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Abstract

This paper presents a framework for computational generation and confor-
mal fabrication of woven thin-shell structures with arbitrary topology based
on the foliation theory which decomposes a surface into a group of parallel
leaves. By solving graph-valued harmonic maps on the input surface, we
construct two sets of harmonic foliations perpendicular to each other. The
warp and weft threads are created afterward and then manually woven to re-
construct the surface. The proposed computational method guarantees the
smoothness of the foliation and the orthogonality between each pair of leaves
from different foliations. Moreover, it minimizes the number of singularities

to theoretical lower bound and produces the tensor product structure as glob-
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ally as possible. This method is ideal for the physical realization of woven
surface structures on a variety of applications, including wearable electron-
ics, sheet metal craft, architectural designs, and conformal woven composite
parts in the automotive and aircraft industries. The performance of the pro-
posed method is demonstrated through the computational generation and
physical fabrication of several free-form thin-shell structures.

Key words:  freeform surfaces, surface weaving, woven fabrics, thin-shell
structure, foliation, harmonic map, conformal

1. Introduction

The rapid development of additive manufacturing has enormously en-
hanced the possibility of manufacturing complex structures. However, the
conventional planar-layered 3D printing techniques are still facing challenges,
such as limited printable materials [1] and inconsistent printing quality [2].
Especially, when it comes to free-form shell structures, efforts for creating
very fine tessellations and supporting structures are required to ensure a suc-
cessful printing, which not only decelerate the process, but also introduce
a tedious removal procedure [1]. Inspired by traditional woven fabrics, a
method of constructing free-form shell structures by weaving is proposed to

tackle the aforementioned barriers.

1.1. Woven Fabric in Engineering

Generally speaking, woven fabrics are the textiles formed by interlacing
two sets of threads (warp and weft) at right angles [3], as shown in Fig. 1.
Possessing advantages, such as being lightweight, economy, and ease of im-

plementation, woven structures have been widely used in the engineering,



from traditional apparel manufacturing to recently spreading fields, such as
composites [4], metamaterial design [5, 6], and wearable electronics [7, 8].
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Figure 1: Woven Fabric in Engineering: Left to right—A schematic diagram of regular
planar woven fabric; The Airbus A350-900 constructed by more than 50% composite
materials [9]; A scheme of self-charging E-textiles by Pu et al. [10]; A schematic diagram
of 3D woven fabric by Drach et al. [11]

Woven composites have been proven an effective reinforcing material in
aircraft and the automotive industry because of their performance as a com-
bination of strength and toughness [4, 12, 13]. By further considering the
fiber arrangement in the thickness direction, the 3D weaving technique has
quickly been adopted [14, 15, 16, 17], especially in designing lattice metama-
terial for damping and vibration control [5, 6, 18]. These multi-layer textiles
can display notable characteristics such as enhanced stiffness along thickness
direction [17], higher energy dissipation ability [19, 20|, and stronger buckling
mitigation capability [21].

E-textiles are woven fabrics comprising electronic elements. They can
preserve the pros of conventional textiles as flexible and comfortable, as well
as present functionalities, for instance, interacting with the environments or
users [22, 23]. The e-textiles have been used as wearable electronics in track-
ing physical activity data [24], health monitoring [25], and energy harvesting
8].



In real industries, many applications demand woven fabrics on curved sur-
faces, e.g., woven protective clothing, composite automotive linings, smart
wristbands made by e-textiles, and so on [26, 27, 28]. However, convention-
ally, the textiles are fabricated in plain and output as flat or roll-up sheets.
As to conform to a curved surface, the fabrics will undergo large deforma-
tion [29, 30] or be cut and sewn. This fitting surface process breaks the
continuity of the fibers, produces defects like wrinkles, local sliding, dam-
ages the mechanical properties, and even causes failures like splitting and
delamination [31, 32, 33]. Thus, the trends in weaving directly to form a

surface—conformal woven fabric— are emerging.[28, 23].
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Figure 2: Architectures inspired by weaving: Left to right— The Weaving Pavilion by
David Garcia Studio [34], the Woven Tower by Farris et al. [35], the God’s eye pavilion
by Georgiou et al. [36]

It is also worth noticing that at a large scale in engineering, e.g., architec-
ture, the cutting edge designs are innovative and stylish. With the integration
of mathematics, computer-aided design, and construction techniques, people
can bring visual designs into reality. Landmarks with free-form geometries
have broadened people’s horizons, e.g., the Sydney opera house, the Gherkin
in London, and the Vessel in New York. Given the observation that an

artisan can achieve a complex 3D object (e.g., a basket with handles) by



straightforward approaches like braiding, weaving, and knotting, architects
have been inspired to employ the logic of those textiles at the architectural
scale [37, 38, 39]. Fig. 2 includes several woven architectural designs, which
show the potential of weaving as an architectural technique. However, cur-
rently, the realization of these woven shell structures is operated case by
case. A systematic way to extend the weaving technique to general surfaces
is demanded [38, 39].

Thus, in this work, we propose a method-conformal fabrication- to address
the issue of fabricating a surface by weaving. There are two main contribu-
tions to the work. First, the shape of the woven fabric is directly formed
during weaving and conformal to the input surface. Moreover, the method is

general in dealing with the surface with arbitrary topologies.

1.2. Conformal Fabrication by Weaving

Briefly, conformal fabrication of woven fabric is equivalent to forming an
arbitrary curved surface by interlacing two groups of yarns at right angles.
We can further recast the problem as a geometry question: covering the sur-
face by orthogonal foliations. Mathematically, a foliation is a decomposition
of the surface as a group of parallel leaves. Moreover, the conformal woven
fabric should satisfy similar fabrication requirements as the conventional wo-
ven fabric: for each work-piece, the two sets of threads cross at right angles,
and each of the threads is continuous. Fig. 3 shows an example of hand
surface woven by two groups of paper strips.

Researchers have introduced several pioneering works regarding generat-
ing conformal woven fabric. Akleman et al. [40] presented a graph rotation

system to convert a meshed surface to a thin-shell structure with plain-weave



Figure 3: Left to right: Computation of two orthogonal harmonic foliations (red loops and
blue curves). The red (blue) foliations are converted to white (black) strips. The black

and white strips are woven together to construct the human hand model.

appearance, also known as the one-up-one-down pattern. They further en-
riched the work to woven fabrics with the twill pattern [41] as well as appli-
cations on the digital fabrication of architecture designs [42]. However, The
orthogonality of interlacing of threads, which is crucial for a woven object
[43], is not guaranteed. The weaving strips are cyclic loops instead of two
distinct sets as conventional weaving. Thus the physical fabrication process
is neither intuitive nor easy. Besides, although adjustable by parameters, the
weaving threads can not completely cover the surface and will leave gaps in
the woven object. Those gaps will create stress or strain concentrations [44],
and decrease the mechanical properties such as damage tolerance and fatigue
toughness [45].

Apart from regular woven structures, the triaxial woven fabrics of which
yarns braided at 60 degrees have gained people’s attention. Vekhter et al.
[46] proposed a vector field method to generate triaxial woven structures
by solving an optimization problem. However, the robustness of the process

needs improvement since the singularities of the problem depend on the initial



value. Similarly, Ayres et al. [47] presented a computational approach to
approximate a meshed surface into triaxial woven structures with interlaced
straight strips. Their method utilizes existing algorithms in the literature
and thus is relatively easy for implementation.

Considering the fabrication requirement that weaving threads interlace at
right angles (in other words, the woven unit cell is ideally to be rectangles),
Takezawa et al. [48] proposed a method to fabricate a surface by paper strips
created along the principal curvatures. The process is intuitive since there
exist two orthogonal curvature lines through each non-umbilic point. How-
ever, at the umbilical points, the directions of the two principal curvatures
coincide. Thus the induced weaving threads are non-regular, and therefore,
the woven object fails to fulfill the fabrication requirements. The isolated
segments will appear, and the woven unit cells are no longer rectangles or
quadrilaterals, but highly irregular N-sided cells—arbitrary polygons.

Campen et al. [43, 49] introduced the dual strip weaving method that
creates cyclic loops on a given surface and partitions it into quadrilateral
patches. In particular, they computed the topological loops on a surface by
minimizing an energy function that, for a single loop, penalizes the total
length, the deviation from principle directions, and the geodesic curvature.
Then they broadened the circles to stripes, cut them by vertical lines, and
thus achieved the quadrilateral patches. However, the algorithm requires
the surface can be divided into topological discs and strips generated by the
method may have self-crossings with arbitrary angles.

Furthermore, in the literature of topology, surface foliation only admits

even valence singularities. The results produced by Campen’s process can



be described as meromorphic quartic differentials, which we give a thorough
treatment in [50].

The theory we use in this work to generate woven fabrics of a given
surface is the so-called foliation theory. Mathematically, a foliation is a de-
composition of the surface into a group of parallel leaves. Thurston [51]
first introduced foliation theory to study diffeomorphisms on surfaces. The
foliation has shown a deep connection with quadratic differentials on Rie-
mann surfaces [51, 52|. In exceptional cases, when a quadratic differential
has closed trajectories, the induced foliation tiles the surface by closed leaves
[53]. In the field of computational geometry, Gu et al. [54] used the Hodge
theory to compute holomorphic one-forms for the global conformal parame-
terization of a surface which is indeed a special case of holomorphic quadratic
differetial. Later, Lei et al. [55, 56, 57] introduced the foliation method to
generate a regularized quadrilateral mesh. These works give us a theoretical
base of computing foliations on a surface with arbitrary topology.

The rest of the paper is organized as follows: Section 2 briefly intro-
duces the pipeline of the framework and summarizes the contributions of our
method. Section 3 presents the detailed mathematics theory and algorithm
regarding surface foliation, followed by the example of weaving the genus
two surface and a hand surface model by craft-paper in Section 4. Section 5
evaluates the approximation accuracy of the woven structures to the input
surfaces as well as the manufacturing requirements— the orthogonality of
weaving angles. Section 6 summarizes the paper, discusses the pros and cons

of the proposed method, and outlines the future work.



2. Method Overview

The computational generation of woven fabric on arbitrary surfaces in this
work utilizes the foliation theory. First, two families of orthogonal foliations
are computed on a given surface (section 3.1, 3.2, 3.3). Then we decompose
the surface into topological cylinders based on the foliation results (section
3.4). On each of the cylinders, we compute a quadrilateral mesh (section
3.5), in which the quads refer to woven unit cells. To conformally fabricate
the woven structure, we first generate weaving strips from the quad-mesh
(section 4.1). Next, we unfold the strips onto the 2D-plane, cut them out
on physical materials, e.g., construction paper, and then get two orthogonal
groups of weaving threads (section 4.2). By interlacing the warp and weft
threads in a particular order (such as plain weaving or twill), we can obtain
a woven structure that is conformal to the input surface (section 4). The

contributions of the presented framework can be summarized as follows:

e This paper proposes a systematic solution to physically realizing the
conformal woven fabrics. The methodology is general in geometries and
scales: one can form a surface with arbitrary topology by interlacing
two sets of threads generated by our algorithm; the size of the threads
are adaptable in considering the accuracy and dimension of the appli-
cations, such as micro or mesoscale in wearable electronics, sheet metal
craft, conformal woven composites, and a larger scale in architectural

designs.

e From the mathematical point of view, the weaving structure generated

by our method has the least number of singularities and no dangling



leaves, which increases the mechanical strength and reduces the com-

plexity of assembly.

e From the fabrication aspect, the free-form surface can be directly shaped
during the weaving process: the conventional indirect procedures of pre-

fabricating the woven fabrics and then finalizing the shape are omitted.

e From the designer perspective, the proposed harmonic foliations method
guarantees smoothness, orthogonality, and global tensor product struc-
ture, which preserves the aesthetic value as well as enhances the me-

chanical properties of the woven fabrics.

2.1. Theory of Topological Foliation

In this section, we briefly introduce the classic foliation theory as the
background information. According to the definition of topological foliation,
a foliation can tile a surface by infinitely many parallel curved leaves. Specit-
ically, a leaf is a curve on the surface, which is either a closed-loop or a infi-
nite spiral. There exist infinitely many topological foliations on a high genus
surface. Roughly speaking, any measured foliation on a Riemann surface
is equivalent to the horizontal trajectory of a unique holomorphic quadratic
differential, and all the quadratic differentials form a finite dimensional linear
space [52] . Fig. 4 shows a topological foliation on a genus g = 5 surface. In
the neighborhood of a normal point, all the leaves are parallel to each other.
In general cases, in the neighborhood of a singularity, three strands of leaves
meet together. There are 4g—4 singularities. The leaves through singularities
are called critical leaves. A foliation with all the leaves closed loops is called

a finite measured foliation. The critical leaves of a finite measured foliation

10



(c) Conjugate foliations (d) Conjugate foliations on each cylinder

Figure 4: The global structure of a foliation on a genus 5 surface. In (a), leaves of
the foliation are shown in black and colored strips. In (b), the high genus surface can
be decomposed into cylinders by cutting through critical leaves. Subfigure (c) shows the
conjugate foliation together with the original one, and (d) shows the original and conjugate

foliations on the induced cylindrical decomposition.

form a finte graph, which divides the surface into 3g — 3 topological cylinders,
rendered using different colors in Fig. 4. On each cylinder, one can find
another topological foliation orthogonal to the current one. By collecting
their leaves, we obtain a global topological foliation orthogonal to the original
one—conjugate foliations. While in special cases, the singularities may merge
together, such as those of holomorphic one-forms. For a holomorphic one-

form, there are 4 critical leaves through each singularity, and there are totally
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2g — 2 singularities. The square of a holomorphic 1-form is a holomorphic

quadratic differential.

3. Computational Generation of Foliations

3.1. Harmonic Foliation

By mapping each leaf in a finite measured foliation to a point, we get
the Ribbon graph of the foliation (see Figure 5 (a)). Each arc of the Ribbon
graph corresponds to a cylinder, and each node represents a critical leaf.
The foliation can be reconstructed from its Ribbon graph as follows: we
compute a harmonic map from the surface to the graph, then the preimage
of each point of the graph gives a leaf. Because the foliation is induced by
a harmonic map, we call it a harmonic foliation. The harmonic foliation
is very smooth, therefore with high aesthetic value. Furthermore, a unique
harmonic foliation can be found that is orthogonal to the original one (the
details will be discussed in section 3.4) . We employ this pair of orthogonal
harmonic foliations for fabrication purposes. In the following discussion, all

the foliations refer to harmonic foliations, unless otherwise stated.
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(a) Pants decomposition and its pants graph (b) Foliation

(c) Cylindrical decomposition (d) Quadrilateral remeshing

Figure 5: Foliation generation pipeline.

A finite measured surface foliation decomposes the surface into a family of
closed loops, such that the decomposition has local tensor product structure.
First, we explain the algorithm for a high genus closed surface. The progress
is visualized in Fig. 5 and Algorithm. 1. Then we extend the method to

general topologies in section. 3.6 .

3.2. Pants Decomposition

As shown in Fig. 5 frame (a), the first step is pants decomposition [58],
which is carried out automatically using the algorithm described in [59].

Given a genus g > 1 closed surface S, it divides the ambient space into two

13



connected components, the finite one is the interior volume; the infinite one
is the exterior volume. A loop on the surface is called a handle loop, if it is
homotopic to a point in the interior volume, but not homotopic to a point
in the exterior volume; a loop is called a tunnel loop, if it is homotopic to
point in the exterior volume, and not homotopic to a point in the interior
volume. According to Dey’s work [60] , there are uniquely g handle loops
and g tunnel loops that form a homotopy group basis of the surface. We use
their algorithm to find g handle loops. Then we slice the surface along these
handle loops to obtain a topological sphere with 2¢g boundaries.

Given a topological sphere with n boundaries, each time we choose a pair
of adjacent boundary loops, say a and b, then compute a loop ¢ enclose them,
namely c is the product of a and b in the homotopy group. We slice the sur-
face along ¢ to divide the surface into connected components, one component
is a topological sphere with three boundary loops a, b, and ¢, namely a pair
of pants, the other is a topological sphere with n — 1 boundaries. We repeat
this procedure inductively, each time to cut off a pair of pants, and eventu-
ally decompose the surface into 2¢g — 2 pairs of pants, { Py, P, - -+, Poy_o}, by
39 —3 =3 x (29 —2)/2 cutting curves {71,72, - ,V3g-3}-

A pants decomposition can be represented as a graph G, the so-called
pants decomposition graph, where each pair of pants P; is represented as a
node n; , and each cutting loop «; is denoted by an edge e; . Suppose on the
surface .S, the cutting loop +; is shared by two pairs of pants P;, P, then in
the graph G, the arc of e; connects nodes of n; and ny . Furthermore, we
associate a positive weight h; > 0 for each edge e; in the pants decomposition

graph. We use (G, h) to denote the pants decomposition graph G with the

14



weights h = (hy, ho, - -+ , hgy—3), and call it the weighted pants decomposition
graph. The weights can be used to adjust the strip widths.

According to [61] , two foliations are equivalent if they differ by a surface
diffeomorphism homotopic to the identity. Each equivalence class of foliations
is equivalent to the horizontal trajectories of a unique holomorphic quadratic
differential. All the holomorphic quadratic differentials form a linear space
of 6g — 6 dimension, where g is the genus of the surface. The combinatorial
structure of the graph, and the weights determines uniquely the holomorphic
quadratic differential, therefore the class of the foliations. We refer readers

to [61] for thorough theoretical treatment.

3.3. Generalized Harmonic Map

As shown in Fig. 5 frame (b), the second step is to compute a folia-
tion based on a harmonic map between the surface and the weighted pants
decomposition graph (G,h).

The weighted pants decomposition graph (G, h) can be treated as a metric
space, where the distance between two points p, ¢ € G is defined as the length
of the shortest path connecting them, and denoted as dy(p, q).

Given a mapping f : (S,g) — (G,h), the pre-image of a node is called
a critical leaf, and the union of critical leaves is called the critical graph,
denoted as I' C S. In general, the critical graph is of 0 measure, then we can

define the harmonic energy of the mapping f,

E(f) = / L afldAg (1)

If f minimizes the harmonic energy, then f is called a harmonic map. Wolf

[62] proved the existence and the uniqueness of the harmonic map. The
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preimage of each non-node point is a closed loop on the original surface. All
such closed loops compose a foliation F. The Ribbon graph of the foliation
F is exactly (G, h).

In practice, the surface is approximated by a triangular mesh M =
(V.E,F). We use [v;,v;] to represent an edge connecting the vertices v;
and v;. The harmonic energy of a map f : M — (G, h) is given by

E(f) = 5 3 wydn(F(), £(2,))"
[vi,v;]
where dy,(-, ) is the shortest distance between two points on the graph, w;; is
the cotangent edge weight. Suppose two faces [v;,v;,vy] and [vj,v;, ;| share
the edge [v;, v;], then
w;j = cot 0} + cot 7',
where 0;3 represents the corner angle at the vertex vy, in the face [v;, vj, vg].

We use the non-linear heat flow method to compute the harmonic map.

1. We homotopically deform ~; to sweep a cylinder C;, such that the union
of all the cylinders cover the whole surface.

2. Each cylinder C; is mapped to the edge e; , this constructs the initial
map f.

3. We diffuse the map to reduce the harmonic energy, until it converges to

the harmonic map.

The diffusion process is as follows: at each step, we move the image of each
vertex to the weighted geodesic center of the images of its neighbors. Suppose
after the k-th iteration, we have obtained the mapping f, : M — G already,

vertices {v;}’s are adjacent to the vertex v;, the weighted geodesic center of

16



{fx(v;)}’s is defined as

cr(v;) = argminge Y widn(fi(vy), )%

j=1
The diffusion process moves the image of v; to the weighted geodesic center,
fra1(v;) <= cx(v;). By repeating this procedure, the mapping sequence { f,}
converges to the harmonic map.

The harmonic foliation is composed of the leaves, each leaf is a preimage
of a point in the graph, F = {f~*(p)|p € G}.

According to Schoen’s generalized harmonic mapping theory [63], if the
target space is a non-positive-curved metric space, then each homotopy class
of the mapping has a unique harmonic map. In our case, the target is the
weighted pants decomposition graph, which is a non-positive-curved metric
space. If the homotopy class of mapping from the surface to the graph is
trivial, namely all loops on the surface are mapped to the loops on graph
that can shrink to a point, then the final harmonic map is trivial (the image
is the single point). In order to prevent this, we specify the homotopy class
by the initial map, as shown in Figure the loops circling the tunnels are
mapped to the non-trivial loops on the graph. This guarantees the final map

is non-trivial.

3.4. Cylindrical Decomposition

As shown in Fig. 5 frame (c), the preimages of the nodes form the critical
graph T, the surface is sliced along I' and decomposed into 3g — 3 topological
cylinders. Different cylinders are rendered using different colors, all the leaves

within one cylinder are homotopic to each other.



Algorithm 1: Surface Foliation Algorithm for Close Surface.
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Input : A closed surface S with genus g > 1 and a threshold ¢
Output: A foliation F of S
Construct a pants decomposition of S;
Construct the pants decomposition graph G, assign the edge weight h to G;
Construct an initial map f: S — G by mapping each pair of pants to the
corresponding node;
Compute the initial harmonic energy F;
while true do
Ey + E;
foreach wverter v; € S do
| () < argming e Y widn(£(0y),0)%
end
Calculate the harmonic energy F;
if |E — Eg| < € then
‘ break;

end

end
foreach p € G do

‘ Compute the leaf f=1(p) € S;
end

Return the foliation F consisting of all leaves;




For each edge e; € G, its preimage is a cylinder C;. The restriction of the
harmonic map on the cylinder C;, f; := f|¢,, can be treated as a harmonic
function, f; : C; — [0,h;]. The gradient of f; can be expressed explicitly.
Suppose a face [vy, vy, v,] is in the cylinder C;, the gradient of the piece-wise

linear map f; on this face is

Viii=nx (fi(v)(vg —vp) + filvp)(vr —vg) + filvg)(vp — vr))

where n is the normal to the face, by abusing the symbols, v, represents the

position of the vertex v,.. The Hodge star operator is defined as
*sz =n X sz

When the mesh triangulation is refined enough, the integration lines of the
vector field *V f; give the so-called conjugate foliation F* that is orthogonal
to the original foliation F. According to [61] the conjugate foliation F*
itself is harmonic as well. The conjugate foliation is depicted in Fig. 5 frame

(d), whose leaves are the blue loops.

3.5. Quadrilateral Remeshing

Fig. 5 frame (d) illustrates the quadrilateral remeshing step. Basically,
given a pair of conjugate foliations {F, F*}, we can select some leaves to
form a quadrilateral tessellation of the surface.

In more details, each cylinder C; has two boundaries, 0C; = 7+ — 7.
We can find the shortest path v connecting 77 and 7=. We slice C; along
v to get a topological quadrilateral, D;. The integration of a pair of vector

fields (*V f;, V f;) gives a parameterization ¢; : D; — R?, picking a base point



Po € D,
wi(p) = / "V fi, Vfi)dr,

Po
where the integration path r(t) from pg to p is arbitrarily chosen within D;.

It was proven in [64] that the parameterization ; is angle-preserving, and
maps the planar regular grids to the surface. The planar horizontal and
vertical lines are mapped to red and blue loops on the surface respectively.
As shown in Fig. 5, because the parameterization is a diffeomorphism and
angle-preserving, the red/blue leaves are orthogonal, and the quadrialteral
cells are similar to squares. Moreover, the user can specify density of the
planar regular grid in order to determine the resolution of the quadrilateral
mesh on surface; since each of the quadrilaterals represents a woven unit cell,

the accuracy and scale of the woven surface can be adjusted accordingly.

3.6. General Cases

Figure 6: Conjugate foliations on a genus one surface.

3.6.1. Genus One Closed Surface

Fig. 6 shows a pair of conjugate foliations on a genus one closed surface.

First, we compute the handle loop v, set the weight to be the unit, then find

3



a harmonic map from the surface to v with the unit weight, f : S — ~. The
harmonic map induces a foliation F, whose leaves are the red loops. Locally,
f can be treated as a harmonic function. Similarly, we use the Hodge star
operator to get the vector field *V f, and the integration of *V gives the

conjugate harmonic foliation F*, whose leaves are the blue loops in Figure 6.

il g
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Figure 7: Foliation on an annulus.

If a topological annulus (Euler characteristic of 0) is given, we use the
double cover technique to convert it to a topological torus as follows: we
get a copy of the annulus, reverse the orientation, then glue the annulus
with the reversed copy along the corresponding boundaries, to obtain a sym-
metric closed topological torus. Then we compute a symmetric holomorphic

one-form on the torus, see Figure



Figure 8: Conjugate foliations on a facial surface.

3.6.2. Topological Disk

As shown in Figure 8, given a genus zero surface M with a single boundary
(a topological disk), we can select four boundary points {pg, p1, p2, ps}, which
divide the boundary of the surface into four segments, {vo,v1, 72,73}, such
that dv; = pit1 — pi-

Then we perform the double covering operator: make a copy of M, de-
noted as M, reverse the orientation of all faces of M, then glue M and M
along the boundary segments 7, and 7», to form a topological cylinder M.

Next, we compute a harmonic map from the doubled mesh M to the unit
interval, f: M — [0, 1], such that the boundary loops of M are mapped to
the end points of the interval. Then level sets of f gives a foliation F. The
integration curves of *V f gives the conjugate foliation *F. The restriction of

the {F,*F} on the original mesh gives the desired pair of conjugate foliations.



Figure 9: Foliation on a topological sphere.

Given a topological sphere (Euler characteristic of 2), we can conformally
map it onto the canonical unit sphere, and use the stereo-graphic projection
to map it on the complex plane. Then we can pull back foliations on the

plane to the sphere, see Figure

3.6.3. Open Surfaces with Negative Euler Numbers

Given a surface M, x(M) < 0, with boundary curves OM = {~v1,72,* ,Tn},
we first use double covering to obtain a symmetric closed surface M. Then we
extend {v1,72, -+, 7} to aset of cutting loops, generate the pants decompo-
sition, and compute the harmonic map from M to the pants decomposition
graph, in turn obtaining a foliation /. By construction, the boundary loops
of the original mesh {v;} become the leaves of F. Furthermore, we use the
Hodge star operator to obtain the conjugate foliation *F. The restriction of
the {F,*F} on the original mesh gives the desired pair of conjugate folia-
tions.

Fig. 10 demonstrates the foliation F on a genus zero surface with multiple
boundaries. The cat model is punctured through the bottom of the feet, the

tip of the tail and the eyes, therefore there are 7 boundary components. The



Figure 10: Foliations on a genus 0 surface with multiple boundaries.

hand model in Fig. 3 is also of genus zero with 6 boundaries, including 5

punctures at the finger tips.

4. Conformal Fabrication of Woven Fabric on Surfaces

4.1. Strip Generation and Unfolding

As stated in Chapter 3, the foliation generation pipeline produces a pair
of conjugate foliations {F, F*}, and a quadrilateral mesh (quad mesh), still
denoted as M. The mesh M is approximated by a polyhedral surface. Each
cell o; on M has four boundary edges with alternated colors, for instance,
{red, blue, red, blue}. Starting from a cell (¢;) adjacent to a critical leaf, we

sequentially connect adjacent cells
§ = {00701702? to aan}

where o; and 0,1 share a red (blue) edge for 0 < i < n, and call s a horizon-
tal strip (vertical strip). The quad-mesh M is decomposed into a family of
horizontal strips, and a family of vertical strips. Each cell belongs uniquely

to one horizontal strip and one vertical strip. The union of all strips covers



(a) Quad-mesh (b) Strip generation  (c)Unfolded strips

Figure 11: Strip generation on a C shape surface

the whole mesh twice. As shown in Fig. 11, we apply the strip generation
on the C shape surface. According to the computed quad mesh as Fig. 11
frame (a), we can generate the horizontal strips and vertical strips as shown
in Fig. 11 frame (b) the top and bottom, respectively.

The input surface is represented as a triangular mesh, and it is converted
to a quadrilateral mesh using the obtained foliation. First, the vertex posi-
tions are sampled on the triangle mesh where one horizontal trajectory inter-
sects a vertical trajectory; then the vertices are connected by edges by tracing
the horizontal and vertical trajectories; then the vertices are optimized to en-
sure each quadrilateral face is planar using the method introduced in [65] .
The edges are divided to horizontal and vertical edges. Quad faces are con-
nected by horizontal edges to form vertical strips, and by vertical edges to
form horizontal strips. we computationally cut them along vertical edges or
horizontal edges. All the strips can be isometrically embedded onto the plane.

The horizontal and vertical strips are overlapped, and the two layers together



cover the whole surface. This procedure is called unfolding. As Fig. 11 frame
(c), the top and bottom figures are the unfolded horizontal and vertical strips

of the C shape surface, respectively.

4.2. Weaving Process

After generating and unfolding the strips numerically, we can pack them
together to fill a planar material. In this work, we use the construction
paper as an example. By cutting along the contours of the strips manually
by scissors, or automatically by a laser cutter, we can physically get the two
groups of pieces for weaving. In the practical weaving, the horizontal and

vertical strips work like weft and warp threads, respectively.

() (d)

Figure 12: The Conformal Fabrication of Genus Two Model.

We demonstrate the conformal fabricating of a genus two surface as an

3



illustrative example. As stated in Section 3, the surface can be decomposed
into three topological cylinders following their critical leaves (Fig. 12(a)).
We can weave each of the parts individually (Fig. 12(b) and Fig. 12(c)), and
assemble them together when finishing to reconstruct the surface (Fig. 12(d)).
Similar to the fabrication of woven composite where a matrix material (e.g.
epoxy resin) is used to bond the fibers [66], we glue each pair of the unit
cells to add rigidity to the structure. The horizontal (vertical) strips are

made of bright yellow (navy blue) paper.

Figure 13: Strips for the genus two surface model. The bottom row shows the horizontal

(white) strips, the top row shows the vertical (black) strips.

Notably, the scales of the strips can be accommodated to the dimensional
and accuracy requirements. As shown in Fig. 13, the genus two surface
with higher accuracy are fabricated with denser threads. Fig. 14 shows the

different stages of the assembly, each cylinder is constructed individually,

4



Figure 14: Fabrication by plain weaving.

then all the cylinders are glued together. In order to obtain a black/white
alternate pattern over the surface, it suffices to ensure the number of wefts
and warps are even during the foliation computation procedure, and ensure
adjacent threads from ditfferent topological cylinders have different color dur-

ing the weaving process.

4.83. Weaving High Curvature Variation Surfaces

As to show the generality of the proposed method, we apply the tech-
nique to fabricate a human hand surface, which consists of high curvature
variations. As shown in Fig. 15, the hand surface is divided into five parts by
the critical leaves; according to the computed quad mesh, the weaving strips
are generated in each section; finally, the five regions are woven and glued

together.
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Figure 15: Conformal fabrication of woven fabric on hand surface

4.4. Weaving with Different Styles

Adopting the idea from conventional weaving, a variety of weave architec-
tures can be achieved by interlacing the warp and weft threads in different
orders. The most common weaving pattern is the aforesaid plain weave;
each warp thread passes up-and-down each weft thread. Visually, objects
constructed by plain weave have a checkerboard-like appearance. Fig. 16(a)
shows the constructed model by plain weave. The plain weave creates the
maximum amount of interlacing area, thus offers the most reinforcement on

the surface.



(a) Plain weaving (b) Double layered with warp threads

g

(c) Double layered with weft threads (d) Twill weaving

Figure 16: Conformal fabrication of the genus two model with different weave styles

By adhering all horizontal threads under vertical threads at each paired
unit cell, or vice versa, we get a two-layer object, as shown in the Fig. 16(b)
and Fig. 16(c). Both threads can cover the surface without gaps. Moreover,
the twill woven fabric shows a diagonal parallel style. A typical two by two
twill patter is done by interlacing the warp thread over two weft threads and
then under two weft threads, as shown in Fig. 16(d). The twill serves more
flexible than plain weave since the less interlacing areas. All of these con-
struction methods will precisely recover the weaving structure, which shows

the compatibility of the proposed method in different weaving textures. Dur-



ing the construction process, no stretching will happen and the bending only
appears at edges and possibly diagonal on each unit cells. The surface will

be automatically shaped while weaving instead of manually adjusted.

5. Accuracy Evaluation

In this section, we evaluate the accuracy of our method on 6 prototypes:
a hand model (Fig. 3), one higher precision (Eight model in Fig. 13 and
Fig. 14) and 4 lower precision genus two surfaces (Fig. 16). The compu-
tational pipeline is automatic, the weaving strips are produced by a laser
engraving and cutting machine, and the assembly process is straightforward.
Curvature is automatically formed as neighboring paired cells adhere. The
whole process does not need the user to have any professional knowledge.

Table 1 summarizes the physical data of constructed paper models.

Models Length (cm) [Width (cm)  |[Height (cm) Weight (g)
Eight (L)  [65.3 31.6 9.17 99.2
Eight (S) 25.4 12.5 4.24 17.0
Hand 39.8 11.0 55.7 70.9

Table 1: Size and weight of constructed paper models.

5.1. Angle Deviation

As stated in Section. 1, the interlacing angles of each weft and warp are
ideally to be 90 degrees. In our method, the pair of conjugate harmonic foli-
ations (F, F*) induce global conformal (angle-preserving) parameterizations

onto 2D domains; therefore, theoretically the horizontal (red) and vertical
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Figure 17: Angle deviation. This measures deviation of intersection angles from 90 degree.
(blue) leaves are orthogonal apart from the singularities. The orthogonal-
ity cannot be guaranteed near the singularities. As to evaluate the variation
of intersection angles from 90 degrees, the angle deviation at each vertex is
computed using the equation below:

k
1
Angle Deviation(v) = z Z la; — 90°|

i=1
where ; is an adjacent inner angle at vertex v, and k is the total number of
a; at the vertex. Figure 17 shows the contour plot of the angle deviations on
the genus two surface, the cross angles show a variability of 10 to 25 degrees
at the singularity areas. The angle deviations data for all the woven models
are reported in Table 2. Among all the models, the maximum angle deviation
is 54 degrees (i.e., the angle itself is 36 degrees), and the average deviation

is less than 10 degrees.

5.2. Surface Distance and Area Distortion Error

To evaluate how close the reconstructed surface is to the input surface, we
assess the surface distance error between them explicitly using the Hausdorff

distance [67]. For each woven unit—the unit cell on the generated quad
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Angle deviation Surface distance Earea AVE [%]

Models # of quads (row,col) | Ean, Max [deg]  Ea,, Avg[deg] | Ep: Max [%] Epis Avg [%] Area

Face (15,16) 34.2 3.08 6.52 0.578 6.49
Face (45,48) 34.5 0.93 1.43 0.0769 2.71
Face(K) (45,48) 50 1.31 1.52 0.124 2.76
Face(K-area) (45,48) 47.5 0.905 0.503 0.09 1.93
Thumb (50,18) 37.9 232 1.56 0.127 0.198
Index finger (front) (50,4) 475 1.75 1.6 0.162 0.774
Index finger (rear) (50,6) 23.1 1.36 0.736 0.15 0.748
Mid finger (front) (50,4) 39.8 1.4 0.79 0.13 0.574
Mid finger (rear) (50,6) 325 1.18 0.833 0.128 0.878
Ring finger (front) (50,4) 39.6 1.5 0.938 0.178 0.709
Ring finger (rear) (50,4) 23.5 1.68 0.719 0.174 0.628
Baby finger (50,16) 32.7 1.73 1.44 0.142 0.561
Eight(left) (9,18) 40.7 2.45 2.1 0.567 5.34
Eight(right) 9,18) 39.5 227 3.14 0.566 4.99
Eight(mid) (13,2) 29.6 7.05 1.91 0.682 2.79
Eight(left) (65,35) 435 0.59 0.349 0.0507 2.14
Eight(right) (65,35) 435 0.548 0.208 0.0499 1.65
Eight(mid) (10,59) 54 0.814 1.19 0.0452 3.73

Table 2: Summary of computational errors and time. EapqoMax and EangAvg are maxi-

mal and average angle error, which measures the deviation of the intersection angle from
a right angle. Fg;s¢Max and Fg4;s: Avg are statistics of maximal and average distance er-
rors, which are measured at each quad as the distance between the input surface and the

reconstructed surface, and then normalized by the length of the foliation corresponding to

that quad. EsreqAvg measures the average area distortion.
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mesh, we measure the maximum distance between quads from the mesh and
the input triangle mesh of the surface. Then we normalize this value by the
average length of the horizontal and vertical foliation leaves containing this
quad. Moreover, the area distortion stands for the difference between each
quad and the corresponding area on the input surface. It is calculated by
projecting each quad onto the input surface along the normal direction and
compute the area distortion ratio between the two corresponding regions.
The smaller the number is, the higher the accuracy will be. Table 2 shows
that the reconstructed woven surfaces can approximate the input surfaces
precisely, in which the average distance error is less than 1%.

It is remarkable that higher mesh resolution brings lower distance error
and surface distortion. As shown in the first two rows in Table 2, comparing
the human face model with quad mesh as 15 by 16 and 45 by 48, the average
distance error reduces 86 %, and the average area distortion decreases from
6.49 % to 2.71 %. The size of cells in the weaving structure can also be
adjusted. In particular, we can narrow the widths of strips in high curvature
regions of the surface to improve the approximation accuracy (as shown in
Fig. 18). Moreover, as this method guarantees that different leaves never
intersect at non-singular points, the resolution of the weaving structure can

be arbitrarily high to recover the input surface precisely.
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Distance error [%]

Figure 18: Surface distance error. Left to right: low resolution weaving structure, high
resolution weaving structure and same high resolution weaving structure with modified

grid distribution according to surface curvature distribution.
6. Discussion and Conclusion

In summary, we utilize the mathematics theories of foliation in the en-
gineering application of woven fabric, link the free-form spatial surface with
the conventional in-plane textiles, and bring the conceptual digital woven
surface design to practical fabrication of conformal thin shell structures.

The method is computationally efficient since the numerical generation of
woven fabric is automatic. The foliation theory mathematically guarantees
the robustness of the framework in three aspects. Firstly, the frame is not
limited to certain types of surface topologies. Secondly, the woven fabric has
a global tensor product structure with minimal singularities, and each leaf is
smooth. According to Guass-Bonnet theorem, the total valence of singulari-
ties satisfies the condition ) (4 — k)7 /2 = (2 — 2g)72. Suppose surface genus
g is greater than zero. Because our method avoids valence 3 singularities, the
number of singularities is less than that of conventional methods. In general,
the number of singularities on a holomorphic one form is 2¢g — 2, which on

a holomorphic quadratic ditfferential is 4g — 4. Therefore the basic algorithm
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produces the minimal number of singularities, though modifications may be
made which introduce more singularities for the sake of better geometric
fidelity. Moreover, the engineering requirements are satisfied: there is no T-
junctions in the woven fabric; the crossing angles of every pair of threads are
90 degrees at non-singular regions.

In the current work, we focus on conformal woven fabrics at the macro-
scale and demonstrate our idea by weaving several models using construction
paper. In the future, one can extend the work to weave a curved surface
with a variety of material at different length scales, such as a car lining
made by woven composite, a woven wearable electronics conformal to the
human body, and woven surface meta-material design. Moreover, the pro-
posed conformal weaving method gives a potential supplement to additive
manufacturing. Combining with our proposed topology optimization frame-
work-the extended level set method [68, 69, 70] , we can offer a systematic
solution from designing and fabricating structures on a surface with desired
properties and performance.

However, there are some potential obstacles to the current method. First,
the computation of the woven cells is automatic. Thus, the area of the woven
cells may vary throughout the whole surface; the location of the singularities
are automatically determined. In future research, we will work on improv-
ing the foliation computing method to produce consistent cells and offer-
ing user-input functionalities to better control the aesthetical and structural
properties of the woven surface. Second, in the current work, the thickness
of the surface is neglected, and the method performs well for fabricating thin

shell structures. However, in real engineering applications, especially in ar-
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chitecture, the thickness of the material is non-neglectable. While weaving,
the bending of the thick stripes will induce extra rigidity and gaps between
warps and wefts. Thus, in the future, we will improve the algorithm to bal-
ance the thickness effects. Furthermore, the fabrication is done manually,
which is the most time-consuming step of the whole pipeline. In the future,

we will consider cooperating with robotics in the weaving process.
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