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Nonlinear Response of an
Inextensible, Cantilevered Beam
Subjected to a Nonconservative
Follower Force

The dynamic stability of a cantilevered beam actuated by a nonconservative follower
force has previously been studied for its interesting dynamical properties and its applica-
tions to engineering designs such as thrusters. However, most of the literature considers
a linear model. A modest number of papers consider a nonlinear model. Here, a system
of nonlinear equations is derived from a new energy approach for an inextensible canti-
levered beam with a follower force acting upon it. The equations are solved in time, and
the agreement is shown with published results for the critical force including the effects
of damping (as determined by a linear model). This model readily allows the determina-
tion of both in-plane and out-of-plane deflections as well as the constraint force. With
this novel transparency into the system dynamics, the nonlinear postcritical limit cycle
oscillations (LCO) are studied including a concentration on the force which enforces the

inextensibility constraint. [DOI: 10.1115/1.4042324]

1 Introduction

A cantilevered beam with a compressive, nonconservative fol-
lower force is known as Beck’s beam problem [1]. Figure 1 illus-
trates the schematic of this system, where —F7 is said follower
force. This structure has been studied both experimentally and
computationally in the literature for its interesting Hopf bifurca-
tion behavior [2-9], and a comprehensive survey of research stud-
ies was published in 2000 [10]. Using a linear model, Beck
determined that a critical force of —F; = 20.05 EI /L2 causes the
undamped beam to become unstable. Bolotin [2,3] demonstrated
via an eigenvalue approach that small visco-elastic damping val-
ues can decrease the critical force significantly, a result known for
various nonconservative systems and first shown by Ziegler [11].
More recently, this system has been studied with the help of
numerical methods [5-8] and the finite element method [9] to
illustrate the behavior of the bifurcation as well as the nonlinear
post-critical behavior of the beam. Stanciulescu et al. [9] noted
that their finite element mesh needed to be highly refined to han-
dle the dynamic analysis required to analyze the post-critical
behavior.

It is interesting to note that although the Hopf bifurcation is a
nonlinear phenomenon, most of the literature to date has focused
only on linear stability analyses [1-3,6,9]. Luongo and D’ Annibale
[8,12] have performed pioneering studies into the nonlinear
regime and provide a concise and insightful discussion of the state
of the art. Of particular note they include work on discrete 2-bar
systems such as that considered by Hagedorn to study nonlinear
damping and its role on stability [13] and that of Thomsen to ana-
lyze chaos [14]. Continuous systems have been scrutinized with
care as well. Crespo da Silva and Glynn [15,16] provided excel-
lent studies with their nonlinear model derived from Hamilton’s
principle using a Lagrange multiplier to enforce inextensibility,
the method that is utilized in this paper. They analyze stability
and dynamical behavior by linearizing the equations of motion
with the method of multiple time scales. Luongo et al. have
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contributed several notable works with their continuous beam
model and multiple-scales and perturbation analyses to determine
the role of damping in stability [5-8,12,17,18].

In addition to the follower force case, the nonlinear responses
of the inextensible cantilevered beam subjected to free and nor-
mally forced vibrations also have been studied widely in the cur-
rent literature [7,19-27], however the present mathematical model
[21,24-26] has not previously been used for the follower force
configuration. Recently, a nonlinear formulation was derived [26]
from Hamilton’s Principle to include the inextensibility of the
beam, based upon the work of Novozhilov [28], which relates the
in-plane and out-of-plane deflections. This model has been vali-
dated by several experimental studies which included base excita-
tion and aeroelastic effects [25,29].

An extension of this model was developed [21] by employing a
Lagrange multiplier to describe the inextensibility constraint, a
method first employed by Crespo da Silva and Glynn [19,20].
This allows scrutiny of the constraint force as well as the deflec-
tions. A numerical study of this formulation using a Raleigh-Ritz
expansion illustrated the nonlinear responses of beams with either
cantilevered or free-free boundary conditions near resonance in
response to a conventional forced excitation [24]. In this paper,
the goal is to demonstrate the robustness of this same nonlinear
model, expanded to explore Beck’s problem. The effects of nonli-
nearity are again explored within this new framework for the
equations of motion and their solution. The effects of linear damp-
ing are included as well. The principal focus is on the conver-
gence of the modal series and a more in depth analysis of the

Fr

Fy
)\

Fig.1 Schematic of cantilever beam with follower force
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transverse and longitudinal deformations of the beam and the in-
plane force that provides the constraint between these two planar
motions.

In Sec. 2, we derive the equations of motion, beginning with
the unforced system and then including the follower force. Sec-
tion 3 discusses the results. We show that our model yields the
published critical force of 20.05 EI/L* for an undamped, linear
system. Further, we illustrate agreement with published results
which state that adding damping to the system reduces substan-
tially the critical force, and we briefly explore the role that
damping plays in the bifurcation. For the nonlinear model, an
analysis is completed of the deflection and frequency of the limit
cycle oscillations (LCO), and the modal expansion of the con-
straint force is investigated. We then explore the importance of
the number of modes in each equation of motion. It is deter-
mined that the behavior of the limit cycle oscillation requires
only a small number of constraint force modes compared to lon-
gitudinal deflection modes, indicating quite interestingly that an
underconstrained model is able to capture properly the dynamics
of the system.

2 Methods

2.1 Unforced Governing Equations. The
undamped normalized system of equations is as follows:

unforced,

0 = L’mM,ii — AL 1)
0 = L*mMyW + L*me*Myw +L2EI {Pw> } — {BwAh} (2)

ozATu+%{wa} 3)

A full derivation is provided in Appendix A and additional detail
is available in the literature [21,24]. However, it may be important
to note here that Eq. (1) is the equation for longitudinal deflection
u, where 4 is the internal constraint force to enforce inextensibil-
ity. Equation (2) is the equation for transverse deflection w, and
the final two terms are the nonlinear stiffness and inertia terms,
respectively. Equation (3) is the constraint equation.

2.2 Modeling the Follower Force. The nonconservative
work due to the follower force has contributions in both the u and
w directions

5WNC = Fxéu‘(x:xF) + F,"éw‘(l':"‘) @

The follower force may have one component tangent to the axis
of the beam and one component normal to the beam, respectively,
Fr and Fy. So, to translate the follower force back to the x and y
coordinate axes, define an angle f§ to be the angle of the beam at
any point relative to the original undeformed horizontal axis and
consider the following transformation:

F, = Fr(xg)cos f(xp) — Fn(xF)sin f(xr) 5)
Fy = Fr(xp)sin f(xr) + Fy(xr)cos B(xr) (0)

Thus, the nonconservative work, 6WNC, can be written using Egs.
(A6), (A7), (5), (6) as

OWNE = (Fr(xp)cos f(xr) — Fy(xp)sin f(xr)) Z W (xp ) Oy

+ (Fr(xp)sin B(xz) + Fy(xp)cos B(xr)) E WY () Sy

N
To determine cos f§ and sin f§, we note that
ow w w'
t = = = = 8
anf Ox+ou 1+u 1, 2 Y ®)
1— E (W )
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Using trigonometry, we may compute
cosfp= (142712 )

sinfp=f(1+f2)712 (10)

The generalized forces to be added to Egs. (1) and (2) are iden-
tified as the coefficients of du; and dow; in Eq. (7). A damping term
2L2mava'v is added to the system in the transverse coordinate.
Note that the damping coefficient { is a diagonal matrix of size J2
Two linear damping models are explored: one in which the diago-
nals of £ are held constant and one in which the diagonals of { are
varied such that {e is constant.

Finally, the system of equations including the follower forces
and damping is as follows:

0 = L*mMyii—AL
—(FT(XF)COS ﬁ(X[:) — FN (xp)sin [f(xF))‘l’" (XF) (1 1)

0 = L*mMyW+L>mo* Myw + 2L2m§wav'V
+{Pw}} — {BwiL} (12)
—(Fr(xp)sin f(xp) + Fy(xr)cos B(xp))¥™ (xF)

ozATu+%{wa} (13)

The system of equations is solved as follows. From Eq. (11), i
can be written as

! M;l (AX—O— (FT(xF)cosﬁ(xF) —FN(xF)sinﬂ(xF))‘l’“(xp))

U=
(14)

Inserting this into the second time derivative of Eq. (13), we find
/. in terms of w

b= A" (xp) Fy (xp)sin B(xp) — A~ "W (xp) Fr (xr)cos B(xr)
—L*m([AM,'A] " { Bww}) — L2m(]AM;'A] "' { Bww })
15)

Here, the vectors { Bww} and { Bww } are defined as

{ B"V"V} =220 B i, { Bwi } =D By,

v i h

As expected, each term in Eq. (15) is a vector of length K and
has units of force. Finally, we substitute this expression for A into
Eq. (12) to solve for w, which provides the equation of motion for
the transverse deflection. This equation is solved via a fourth-
order Runge-Kutta time-marching scheme. From the solution for
w, we solve for u and A from Egs. (11) and (13)

W = (mL [ BAM ABwWW] + mL>M,,) "' (—mL*&*Myw
— 2L mEoMyW—L 2EI{ Pw® } —mL*{ BAM,ABwww}
+ { BA‘P“W }(FN ()([r)Sil’l ﬁ(XF)
— Fr(xg)cos B(xp))+Fr(xp)¥" (xr)sin f(xF)

+ F ()W (xr)cos B(xr))
(16)

Here, several new matrices and vectors have been introduced as
calculated from the tensor summations and are defined as follows:
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To consider the model as a linear solver, the nonlinear terms in
Egs. (11)—(13) were set to zero. Therefore, u=0 by Eq. (13). In
addition, the expressions for cos f§ and sin f§ were redefined using
small angle approximations of cosff =1 and sinff = dw/0x.
Therefore, from Eq. (15), we can see that A=
— A" (xz)Fr(xp) for a linear Beck’s Beam problem. Note that
in the linear model, 4 is a constant and does not depend on x or ¢,
as it does not depend on the deflection w. This is in agreement
with and can be further verified through the rigorous mathematical
derivations in published literature [17,21].

2.3 Computational Methodology. For each time simulation,
the beam was forced in compression with a purely tangential fol-
lower force of constant amplitude. The beam was given some
small initial deflection in the first mode to displace the beam from
the stable or unstable equilibrium point at zero deflection, thus
biasing the system and inducing the instability when above the

o
o

—4 w modes
—6 w modes
8 w modes

o

Dimensionless Tip Deflection w/L

o
o

A
©
2
=
w

critical follower force. The response was calculated for a range of
time, until a steady-state limit cycle was reached or until the beam
deflection was sufficiently smaller than the initial displacement
and showed a monotonic decrement in amplitude, indicating the
response was stable and below the critical follower force.

The beam was defined to have certain material and geometric
properties which were held constant for all time simulations. The
beam was set to be aluminum with a modulus of elasticity of
69 GPa and a density of 2840 kg/m®, a length of 0.508 m, a base of
0.0254 m, and a thickness of 0.0015 m.

3 Results and Discussion

3.1 Linear Model. To verify the model in the linear regime,
a range of follower forces were applied to the linear, undamped
model to demonstrate agreement with the known critical force of
20.05 EI/L*. Figure 2 illustrates the tip response due to a force
amplitude of 20.045 EI/L> versus 20.055 EI/L* for differing
numbers of w modes.

Figure 2(a) shows that for a follower force below the critical
force, the solution oscillates but does not decay since there is no
damping in the system. (Adding damping will force the system to
decay below the critical force, but it also rather interestingly
changes the critical force substantially. For a damping coefficient
{=0.01, the critical force is reduced to F = 16.9EI/L* and the
flutter frequency to 10 Hz, as will be discussed in Sec. 3.2. Note
that Bolotin [2,3] has a particularly nice discussion of the effect of
damping.)

For the linear model, the postcritical response is an unbounded
oscillation or flutter with a flutter frequency of 14.5 Hz, as seen in
Fig. 2(b). Note that while the deflection becomes unphysical
beyond an oscillation amplitude of w/L=1, the monotonic
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Fig. 2 Time histories for follower force of: (a) 20.045 and ((b) and (c)) 20.055 EI/L?. Here (c) is a zoomed in plot

of (b).
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Fig. 3 Limit cycle oscillation: transverse tip deflection versus
time

increase in amplitudes depicts postcritical behavior. Figure 2(c)
illustrates the same unbounded oscillation, but depicts a smaller
range of time to demonstrate that for reasonable tip amplitudes
where the linear approximations are still valid, either 4, 6, or 8
modes yield equivalent results. Modal convergence is further stud-
ied in Sec. 3.2.

3.2 Nonlinear Model. The post-critical behavior of the non-
linear model is a bounded limit cycle oscillation, as shown in
Fig. 3. This figure illustrates the response of a typical case. The
follower force is F = 20EI/L?, damping matrix is a constant diag-
onal §; = 0.01, and there are 14 2 modes, 14 u modes, and 4 w
modes. A time-step of 2 x 10~*s was chosen after initial testing
demonstrated that this would capture the behavior of the system
appropriately.

Post-critical beam behavior is also investigated by performing a
fast Fourier transform of the limit cycle oscillation. Figure 4 illus-
trates that the oscillation is a coupling of the first and second
bending modes as the dominant flutter frequency of 10Hz falls
between the first and second natural frequencies, and was con-
firmed to be equal to the flutter frequency for the linear damped
case at the flutter point. The frequency of the limit cycle oscilla-
tion increases modestly as the follower force increases beyond the
instability boundary. This indicates that the instability is caused
by the first two natural frequencies merging, and therefore, this
behavior can be characterized as merging or coalescing frequency
flutter.

03 i » L T T T
: —FFT
o 025} : - - 1st mode frequency |
:S : 2nd mode frequency
g) 0.2r : 1
< |
e L1t : |
2] I
b I
2 0.1F ; i
n 1
Q |
Too05f :
I
0 1 1

0 5 1015 20 25,130 1135
f (Hz)

Fig. 4 Fast Fourier transform of postcritical force limit cycle
(w/L) at steady-state (13.5<t<15 s)
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Fig. 5 RMS of transverse tip deflection versus follower force
for multiple damping coefficients

The role of damping is briefly explored and the present results
agree with published data stating that the critical force decreases
with small constant damping ;; [3]. Figure 5 illustrates that the
critical force F is reduced from its undamped value of F =
20.05 to values closer to F ~ 17 when the diagonals of the
damping matrix are held constant at §; = 0.01. It may be noted
that these values are dependent on the chosen damping model,
and are not universal. In fact, Bolotin [2] showed that with con-
stant [Co) ; rather than constant {j, the critical force is equal to
the undamped critical force. As a comparison, a case was com-
puted with [Cw|; held constant for all modes. The first modal
damping coefficient was set to {; =0.01. It was determined that
for this case the critical force is indeed equal to the undamped
case of F =20.05, and that the flutter frequency is 14.5Hz,
again equal to the linear undamped flutter frequency. This slight
increase in flutter frequency from the constant {; model is
expected as the higher modes are more lightly damped. Further
effects of chosen damping models have been presented by
Luongo and D’Annibale [8], D’ Annibale et al. [18] and Kirillov
and Seyranian [30]. Additionally, Raviv Sayag and Dowell [25]
suggested a nonlinear aerodynamic damping model for this sys-
tem may be necessarily based on the experimental results.
Although the study of damping is interesting, it is not the pri-
mary focus of this paper, and the constant {; model is used as
representative and typical.

A novelty of the current model is the modal expansion of each
component of the deflections u and w as well as the constraint
force A. In this regard, the nonlinear model has more subtleties
than the linear model. For the linear case, one may ignore the u
motion and consider only a single A mode, because /4 does not
vary with x (or 7). However, for the nonlinear model, the values of
/ and u are no longer constants, but vary with x and ¢. Therefore,
all three components must demonstrate modal convergence.
Figure 6 illustrates the modal contributions of each component,
all normalized to the maximum modal coefficient. These contribu-
tions are generated from the root-mean-square (RMS) of each
mode’s response for the case illustrated in Fig. 3.

To further demonstrate modal convergence, Figs. 7-9 illustrate
the tip deflection behavior with respect to the number of modes in
each generalized coordinate. Figure 7 shows the variation of tip
deflection with respect to the number of « and A coordinates. Note
the number of # modes must be greater or equal to the number of
/ coordinates to avoid an over constrained system. It can be seen
that the solution is well converged with five modes in u and A.
Note that in Fig. 6(a) the last modal coefficient is slightly larger
than the previous coefficient. Thus, even though the solution is
well-converged overall, the highest modal coefficients may not be
accurately determined whatever the total number of modes
employed in the computation.
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Figure 8 shows a similar plot but for the number of w modes.
Only even numbers of modes are considered because the even and
odd modes couple and therefore they are best considered in tan-
dem. It is clearly seen that the solution is converged at four modes
inw.

Figure 6(c) illustrates that 4 reaches modal convergence
quickly, but it is important to note that the first mode in 4 is the
rigid body mode. Interestingly, Fig. 9 shows that if the system is
solved with fewer 2 modes than # modes—an underconstrained
system—the results are acceptable for the response in each
component.

To further understand this phenomenon, Fig. 10 illustrates the
manner in which / relates to the beam deflection as the beam
responds to the follower force case of Fig. 3. The bold curves
show the beam deflection (marked on the right axis) and thin
curves near the top of the figure represent / distribution (marked
on the left axis). Three points in time are shown to illustrate how
the internal force is related to the beam deflection. Interestingly,
when the beam deflection is zero (marked by dotted lines), the dis-
tribution of Z is not constant, but at the tip is equivalent to the fol-
lower force amplitude. The lines marked by x’s show when the
internal force is constant. Finally, the solid lines show when the
beam is at maximum deflection. Note that for these two deflected
cases, the internal force at the tip is equal to the applied force
scaled by cos f§ at the tip. Overall, 4 is nearly constant and as
shown in Fig. 9, not many 4 modes are needed to capture the LCO
behavior, since the first mode is dominant, especially at lower fol-
lower force amplitudes.

4 Conclusions

A nonconservative follower force has been applied to a contem-
porary, nonlinear, inextensible cantilever beam model. The gov-
erning equations were derived from the Lagrange Equations, and
were expanded modally using the Raleigh-Ritz method. The
results show new insight into the post-critical nonlinear character-
istics of Beck’s beam problem, including the behavior of the con-
straint force acting to relate transverse and longitudinal
deflections.

The critical follower force was determined via a fourth-order
Runge-Kutta time-marching solver to be the same as that previ-
ously published. The results from two commonly used linear
damping models were compared. It was found that one damping
model decreased the critical follower force substantially, while
the other did not.

Post-critical nonlinear behavior was analyzed, and it was shown
to be a limit cycle oscillation due to a merging frequency flutter
mechanism as indicated by the coupling of the first and second
bending modes.

Journal of Computational and Nonlinear Dynamics

The constraint force that enforces inextensibility was analyzed
and shown to be correlated to the applied follower force scaled by
the angle of the tip during the limit cycle oscillations. It was
shown that the modal series of / converged rather quickly and the
number of 4 modes can be few to compute accurately the limit
cycle amplitude in either u or w.
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Nomenclature

EI = beam bending stiffness
f = constraint function
F = force applied
F = normalized follower force applied
L = beam length
m = mass per unit length of beam
T = kinetic energy
u = longitudinal (in-plane) deflection
V = potential energy
w = transverse (out-of-plane) deflection
WNE = nonconservative work
x = spatial coordinate
xr = location of applied force
f = angle of beam with respect to horizontal
d = virtual change operator
/4 = Lagrange multiplier
Y = mode shape
L = Lagrangian
"= denotes time derivative

Appendix: Derivation of Unforced Equations of Motion

To derive the equations of motion, we use the Lagrange equa-
tions for the transverse (w) and longitudinal (#) coordinates, as
well as the Lagrange multiplier / which enforces the inextensibil-
ity constraint. The Lagrange equations are

(0L oL
7 () 7= (A
where
L
£:T—V+J Af dx (A2)
0
1 L
T:—J mli® + w? dx (A3)
2o
1t 82w>2 <8w>2
VfiLEI(W 1+ o dx (Ad)
ou 1 /[ow 2
f:a-i-i(a) =0 (AS)

Now, the deflections and the Lagrange multiplier, u, w, and /, are
expressed in terms of modal expansions as follows:
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w(x,1) = P (oui(r) (A6)

i

) =D @) (A7)
1) =Y W) (A8)
k

The mode shapes W are chosen to satisfy the geometric con-
straints, i.e., u = w = (Ow/0x) = 0 for a clamped end.

The mode shapes for u, w, and A for the cantilevered beam are
chosen to be

2i — 1
‘Pf‘:sin( 12

) 1 4 i q
¥}’ = 7 (cosh(n,L&) — cos(1,LE) + Rysin(n,L<)

— Rjsinh(n;,LE)) for j=1,2,3... (A10)

né) for i=1,2,3... (A9)

W = cos(knf) for k=0,1,2... (A11)

where 1; and R; are determined from the cantilevered classical
linear elgeanlue equation

0 = cos(ip;L)cosh(n,L) + 1 (A12)
R; = (cosh(n;L) + cos(ig;L))/(sinh(n;L) + sin(y,L))  (A13)

Note that the constraint force 4 is expanded into a modal series as
are u and w. Also note that for the linear case, only the zeroth
mode is needed for 4, i.e., k=0, and / is constant with respect to
both x and ¢. For the nonlinear case, A varies with x and .

These mode shapes are all normalized such that the length vari-
able & runs from O to 1 and the endpoints of the modal functions
are 1, 0, or —1 depending on the geometric constraints.

From previous work [24], the system of governing equations
which describes the unforced (Q, =0), undamped cantilevered
beam motion is as follows:

L L
0= mJ WO dxii; — Y J PPy (A14)
0 % 0

L L
0=m Jo W dxw; + w_?m L PP dyw;
oL N
wl wl
=N wp J YR dx
koot 0
cE S [y )

vz )3

X dxwjwpwjs

(A15)
0= Z [ \I]}\,\Pll/ dx + = ZZW]1W]2J \P/Y‘;’\I—’;z” dx
jl 2
(A16)

As before [24], normalizing the modal coefficients #; and w; and
normalizing the integral terms such that the integration is from O to
1 with respect to x/L = ¢ produces several useful definitions. Index
notation for the one-dimensional vectors and the two-dimensional

031004-8 / Vol. 14, MARCH 2019

matrices can be rewritten in boldface matrix notation as indicated
after the right arrows. However, the three- and four-dimensional
tensors will be left in index form to avoid the introduction of tensor
notation

ﬁizuz sz%éw, e = 7, w_féwz
1
M ;J Vi dE = My, M) EJ YIWrdE = M,
i =0t
el
Aix :J PP dE = A, By, ,J YR dé
. _

P_/'l_/'zfsj — J (‘I”:”‘P“”‘{‘W‘P“’ T;://kply;/\y;:/lylwu) dé

A discussion on vector/matrix size and characteristics may be
appropriate. Vectors u, w, and A are length I, J, and K, respec-
tively. Matrices M, and M,, are diagonal matrices of size I* and
J?, respectively. Matrix A is of size Ix K. Tensor B is three-
dimensional of size K x J x J, and P is four-dimensional of size
J*. Matrix @? is a diagonal matrix with each nonzero entry as the
square of the corresponding modal natural frequency.

The final two terms in Eq. (A15) are tensor summations which
simplify to vectors of length J, and the final term in Eq. (A16) is a
tensor summation which simplifies to a vector of length K. These
may be represented in their final vector form as follows:

{Pw’} = Z Z ZL 2E[P/1/z/3 Wi Wi, Wj;
N

23

{Bwh} =" By«
ki
{ Bww } = Z ZB:jIjZWjIWjZ
2

h

The unforced and undamped normalized system of equations is
as follows:

0 =L*mM,ii — Ak (A17)

0 = L*mMyW + L2ma*Myw+ L72EI { Pw® } — { Bw) }
(A18)

ozATu+%{wa} (A19)

References

[1] Beck, M., 1952, “Die Knicklast Des Einseitig Eingespannten, tangential
Gedriickten Stabes,” Z. Angew. Math. Phys., 3(3), pp. 225-228.

[2] Bolotin, V., 1963, Nonconservative Problems of the Theory of Elastic Stability,
Pergamon Press, Oxford, UK.

[3] Bolotin, V., and Zhinzher, N., 1969, “Effects of Damping on Stability of Elastic
Systems Subjected to Nonconservative Forces,” Int. J. Solids Struct., 5(9), pp.
965-989.

[4] Chen, M., 1987, “Hopf Bifurcation in Beck’s Problem,” Nonlinear Anal.,
Theory, Methods Appl., 11(9), pp. 1061-1073.

[5] Di Egidio, A., Luongo, A., and Paolone, A., 2007, “Linear and Non-Linear
Interactions Between Static and Dynamic Bifurcations of Damped Planar
Beams,” Int. J. Non-Linear Mech., 42(1), pp. 88-98.

[6] Luongo, A., and Di Egidio, A., 2005, “Bifurcation Equations Through
Multiple-Scales Analysis for a Continuous Model of a Planar Beam,” Nonlinear
Dyn., 41(1-3), pp. 171-190.

[7] Luongo, A., and Di Egidio, A., 2006, “Divergence, HOPF and Double-Zero
Bifurcations of a Nonlinear Planar Beam,” Comput. Struct., 84(24-25), pp.
1596-1605.

[8] Luongo, A., and D’Annibale, F., 2017, “Nonlinear Hysteretic Damping Effects
on the Post-Critical Behaviour of the Visco-Elastic Beck’s Beam,” Math.
Mech. Solids, 22(6), pp. 1347-1365.

[9] Stanciulescu, I., Virgin, L., and Laursen, T., 2007, “Slender Solar Sail Booms:
Finite Element Analysis,” J. Spacecr. Rockets, 44(3), pp. 528-537.

[10] Langthjem, M., and Sugiyama, Y., 2000, “Dynamic Stability of Columns Sub-
jected to Follwer Loads: A Survey,” J. Sound Vib., 238(5), pp. 809-851.

Transactions of the ASME

d-ajo1e/1esuljuoujeuonendwos/Bio swse  uonos|oojeyBipawse//:dpy woly papeojumoq

€0 ¥L0 PU9/L6Y¥ZL L9/Y00LED/E/YLIIP

0z0z 1snbny (g uo Jesn A1 ssownjeg-puelie JO Ausienun Aq ypd #001€0


http://dx.doi.org/10.1016/0020-7683(69)90082-1
http://dx.doi.org/10.1016/0362-546X(87)90084-8
http://dx.doi.org/10.1016/0362-546X(87)90084-8
http://dx.doi.org/10.1016/j.ijnonlinmec.2006.12.010
http://dx.doi.org/10.1007/s11071-005-2804-1
http://dx.doi.org/10.1007/s11071-005-2804-1
http://dx.doi.org/10.1016/j.compstruc.2006.01.004
http://dx.doi.org/10.1177/1081286516632381
http://dx.doi.org/10.1177/1081286516632381
http://dx.doi.org/10.2514/1.20526
http://dx.doi.org/10.1006/jsvi.2000.3137

[11] Ziegler, H., 1952, “Die Stabilititskriterien Der Elastomechanik,” Ing.-Arch.,
20(1), pp. 49-56.

[12] Luongo, A., and D’Annibale, F., 2014, “On the Destabilizing Effect of Damp-
ing on Discrete and Continuous Circulatory Systems,” J. Sound Vib., 333(24),
pp. 6723-6741.

[13] Hagedorn, P., 1970, “On the Destabilizing Effect of Non-Linear Damping in
Non-Conservative Systems With Follower Forces,” Int. J. Non-Linear Mech.,
5(2), pp. 341-358.

[14] Thomson, J., 1995, “Chaotic Dynamics of the Partially Follower-Loaded Elastic
Double Pendulum,” J. Sound Vib., 188(3), pp. 385-405.

[15] Crespo da Silva, M. R. M., 1978, “Harmonic Non-Linear Response of Beck’s
Column to a Lateral Excitation,” Int. J. Solids Struct., 14(12), pp. 987-997.

[16] Crespo da Silva, M., 1978, “Flexural-Flexural Oscillations of Beck’s Column
Subjected to a Planar Harmonic Excitation,” J. Sound Vib., 60(1), pp. 133—144.

[17] Luongo, A., and D’Annibale, F., 2013, “Double Zero Bifurcation of Non-
Linear Viscoelastic Beams Under Conservative and Non-Conservative Loads,”
Int. J. Non-Linear Mech., 55(Suppl. C), pp. 128—139.

[18] D’Annibale, F., Ferretti, M., and Luongo, A., 2016, “Improving the Linear Stability
of the Beck’s Beam by Added Dashpots,” Int. J. Mech. Sci., 110, pp. 151-159.

[19] Crespo da Silva, M., and Glynn, C., 1978, “Non-Linear Flexural-Flexural-
Torsional Dynamics of Inextensional Beams—I: Equations of Motion,” J.
Struct. Mech., 6(4), pp. 437-448.

[20] Crespo da Silva, M., and Glynn, C., 1978, “Non-Linear Flexural-Flexural-
Torsional Dynamics of Inextensional Beams—II: Forced Motions,” J. Struct.
Mech., 6(4), pp. 449-461.

[21] Dowell, E., and McHugh, K., 2016, “Equations of Motion for an Inextensible
Beam Undergoing Large Deflections,” ASME J. Appl. Mech., 83(5), p. 051007.

Journal of Computational and Nonlinear Dynamics

[22] Hamdan, M., and Dado, M., 1997, “Large Amplitude Free Vibrations of a Uni-
form Cantilever Beam Carrying an Intermediate Lumped Mass and Rotary
Inertia,” J. Sound Vib., 206(2), pp. 151-168.

[23] Mahmoodi, S. N., Jalili, N., and Khadem, S. E., 2008, “An
Experimental Investigation of Nonlinear Vibration and Frequency Response
Analysis of Cantilever Viscoelastic Beams,” J. Sound Vib., 311(3-5), pp.
1409-1419.

[24] McHugh, K., and Dowell, E., 2018, “Nonlinear Responses of Inextensible Can-
tilever and Free-Free Beams Undergoing Large Deflections,” ASME J. Appl.
Mech., 85(5), p. 051008.

[25] Raviv Sayag, M., and Dowell, E., 2016, “Linear Versus Nonlinear Response of
a Cantilevered Beam Under Harmonic Base Excitation: Theory and
Experiment,” ASME J. Appl. Mech., 83(10), p. 101002.

[26] Tang, D., Zhao, M., and Dowell, E., 2014, “Inextensible Beam and Plate
Theory: Computational Analysis and Comparison With Experiment,” ASME J.
Appl. Mech., 81(6), p. 061009.

[27] Villanueva, L., Karabalin, R. B., Matheny, M. H., Chi, D., Sader, J., and
Roukes, M., 2013, “Nonlinearity in Nanomechanical Cantilevers,” Phys. Rev.
B, 87(2), p. 024304.

[28] Novozhilov, V., 1953, Foundations of the Nonlinear Theory of Elasticity, Gray-
lock Press, Rochester, NY.

[29] Tang, D., Gibbs, S., and Dowell, E., 2015, “Nonlinear Aeroelastic Analysis
With Inextensible Plate Theory Including Correlation With Experiment,” AIAA
J., 53(5), pp. 1299-1308.

[30] Kirillov, O. N., and Seyranian, A. O., 2005, “The Effect of Small Internal and
External Damping on the Stability of Distributed Non-conservative Systems,”
J. Appl. Math. Mech., 69(4), pp. 529-552.

MARCH 2019, Vol. 14 / 031004-9

d-so1e/1e8uluouUleUOREINdWO2/610° aWSE UORDa||0o[eNBIpawse//:dny Woly papeojumod

€0 ¥L0 PU9/L6Y¥ZL L9/Y00LED/E/YLIIP

020z isnbny 0z uo Jasn 10 sJownieg-puelhien O Ansieaun Aq jpd 001 €0


http://dx.doi.org/10.1016/j.jsv.2014.07.030
http://dx.doi.org/10.1016/0020-7462(70)90031-4
http://dx.doi.org/10.1006/jsvi.1995.0600
http://dx.doi.org/10.1016/0020-7683(78)90080-X
http://dx.doi.org/10.1016/0022-460X(78)90406-6
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.05.007
http://dx.doi.org/10.1016/j.ijmecsci.2016.03.008
http://dx.doi.org/10.1080/03601217808907348
http://dx.doi.org/10.1080/03601217808907348
http://dx.doi.org/10.1080/03601217808907349
http://dx.doi.org/10.1080/03601217808907349
http://dx.doi.org/10.1115/1.4032795
http://dx.doi.org/10.1006/jsvi.1997.1081
http://dx.doi.org/10.1016/j.jsv.2007.09.027
http://dx.doi.org/10.1115/1.4039478
http://dx.doi.org/10.1115/1.4039478
http://dx.doi.org/10.1115/1.4034117
http://dx.doi.org/10.1115/1.4026800
http://dx.doi.org/10.1115/1.4026800
http://dx.doi.org/10.1103/PhysRevB.87.024304
http://dx.doi.org/10.1103/PhysRevB.87.024304
http://dx.doi.org/10.2514/1.J053385
http://dx.doi.org/10.2514/1.J053385
http://dx.doi.org/10.1016/j.jappmathmech.2005.07.004

	s1
	1
	aff1
	l
	s2
	s2A
	FD1
	FD2
	FD3
	FD4
	FD5
	FD6
	FD7
	FD8
	FD9
	FD10
	FD11
	FD12
	FD13
	FD14
	FD15
	FD16
	s2B
	s2C
	s3
	s3A
	2
	s3B
	3
	4
	5
	6
	7
	8
	9
	s4
	APP1
	FDA1
	FDA2
	FDA3
	FDA4
	FDA5
	FDA6
	10
	FDA7
	FDA8
	FDA9
	FDA10
	FDA11
	FDA12
	FDA13
	FDA14
	FDA15
	FDA16
	APP1
	FDA17
	FDA18
	FDA19
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30

