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Generative Design of Bionic
Structures Via Concurrent
Multiscale Topology Optimization
and Conformal Geometry Method
Topology optimization has been proved to be an efficient tool for structural design. In recent
years, the focus of structural topology optimization has been shifting from single material
continuum structures to multimaterial and multiscale structures. This paper aims at devis-
ing a numerical scheme for designing bionic structures by combining a two-stage paramet-
ric level set topology optimization with the conformal mapping method. At the first stage, the
macro-structural topology and the effective material properties are optimized simulta-
neously. At the second stage, another structural topology optimization is carried out to iden-
tify the exact layout of the metamaterial at the mesoscale. The achieved structure and
metamaterial designs are further synthesized to form a multiscale structure using conformal
mapping, which mimics the bionic structures with “orderly chaos” features. In this
research, a multi-control-point conformal mapping (MCM) based on Ricci flow is proposed.
Compared with conventional conformal mapping with only four control points, the pro-
posed MCM scheme can provide more flexibility and adaptivity in handling complex geom-
etries. To make the effective mechanical properties of the metamaterials invariant after
conformal mapping, a variable-thickness structure method is proposed. Three 2D numeri-
cal examples using MCM schemes are presented, and their results and performances are
compared. The achieved multimaterial multiscale structure models are characterized by
the “orderly chaos” features of bionic structures while possessing the desired performance.
[DOI: 10.1115/1.4047345]
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1 Introduction
Geometry and material are two essential factors of the structural

design. Compared with single material structures, a multimaterial
structure can have a better performance under many conditions [1]
and can make some design objectives easier to be achieved [2].
Besides naturalmaterials, the emergence ofmetamaterials has signif-
icantly expanded the rangeofmaterials accessible to engineers.Meta-
materials can offer possibilities that cannot be achieved by natural
materials [3–7]. With the rapid development of structural optimiza-
tion and additive technology, designing multiscale structures with
space-varying metamaterials has become accessible [8–10]. There
is a growing need for a computational framework for the generative
design of multimaterial structures at multiple scales.
Topology optimization is a powerful and advanced structural

designing tool. There are several different approaches in this
field, and a comparative review regarding different approaches
can be found in Ref. [11]. Among those, the level set approach
stands out for its flexibility in handling topological changes with
clear design boundaries for different engineering applications
[12–17]. Generally, by using the zero-level set of the level set func-
tion to model the structural design boundary [18], one level set
function can divide the design domain into three parts: the void
domain, the material domain, and the boundary or interface
between them. When two or multiple material phases are involved,
the “color” level set method [19,20], the piecewise constant level set
method [21], and the reconciled level set method [22] are the widely

used schemes within the level set framework. Specifically, similar
to generating new colors by mixing primary colors, the “color”
level set method can use n level set functions to represent up to
2n different regions. Therefore, each region can be considered pos-
sessing a given property for structural topology optimization. In the
current framework, this scheme is utilized for a better multimaterial
handling potential.
Compared with monoscale structures, multiscale structures

possess mesoscale fillings with fine-tuned properties at a low
overall density [23–25]. Therefore, they can be found in a wide
range of engineering applications [26]. In the designing of multi-
scale structures, the key issues are how to find the constitutive meta-
materials with desired properties, and how to assemble the
multiscale structures [27,28]. Within the level set framework, a
series of metamaterial designs have been reported, such as design-
ing negative permeability metamaterials [29], negative Poisson’s
ratio metamaterials [30,31], electromagnetic metamaterials [7],
zero or negative thermal expansion metamaterials [32], and so on.
However, designers can not fully explore the potential of the multi-
scale structure by only designing the metamaterial infill. Ideally, the
mesoscale structures and the macroscale structures should be
designed in a concurrent manner since the macroscopic loading
and boundary conditions will affect not only the macroscale
overall structural layout but also the metamaterial properties at dif-
ferent locations. A density-based approach for concurrently design-
ing multiscale porous structures was reported by Deng and Chen
[33], where the solid isotropic material with penalization (SIMP)
method was used to optimize the microscale structure, and the
porous anisotropic material with penalization (PAMP) method is
used to optimize the macroscale structure. Sivapuram et al. [34]
developed the concurrent structural topology optimization for mul-
tiscale structures where the mesoscale metamaterials have fixed
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pre-defined locations. Wang et al. [35] proposed the concurrent
design of multiscale structures filled with spatially varying graded
microstructures to ensure the connectivity between adjacent meso-
scale units. Both Sivapuram’s work with predefined metamaterial
locations and Wang’s work with similar topological feature meta-
materials are meant to alleviate the high computational cost of intro-
ducing too many different types of metamaterials in different
regions. Another approach for the concurrent design of the multi-
scale structure is proposed by Li et al. [36], where the density-based
method is employed in the macroscale, and the level set approach is
employed in the mesoscale. The mesoscale metamaterial is deter-
mined by the intermediate density generated from the macroscale
optimization. This combination converts the undesired intermediate
densities of the density-based approach into an advantage of the
entire design methodology, and the numerical examples have veri-
fied the effectiveness of this process.
However, some numerical drawbacks exist in the conventional

level set structural topology optimization framework [37,38]. A
promising solution is to extend it to the parameterized level set
method (PLSM) [39]. In the PLSM framework, combined with
mathematical programming and the gradient-based optimizer
MMA [40], introducing multiple design constraints can be straight-
forward. The PLSM also can generate new holes during the optimi-
zation to add extra flexibility and robustness to the optimization
[37]. Some other level-set-based approaches that can handle multi-
ple design constraints and design variables are reported in Refs.
[41,42]. The optimized structure generated via PLSM has also
been reported to have the advantage of requiring less prefabrication
time for the additive manufacturing of the final design [43], which is
a preferred feature for bridging the gap between designing and
applications.
In this paper, the cardinal basis function (CBF) replaces the

RBF kernel function [44,45] so that the CBF-based level set topol-
ogy optimization framework for multimaterial and multiscale struc-
ture design is formulated [46–48]. The multimaterial structure
is modeled by the “color” level set approach. At the macro-scale,
the overall structural topology and the corresponding effective
metamaterial properties are optimized simultaneously. Using the
optimized effective metamaterial properties as targets, a second-
stage topology optimization is carried out to find out the metamater-
ial structural layout [49–51]. A distance regularization energy
functional [52] is used to maintain the distance-regularized shape
of the level set functions. For multimaterial and multiscale structure
designs, apart from getting the structural topologies in different
scales, how to integrate them together with high fidelity of the
designed performance is another challenge. Simply trimming
the metamaterial array to fit into the structure boundaries may cut
through boundary unit cells, as shown in Fig. S10 available in the
Supplemental Materials on the ASME Digital Collection, causing
isolated or overhung structures, bringing difficulties in the analyz-
ing and manufacturing process. To make the mesoscale infills con-
formal to the design boundary, the angle-preserving, or
local-shape-preserving, conformal mapping is employed to assem-
ble the multiscale structure. Conformal mapping possesses some
intrinsic advantages for metamaterial assembly. It can keep the
designed thermal properties invariant by maintaining the local
shape of the unit cell in the mapping process. However, when it
comes to elastic properties, the conformal mapping process will
introduce local rotation and uniform stretching (or contraction) to
the mapped structure. In this paper, the local rotation will be
handled by utilizing isotropic metamaterial unit cells. To handle
the local distortion, a multi-control-point conformal mapping
(MCM)method is proposed to compensate the deviation of property
tensors caused by the distortion. A variable-thickness structure
scheme is proposed to compensate the local stretching/compressing
on the metamaterial unit cells. By utilizing these measures, the final
mapped structures are expected to have performances close to the
optimized design. Three MCM mapping variations, namely,
the region-by-region MCM (R-MCM) with uniform thickness, the
R-MCM mapped variable-thickness structure, and the all-in-one

MCM (A-MCM) mapped variable-thickness structure with variable
thickness are employed and compared, aiming at preserving the
designed structural performance as much as possible. The rest of
this paper is structured as follows. In Sec. 2, the “color” level set
method for designing multimaterial structures using the CBF-based
concurrent parametric level set framework is detailed. The bench-
mark examples under different mapping schemes, together with
numerical verification, are listed in Sec. 3. The conclusions are
drawn in Sec. 4. Regarding the conformal geometry method, the dif-
ferences between different mapping approaches, and the topology
optimization sensitivity analysis, the readers can be referred to the
Supplemental Materials for further details.

2 The Cardinal Basis Function-Based Concurrent
Topology Optimization Setup for Multiscale and
Multimaterial Structural Designs
2.1 The “Color” Level Set Model for Multimaterial

Representation. In the conventional level set representation with
one level set function, the design boundary is implicitly described
as the zero-level set of the one-higher dimensional level set function
[12,13]. However, when multiple structure phases are introduced,
the “color” level set representation can be utilized. With n level
set functions, the design domain can be divided into up to 2n differ-
ent regions. The level set functions used can be described as
follows:

Φk(x) > 0, (x ∈ Ωk ∖ Γk)
Φk(x) = 0, (x ∈ Γk),
Φk(x) < 0, (x ∈ D ∖ Ωk ∪ Γk)

⎧⎨
⎩ k = 1, . . . , n (1)

In Eq. (1), Φk denotes the kth level set function and Ωk, Γk repre-
sents the region where the kth level set function has positive value
and its corresponding boundary, respectively. D represents the
design domain. The example of identifying different regions
inside the design domain by the sign of the level set function is illus-
trated in Fig. 1.

2.2 Concurrent Macroscale and Mesoscale Optimization
With Cardinal Basis Function-Based PLSM. With a given
kernel function at the jth node as Ψj, the kth level set functions
for multimaterial representation can be parameterized into the fol-
lowing form:

Φk(x) =
∑m
j=1

Ψj(x)μkj, k = 1, . . . , n (2)

In the conventional parametric level set method, the kernel func-
tion is commonly selected as the radial basis function (RBF).
However, with a given support radius, the support regions of neigh-
boring RBF kernel functions will overlap with each other. There-
fore, the corresponding weights, namely, μkj in Eq. (2), do not
have clear upper or lower bounds. This effect can be visualized
by comparing the plot of different types of kernel functions in
Fig. S16. As the design variables [37], the design variable bounds
should be passed to the optimizer explicitly. This issue can be
solved by constructing the CBF as the kernel function, as seen in
Fig. S16(b), for the level set function parameterization [44]. The
CBFs have the Kronecker delta property as:

Ψj(xi) =
1, (if i = j)
0, (if i ≠ j)

{
j = 1, . . . , m (3)

Here,m is the total node number of the parametric level set function.
When the CBF is used for the level set function parameterization,
the corresponding weights will be the upper and lower bounds
of the level set function itself. These explicit bounds can maintain
the numerical stability of the optimizer and avoid the trial and
error approach for guessing those bounds.
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Generally, a multimaterial optimization for minimal mean struc-
tural compliance can be formulated as follows:

Min: J =
∫
D
ϵ(u) :D∗ : ϵ(v)dΩ

s.t.: a(u, v, Φ) = l(v, Φ)

Volk ≤ Voltk , (k = 1, . . . , n)

μLkj ≤ μkj ≤ μUkj , (j = 1, . . . , m)

(4)

In Eq. (4), the ϵ(u) :D∗ : ϵ(u) represents the strain energy density
of the structure with an elastic tensor D∗ calculated from the afore-
mentioned “color” level set multimaterial representation. In the pro-
posed concurrent optimization framework, both the structural
topology and the mesoscale metamaterial properties are optimized
simultaneously. Therefore, at the end of the macro stage optimiza-
tion, the optimized structural layout and the corresponding material
properties can be obtained. The actual mesoscale metamaterial
layout can be achieved by performing a second stage optimization.
The details of the optimization setup and the sensitivity analysis can
be found in the section “ Sensitivity Analysis and Flowchart of the
Concurrent Structural Topology Optimization” in the Supplemental
Materials.
As a function of the design variable μ, the D∗ will essentially be

updated during the optimization process to discriminate different
material phases. u is the displacement field and v is the test function.
The kth material has the volume of Volk that is constrained by its
volume target Voltk. At most, the number of different material
phases in “color” level set can reach to 2n, where n is the total
number of level set functions. In this paper, this is simplified to

only n different phases. The lower and upper bounds for the design
variable μkj can be easily got from the upper and lower bound of
the corresponding level set function. The energy bilinear form
a(u, v, Φ) and the load linear form l(v, Φ) are detailed as follows:

a(u, v, Φ) =
∫
D
ϵ(u) :D∗ : ϵ(v)dΩ

l(v, Φ) =
∫
Γ
t · vdΓ

(5)

To calculate the volume for each material phase, with the Heavi-
side function H, the following equation can be formulated:

Volk =
∫
D

∏k
i=1

H(Φi)dΩ, i = 1, . . . , n (6)

This volume fraction formulation can be understood in a more
intuitive way. For example, when 2 level set functions are used, the
total number of potential material phases can reach up to 22= 4.
This is achieved by combining the positive and the negative areas
of each level set function. In this paper, this potential is not fully uti-
lized. Two level set functions are used to only represent twomaterial
phases for simplicity. The two different volumes can be calculated as
follows:

Vol1 =
∫
D
H(Φ1)dΩ, Vol2 =

∫
D
H(Φ1)H(Φ2)dΩ (7)

Here, Vol1 is utilized to calculate the total structural volume. In the
current research,Vol2 is used to calculate the volume of the relatively

Fig. 1 The “color” level set representation. (a) The two distance-regularized level set functions. (b) The
sign of level set function 1. (c) The sign of level set function 2. (d) The combination of two level set func-
tions. In this research, Ω1 represents the first material phase with boundary Γ1 and Ω2 represents the
second material phase with boundary Γ2. The reset regions are considered as void inside the design
domain D. (Color version online.)

Journal of Mechanical Design JANUARY 2021, Vol. 143 / 011701-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/143/1/011701/6552260/m
d_143_1_011701.pdf by SU

N
Y At Stony Brook user on 20 August 2020

http://dx.doi.org/10.1115/1.4047345
http://dx.doi.org/10.1115/1.4047345


hard material. The soft material volume can be easily calculated by
finding the difference between these two.

2.2.1 Formulation of the Metamaterial Optimization. With the
optimized material properties achieved in the macroscale stage,
next, the structural topology optimization of the mechanical meta-
material [47] is elaborated. In the current example, essentially, the
mechanical metamaterial will be designed as porous structures
with specified elasticity tensors. Although the local shapes of the
unit cells are preserved by the conformal mapping, rotations can
still be introduced. Therefore, the isotropic mechanical metamater-
ial unit cells are preferred. To enforce the isotropy of the mechanical
metamaterial, an additional isotropic constraint is included in the
optimization setting:

Min: Jmeta =
1
2

∑n
ijkl

(CH
ijkl − C∗

ijkl)
2

s.t.:
∫
D
H(Φ)dΩ ≤ Voltmeta

a(u, v, Φ) = l(v, Φ)

C∗
1212 = (CH

1111 + CH
2222)/4 − CH

1122/2

(8)

Here, Φ is the level set function for the metamaterial design, also
parameterized by the CBF. The CH

ijkl is the homogenized elasticity
tensors with the targets at C*ijkl. The volume of the mechanical
metamaterial is constrained by the volume target Voltmeta. The struc-
tural isotropy is ensured when the condition of C∗

1212 = (CH
1111 +

CH
2222)/4 − CH

1122/2 is satisfied [53]. With the strain energy
method [54], essentially, the effective elasticity tensor in the least
square optimization can be calculated from the structural strain
energies under different loading scenarios. The design variables
of this optimization are still the weights for the CBF-parameterized
level set function for the mechanical metamaterial designs. As for
the details of the sensitivities, the readers can be referred to our pre-
vious publication [47] for further details. It needs to be pointed out
that the bounds of the material properties should be selected within
a reasonable limitation. In this current research, the bounds are
selected using Ref. [55] as a reference where microstructures
were designed to reach its maximum material properties. The topol-
ogy optimization sensitivity analysis details can be found in the
Supplemental Materials.

3 Numerical Examples and the Multi-Control-Point
Conformal Mapping Scheme
3.1 Simultaneous Optimization of the Macroscale MBB

Beam Structure and Mesoscale Metamaterials. In this section,
a multimaterial MBB beam structure is designed under proposed
framework. The macroscale topology optimization boundary condi-
tion is illustrated in Fig. 3(a). A F= 1 force is applied at the lower
center of a 2-by-1 domain with fixed lower corners. The domain is
discretized into 100 × 50 elements. The effective Young’s modulus
of the soft material is given the range from 0.05 to 0.1, and the hard
one is between 0.15 and 0.2. The initial effective Young’s modulus
values of the soft material and the hard material are given 0.075 and
0.175, respectively. The overall material volume is constrained at
60%, and the hard material volume is constrained at 30%. The Pois-
son’s ratio for all materials is set to be 0.3. For all the numerical
examples in this research, the FEA is performed under the
plane-stress assumption. The upper and lower bounds for the
design variables in all the numerical examples are set to be three
times of the level set function grid size.
The convergence history of the optimization process is shown in

Fig. 2. At the end of the macroscale topology optimization, the total
and the hard material volume for the final design is 59.995% and
29.995%, respectively. The optimized effective Young’s modulus
for the soft metamaterial is 0.1, and the hard one is 0.2, respectively.
By using these two values as targets, the second topology optimiza-
tion is carried out to get the isotropic metamaterial layouts. The
Young’s modulus for constructing both metamaterials is the same
at 1. The volume is 30% and 40% for the soft and hard metamater-
ials, respectively. A bounding box is introduced to the metamaterial
designs to ensure the connectivity of the adjacent metamaterial unit
cells. In the current framework, the bounding box thickness is
selected to be a given value of 2% of the square unit cell edge
length. The adding of the bounding box is a simple but straightfor-
ward way of connecting adjacent unit cells within the multiscale
structure. Other potential techniques such as adding geometric con-
nectivity conditions [56] or adding virtual forces [57] can also
ensure the interface connectivity of unit cells within the level set
framework. An isotropy polar plot scheme, as shown in Fig. S17,
is utilized to illustrate the isotropy of the designed metamaterials.
Essentially, it is plotting the metamaterial effective property con-
straint (the last statement in Eq. (8)) from 0 deg to 360 deg.
When the metamaterial is isotropic, its orientation will not affect
its effective property, so a perfectly round circle will be plotted.
If the metamaterial is not isotropic as expected, this plot will

Fig. 2 The evolution history of the MBB beam structure example: (a) the evolution history of the
first zero-level set function, (b) the evolution history of the second zero-level set function, and
(c) the evolution history of the multimaterial structure. Red:soft material. Green: hard
material. (Color version online.)
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deviate from the reference circle to become ellipse or other types of
shapes. So, this isotropic polar plot is helpful to visualize how “iso-
tropic” the current metamaterial is. For more details about the struc-
tural isotropy polar plot, the readers are referred to Ref. [47] for
further details.

3.1.1 Region-by-Region Multi-Control-Point Conformal
Mapping With Uniform Thickness. Generally, to form the multi-
scale structure, a commonly used procedure is to assemble an
array of the mesoscale metamaterial structure and trim this array
to fit into the macroscale structure. This process might introduce
isolated or overhung structures, bringing difficulties in structural
analyzing and manufacturing. In this research, a preliminary
approach is introduced to form the multiscale structures with
mesoscale metamaterial unit cells conformal to the structural
boundaries. This approach is made possible by utilizing the con-
formal geometry theory. With the preferred angle-preserving
property, the conformal mapping will mathematically preserve
the designed mesoscale metamaterial properties. This can ensure
the high fidelity of the mapped multiscale structural performance.
With different problem settings and mapping preferences, in this
paper, three preliminary mapping approaches, namely, the
R-MCM with uniform structural thickness, the R-MCM with var-
iable structural thickness, and the A-MCM with variable structural
thickness, are utilized to form the multiscale structures. The exact

mapping methodologies and workflows are detailed in the
Supplemental Materials.

3.1.2 Numerical Verification. With a mathematically proven
shape-preserving characteristic, how well the R-MCM with
uniform thickness is preserving the mapped structure performance
is verified in this section. For the performance verification of two
other mapping schemes, the process is the same.
The mapped multimaterial multiscale MBB beam structure, as

shown in Fig. 3(b) is imported into the COMSOL FEA package after
proper model cleaning. The Young’s modulus for the multiscale
structure is 1, which is the same as the structural Young’s
modulus used for metamaterial topology optimization. The MBB
beam multiscale structure is meshed with 2,098,140 triangular ele-
ments, and the simulation boundary conditions are the same as
Fig. 3(a). The 2D example is solved under the plane-stress assump-
tion. The final calculation result is shown in Fig. 3(d ) with the actual
structural strain energy of 86.29. On the other hand, the structural
strain energy with the effective material properties after the topol-
ogy optimization, as shown in Fig. 2, is 72.3898.
It can be noticed that this numerical verification calculation result

has higher structural strain energy. This means the FEA model ana-
lyzed in Fig. 3(d ) is less stiff when compared with the optimized
structure directly from the optimization. This is due to the informa-
tion losing during the conformal mapping, CAD model cleaning,

Fig. 3 (a) The boundary condition of the MBB beam structure example. (b) The R-MCM mapped MBB beam multiscale structure
with conformally mapped hard (red) and soft (green) metamaterials. (c) The R-MCMmapped MBB beam structure CADmodel with
uniform thickness. (d) The FEA calculation of the R-MCM mapped multiscale MBB beam with uniform thickness. Black: pre-
deformation structure. Blue: post-deformation structure. (Color version online.)

Fig. 4 The evolution history of the Michell-type structure example: (a) the evolution history of the
first zero-level set function, (b) the evolution history of the second zero-level set function, and
(c) the evolution history of the multimaterial structure. Red: soft material. Green: hard
material. (Color version online.)
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modeling transferring, and other potential reasons discussed previ-
ously. But generally, the conclusion can be drawn that the R-MCM
with uniform thickness preserves the design material properties in
an acceptable manner.

3.2 Simultaneous Optimization of MacroscaleMichell-Type
Structure and Mesoscale Metamaterials. In this section, the
Michell-type structure is designed. With the same optimization
setting, the structure topology optimization is carried out with
the total volume constraint of 80% and the hard material
volume constraint of 40%. The evolution of the design is
shown in Fig. 4 with the optimized effective Young’s modulus
of 0.1 and 0.2 for the soft and hard metamaterial, respectively.
The final structure has the total volume of 80% and the hard mate-
rial volume is 39.992%. The boundary condition is shown in
Fig. 5(a). The corresponding conformally mapped multiscale
structure is shown in Fig. 5(b). This model is extruded to be a
2.5D model and is illustrated in Fig. 5(c). The structural strain
energy with the effective material properties after the topology
optimization is 102.5011. In the FEA verification, by using the
same boundary condition as Fig. 5(a) and 1,285,417 triangular
mesh elements, the calculated total strain energy is 121.42 as
shown in Fig. 5(d ).

3.3 Simultaneous Optimization of Macroscale Short
Cantilever Beam Structure and Mesoscale Metamaterials. In
this section, the short cantilever beam structure is designed within
a 1-by-1 design domain discretized into 50 × 50 elements. The evo-
lution of the design is shown in Fig. 6. The boundary condition is
shown in Fig. 7(a). With the same material property and the topol-
ogy optimization settings, the structure topology optimization is
carried out with the total volume constraint of 80% and the hard
material volume constraint of 40%. The final design has a total
volume of 79.972% and the hard material volume of 39.989%,
together with the optimized effective Young’s modulus of 0.1 and
0.2 for the soft and hard metamaterials, respectively. The corre-
sponding conformally mapped multiscale structure is shown in
Fig. 7(b). This model is extruded to be a 2.5D model and is illus-
trated in Fig. 7(c). The structural strain energy with effective mate-
rial properties after the topology optimization is 67.7089. In the
FEA verification, by using the same boundary conditions as
Fig. 7(a) and 1,780,434 triangular mesh elements, the calculated
total structural strain energy is 71.12, as can be seen from Fig. 7(d ).

3.4 The Region-by-Region Multi-Control-Point Conformal
Mapping of Variable-Thickness Structures. By using the con-
formal mapping strategy with variable-thickness structure detailed
in the Supplemental Materials, the previous beam examples are

Fig. 5 (a) The boundary condition of theMichell-type structure example. (b) The R-MCMmappedMichell-typemultiscale structure
with conformally mapped hard (green) and soft (red) metamaterials. (c) The R-MCMmappedMichell-type structure CADmodel with
uniform thickness. (d) The FEA calculation of the R-MCMmapped multiscale michell-type structure with uniform thickness. Black:
pre-deformation structure. Blue: post-deformation structure. (Color version online.)

Fig. 6 The evolution history of the short cantilever beam structure example. (a) The evolution
history of the first zero-level set function. (b) The evolution history of the second zero-level set
function. (c) The evolution history of the multimaterial structure. Red: soft material. Green:
hard material. (Color version online.)
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mapped again, followed by corresponding FEA verification. Each
individual material sub-domain is mapped separately, with its
own scalar function e2λ as the thickness factor. This process is
named as R-MCM of variable-thickness structure. In all of the
following examples, the thickness value is bounded between 0.5
and 2 times the original thickness. Mathematically, this manually
imposed bound might affect the final performance of the mapped
structure. But from an engineering point of view considering

manufacturing constraints, this approximation could be considered
as acceptable.
The corresponding MBB beam thickness value is shown in

Fig. 8(a). By extruding the mapped MBB beam with this thickness
value, the variable-thickness MBB beam structure CAD model is
shown in Fig. 8(b). It can be seen in Fig. 8(b) that in the areas
where the unit cells are stretched, the thickness values are relatively
bigger. On the other hand, in the areas where the unit cells are

Fig. 7 (a) The boundary condition of the short cantilever beam example. (b) The R-MCMmapped short cantilever beammultiscale
structure with conformally mapped hard (green) and soft (red) metamaterials. (c) The R-MCM mapped short cantilever beam CAD
model with uniform thickness. (d) The FEA calculation of the R-MCMmapped multiscale short cantilever beam with uniform thick-
ness. Black: pre-deformation structure. Blue: post-deformation structure. (Color version online.)

Fig. 8 (a) The thickness value of the R-MCM mapped variable-thickness MBB beam structure. (b) The R-MCM mapped
variable-thickness MBB beam structure CAD model. (c) The FEA calculation of the R-MCM mapped multiscale variable-thickness
MBB beam structure. Black: pre-deformation structure. Blue: post-deformation structure. (Color version online.)

Fig. 9 (a) The thickness value of the R-MCM mapped Michell-type variable-thickness structure. (b) The R-MCM mapped Michell-
type variable-thickness structure CADmodel. (c) The FEA calculation of the R-MCMmappedmultiscale variable-thicknessMichell-
type structure. Black: pre-deformation structure. Blue: post-deformation structure. (Color version online.)
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compressed, the thickness values are reduced accordingly. This is
similar to the effects shown in Fig. S9. Relatively, the MBB
beam structural stain energy calculated in FEA is 80.74, as shown
in Fig. 8(c). Similarly, the mapping and FEA analyzing approach
are applied to both the Mitchell-type structure and the short beam
structure. The thickness values are shown in Figs. 9(a) and 10(a),
and the corresponding CAD models are listed in Figs. 9(b) and

10(b). The FEA calculations of the structural strain energies are
113.47 and 70.69, respectively, as shown in Figs. 9(c) and 10(c).

3.5 All-in-One Multi-Control-Point Conformal Mapping of
Variable-Thickness Structures. To avoid the drastic thickness
change along material interfaces, a novel all-in-one MCM,

Fig. 10 (a) The thickness value of the R-MCMmapped variable-thickness short cantilever beam structure. (b) The R-MCMmapped
variable-thickness short cantilever beamCADmodel. (c) The FEA calculation of the R-MCMmappedmultiscale variable-thickness
short cantilever beam structure. Black: pre-deformation structure. Blue: post-deformation structure. (Color version online.)

Fig. 11 (a) The thickness value of the A-MCM mapped variable-thickness MBB beam structure. (b) The A-MCM mapped
variable-thickness MBB beam structure CAD model. (c) The FEA calculation of the A-MCM mapped multiscale variable-thickness
MBB beam structure. Black: pre-deformation structure. Blue: post-deformation structure. (Color version online.)

Fig. 12 (a) The thickness value of the A-MCM mapped variable-thickness Michell-type structure. (b) The A-MCM mapped
variable-thickness Michell-type structure CADmodel. (c) The FEA calculation of the A-MCMmappedmultiscale variable-thickness
Michell-type structure. Black: pre-deformation structure. Blue: post-deformation structure. (Color version online.)
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namely A-MCM mapping is proposed. The detailed mapping
process is presented in the Supplemental Materials. With this
A-MCM mapping process, the MBB beam, the Michell-type struc-
ture, and the short cantilever beam are re-mapped again, followed
by FEA structural performance verification. The results are listed
below: for the MBB beam, with the thickness value illustrated in
Fig. 11(a), the corresponding CAD model is built as Fig. 11(b).
By putting this model into COMSOL FEA SOLVER under the same mate-
rial settings and boundary conditions, the final structural strain
energy is 77.41, as seen in Fig. 11(c). For the Michell-type struc-
ture, with the thickness value illustrated in Fig. 12(a), the corre-
sponding CAD model is built as Fig. 12(b). The Michell-type
structure final structural strain energy is 112.86, as shown in
Fig. 12(c). For the short cantilever beam, with the thickness value
illustrated in Fig. 13(a), the corresponding CAD model is built as
Fig. 13(b). The final strain energy of the short cantilever beam struc-
ture is 68.42, as shown in Fig. 13(c).

4 Conclusions and Future Work
In this paper, a concurrent CBF-based PLSM topology optimiza-

tion framework is proposed for the designing of multimaterial mul-
tiscale structures. With the “color” level set representation, multiple
material phases are naturally discriminated inside the design
domain. By using the CBF to parameterize the level set function,
the explicit design variable bounds can be passed to the MMA opti-
mizer. Driven by MMA, the proposed approach can handle multiple
constraints and design variables in a straightforward manner. With
the help of the local shape-preserving conformal mapping with mul-
tiple control points, the designed material properties can be mathe-
matically preserved after the mapping, with the help of the
optimized isotropic metamaterials. By introducing the
variable-thickness structure, the R-MCM and the A-MCM
approaches are proposed to compensate the local metamaterial
unit cell distortions. Notably, the A-MCM can map the entire struc-
ture in an all-in-one fashion to avoid the drastic thickness change
across the material interfaces. Our proposed method is suitable
for designing metamaterials for general surfaces, or curved shell
structure by a simple extruding operator because the method is
based on surface conformal mapping. Nevertheless, this approach
can be generalized for designing volumetric metamaterials by
replacing the surface conformal mapping by volumetric harmonic
mapping, which will be reported in the near future.
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