m : vvferl
—0 (5 Vo) FH = OV
=g,

(5.4)

Let X™(s;t, x,v), V™(s;t, x,v) be the position and velocity at time s of the trajectory
starting from (¢, x,v) corresponding to the potential —V¢™. So it satisfies
dv™(s;t,z,v)

=V™(s;t,x,v), - =V (s, X™(s5t,2,v)).

dX™(s;t,x,v)
ds
Also denote
th =t —ty(t,z,v), 2 = X" (tht,z,0),0p = V"(tt, z,v),
and v' € R? with n(z') - v' >0,

and inductively for k£ > 1,

thHL = gk gy gk gk o), gt = xme (Rl (gt gk gk gk

vf = VmoR(EFL R ok oF) ) and oFT! € R? with n(zFt1) - oF T > 0.
Before the local existence let’s first prove the following lemma.

LEMMA 14. If (f, ¢F) solves (1.19), then

(5.5) o t)llori-s Ssa lle?”F £(t)lloo for any 0 <6 <1
and
(5.6) 17268 (t)lloe < 1?1 £(1) oo + lle™ = aV, £ (1) oo
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Proof. For any p > 3, from Morrey inequality and elliptic estimate we have

2
lor()llcra-3/0 Spa 6rOllw2r@) S H/Sf(tw,v)\/u(v)dv—poHm(mil\ee‘“‘ f(t)H
R

oo

Let p = 3/6 we conclude (5.5).
Next we show (5.6). By Schauder estimate, we have, for p > 3 and  C R?,

V265 (Dlloe < ll6F] 21-2 Spe

_3"
P

[ rovaw)|
R3 C

Then by Morrey inequality, WP C =% with p > 3 for a domain Q C R3 with a
smooth boundary 0f2, we derive

_3
P

H/R O e
<| [, sy .
Sl s (/ Ve dv) H/ Vo f (t)y/fidv

S I £+ =0T O | [ =z
R3

Lr(Q)

Lr(Q)

Note that e® (), /i1 < e~51°I” for [u| > 1. So we only need to show that

1
/ £l Z gy
R3 o
1

Since L < L 41 for 8> 1, it suffices to show that || [5s emsll’ L —7dv|| (o) < oo for
some 3 > 1.

Since « is bounded from below when x is away from the boundary of €2, it suffices
to only consider the case when x is close enough to 9. From the computation in

(4.2), we get

< oQ.

(5.7) ‘
L ()

68) [ e 1 S —
w7 ap 2B(a)  VeE@E@) T I

8l

So it suffices to show

(5.9) dz < oo.

B

~/d(z,69)<<1 ()| =

Since £(x) = £(T) + VE(2')(z — &) = VE&(2')(z — ) for some 2’ in between z and T
and |V&(x)| > ¢ for d(z,0Q) < 1 by our assumption on £, we have

[£(@)] = |VE(2") ||z — z[ cos(0) > clz — Z[ cos(B),

where 6 is the angle between the vectors VE(z') and « — Z. And since T satisfies
(x—Z)? = mingyeps.¢(y)=oy (¢ —y)?, from Lagrange multiplier we have that the vectors
x—Z and V() are parallel to each other. Therefore 6 is the angle in between VE(z')
and V(). And since € is C%, we have cos(f) > 1 once d(z,99) < 1. Thus
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1
————dz S/ — —du
/d(z,aﬂ)<<1 |§(:p)|(’3 72 d(2,00)<1 |x7f|@
Now from (2.14), for any p € 92 we can locally define the parametrization:

M+ {(@)1,2) 2, ) € R? 2, > 0} N B(0;61) — QN B(p; 62);
()1, 2,2, Tn) = Mp(@),1, )25 Tn),

Mp(@)1,1, @) 2, Tn) = Mp(@)],1, 7)) 2, 0) + Tn[—n(0p (2,1, 2 2, 0))]

with 0, (2,1, 7),2,0) € 09, for sufficiently small 1,d2 < 1. Then

1 1
g < -
/ ENEETELUIN Gy den < 0
QNB(p;d2) |z — T| 2 lzn|<81 |XTp| ™ 2

if we pick 8 < % + 1. And since 99 is compact, we can get (5.9) by covering 9 with

finitely many such balls. And therefore we get (5.7). 0

Proof of Theorem 4. Step 1. For the sequence (5.1), we claim that there exists a
C1 > 1 large enough and 0 < T' < 1 small enough such that if we let ¢/ =60 — T,

(5.10)

’ 2 2 2
sup sup H€9 Il fm(t,gc,v)H <sup sup He(e_t)‘vl fm(t,x,v)H <C’1He‘9|”‘ foH .
m 0<t<T oo T m 0<t<T o0 oo

Suppose (5.10) is true for all 0 < ¢ < m. Then from (5.5) we have
(5.11) sup sup [|[Vo™ ()] < CQClH@er|2fO||OO <M.
m 0<t<T

Then if we choose

1

12 T —————————
(5.12) SOy M)

we have [V(s;t,z,v)| < |v] + ||Vl < [v] + 1, and

(5.13) /0 t

and from (2.7)

Vi(s)
2

t
V@™ (s)| ds < M/ (Jv| + tM)ds < tM|v| + 2 M? < (v),
0

(5.14)

t
/
for 0 < t < T. Now from (5.13), (5.14) and following the argument in estimating

along the backward trajectories from Lemma 12 we have, for 1 < I < m, if ¢! < 0,
then

Y9) gm(s)

t
5 ds <M / [V (s)|ds<5Mt(M + D)+4M D<5tM>*+9M D<Co,M
0

(515) e(@—t)|v\2 |f1'n-"_1(t7 x, U)|
—t)|v|? v|+t2M?| rm m m
< @D ML+ M?) pmtd (g xrm (g) Y™ Q)|

t
+6(0*t)|v\ 6CQM/ Fgam(fm,fm)(s,Xm(s),Vm(S))ds
0
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< ee‘”|26t(M|”|_|”‘2)+1\fm“(o,Xm(o), V™ (0)] + e0=0)v|* ;CaM
/t Tgain (F™, f™) (5, X™(s), V™ (5))ds
0
< L frL (0, X (0), V(0))] 4+ OO CMt
/0 (™ ™) (s, X (5), V™ (5))ds
< P (0, X7 (0), VI (0))] + el0-0 eCa
/ Dyun (™ ™) (5, X™ (), V"™ (5))ds.
If t' > 0, then
(5.16)
0O e 1, 0)|

< eO=0)[v|* CaM /t Conin (f™, f™) (s, X™(s), V™ (s))ds

2 —1) [0t 2

1 Vi =1
i, x4 Vi Dz

2 _ ,U7,2
00 [ty / Zl{t1+1<0<tb}e( )]

11711

tl
/ Fgain (fm—i, fm—i)(s7 Xm_i(s), Vm—z(s))ds dzéfl
0

INCEGINE /l 1 Zl{t’+1>0}€ -t

JlJ’Ll

/t Cgain (F777, F770) (5, X™(s), V™ (s))ds dXL
t

i41
Y T T [T
Iz v
where V; = {07 € R? : n(27) - v/ > 0}, and
-1

dxi=t = H p(?)e,|n(2?) - v |dv? {e<”i> u(vi)(vi>ef(07ti)|”i‘2dvi}
j=itl

ﬁ "/ p(v?) (07 dv?

where ¢, is the constant that [oy pu(v7)e,|n(2?) - v7]dv? = 1.
Now we have for all 0 <1¢ <[ —1,
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t'i

e(@—ti)lvilz/ oo m(fm—i fm—z)(s Xm_i(s),vm_i<3))d5

:(975)\“\2///‘/"1@
R3 Js2

v u —i m—i (1 rm—i
—ul"qo <|Vm’()—u| w) V() fm (u/)f (V (s)/)dwduds
) _ 2
< sup 6(975)|v\ fmfz(S)H )
0<s<t 00
x / Vm=i(s) — ’U/|Kme(g_tl)‘UI|26_(9_S)IUI‘26_(9_S)|Vm71(s)/|2d’u,d8
0o Jrs
2 . 2
- ( sup [0 pr=iga)| )
0<s<t 00
x/ V™ (s) — ult /()@= g (O=s)ul? o =(0=9) V" () gy g5
0 JRrs
2
< ol )
0<s<t )

t R
x/ / V™ (s) — ul/ p(u)e—IVT ()7 = (O=9)lul® gy d
0 JR3
, _ 2
6(075)|v\ fmz(s)Hoo)

IN

S(Sm>
0<s<t

i

7 m—1i 2 -
X/o ==V T P (Ymi () (1 s + i<}

2 2
A 1 A
< ( sup e(efs)lv‘Qfmﬂ(s)H ) X ( + 2Nt> <e ( sup e(efs)lv‘Qfm*l(s)H )
0<s<t 0 N 0<s<t &

if we choose sufficiently large N > 1 and then small 0 < T' < ), where we have
used ‘UQ—l < |[Vm=i(s)] < 2|vil, for [vf| > N > 1, and |Vm*i( )| < 2N if |vi] < N,
and that e(@—W'* < MOV < 00—tV ()I* and that |u/|2 +
V=i (s) |2 = [ul® + [V (s)

And by the same argument we have

4
0=tV /+ Poain(f™7 M) (5, X (s), V" (s))ds
titl

2
’ 1

§ < Sup e(efs)lvpfmf’L(S)H ) % ( + 2Nt> .
0<s<t 00 N

Now from (4.39), we have t/ —t/+1 > W for v/ € V9. But from (5.12),
if t > 0, then there are at most [gﬂ + 1 numbers of v™ € Vo for 1 <m <1 — 1.
Thus for I > 2 ([92] +1)*, we have from (4.40) that

l
PRI 1

/ l{tz>o}6(9 el llgdzé %<QM () :
Hlflv. 2

j=1"Yi

Therefore from the above estimates we have for (5.15) and (5.16) the following
estimate:
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eO=OIP il (y g )|

2
- i 8N
< zH 6)v|? H Co M~ (6—s)|v|? pm+1—i H
<1Ic||e”™ fo _te Ic 132;31021; e ! (s) N Nz + 2Nt

(6—s)|v|? pm+1—i 1 :
| (5)
S

We can now choose a large [, then large C4, then large N, and finally small T to
conclude the uniform-in-m estimate

+ C max sup
1<i<i—1o<s<t

E11 s [ s 1600 e < Gl ol

with 8/ = 6 — T. This proves (5.10).
Step 2. We claim that there exists 0 < 0’ < 1, @ > 1, T = T(||e?I"* fo| 00, @) <
1, and a C7 > 0 such that

(5.18)

’ 2 2 2
sup sup_[|e” e a0 £ (8,2, 0) o <C1 (P folc) + 1”7 0o ) <00
m 0<t<T

From (5.4) and direct computation we have
(5.19)
v
(v)
— 69'|v|267w<v>ta (af +v-V, — v(bm Vo + g . v¢m + V(\/ﬁfm)) aferl

o2
— 66 |v] €7w<v>tagm'

—w Vo™t—a ' (Oyatv - Vea—Vo™ - Vva)}(egl”lze_w<”>ta8fm+l)

From (5.2), (5.3), ¢™ satisfies

D™ Oppm  OdE (6lo3>
.2 — = — — _ —

(5:20) on on on on >Cp >0

on 0N for every m. Note that if we let E(t,z) = —V¢™(¢t,z) in the definition of

a(t,z,v) in (2.45), we have the same «a(t, x,v) for all m, as Vopm (t,2) - VE(z) =0

for all z € 9. Therefore by (2.46) we have that

(5.21) o '(Qa+v-Vea— Vo™ V,a) < %(IIVW’LHOO + (V2™ [|oo ) (0).

By our choice of f we have ¢° = ¢5; thus if we choose @ large enough, we have

<“—> Vet —a (O +v-Vea— Ve Vya) >
v

%-V¢0+29’U-V¢O+w<v>+w (v).

IR

Now if we let
o =v(\VR f)—f—%~V¢)m+29’v~v¢m—l—w<v>+w<z—>~V¢mt—a’1(8ta+vovma—v¢m-Vva)
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and
N™ = 60'|v\267w(v)tagm,
we have
(5.22) (O +v Vg — Vo™ -V, + 77) (e I e=0)igg frtly = N
Now since

T i (04,1 = 1 [ [ o= algo /(0™ o) 70
< e PP [ [ o= altao /e o et e
< e e [ o= alao /e o et e dd
S S A N VY T

< 20/|11\2me 6—09/\u—v\2| 9'\u|26fm(t )|d
~ € oo RS |U7U|27K € 7xﬂu u)
where we've used [v/|2 + [u/|? = [v|? + |u|?, and
0 [v]? (\Fafm)fm—&-l < H€20 [v]? fm+1|| —0'|v|? (fafm)
< 20" |v|? pm+1 6709/|u71)|2 m
S lle f ”OO/Rs m@f (t,z,u)|du,

then from (5.10) we have the following bound for N

(5.23)
INT (¢, 2, v)|

= egl|”‘2.e_w“’”oz(t7 x,v)

« (argam<fm, ) = 00 Vo f 4 0V - W,

#0(50m) 70 = DlaF) )

S A+ V20" o) [P folloo) + [€7 127 e = ad 141 (1, 2, v) ]
eng|u7'u\2

e folle = at0) [
RS

u— o2k

le? 1 o™ (¢, 2, u)|du.
We claim that there exist C7 > 0, w > 1, and T < 1 such that if
= v(Vif) + g VG 4200 - Vi + w(v)

+w<% Vo't —a O +v-Vea — Vo' - Vya) >

forall 1 <i<m—1 and

5.24
(5.24) ()

w\a

’ 2 -
max sup H Ol w<”>ta8f’(t,$,v)H
0<i<m g<¢<T oo

(5.25) <cy (P (e o) + [} a0s0]| ) <oc
< 0 oo 0 oo
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then

(ff)+f Vo™ +20'v - Vo™ + w(v)

(5.26) w
+ Vo™t —a N Oa+v-Vea— Vo™ - Va)Z;

and

(5.27)
sup Heellvﬁe*wwﬁaafm*l(t,x,v)”oo <C (P (Hee|”‘2f0HOO) + Heell“Fa@fOHm) .

0<t<T
To prove (5.26), note that from (5.21), (5.6), and (5.25) we have
a (O +v-Vea— Vo™ V,a)
S UIVE™ oo + V2™ Jo0) (v)
S (|l ]|+ e aVe Bl ) ) S (U follow) + a0 lloo) (v)-

Therefore (5.26) can be achieved once we choose w > 1 large enough.
First for 1 < 0, using Duhamel’s formulation we have from (5.22)

69'\v|26—w(v)ta‘afm+1(t z,v)|

(528) fs v (T, X" (1), Vm(‘r)d‘r 0'|V™(0)] (X@fm+1(0 Xm( )’ Vm(O))

t
+ / e Jova (XM @ V@ T \rm (g X (6) VM (s))ds.
0

Thus by (5.23) we have

sup [[1ncore” ™ eI a0 f " 1, 0)

0<t<
< sup H€ 0 ,w(TXm(T) V™ (r)dr 9|Vm(0)|2 8fm+1(0 Xm(o),vm(o))
T oo0<t<T

t
+/ e~ f: v (r,X (m),V (T)dTNm(S,Xm(S),Vm(s))dS”OO
0

/ 2 2
< | aop|| _+T1+ 196" o) [P folloo)

+ sup HeG,Mzefw@)taafmﬂ(t,x,v)H }
oo

0<t<T

2 ’ 2
Lp (Heg'“' folloo> OquT Hea o] e—w(v)taafm(t’m’v)u
<t<

o]

—w (V™ (sit,z,v))s —Cg|V™(s)—u 2 m m
X /t 87-{: %<Vm("'§tvzvv)>d7'e { (it U e ¢l © : a(s’X (S)7V (s))duds
RS em=ts [V (s) —ulPmr afs, X™(s), u)

Now since
(u) = (V" (sit,2,0)) < 2(u— V™ (s3t,2,0)),

we have

—w (V™ (s;t,x,v))s Mgy 2
6—09|Vm(8)—u‘2 < G_M
~J

e—w(u)s
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Thus
(5.29)
m t.x.v))s — m S 7’U‘2 m m
// o It F Wt yar €T EEON OO afs, X1(s), VI (s)
. e_w<“>s ‘Vm(S) _ u|2*ff a(S,Xm(s),u)

™) |2 m
/ / — [l BV (rsta))dr € Ve ofs, X (s)’v(s))duds
RS [V (s) — a2 a(s, X™(s),u) '

Note that, for any 8 > 1,

1 < 1
a(z, X™(s),u) ~ (alz, X™(s),u))”

So from (5.20) we can let 1 < 8 < 2 and apply (4.3) to (5.29) to have

+ 1.

(5.30)
. (V™ (sit,x,0))s ,—Co|V™(s)—ul? m m
// e JL VT (rta))dr e’ a(s’X (S),V (S))duds
R® em=tws V™ (s) a7 als, X™(s), u)
3-8 3— _ _
< UVt (02 (a(t2,0)* P (jo] + 1) (alt, w, 0))* 7
~ (jv]? +1)*% 67~ te (v)

< LCUIVO™ 2 +IV2o™ o) [ 5252 1
~ e 07 +5ﬁ—1w

where we used a(s, X™(s), V™ (s)) < eCUVET ANV o) (¢, 2, v).

If t1 (¢, z,v) > 0, the backward trajectory first hits the boundary; then from (4.36)
we have the following line-by-line estimate:
9/‘1]'2

[Lrsope” e ™ aa (¢, 2, v)]

2 ’ 2
S P follo) + T+ V267 1) sup [ e a0 1., 0)
0<t<T o

l , .
+1 (CeCt2) max ||e’ I”‘2oa9f5”+171

1<i<l—1

+ P (1" folloo) |

oo

sup H o'lvf? _w<”>ta8fm+1(t T U)H
0<

(oo}
_ %o ym gy
« (eCt Q/t/ e_fst%<Vm(T;t,x,v))dTe 2 V7 ul? (S X ()7‘/ ())duds
m 2—k .
R3 [Vrm(s) —ul a(s, X™(s), u)
Ct2)l 2  m—1i H 0'|v|? —w(v)t m+1—1 H
1) e (41967 o), g, s [ e a0 )|
C’tQ)l 2  m—i 0|v|?
+71(Ce) max (14 (V26" ) PO o)
+ P (\|eg|”|2fo||oo) max sup H Gl‘vlze_wwﬂaafmﬂ_i(t,x,U)H
1<i<i— 1O<t<T oo
x 1 (CeCtz)l max / / e*.fsti 2V (rit,a,))dr
1<i<i—1 J,  Jgs
] m—i . .
e VO s, X (), VI (s)
, , uds
[Vm=i(s) —ul?=r  als, X" (s), u)
+ P (H@glv|2f0||oo) max = sup H el‘vlzefwwﬂaafmﬂfi(t,J:,'U)H
1<:¢<Il— 10<t<T oo
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1 tt i .
<1 (CeCt2) max A S A
1<i<l—1 Jyit1 JR3

&} m—i . .
e VO s, X (), VT (s)
V(s —uP als, X7 (s),u)

!

1 Nol2 — —a-

—|—C<7> sup [le? e =@t =N ¢ 2 )] oo
2/ o<t<T

We again apply (4.3) to get

’ 2
Lsoye” e adf " (1,2, 0)|

2 3-8 1 2 m—i) 2 2 m—i m—i
< CleClt 57z + P(Heelvl folloo) max CUVe Ioa +11V=e loo+IIVe [loo)
08—z 0<i<i—1

0'|v|? — t i
max sup He ol” g === (v) a@fl(t,x,v)H
m—(1-2)<i<m o<¢<T

+ T (1+V?6™ ) Jsup H69’|”|267w<”>to¢8fm“(t7x,v)H
<t<

oo

e}

! . , :
+ Tl (C’eCtz) ax (14 [|V?¢™ *||ec) max sup Hee ‘U‘ze_wwﬂa@fm“_l(t,az,U)H

m
1<i<i—1 1<i<i=1lo<t<T o0

l .
+ 70 (Ce”) max (14 (V76" ) P(e™™ foll o)

1<i<l—1

1
+C (%) max sup ||e’ ‘vpe*w(v)taafi(t,m,v)Hoo.

m—(1—-2)<i<m o<¢<T

Now if we let P([|e?I"F* folloo) + [[€? 1" ad folloe = My < o0, from (5.6) and the
induction hypothesis, from (5.24) we have

2 m—i < ( 0lv|? pm—i —w(v)t m—1 )
Jmax (14 V97 ) S ma (I 7Ol + e Ve 0

<C1M;.
Therefore we have

[Lppsoye S VT g fmtl(y )]
1 P2 >
55—1w> P([[e”1" fo|oo)er MHOM

X max sup ||e€l|“|2e*w@ﬂaafi(t,:v,v)||oo
m—(1-2)<i<m 0<t<T

+TC M sup [l Fem=®tag 1t 2. v)| o
0<t<T

< CleClt2 <53;B +

! , ‘
+ 1Tl (C’eCt2) C1M max sup |’ |”‘26_w(”>ta8fm+1_l(t,x, V) |lo
1<i<i-lo<t<T
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2 l 2
4TI (CeCt ) CLMP (| foloo)
a2\ ! o2 2
n (CeCt ) €91 ad follse + P (17" follo)

l
1 ’ 2 :
e (2) e sup e a0 (1, 0) o

Finally we choose a large [, then large C7, then small §, then large w, and finally
small T' to conclude the claim (5.27):

sup [le” = ad fm (t 2, ) o
0<t<T

<z ma sup |le=Fadfi(t, z,v
-8 m—(l—2)}éi§m OStET || f ( )”00

Cl /,U2 U2
+ 5 (1" a0 follow + P(IE foll o))
1 1
< §01M+ 501M < CiM.
This proves (5.18).

Step 3. Now taking V, derivative of the sequence (5.1) and adding the weight
function e~ we get

(5.31)

{&Jﬂu “Vie—=Vagd™ -V, + g “Vaed™ + ww(v) — Ewt V™ + u(\/ﬁf"‘)} ("7, f)

=m0 (—Vul/(\/ﬁf"‘)fm“ — Vo f™ - %mef"‘“ + VoL gain (f ™ f’")) 7

with the boundary bound for (z,v) € y_

(5.32) Vo SVE [ IR ade on
nou>
And
2 Vad™ @ (0) — wt - Vod™ + v(if™) > 2 (v),
2 (v) 2
for w > 1.
We claim
(5.33) sup sup ||eiw<v>tv1,fm(t)HL:;(Q)L})-%—é(Rg) < 0.
m 0<t<T

Using Duhamel’s formulation, from (5.31) we obtain the following bound along the
characteristics
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\67w<”>tvvfm+1(t, x,v)]
< Lty sepe” o TV, L0 X058, 2,0), V03, 2,0))]
(5.34)
+ 1{tg‘(t,m,v)<t}€7w<v£ﬂ>tbu(vgb)% / |fm(t - tga xgla u)h/ﬁ{n(:cg’) ! u}du

n(zy')-u>0
(5.35)
t
n / o st _%<vm(7—)>d-re—w(V"‘(s))s|vzfm+1(s7 Xm(s), Vm(s))\ds

max{t—tp,0}

(5.36)

t
+ / (1 + Hee'mzme n H€9’|v\2fm+1H ) o= JL=F (VT ()T ,—w(V ™ (s))s
max{t—tp,0} 0 oo

/ e_cgllvm(S)_MzV S (s, X™(s),u)|dud
X ——V, S, s),u)|duds
Re |V (s) — uf>"

(5.37)
t
+ ||69’\U|2fm+1 ||oo / e~ f; —%<Vm(‘r)>d‘re—w(Vm(s))se—0/|Vm(s)|2
max{t—tp,0}
X |Va@™ (s, X™(s;t,2,v))|ds.
(5.38)

We first have
(5.39)  [1(5-34) 3 1+

0’|V (0)]? m41 m m 3
([ ([ e or.maoxmo. o)

?;g 1/3
y (/ e—<1+6>2%9’|vm<0>2dv> ’ )
]R3

1/3
(// |ef Vm(o)lzvvme(O,Xm(O;t,x,v),Vm(O;t,x,v))|3dvda:>
QxR3

1€ 17, £(0)]| s

x,v

N

N

where we have used a change of variables (z,v) — (X™(0;t,z,v), V™(0;¢, x,v)).
Clearly

(5.40) 1(5.35) ]| o pa+s S sup [l 1”7 ™ ()]l
e 0<s<t

From W12(Q) c L°(Q) c L3(Q) for a bounded Q C R?, and the change of
variables (z,v) — (X (s;t, x,v), V(s;t,z,v)) for fixed s € (max{t — tp,0},1),
(5.41)

t

5383305 S e 41 | le™ %0 (s X (55,2, 0)llng
ey max{t—tp,0}

7
x Jle” T s
va—é
t

2
S e [

max{t—tp,0

} IV ¢™ ()l L3

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/20/20 to 128.104.93.46. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

3266 YUNBAI CAO

t

’ 2
S e e 67 (52
max{t—tp,0}
’ 2 ¢
S e [ | [ VAo = oo
max{t—tp,0} R3 2

< 0'|v|? pm+1 0'|v)% pm
tle f lloc ||€ f :
)

Next we have from (5.8), (5.9), for 2(37% < 1, equivalently 0 < § < 2,

(5.42)
t
[1(5-36) ] .5 ;148 < / fom+l(s,Xm(S)7Vm(8))ds
v max{t—tp,0} L},+5(]R3) 3
_ /t 69/‘Vm(5)‘267W(VW(5))savzfm+l(87Xm(s)’ Vm(s))ds
max{t—tp,0} VIV em =V s Ly ®3) || s
< sup H691|v|267w<v>tavzfm+1H
0<t<T [eS)
t efel\vm(s)ﬁew(Vm(s))s
X / — — ds
max{t—ty,0} (X(S,X (S)7V (S)) L11,+5(]R3) L3
< (CUTO e +IT6™ I 4IV20™ o) ) Heel‘v‘zeiwwav“”fMHH
0<t<T 0o
, e
t L)
« _e*
/Q / (alt,a, ) )
< 1eCUTO It IV 12 HIV20 ™ o0) g Heg"v‘Qe*wwavzf"‘“H 7
0<t<T oo
where we have used
m 2. m
a(s, X™(s;t,z,0), V™ (s;t,x,0)) > e~ CUIVE™ llooHIV=o “w)a(t,x,v).
Next, we consider (5.37). From (4.3) and the computations in (5.8), (5.9),

have, for 1 < 8 < 2,

(5.43) H(5'37)”L§L}J+5

<

t
/ e~ f:7%<Vm(7))d‘refw<Vm(s))s

max{t—tp,0}

efceflvm(S)*u\Qv — dud
/R?’W(S)_U’P_K of™ (s, (s),u)|duds

Lyt (r3) 1113
< sup Hea/lvlze_w@)tavzme
T o0<t<T 0
t
X / = Jd —F (VT (r)dr
max{t—tp,0}
/ e—Ce/|V"”(s)—u|2 6—9/|u|26w(Vm71(s)>sd q
uds
re [V (s) —ul2*  a(s, X(s),u) Lo llzs
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m—1 / 2
<1V Moo gup Hee o] e_w<”>tavwme
0<t<T 0o

t
/ o= i —F (VT (r)dr
max{t—tp,0}

e—CorlV™(s)=ul* =% |ul?
/ duds
s [V (s) —ul>~" (a(s, X (s),u))?

X

Ly ®?) L3
< LUV Moot IV I+IVS™ IP+1V20™ ) gy, Hee’lvlze—w@ﬂamf’nu
0<t<T
. o (o] + 1)~
(alt,z,0))8-2(Jv]2 + 1)2°  0Ftw(v)(alt, z,v))P !

L})‘Fé(Rli) L3

< CUTE" oot T IHITE™ I HIV2S™ 1) g Hea/lvlze—ﬂvﬁamf’”“
0<t<T

1
v)?>~Plalt,z,v))7~!

0t Lyt (R3) || 13

<0 (65° 4+ L) U™t V6™ oo I T6™ 2 IV 6™ )
~ 1w

/ 2
sup H69 vl%e w<”>tavxme
0<t<T 00

(B— 1)(1+6) 1 3

for B satisfying 5 < 1, which is equivalent to § < 3 —|— Therefore

1+5
any 1 < 8 < % would Work
Collecting terms from (5.34)—(5.38), and (5.39), (5.40), (5.41), (5.42), (5.43), we

derive

sup sup ||e_w<“>tvvfm(s)||L3L1+s
m 0<s<t v

S|, s )7 e sup e
(5.44) Lo m o m

m m |2 2. m ’ 2
Vo™ oo HIV™ 12 41V6™ ll0) sup sup Hee o] e_w<”>tavl.me
oo

-+ sup eCl
m m 0<t<T

< oQ.

This proves (5.33).

Step 4. Let h™ = e~= W f™ where f™ is constructed in (5.1). We claim for
w > 1,and 0 < T < 1 small enough, that
(5.45) R™ — h strongly in L°°((0,T); L**(Q x R?))
for some h. By direction computation we get from (5.1) that

.46)

<3t+v Vp—=Vgo™ - 1,+g : V1¢m+w(v>fiwt Vg™ + V(\/ﬁfm)> (1)

(v)
=€ - v>trgain(fm7 fm)
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Note that h™T1 — h™ satisfies A — h™)|;—¢ = 0, so from (5.46) we have

(5.47)

Oh+v-V, — mevv% Vo™ + w(v) — %wt Vo™ + v(af™)| (R = ™)
v v

=<vx¢pm—-vz¢Fm~>-vvufU“(2“@»aﬁ>'<vx¢Fm—-vz¢Fm—ﬁhm
+ e—w(v gam(fm fm) _ _w<v>trgain(fm_17fm_1> —v (\//j(fm o fm—l)) h

Now since

v

Vg = 5 Vad™ + ) = et Vad™ VR > S 0)

for @ > 1, by Green’s theorem for L'*°-space with 0 < § < 1, we obtain from (5.47)
that

(5.48)

= OIS + [ A [ - R

< I - ii§+/ [ IRHS of Gap)pt — 7o / B — B
QxR3

For 0 < § < 1, by the Holder inequality with 1 = 525 + % + % and the Sobolev
2—05

3(146)

embedding WH1+9(Q) ¢ L72=3

t
0 QxR3

t
(5.49) < / ||Vw¢F"m — Vai@pm-1 || 3049) ||Vvhm||L3L11)+é H|hm — hm_1|6H 146
0 L, ° ,

() when  C R3,

t
5 sup ||Vvhm(s)HL3LL+5 X / ||[hm — hm—l](S)H%Igd
0<s<t ® 0

We also have

G0 [ t [ et 7 = N = 570 dodads

///R3 e~ (O hs O [0l g (/ |;cglFHEl(fm—f’"‘l)(u)|du>

X |(f™ = ) () dvdads

/ // _(1+5)w<v3 e E Pl
R3
e Sl 1/(1+4)
(/}1&3 <|vu|2—"€> |fm(u) _ fml(u)llJr(;du)

X |f™ @) = ™7 )| dudads

, t
< HeG ‘vlzmeoo/ / / e—(l+6)w(v)5|f7n(,u) _ fm_l(U)‘1+5ddedS
0 Q JR3
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C'sl\'u ul?
0 |v|? f 7(1+6)w v)s
3 Jr3 |v—u|2 ~
Q JR R

X | f™ (u )—fmfl( )|1+6dudvdxds

= e g /// —O)m s () _ L () (140 gy s
R3

e~ @ (v): +5  _cylv—ul?
A £ (w)s e~ Corlv—ul do | e~ (1HO= (s
3 3 \ e~ @(ws |v—u|2*”
R R

< [ (u )*f’"*l( )I”‘sdudxds

9 |v|? f / / /3 —(146)w( ’L}>S|f ( ) - ('U)|1+5d'l)d.’17d3
R
e2(1+8)w (v—u)— Cor lv—ul|?
A o / / / / - dy | e (O (s
R3 R3 v — ul

X ™ (w) = 77 ()| dudads

(e IvI2 /// —(H8)=(w)s) pm gy pm=L () 18 g g
001 /// —QOmWs) pm ) g ()| 1 Gy dds,

And similarly, we have

(5.51)
N ) A OB O}

0'|v|? pm 6709/|U7u|2 m m—1 —(146)w(v)s m m—1 S
S | [ e @ ¢ " = )

v
Thus we use (5.50), (5.51) to conclude that
(5.52)

/// [RHS of (5.47)||h™ " — ™ |°
QxR3

t
< (e, s 16 PG s 9™ ) ) [ 187 =0
<s< v 0

i=m,m— 10

Then following the argument of (3.17) and applying the trace theorem, we can
obtain

(5.53)
[ =g oty [ - e - e

+ sup {1+ [[Voh™ ()| o pres + 1”17 F7 71 (8) oo
0<s<t @

I 2 [ - S

Now using [p™*! — h™](0) = 0, and combining (5.48), (5.52), and (5.53) we
conclude that
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sup [ (s) — A" (s) 1113
0<s<t

st<1+ sup sup e 1" £l + sup supvvh%t)LsLl*E)
0<s<t 1 0<s<t 1 ©

x ( sup | (s) = "N (s) s + sup (IR (s) - hm(s)niiﬁ) .

0<s<t

Then by (5.10), (5.33), we have for ¢ < 1 small enough,

s () = KIS+ sp W 2(s) — K ()1
0<s<t 0<s<
<o) ( sup [0 (s) — ()12 4 sup ||hm1<s>—hm2<s>|%i§>.
0<s<t 0<s<t

Therefore, inductively we have

sup [|A™H(s) — h™(s) 115

0<s<t

< sup [ (s) — A (s)[105 + sup [[R7FA(s) — R (s) I
0<s<t 0<s<t

<o

Hence we derive stability

sup [|h™(s) — hl(s)[1115 < Oyt
0<s<t

Therefore we conclude
R™ — h strongly in L>((0,T); L'T(Q x R?))

for some h, and this proves (5.45).

Step 5. From (5.10) we have up to a subsequence the weak-* convergence:
1P it xv) 2 1P f(t 2, 0) in L°([0,T) x Q x R3) N L([0,T) x 7) for some
f. By (5.45) the limit is unique; therefore (e 1V fm(t, z, v), e VI fmti(t z v)) &

(69/‘“|2f(t,x,v)7ee/|”‘2f(t7x,v)). B
Thus from (5.1), we have for any ¢ € C(R x 2 x R?),

T
[ i [-a-o Vet Vaoe V4 4 Vaoe] o
0 QxR3

v
+ fm+1 {vx¢Fm : Vu‘ﬁ + 5 : vng)pm(p}
(5.54)
(5.54) v
/ // gam f fm) _ V(ffTrL)fm+1
QxR3
(5.54) gain (5.54)108s

[ Lo [ [n e

Except for the underbraced terms in (5.54) all terms converges to limits with f instead
of fm+l or fm.
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We define, for (t,z,v) € R x Q x R? and for 0 < § < 1,
15t tx,v) = ks(x,v) f (¢, z,v)

(5.55) _ X(In( ; ol 1) [1 _ X(5|v|)]fm(t,x7v).

Note that f5(t, ,v) = 0 if either [n(z) - v| < 6 or [v] > ;. Now

(5.54)10ss — /0 ' / / v(Vif)e

v —ul"qo{ ™ (u) — W () duf™ ™ (v)p(t, z, v)dvdzdt

QxR3 JR3

v — ul*qof () /i) du{ " (v) — F@)bo(t, 2, v)dvdadt .

OxR3 JR3

The second term converges to zero from the weak—x convergence in L* by (5.10).
The first term is bounded by, from (5.10),
1/2
L2(Q ><R3)‘|

T
/ / s w)(F7 (b, 0) — £, 0)) () () du
(5.56) o IlJ/rs
X sup [lwg fH(t) ]| oo + O(8).
0<t<T
On the other hand, from Lemma 15, we have an extension f™(t,x,v) of xs(z,u)
S™(t,z,u). Note that from (5.5) sup,, [Vé¢" || < oo and Vg™~ ! .V, f" =V,

(Vo™= f™) with sup,), [|[V¢™ ! f™| 1> < co. Thus we apply the average lemma (see
Theorem 7.2.1 on page 187 of [10], for example) to f™ (¢, x,v). From (5.10),

(5.57) sup

m

< Q.
H} A (RXR3)

Fm(t, o, u) (u)® v/ p(u)du
R3

Then by H'/* cc L?, up to subsequence, we conclude that

/Iig(l‘,u)f (t, z, u){u)™\/p du—)/ ks (2, u) f(t, x, u)(u)*\/pu(u)du strongly in L7 .
R

3

So we conclude that (5.56) — 0 as m — oo.

For (5.54)gain let us use a test function ¢4 (v)p2 (¢, ). From the density argument,
it suffices to prove a limit by testing with (¢, x,v).

We use a standard change of variables (v,u) — (v/,u’) and (v,u) — (v/,v") (for
example, see page 10 of [10]) to get

/OT//(5.54)gain—/0T //Fgain(f,f)so
_ /OT//rgain(fmf,fm)<p+/OT//Fgain(f,f’"f)so
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(5.58)

/ //Q><R3 (/RS /sz (8,2, u) = f(t 2, w)/ u) o — UK(]0901(U/)dwdu>

x 7 (t, x,v)pa(t, x)dvdadt

559
[ e = g0 00~ s

X f(t,x,v)p2(t, x)dvdadt.
For N >> 1 we decompose the integration of (5.58) and (5.59) using
1= (1= x(lul = N1 = x(lol — N}
+x(lul = N) + x(jol = N) = x(Jul = N)x(Jo| = N).

Note that {1 — x(Ju] = N)}H1—x(Jv| = N)} #0if |v] < N+1 and |u| < N+1, and if
x(Jul = N) + x(Jv] = N) = x(Ju| = N)x(Jv|] — N) # 0, then either |v| > N or |u| > N.
From (5.10), the second parts of (5.58) and (5.59) from (5.60) are bounded by

/ //QX]R3 /]R3 /S2 x {x(Ju| = N) 4+ x(Jv| = N) = x(|lu| = N)x(Jv] = N)}

9

< sup g o Flloe x {e=H e (10 4 1p5x)

cofd)

Now we only need to consider the parts with {1 — x(Ju| — N)}{1 — x(Jv] = N)}. Then

(5.60)

(5.58)

///QX]R3 s ("t m,u) = f(t 2, u))
< {1 = x(Ju] - (/ S -l goen (v )dw>d

x {1 = x(|v| = N)}f™(t, z,v)p2(t, 2)dvdadt.

(5.61)

Let us define
(5.62) P, (u):={1—x(u| - }/ Vi(u)|v —u|®qopr (v )dw for [v| < N + 1.

For 0 < ¢ << 1 we have O( 63) number of v; € R3 such that {v € R? : |v] <

N+1} C UZ 1‘53 2 B(v;,9). Since (5.62) is smooth in v and v and compactly supported,
for 0 < e < 1 we can always choose § > 0 such that

(5.63) |Dy(u) — @y, (u)| < e if v € B(v;,9).

Now we replace @, (u) in the second line of (5.61) by ®,, (u) whenever v € B(v;, d).
Moreover we use kg-cutoff in (5.55). If v is included in several balls, then we choose
the smallest 7. From (5.63) and (5.10) the difference of (5.61) and the one with @, (u)
can be controlled, and we conclude that
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(5.64)
(5:61) = {0(6) + O0)} sup o™ %
T
[ ] tenos [ o)) = £t )y, () de
x {1 = x(|v| = N)}f™(t, z,v)pa(t, z)dvdadt.

From Lemma 15 and the average lemma

< o0.
H} M (RXR3)

(5.65) max sup‘
1<i<o(dg) m

/ ks(z,w) f™(t, z,u) Py, (u)du
RB

For i = 1 we extract a subsequence mi; C Z; such that
(5.66)

ks(z,u) f (t, z,u) @y, (w)du — ks, u) f(t, z,u)®,, (u)du strongly in L7 .

R3 R3 i

Successively we extract subsequences IO( n3y Coor C Zo C I;. Now we use the last
53

) and redefine f™ with it. Clearly we have (5.66) for all i.

Finally we bound the last term of (5.64) by

T
C@z,N maX/
L 0

— 0 as m — oo.

subsequence m € Z . y3
O(5s

sup [lwg f™ oo

2 m
Lt.z

[ mst) (gt = Ft )

Together with (5.64) we prove (5.58) — 0. Similarly we can prove (5.59) — 0.
Now we consider (5.54),. From

~(@érn —80) = [ wstrm = v+ [ = m)(™ = VR
we have

60 IVatrn = Vooliz, <| [rstrm = DVE|  +O@)sup o™

L?.
Then following the previous argument, we prove V,¢pm — V¢ strongly in Lfyx as
m — oo. Combining with 69/‘”|2fm 69/‘”|2f in L*, we prove fOT foxR3(5'54)¢

converges to fOT JJosrs FAV2d - Voo + § - Vo). This proves the existence of a
(weak) solution f € L*°.

Step 6. From (5.10) and the weak-* lower semicontinuity of L* we conclude
(1.22). To prove (1.23), we have from (5.18) that 'l == (0)tg pmtl pag (up to
subsequence) a weak-* limit. So for any test function ¢(t,z,v) we have

lim /T // 69’|v\26*’ﬂ(v>tafm+1<p
m=oo Jg QxR3
T T
= lim </ // 3(66/‘”|267w<”>t¢)fm+1+/ / e lvf gmwlv)t gl
m—00 0 QxR3 0 Jyp

T
—/ / /e 1?! e_w<“>t/ fmy/u{n - u}dwp)
0 - n-u>0

*
—
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T T
:/ // 8(69/‘U|26—w<y)t<p)f+/ / €9l‘v|26_w<v>tf§0
0 QxR3 0 Y+

T ’ 2
[ [ e e [ wau
0 v n-u>0

T ’ 2
:/ // 60 |v] 67w(v)t6f(p'
0 QxR3

*

Therefore ef' 10’ e== @ty gmtl X 00 e—=)tgf ¢ [0 And (1.23) is obtained by
the weak-* lower semicontinuity. And similarly, from (5.33) we conclude (1.24).

Finally, we prove the uniqueness of the solution. Assume Go(z,v) = \/fgo(z,v)
satisfies (1.21) and G(t,z,v) = \/ug(t,z,v) is a solution to (1.1), (2.1), (1.18) with
g(0,z,v) = go(x,v). Now replace A1 — h™ by e~ f — e==(Wg in (5.47), and
by the same argument as (5.49)-(5.53) we conclude

le™= @t f(t) — e_wwﬁg(t)HLl*é(QxR?’) St 1 fo = goll s (xrs)
and thus the uniqueness. ]

Appendix A. Recall ks(z,v) in (5.55). Let us denote fs5(t,x,v) := ks(z,v)
f(t,z,v). We assume that f(s,z,v) = e°fo(z,v) for s < 0. Then || fs5]|L2mxaxrs) S
1 fll2 @y xaxrsy + [ folle2xrs), 1 fsll2@xy) S 1 lle2@s sy + [ follz2 ()

LEMMA 15. Assume §) is convex in (2.1) and supg<;<t [ E(t)| L) < oo. Let
E(t,z) = 1q(z)E(t,2) for x € R3. There exists f(t,z,v) € L*(R x R® x R3), an
extension of fs, such that

floxrs = fs and fly = fs]y and fli=o = fs|t=0.
Moreover, in the sense of distributions on R x R? x R3,
(A.1) [0 +v- Vo + E-V,|f=h,
where
h(t,z,v) = k5(2,v)licp0,00)[0r + v - Ve + E- V] f
(A.2) + ks (z, v)lte(,oo’()]et[l +v-V,+ E-V,]fors(z,v)
+ f(t,z,0)[v- Vg + E-V,|ks(z,0),
where tEX | pEX tPX 2FX are defined in (A.5).

Moreover,

(A.3) [AllL2mxrsxrey S [0 +v - Vi + E- Vo flloe®, xaxrs) + [ fllL2@xaxrs)
+|[v- Ve + E- Vol follL2xrs)-

Proof. In the sense of distributions
(A.4) Ocfs+v-Vaufs+E-Vyfs =hin (A.2).

Clearly [[v -V, + E - V,]rs(z,v)] Ss 1.
For # € R3\Q we define

tEX (z,v) :=sup{s > 0: 2 — v € R3\Q for all 7€ (0,s)},

A5 _
(4-5) tEX (z,v) :=sup{s > 0:x +1v € R}\Q for all 7€ (0,s)},

and 25X (z,v) = @ — tEX(t, 2, v))v, 2FX(2,0) = 2 + tEFX(t,z,v))v.
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We define, for x € R3\(,
fE(tv xz, ”U) = lwfx(t,w,v)eants (t - tEX(x7 ’U), xEX (SC, v)7 U)
+ 1x§X(t,x,v)689f5 (t + thX (1”7 U)a xfEX (.7;, U)7 U) .

Recall that, from (5.55), fs = 0 when n(z)-v = 0, and hence fg =0 for n(z)-v = 0.
Since €2 is convex if v # 0, then {z£X (z,v) € 00} N{zFX (z,v) € 00} = 0. Note that

(A7) fe(t z,v) = f,(t,z,v) = f5(t,z,v) for z € O0.

And since for any s > 0,

(A.6)

(t+s—th5(x+sv,0), 28~ (x4 sv,0),v) = (t — £~ (z,0), 25~ (2,0),0)
(t +s+ thX(x + vav)vxfEX(‘r + sv, U)7U) - (t - ttEX(xvv)vxfEX(xvv)av) )

so in the sense of distribution, in R x [R3\Q] x R3

(A.8) Ocfe+v-Vafg=0.

We define
(A.9) f(t,z,0) = 1g(x) f5(t, 2,v) + 1gs\g(2) fE(t, z,0).

From (A.4), (A.7), and (A.8) we prove (A.1). The estimates of (A.3) are a direct
consequence of Lemma 6. 0
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