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A B S T R A C T

A multiscale space/time computational framework for high cycle fatigue (HCF) life predictions is established by
integrating the extended space-time finite element method (XTFEM) with a multiscale progressive damage model.
While the robustness of the multiscale space/time method has been previously demonstrated, the associated high
computational cost remains a critical barrier for practical applications. In this work, a novel hybrid iterative/
direct linear system solver is first proposed with a unique preconditioner. Computational efficiency is further
improved by taking advantage of the high-performance computing platform featuring hierarchy of the distrib-
uted- and the shared-memory parallelisms using CPUs and GPUs. Robustness of the accelerated framework is
demonstrated through benchmark problems. It is shown that the serial version of the hybrid solver is at least 1–2
orders of magnitude faster in computing time and cheaper in memory consumption than the conventional sparse
direct or iterative solver, while the parallel version efficiently handles XTFEM stiffness matrix equations with over
100 million unknowns using 64 CPU cores. Optimal speedups are achieved in the parallel implementations of the
multiscale progressive damage model using either CPUs or GPUs. HCF simulations on 3D specimens are per-
formed to quantify key effects due to mean stress and multiaxial load conditions.
1. Introduction

Fatigue is a failure mechanism that governs the design of many en-
gineering structures and components. Most of the fatigue design ap-
proaches employed by the industry today belong to the category of either
safe-life or damage-tolerance approach. However, those approaches are
not without any shortcomings. In particular, both approaches rely on
certain empirical relations that are derived from either experiment and/
or curve-fitting. As such, extensions to complex fatigue loading condi-
tions, such as extrapolations or corrections for mean stress effects, vari-
able amplitudes, multiaxial loadings, and random loading spectrums
remain questionable.

With the rapid advances in high-performance computing (HPC)
platform in recent decades, there is an increasing interest in establishing
simulation-based tools for fatigue life prediction. In the case of low cycle
fatigue (LCF) failure, several simulation-based approaches have been
developed by coupling Finite Element Method (FEM) with Continuum
Damage Mechanics (CDM) [1–5]. However, for high cycle fatigue (HCF)
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problems, direct finite element simulation has not been possible due to
the large number of loading cycles (typically ranges from 105 to 107). To
circumvent this limitation, the so-called jump-in-cycles approach has been
developed and adopted in Refs. [6–11]. It assumes a constant amplitude
of the applied cyclic load then extrapolates internal and damage variables
from several simulated cycles to large blocks of jumped cycles. Accord-
ingly, the damage variable is cycle-dependent rather than
stress/strain-dependent. Although the method greatly extends the pred-
icative capabilities, the assumption of constant load amplitude does not
always hold for practical applications.

To address the challenges associated with HCF simulations, Bhamare
et al. [12] introduced a computational framework called extended
space-time FEM (XTFEM). XTFEM is derived based on the
time-discontinuous Galerkin (TDG) method established for elastody-
namics [13–15], which discretizes the temporal domain as well as the
spatial domain using finite elements. The TDG method has been proved
to be A-stable and high-order accurate [13–18]. Based on the key con-
cepts that are introduced in XFEM [19], generalized FEM (GFEM) [20]
st 2019
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and partition of unity method (PUM) [21,22], XTFEM further improves
the approximation by enriching its polynomial-based temporal shape
function with enrichment functions that represent the problem physics
[12,23–26]. It was shown that enriched approximation effectively
captured the dynamic response and enabled the use of very large time
step size under various practical fatigue loading histories [12]. To
address the multiscale material behavior in HCF, XTFEM was further
coupled with a two-scale CDMmodel proposed by Lemaitre et al. [27,28]
and Desmorat et al. [29]. The damage model approximates mesoscale
material behavior as elastic, while plasticity and damage are modelled at
the microscale that represents the scale of defects such as microcracks
and microvoids. Those two scales are bridged through the modified
Eshelby-Kr€oner localization law [30,31]. With this integration, direct
numerical simulations of HCF in 304L stainless steel specimen up to 1
million cycles have been successfully completed and verified in Ref. [12].
More recently, Wada et al. [32] further extended this framework to
predict cyclic failure of rubber by considering both geometric and ma-
terial nonlinearities at mesoscale. A CDM-based model developed by
Cantournet et al. [33] and Lemaitre et al. [34] was incorporated to ac-
count for the damage evolution of rubber. HCF simulations of the
notched synthetic rubber sheet specimen up to 1 million cycles were
performed. The simulation results demonstrated good agreement with
experimental results.

While the robustness of XTFEM approach has been extensively
demonstrated, the high computational cost remains as a critical barrier
for practical applications. The computational challenges are twofold.
First, due to the additional temporal dimension and the enrichment de-
grees of freedom (DOFs) that are introduced, XTFEM leads to linear
systems of equations that are much larger than those derived from reg-
ular FEM [12]. In addition, the corresponding enriched space-time
stiffness matrix is non-symmetric, less sparse compared to that of regu-
lar FEM [35] and generally not well conditioned. The second significant
contribution to computational cost comes from the multiscale fatigue
damage model, which needs to be resolved at multiple spatial-temporal
quadrature points.

Based on the prior efforts, the main objective of this work is to
enhance the efficiency of the XTFEM/CDM computational framework
and extend it to large-scale 3D HCF simulations. To accomplish this, a
novel hybrid linear system solver is established and the corresponding
implementation on HPC platform is developed. The hybrid iterative/
direct linear system solver is proposed by utilizing the special block
structure and unique properties of the XTFEM stiffness matrix. HPC
implementation is aimed at accelerating both the hybrid linear system
solver and nonlinear constitutive solver. It features a hierarchy of par-
allelisms that first partition the space-time computational domain and
then redistribute the computationally-intensive tasks associated with
each subdomain while minimizing the communication. This framework
is implemented using a hybrid parallel programming model, which
combines the Message Passing Interface (MPI) for distributed-memory
parallelisms, the Open Multi-Processing (OpenMP) for shared-memory
parallelisms, and the Compute Unified Device Architecture (CUDA) for
the heterogeneous CPU þ GPU hardware platforms. The computational
performance of the established framework is demonstrated through
several benchmark problems. It is shown that the single-thread perfor-
mance of the proposed hybrid solver is at least 1–2 orders of magnitude
better than conventional sparse direct or iterative linear system solver in
terms of both computing time and memory consumption. The parallel
hybrid solver handles XTFEM stiffness matrix equations with over 100
million unknowns using 64 CPU cores and shows excellent parallel effi-
ciency. Parallel implementations of the CDM-based nonlinear constitu-
tive solver show optimal speedup using either CPUs or GPUs. Benchmark
problems on HCF applications demonstrate the capabilities of the pro-
posed framework in handling complex fatigue loading conditions.

The rest of this paper is organized as follows. In Section 2, we briefly
review the extended space-time finite element method. In Section 3, the
hybrid iterative/direct linear system solver for XTFEM is developed.
2

Section 4 presents the two-scale damage model and its parallel imple-
mentation. Results and discussions of benchmark problems are provided
in Section 5. Finally, conclusions are drawn in Section 6.

2. Extended space-time finite element method

We start by briefly reviewing the formulation of the extended space-
time finite element method [12], which is derived based on the
time-discontinuous Galerkin method [13–15].
2.1. Governing equations

We consider the initial-boundary-value problem defined over a
spatial region Ω and the corresponding temporal domain I¼ ]0, T[. The
region Ω is bounded by Γ¼ Γt [ Γu, where Γt and Γu are respectively the
Neumann and the Dirichlet boundaries and Γt \Γu ¼ ∅. The strong form
of the governing equations is given by

ρ€u¼r� σðruÞ þ f on Q � Ω� �0;T ½ (1)

u¼u on ϒ u � Γu � �0; T ½ (2)

n �σðruÞ ¼ t on ϒ t � Γt � �0;T ½ (3)

uðx; 0Þ¼u0ðxÞ for x 2 Ω (4)

_uðx; 0Þ¼ v0ðxÞ for x 2 Ω (5)

where ρ (x) is the volumetric mass density, u and f are the displacement
and body force vectors, n is the outward unit vector normal to boundary
Γ, σðruÞ ¼ C : ε and C is the constitutive matrix, u and t are the pre-
scribed essential boundary condition and traction, u0 and v0 denote the
initial displacement and velocity. Partial differentiations with respect to
time are denoted by superposed dots.
2.2. Time-discontinuous Galerkin method

The time-discontinuous Galerkin method developed by Hughes and
Hulbert [13–15] for elastodynamics is adopted in this work. First, the
space-time domain Q¼Ω� I is divided into multiple segments termed
space-time slabs. The n-th space-time slab is given by Qn¼Ω� In where
In¼ ]tn-1, tn[. The corresponding Neumann and Dirichlet boundary con-
ditions are defined on ðϒuÞn ¼ Γu � In and ðϒ tÞn ¼ Γt � In respectively.
Space-time slab Qn is further discretized into ðnelÞn space-time elements.
The approximations established will be denoted with a superscript “h”.
The domain (interior) of the eth element defined as Qe

n⊂Qn and its
boundary as ϒ e

n. The domain and boundary of the interior of the slab are

defined as QΣ
n ¼ [ðnelÞn

e¼1 Qe
n and ϒΣ

n ¼ [ðnelÞn
e¼1 ϒ e

n � ϒn respectively. Fig. 1
shows an example of the TDG space-time discretization described above.

The following notations are introduced for deriving the TDG formu-
lation,

�
wh;uh

�
Ω ¼

Z
Ω
wh � uhdΩ (6)

a
�
wh; uh

�
Ω ¼

Z
Ω
rwh � σ�ruh

�
dΩ (7)

�
wh;uh

�
Qn

¼
Z
Qn

wh � uhdQ (8)

a
�
wh; uh

�
Qn

¼
Z
Qn

rwh � σ�ruh
�
dQ (9)



Fig. 1. An illustration of TDG space-time discretization for the case of 2D spatial domain.

R. Zhang et al. Finite Elements in Analysis and Design 166 (2019) 103320
�
wh; uh

�
QΣ
n
¼

QΣ
n

wh �uhdQ (10)

Z

�
wh; uh

�
ϒΣ
n
¼

Z
ϒΣ
n

wh �uhdϒ (11)

�
wh; uh

�
ðϒ t Þn

¼
Z
ðϒ t Þn

wh �uhdϒ (12)

where
R
Qn
ð�ÞdQ ¼ R

In

R
Ω
ð�ÞdΩdt and

R
ϒn
ð�Þdϒ ¼ R

In

R
Γ
ð�ÞdΓdt. We further

introduce the jump operators

EuðtnÞF¼ u
�
tþn
�� u

�
t�n
�

(13)

EuðxÞF¼uðxþÞ � uðx�Þ (14)

in which

u
�
t�n
� ¼ lim

ε→0�
uðtn þ εÞ (15)

uðx�Þ ¼ lim
ε→0�

uðxþ εnÞ (16)

n¼ nþ ¼ �n� (17)

The weak form of TDG formulation is derived by introducing
displacement trial function uh(x, t) and test function δuh(x, t) to be C0

continuous within each space-time slab. Discontinuities across the adja-
cent space-time slabs are allowed for the trial and test functions. The
spaces of the trial and test functions are given by

uhðx; tÞ 2U U ¼ �
uhðx; tÞ��uh 2 C0

� [N
n¼1 Qn

�
; uh ¼ u on Γu

�
(18)

δuhðx; tÞ 2U0 U0 ¼
�
δuhðx; tÞ��δuh 2 C0

� [N
n¼1 Qn

�
; δuh ¼ 0 on Γu

�
(19)

With these definitions, the weak form of TDG formulation is derived.
For the n-th space-time slab, it is given as

BDG

�
δuh;uh

�
n ¼ LDG

�
δuh

�
n (20)

for n¼ 1, 2, …, where

BDG

�
δuh; uh

�
n ¼

�
δ _uh; ρ€uh�

Qn
þ a

�
δ _uh;uh

�
Qn

þ �
δ _uh�tþn�1

�
; ρ _uh�tþn�1

��
Ω

þa
�
δuh

�
tþn�1

�
;uh

�
tþn�1

��
Ω

(21)
3

LDG

�
δuh

�
n
¼ �

δ _uh; f
�
Qn

þ �
δ _uh; t

�
ðϒ t Þn

þ �
δ _uh�tþn�1

�
; ρ _uh�t�n�1

��
Ω

þa
�
δuh

�
tþn�1

�
;uh

�
t�n�1

��
Ω

(22)

2.3. Discretization

In XTFEM, the unknown displacement field is approximated by

uðx; tÞ¼
X
I

NIðx; tÞdI þ
X
J

~NJðx; tÞ~dJ (23)

in which N and ~N are standard and enriched space-time shape functions,
d and ~d represent the standard and enriched DOFs respectively.

The standard space-time shape function is constructed in a multipli-
cative form, given by

Nðx; tÞ¼Nt 	 Nx ¼
�
N1Nx ⋯ NiNx ⋯ NntNx

�
(24)

where Nx and Nt are the spatial and standard temporal shape functions
respectively, symbol 	 denotes the Kronecker product, subscript i rep-
resents the i-th temporal node. The spatial shape functions are the same
as these in regular FEM. A quadratic interpolation scheme is employed in
this work for the standard temporal shape function. Three temporal
nodes are equally spaced along the time axis for each space-time slab, i.e.,
nt ¼ 3 in Eq. (24). The polynomials-based temporal shape function is
given by

Nt ¼
2
4 ðt2 � tÞðt3 � tÞ
ðt2 � t1Þðt3 � t1Þ

ðt3 � tÞðt1 � tÞ
ðt3 � t2Þðt1 � t2Þ

ðt1 � tÞðt2 � tÞ
ðt1 � t3Þðt2 � t3Þ

3
5 (25)

For certain class of problems, the polynomials-based shape functions
do not provide the ideal basis for interpolation. Therefore, an enrichment
function Φ(x, t) that represents the problem physics is introduced to
extend the predictive capability. For the J-th node, the enriched space-
time shape function is given by

~NJðx; tÞ ¼ NJðx; tÞΦJðx; tÞ (26)

where the enrichment function is defined as

ΦJðx; tÞ¼Φðx; tÞ �ΦðxJ ; tJÞ (27)

Proper enrichment function can be selected by considering prior
knowledge of problem physics. For HCF problems considered in this
paper, a harmonic enrichment function is employed to capture the
oscillating components in structural response, i.e.

ΦJðtÞ¼ΦðtÞ �ΦðtJÞ ¼ sinðωtÞ � sinðωtJÞ (28)
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where ω is the circular frequency of the imposed cyclic loading.

For convenience, we define N ¼
�
N ~N

�
and d ¼

�
d ~d

�
so that the

approximation of unknown displacement field can be simply expressed as

uðx; tÞ ¼
X
I

NIðx; tÞdI (29)

By substituting Eq. (29) into the weak form of TDG formulation, the
discretized linear system of equations for the n-th space-time slab is ob-
tained as

Kndn ¼ F n (30)

where the XTFEM stiffness matrix is given by

Kn ¼
Z
Qn

_N
T
ρ €NdQþ

Z
Qn

_N
T
;xCN;xdQ þ

Z
Ω

_N
T�
tþn�1

�
ρ _N

�
tþn�1

�
dΩ

þ
Z
Ω
NT

;x

�
tþn�1

�
CN;x

�
tþn�1

�
dΩ (31)

and the force vector is

F n ¼
Z
ðγt Þn

_N
T
tdγ þ

Z
Qn

_N
T
fdQ

þ
�Z

Ω

_N
T�
tþn�1

�
ρ _N

�
t�n�1

�
dΩþ

Z
Ω
NT

;x

�
tþn�1

�
CN;x

�
t�n�1

�
dΩ

�
dn�1

(32)

Since the space-time shape function is defined in a multiplicative
form using Kronecker product, integrations over spatial domain can be
done independently from the ones over the temporal domain. Thus, the
XTFEM stiffness matrix can be expressed in a similar form, which is given
by

Kn ¼ Φn 	KþΨn 	M (33)

where K and M are respectively the spatial stiffness and mass matrices
from the regular FEM, and the corresponding temporal matrices are

Φn ¼
Z
In

_N
T
t Ntdt þ NT

t

�
tþn�1

�
Nt

�
tþn�1

�
(34)

Ψn ¼
Z
In

_N
T
t
€Ntdt þ _N

T
t

�
tþn�1

�
_Nt

�
tþn�1

�
(35)

In the current implementation, Eqs. (34) and (35) are evaluated
analytically. Based on the choices of the temporal shape function and
enrichment function, the size of the resulting temporal matrices is
2nt� 2nt, which is significantly smaller than the spatial matrices.
2.4. Numerical implementation

The numerical implementation of XTFEM is summarized in Table 1.
Computational cost analysis [35] showed that solving the stiffness matrix
equations (line 8 in Table 1) is the most expensive part. It requires O(N2)
in memory for full storage of the stiffness matrix and O(N3) in CPU time
Table 1
Implementation of XTFEM.

1 Initialization
2 Formulate spatial matrices K and M
3 DO (loop over space-time slabs)
4 Integrate temporal matrices Φn and Ψn

5 Assemble space-time matrix Kn

6 Calculate force vector F n

7 Apply boundary conditions
8 Solve Kn dn¼F n

9 Update and output solutions
10 END DO

4

for solving the equations using direct solver, where N is the total number
of DOFs.

Fig. 2 (a) and (b) illustrate sparsity patterns of the stiffness matrices
that are obtained from regular FEM and XTFEM for the same number of
spatial nodes. These patterns are generated based on a thin plate problem
that will be described in Section 5.1. For spatial discretization, a 3D
structured mesh (2880 8-node brick elements, 3965 nodes) is generated
and leads to the banded pattern of stiffness matrix for regular FEM as
shown in Fig. 2 (a). The number of spatial DOFs in regular FEM is ns¼ 11,
895. Due to the additional temporal dimension and enrichment that are
introduced, the number of space-time DOFs in XTFEM is increased to
N¼ 2nt� ns¼ 71,370. Direct solution of the XTFEM stiffness equation
leads to computational cost that is at least two orders of magnitude
higher comparing to solving the regular stiffness equation in FEM, which
becomes one of the critical barriers for its extensive and practical
application.

3. Hybrid iterative/direct linear system solver

For each space-time slab, the stiffness matrix equation of XTFEM is
given by

Kd ¼ F (36)

where K2ℝN�N is a non-symmetric sparse matrix, d2ℝN and F 2ℝN

are the unknowns and force vectors respectively.
In regular FEM, two types of linear systems solvers are generally

employed to solve the stiffness matrix equations. The first type is the
frontal direct sparse solver [36], which is robust and efficient particularly
for equations with multiple right-hand-side vectors. The second type is
the iterative solver [37,38], such as the Preconditioned Conjugate
Gradient (PCG) method. Iterative solver is less robust for systems that are
not well conditioned but more flexible. It can achieve higher efficiency
than the direct solver for particular linear systems. In space-time FEM,
iterative solvers such as Gauss-Jacobi and Gauss-Seidel methods have
been adopted to reduce the computational cost [35,39–41], see Ref. [42]
for a brief review.

In this work, by exploiting the unique block structure of XTFEM
stiffness matrix, we propose a novel hybrid iterative/direct linear system
solver that takes advantage of both the efficiency of iterative method and
the robustness of direct method. In the proposed hybrid approach, the
main solution algorithm is implemented by a nonstationary iterative
solver, while the direct sparse solver is employed for preconditioning.
3.1. Preconditioning approach

3.1.1. Construction of the preconditioner
The basic idea of preconditioning is to modify the linear system to

make it easier to solve while the saved computational effort outweighs
the extra cost of preconditioning itself. With preconditioning, the original
XTFEM stiffness matrix equation (36) is modified as

P�1Kd ¼ P�1F (37)

in which matrix P is the preconditioner.
In general, the choice and quality of a preconditioner greatly depend

on the specific linear system. Therefore, the preconditioner P is built by
approximating the XTFEM stiffness matrix K. Zhang et al. [42] recently
studied various space-time stiffness matrices obtained from different
TDG formulations, including the single-field, the two-field and the
currently employed enriched formulations. They showed that in
space-time stiffness matrix K, the component matrix Ψ	M is always
singular due to the singularity of the temporal matrix Ψ. On the other
hand, the component matrix Φ	K is nonsingular and dominates K for
many applications. Based on those observations, a preconditioner was
proposed by approximating the dominant component matrix Φ	K as



Fig. 2. Comparison among the sparse pattern of the stiffness matrices formed by (a) regular FEM and (b) XTFEM, dashed boxes indicate the size of the regular FEM
stiffness matrix and nz represents the number of non-zero elements in the sparse matrix.

R. Zhang et al. Finite Elements in Analysis and Design 166 (2019) 103320
P ¼ Φ	 P (38)
in which matrix Pwas derived by an incomplete factorization of matrix K
using incomplete LU factorization (ILU) or incomplete Cholesky factor-
ization (ICHOL). It was shown that this type of preconditioner worked
well for space-time FEM in the case of serial implementation [42].

To further improve the numerical efficiency of this type of pre-
conditioning approach and develop parallel implementation, the domi-
nant component matrix Φ	K is employed in this paper as the
preconditioner instead of formulating Φ	 P since the former already
provides a good approximation of the XTFEM stiffness matrix. Therefore,

P ¼ Φ	K (39)

With the use of Eq. (39), the process of evaluating P is avoided and
computational effort is thus saved. Another important feature of the
proposed preconditioner is that the direct sparse solver can now be
introduced into the preconditioning operation, which improves its
robustness and efficiency.

3.1.2. Optimization of the preconditioning operation
The preconditioning operation is generally expressed as

y ¼ P�1x (40)

in which x and y are vectors of size N¼ 2nt� ns with ns being the
dimension of spatial matrix.

Substituting the proposed preconditioner P to Eq. (40) yields

y ¼ ðΦ	KÞ�1x (41)

The inverse of a Kronecker product is given by ðA	 BÞ�1 ¼ A�1	 B�1

if and only if both A and B are invertible. By using this property, Eq. (41)
is further simplified as

y ¼ �
Φ�1 	K�1

�
x (42)

The inverse of the larger matrix P is now replaced by inverses of two
smaller matrices Φ and K. The cost of inverting temporal matrix Φ is
negligible since its size is very small (2nt� 2nt). The spatial matrix K is
the same as that in the regular FEM stiffness matrix, which is sparse,
symmetric, and better conditioned. However, inverting it explicitly is still
very expensive. To avoid that, we can further decompose the evaluation
of Eq. (42) into the following two steps:

First, we introduce an intermediate vector z that can be solved from

zðiÞ ¼K�1xðiÞ; i ¼ 1; 2; :::; 2nt (43)
5

in which the size of z(i) or x(i) is ns.
Then, the desired vector y is obtained by

yðiÞ ¼
X2nt
j¼1

ϕijz
ðjÞ; i ¼ 1; 2; :::; 2nt (44)

in which ϕij is the corresponding element of matrix Φ�1.
In those two steps, solving Eq. (43) is the most computationally

intensive step. In fact, it is equivalent to solving the corresponding reg-
ular FE stiffness matrix equations. Hence, by using the proposed method,
computational cost of the preconditioning is reduced to the same order as
for solving the corresponding stiffness matrix equations in linear static
FEM analysis. Furthermore, Eq. (43) can be handled efficiently by many
well-established direct sparse solvers for regular FEM. It is also possible
to use commercial FE packages to solve Eq. (43).

In the current work, a parallel multi-frontal direct sparse solver
named MUMPS [43,44] is employed to solve Eq. (43). In general, the
direct sparse method solves a linear system by three main steps: (1)
symbolic analysis; (2) numerical factorization, and (3) the final solution
steps. Computational cost of the direct method is dominated by the first
two steps. Once those two steps are completed, the final solution step can
be performed separately and repeatedly for the case of multiple RHS
vectors. Therefore, for linear elastodynamics the analysis and factoriza-
tion steps of direct solver is performed only once during the first time
increment. For nonlinear HCF simulations, the same solution strategy is
employed unless the preconditioner Φ	K no longer provides a good
approximation of the XTFEM stiffness matrix K due to the progressive
evolution of spatial matrix K. In that case, the convergence rate of the
main iterative solver slows down and triggers the re-evaluation of the
preconditioner. Thus, computational cost can be saved since the first two
steps of the direct solver are minimized.
3.2. Iterative solution approach

Due to the asymmetry of XTFEM stiffness matrix, we employ the
Generalized Minimum RESidual (GMRES) method [45] as the main
iterative solver in the proposed hybrid approach. To accelerate
matrix-vector multiplication, which is the most computationally expen-
sive operation in GMRES algorithm, we propose an optimized imple-
mentation by utilizing the unique block structure of space-time matrix.

The matrix-vector multiplication is generally given by

y ¼ Kx (45)

Using the block structure of XTFEM stiffness matrix, Eq. (45) is
rewritten as
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y ¼ ðΦ	KþΨ	MÞx (46)
Based on definitions given in Eq. (40), vectors x and y can be divided
into smaller segments

x ¼

8>>>><
>>>>:

xð1Þ

xð2Þ

⋮
xð2nt Þ

9>>>>=
>>>>;

and y ¼

8>>>><
>>>>:

yð1Þ

yð2Þ

⋮
yð2nt Þ

9>>>>=
>>>>;

(47)

in which the size of x(i) or y(i) is ns.
By defining two intermediate vectors as

uðiÞ ¼KxðiÞ and vðiÞ ¼ MxðiÞ; i ¼ 1; 2; :::; 2nt (48)

we can compute the desired vector y as

yðiÞ ¼
X2nt
j¼1

ΦijuðjÞ þ
X2nt
j¼1

ΨijvðjÞ; i ¼ 1; 2; :::; 2nt (49)

where Φij and Ψij are components of the temporal Φ and Ψ matrices.
It can be shown that direct evaluation of the matrix-vector product in

Eq. (45) requires approximately 2N2 arithmetic operations, including
N(N-1) additions and N2 multiplications, and O(N2) memory assuming a
Fig. 3. A two-level hierarchy of two types of parallelism.

Fig. 4. Distributed-memory

6

dense matrix storage scheme, where N¼ 2ntns is the size of space-time
matrix. In the optimized implementation, the matrix-vector products in
Eq. (48) require 8ntn2s arithmetic operations and Eq. (49) requires only
O(ns) operations. The space and time matrices in Eqs. (48) and (49)
require a storage cost of O(2n2s ). Therefore, both operations and storage
cost of the optimized implementation are reduced to only 1=nt and 1=
ð2n2t Þ of the direct evaluation method, respectively.

3.3. HPC implementation

To further extend the capability of XTFEM on handling large-scale
problems using HPC platforms, we incorporate high-performance paral-
lel computing techniques to accelerate the proposed hybrid iterative/
direct linear system solver. A hybrid of parallelisms, i.e. the distributed-
memory and the shared-memory parallelisms, is exploited in this work. It
forms a hierarchy of those two types of parallelism as shown in Fig. 3. In
this way, the parallel computing hardware can be used more efficiently.

3.3.1. Distributed-memory parallelism
The distributed-memory parallelism arises from partitioning the

computational domain of XTFEM. The space-time finite element mesh is
first partitioned into smaller subdomains along the element boundaries
based on its spatial discretization. Computing tasks on each subdomain
are then handled by a specific process as shown in Fig. 4. Data on the
interface nodes between the subdomains are transferred through com-
munications among processes using the Message Passing Interface (MPI)
protocol [46].

To achieve optimal parallel efficiency, partitioning of the computa-
tional domain should satisfy the following three objectives: First,
computing load should be balanced by assigning different number of
elements to each subdomain based on the amount of computing re-
sources available to the corresponding process. Second, the number of
interface nodes among the subdomains should be minimized to reduce
the amount of data communication between processes. Third, the algo-
rithm for domain partitioning itself should be fast and efficient. Among
those objectives, the second is particularly important for the proposed
hybrid iterative/direct linear system solver. A good partitioning not only
significantly reduces the amount of data communications of parallel
matrix-vector multiplication, which leads to higher efficiency of the
GMRES iteration, but also produces a high-quality fill-reducing ordering
that leads to a higher degree of concurrency for the factorization phase of
parallelism of XTFEM.
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the direct solver [47]. As such, domain partitioning is critical to the
parallel implementation of the proposed hybrid solver. In this work, we
employ a multilevel partitioning scheme developed by Karypis and
Kumar [48,49], also known as the METIS package. Fig. 5 shows an
example of domain partitioning by using the METIS package. The finite
element mesh of a thin plate is divided into 48 subdomains, which are
represented by different colors.

3.3.2. Shared-memory parallelism
As illustrated in Fig. 6, the shared-memory parallelism of XTFEM is

exploited from three computationally-intensive tasks that are assigned to
individual MPI process: (1) the formulation of local spatial stiffness and
mass matrices, (2) the sparse matrix-vector multiplication (SpMV) sub-
routine in the iterative part of the hybrid solver, and (3) the double
precision general matrix multiplication (DGEMM) subroutine in the
direct part of the hybrid solver.

The spatial matrices are formed in two steps. First, the element
matrices are calculated and assembled into a coordinate (COO) format
sparse matrix. Then, the COO format matrix is converted to the com-
pressed sparse row (CSR) format matrix, which is the input format used
for the hybrid solver. Details of this algorithm are described in Ref. [35].
Among the above two steps, formulating element matrices is the most
time-consuming and well-suited for the single instruction, multiple data
(SIMD) multithreading parallelization. Thus, OpenMP [50] multi-
threading technique is employed to accelerate this step based on its
intrinsic element-wise parallelism.

In terms of computational cost, the iterative and direct parts of the
hybrid solver are respectively dominated by the SpMV and the DGEMM
subroutines [51]. Those subroutines are well-suited for SIMD paralleli-
zation based on either row-wise or column-wise parallelism. However,
parallel efficiency of those two subroutines also depends on hardware
Fig. 5. Domain partitioning by METIS for finite element mesh of a thin plate,
subdomains are indicated by different colors.

Fig. 6. Shared-memory parallelism of XTFEM.
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architecture. To analyze the efficiency of SpMV and DGEMM subroutines,
we introduce the arithmetic to memory ratio (AMR), which is defined by
the number of arithmetic operations to the amount of memory accesses
required by an algorithm. The theoretical upper bound of the AMR of
SpMV is 2:1 (flops/bytes) [51]. SpMV is a memory-intensive subroutine
in the sense that its computing time is bounded by memory bandwidth of
hardware. In contrast, DGEMM is a computing-intensive subroutine with
an AMR of n:1, where n is the size of the dense frontal matrix [51].
Currently, HPC platforms typically have large AMR values and the trend
of architecture evolves towards higher AMR. For example, the peak
performance of top supercomputer in the past decade (see Table 2)
increased 86 times while the memory and network bandwidth improved
only 5.3 and 5.8 times, respectively. Similarly, the flops to bytes ratio, i.e.
AMR, of NVIDIA's TESLA general-purpose GPUs (GPGPU) increased 11
times since 2008 (see Table 3). Therefore, the SpMV subroutine is less
efficient on most HPC platforms compared to the DGEMM subroutine.
From this perspective, the proposed hybrid iterative/direct solver utilizes
HPC platforms more efficiently than the conventional iterative solvers.

4. Two-scale fatigue damage model

To predict nonlinear material behavior under HCF loading condi-
tions, XTFEM is further coupled with a CDM-based constitutive model.
An important feature of the CDM model is that its kinetic law of damage
evolution is constructed as a function of the incremental constitutive
variables, such as stress, strain or effective plastic strain, rather than
number of loading cycles, which is critical for multiaxial and other
complex loading conditions. A CDM-based two-scale fatigue damage
model is developed by Lemaitre and Doghri [27,28] and Desmorat et al.
[29]. It has been successfully applied for HCF problems under uniaxial,
biaxial, random and thermal cyclic loading histories [35,57]. The
two-scale model is adopted in current work. However, it should be noted
that many other microstructure-based material damage models [58–61]
can also be integrated.

4.1. Damage model and coupling with XTFEM

A sketch of the two-scale damage model is illustrated in Fig. 7. In this
model, mesoscale material behavior is assumed to be elastic since the
amplitude of HCF loading is moderate. Nonlinear behaviors such as
plasticity and damage are modelled at the microscale that represent the
scale of defects, e.g. microcracks and microvoids. These two scales are
bridged by the modified Eshelby-Kr€oner localization law [30,31].
Table 2
Performance evolution of supercomputers (2009–2018).

Name Year Theoretical peak
performance
(Tflops)

CPU memory
bandwidth (GB/
s)

Network
bandwidth
(GB/s)

Summit
[52]

2018 200,795 135.0 23

Titan [51,
53]

2012 27,113 52.0 8

K computer
[54]

2011 11,280 64.0 10

Jaguar [55] 2009 2331 25.6 4

Table 3
Performance evolution of NVIDIA TESLA GPGPU [56] (2008–2018).

Model Year Double precision
performance (Gflops)

Memory bandwidth
(GB/s)

flops/
bytes

V100 2018 7834 897 8.7
P100 2016 4763 732 6.5
K40 2013 1430 288 5.0
C2090 2011 656 177 3.7
S1070 2008 78 102 0.8



Fig. 7. Sketch of the two-scale damage model.
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The implicit single-step Backward Euler integration scheme proposed
by Desmorat et al. [29] is employed to solve the coupled
plasticity-damage equations at the microscale of the two-scale model. At
the mesoscale, the corresponding element will be deleted once the
damage value reaches the critical damage Dc at crack initiation. Since
HCF life is dominated by crack initiation, the damage increment is small
at each loading cycle. To avoid the cumbersome iterations in the New-
ton's method, the damage is assumed a constant per time increment [12].
Detailed formulation of this model can be found in Refs. [12,27–29].

Fig. 8 shows the flowchart for the implementation of the two-scale
damage model and its coupling with XTFEM. In terms of computational
cost, solving the nonlinear constitutive model is a major component in
regular FEM implementation due to the complex constitutive update al-
gorithms and repeated evaluations on all the material or quadrature
points. In the current computational framework, this implementation is
more expensive than in regular FEM since both spatial and temporal
resolutions are needed for capturing HCF events. In terms of the spatial
resolution, refined mesh and more material points are placed at high
stress/strain gradient regions. On the other hand, a good temporal res-
olution typically requires more than 200 increments per loading cycle to
ensure convergence of solution to the two-scale damage model [35]. To
satisfy those requirements, the two-scale damage model is embedded in
the nested temporal and spatial loops as illustrated in Fig. 8. Conse-
quently, solving the two-scale damage model adds to significant
computational cost, which motivates the development of
high-performance computing algorithm.
Fig. 8. Flowchart for the implementation of the two-scale damage model and its coup
number of spatial Gauss integration points).
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4.2. Parallel implementation of the constitutive model

The constitutive updates at different quadrature points are indepen-
dent of each other. As such, evaluations of the two-scale damage model
on all quadrature points can be carried out simultaneously. This
computing task is well-suited for the SIMD type of parallelism and can be
accelerated efficiently by using multithreading parallel computing tech-
nique. In accordance with the previously developed parallel computing
framework for XTFEM, a hierarchy of parallelisms is also established for
the two-scale damage model. Similarly, the first-level of parallelism
arises from the domain partitioning. However, communication among
processes is not required since it is a SIMD-type computing task. At the
second-level of parallelism, an element-wise multithreading is employed.
In the current work, we have developed both OpenMP (CPU) and CUDA
(GPU) versions of the parallel implementation of the two-scale damage
model.

The OpenMP version of the two-scale damage model is shown in
Table 4. The first and last lines are the OpenMP directives. Without those
directives, it reduces to a serial code. Note that only the outer loop over
the material points on subdomain is expanded by OpenMP directive.
Within each time increment, the elastic prediction, plastic correction and
damage update stages of the two-scale model are evaluated. In Ref. [35],
an optimized GPU algorithm based on CUDA is developed to accelerate
the two-scale damage model. This GPU algorithm is adopted in the cur-
rent framework, which is shown in Table 5. More details of this GPU
algorithm can be found in Ref. [35].

Theoretically, OpenMP and CUDA versions of the two-scale damage
ling with XTFEM (ni is the number of temporal interpolation points and ng is the



Fig. 9. The geometric dimensions and boundary conditions of the thin
plate problem.

Table 4
OpenMP version of the two-scale damage model.

1 !$OMP PARALLEL DO
2 DO (loop over local material points)
3 DO (loop over time increments)
4 Elastic prediction
5 Plastic correction
6 Damage update
7 END DO
8 END DO
9 !$OMP END PARALLEL DO
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model can be used simultaneously. In practice, however, it makes the
load balancing between CPUs and GPUs too complicated. In addition, it is
shown that a single GPU is typically orders of magnitude faster than a
single core of CPU [35]. Therefore, only the CUDA version is employed
when GPUs are available, otherwise the OpenMP version is used.

5. Results and discussion

5.1. Plate subjected to cyclic load

5.1.1. Problem statement
The geometric dimensions and boundary conditions of the plate

problem are illustrated in Fig. 9. The plate is fixed at the left end and a
uniformly distributed cyclic load p(t)¼ 100sin(40πt) MPa is applied on
the right end. The material of the plate is assumed to be isotropic elastic
with Young's modulus E¼ 200 GPa, Poisson's ratio ν¼ 0.3 and mass
density ρ¼ 7860 kg/m3.

The spatial domain of the plate is discretized by the same structured
mesh with 8-node linear hexahedral elements with full integration
(C3D8). For temporal discretization, a space-time slab size of 0.25s was
employed along with an enrichment function of ΦðtÞ ¼ sinð40πtÞ. The
characteristic length of the element is 0.5 mm, which leads to 2880 el-
ements and 3965 nodes.

5.1.2. Performance of the hybrid solver
Extensive demonstrations of the accuracy of XTFEM can be found in

Ref. [12]. To demonstrate the performance of the proposed hybrid solver,
we evaluate the CPU time and memory usages for solving a single
space-time slab. The performance is assessed in three steps. First, we
check the single-thread performance without using the parallel
computing capability. Second, the computational complexity of the
accelerated XTFEM is compared with regular FEM. Lastly, the parallel
performance is demonstrated.

To study the single-thread performance of the hybrid solver, we
gradually refine the spatial discretization of the plate until it reaches
about half million space-time DOFs. During the refinement process, the
aspect ratio of the element remains the same to ensure mesh quality. For
Table 5
CUDA version of the two-scale damage model.

Host program

1 Allocate memory on device
2 Copy data from host to device
3 Launch device program
4 Copy data from device to host
5 Clear device memory

Device program

1 Obtain thread index (0-based)
2 IF (thread index< number of local material points)
3 Copy data from global memory to registers
4 DO (loop over time increments)
5 … (same with the OpenMP version)
6 END DO
7 Copy data from registers to global memory
8 END IF
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comparison purpose, we also employ the sparse direct and iterative
solvers to solve the XTFEM stiffness matrix equations. The direct solver is
the same as the direct part of the hybrid solver, i.e. the serial-version of
MUMPS solver. The iterative solver [35] employs the commonly used
preconditioner based on incomplete LU factorization and the GMRES
algorithm. A desktop workstation equipped with the Intel Xeon
E5-2623v3 CPU (3 GHz) and 32 GB RAM is used for the single-thread
performance testing. Fig. 10 provides a comparison on the perfor-
mances of those linear system solvers. According to Fig. 10(a), the hybrid
solver achieves a time complexity of O(N1.4) while the time complexities
of the direct and iterative solvers are respectively O(N2.6) and O(N1.8).
For the cases of N> 104, the hybrid solver is at least 1–2 orders of
magnitude faster than the others. The memory costs are shown in
Fig. 10(b). In terms of storage complexity, the iterative solver achieves
the best performance of O(N1.4). The direct solver shows the worst per-
formance of O(N2.2). The hybrid solver demonstrates a complexity of
O(N1.6), which is slightly higher than that of the iterative solver. How-
ever, in terms of the actual memory usage, the hybrid solver is 1–2 orders
of magnitude lower than the other solvers since explicit formulation of
the space-time matrices is avoided.

Next, we compare the performance of the accelerated XTFEM with
the regular FEM that employs the implicit Newmark-β time integration
method. The Newmark-β method forms linear systems of equations with
an effective stiffness matrix, which is given by

Keff ¼Kþ 1
βΔt2

M (50)

where the parameter β¼ 0.25. To solve the Newmark-β linear systems of
equations, the direct sparse solver, i.e. the serial-version of MUMPS
solver, is employed. Performance of the Newmark-βmethod is quantified
by both the CPU time and memory usage at the initial time increment.
The testing hardware remains the same as in the previous single-thread
tests.

Performance comparison between the XTFEM and Newmark-β
method is shown in Fig. 11. As a reminder, the systemmatrix of XTFEM is
6 times larger than that of the Newmark-β method for the same spatial
discretization. Thus, the performance metrics are plotted with respect to
the number of spatial nodes instead of the number of DOFs. It shows that
the time usages are on the same level while the memory costs are almost
identical. Although Newmark-β method is slightly faster, its time
complexity of O(N1.64) is higher than XTFEM, which is only O(N1.37). In
other words, XTFEM will eventually outperform the Newmark-β method
for a single time increment when the number of nodes is large enough. In
addition, XTFEM typically employs a time increment size that is several
orders of magnitude larger than that of standard implicit/explicit FEM
[12,42,62].

Lastly, we check the parallel performance of XTFEM. Like the single-
thread test, a set of spatial mesh grids is created by refining the element
size, which is summarized in Table 6. The largest case leads to over 100
million space-time DOFs. It is noted that all the parallel performance tests
presented in this paper are conducted on the Lonestar-5, a supercomputer
from the Texas Advanced Computing Center (https://www.tacc.utexas
.edu/systems/lonestar). Instead of using CPU time, the elapsed time or
the wall-clock time usage is employed to measure the parallel perfor-
mance of XTFEM.

https://www.tacc.utexas.edu/systems/lonestar
https://www.tacc.utexas.edu/systems/lonestar


Fig. 10. Comparison of computational performance among the direct, iterative and hybrid linear solvers, (a) CPU time usage and (b) memory cost.

Fig. 11. Comparison of performance between the implicit Newmark-β method and the XTFEM, (a) CPU time usage and (b) memory cost.

Table 6
Mesh grids for plate problem.

No. Element size (mm) # Elements # Nodes # DOFs

1 0.5 2880 3965 71,370
2 0.25 23,040 27,225 490,050
3 0.125 184,320 200,753 3,613,554
4 0.0625 1,474,560 1,539,681 27,714,258
5 0.05 2,880,000 2,981,561 53,668,098
6 0.04 5,625,000 5,783,451 104,102,118

Fig. 12. Performance of preconditioner evaluation by direct solver: (a) Wall-clock t
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As discussed in Section 3.1.2, for linear elastodynamics, analysis and
factorization phases of the direct solver are performed only once to save
computational cost. Therefore, we further decompose the wall-clock time
usage into two parts. The first part is the time usage by the precondi-
tioner, which is mainly contributed by the analysis and factorization
phases of the MUMPS solver. The second part is the time usage by the
GMRES solver for each space-time slab, which is mainly contributed by
the matrix-vector multiplication and the solution phase of the MUMPS
solver.

Performance of the preconditioner evaluation is shown in Fig. 12. It
ime usage vs. number of unknowns and (b) Speedup vs. number of CPU cores.



Fig. 13. Performance of the GMRES solver: (a) Wall-clock time usage vs. number of unknowns and (b) Speedup vs. number of CPUs.
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can be seen from Fig. 12(a) that the overall time complexity for different
number of CPU cores is around O(N1.4). The speedup ratios are shown in
Fig. 12(b) with dashed line representing the ideal speedup. For all the
cases, the speedup ratio increases efficiently with the increasing number
of CPU cores. The speedup curves deviate from the ideal case when the
number of CPUs get large since the cost of communication becomes more
significant and overwhelms that of computation.

Fig. 13 shows the performance of the second part – the GMRES solver
in terms of computational cost of each time step. It can be seen from
Fig. 13(a) that the time complexity of the GMRES solver is only O(N1.2).
The corresponding speedup ratio is shown in Fig. 13(b), where a similar
trend to that of the preconditioning part can be observed. However,
parallel efficiency of the GMRES part is lower than that of the pre-
conditioning part. A comparison of the time usages between those two
parts for different number of unknowns is shown in Fig. 14. We find that
the GMRES part contributes to less than 20% of the total time for N¼ 71,
370, which corresponds to the coarsest mesh. For the finest mesh, the
preconditioner contributes to more than 97% of the total time of the
hybrid solver. Therefore, a significant amount of computational cost can
be saved by using the solution strategy proposed in Section 3.1.2, which
Fig. 14. A breakdown of the time usage of the hybrid solver.

Table 7
Hybrid MPI/OpenMP parallel performance of the hybrid solver.

# DOFs # MPI processesa # OpenMP threads per process

53,668,098 16 1
2
4
8
16
24

a One MPI process per compute node.
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minimizes the preconditioner evaluation.
The above performances are obtained by using the first-level paral-

lelism (MPI) only. To demonstrate the full capability of the hybrid par-
allel computing using both MPI and OpenMP, we test the case with 54
million unknowns with 16 MPI processes that are distributed to 16
compute nodes. Note that on Lonestar-5, each compute node has 24 CPU
cores. In other words, the maximum number of OpenMP threads for each
MPI process is 24. In addition, 16 compute nodes on Lonestar-5 are
configured with 1 Tesla K40 GPU from NVIDIA. The GPUs are not uti-
lized in this test. The performance of such a test configuration is sum-
marized in Table 7. It shows that with the second-level parallelism
additional speedup can be achieved for both parts (preconditioning and
GMRES) of the hybrid solver. For this specific case, a total of 4–8 OpenMP
threads per MPI process yields the optimal efficiency.

As a brief summary, the serial version of the proposed hybrid solver is
at least 1–2 orders of magnitude better than conventional solvers in terms
of both CPU time and storage. The parallel version performs well and
efficiently handles problems with over 100 million DOFs using 64 CPU
cores. Therefore, cost of solving XTFEM stiffness matrix equations is
significantly reduced.

5.2. HCF of a notched plate

5.2.1. Problem statement
The geometric dimensions and boundary conditions of the notched

plate are illustrated in Fig. 15. The geometry is designed according to the
widely employed single edge notched tension (SENT) experiment for
fatigue studies of metals and alloys [63]. The specimen is fixed at its left
end. A cyclic load P(t) is applied on the right end. The material properties
are given as Young's modulus E¼ 197 GPa, Poisson's ratio ν¼ 0.3 and
mass density ρ¼ 7860 kg/m3. Other parameters associated with the
two-scale damagemodel are given in Table 8, which are based on [12,29]
and verified with experiment results in Ref. [64].
Preconditioner GMRES

Time (s) Speedup Time (s) Speedup

1467.7 1.0 42.0 1.0
860.2 1.7 31.6 1.3
559.5 2.6 25.6 1.6
443.1 3.3 25.7 1.6
390.5 3.8 25.4 1.7
407.5 3.6 24.0 1.8



Fig. 15. Geometric dimensions and boundary conditions of the single edge
notched plate.

Table 8
Parameters of the two-scale damage model for type 304L stainless steel.

Cy (MPa) σu (MPa) εpd σ∞f (MPa) h Dc S s

1740 577 0.08 180 0.2 0.3 0.5 0.5
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5.2.2. Results of HCF simulations
A mesh convergence study is first conducted to determine the spatial

discretization. The notched plate is discretized by standard 8-node brick
Fig. 16. Mesh convergence study: (a) a sample spatial mesh with element siz

Fig. 17. Results of HCF simulation: (a) the processes of crack initiation and propagatio
the notch root, and (c) crack length vs. number of cycles.
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elements. To reduce computational cost, an unstructured, gradient
spatial mesh is created. A sample spatial mesh with element size
0.1 mm at notch root is illustrated in Fig. 16(a). Six mesh densities of
element size 0.2, 0.1, 0.05, 0.025, 0.0125 and 0.01mm are employed
near the notch root and along the estimated path of crack propagation. A
fully-reversed cyclic load P(t)¼ 100sin(40πt) MPa is applied. Fig. 16(b)
shows that the maximum von-Mises stress converges to 330MPa in the
case of element size¼ 0.0125mm. The corresponding mesh is employed
for the subsequent HCF simulations, which leads to a discretization of
108,080 elements, 113,160 nodes, and 2,036,880 DOFs. The time step
size or equivalently the temporal size of space-time slab is initially set to
100T, in which T is the period of the loading cycle. After crack initiation,
the time step size is reduced to 10T to capture crack propagation.

Results of HCF simulation under cyclic load P(t)¼ 62.5 sin(40πt) MPa
are shown in Fig. 17. Fatigue crack initiates at the notch root and prop-
agates to the half width of the specimen. Fig. 17(b) shows the microscale
nonlinear damage accumulation at the notch root. An exponential crack
growth is captured and shown in Fig. 17(c), which is consistent with the
trends that are observed in the HCF experiments. The number of cycles
for crack initiation and fatigue failure are 146,219 and 155,320,
respectively. Most of the fatigue life is consumed by crack initiation,
which is a typical HCF behavior.

Series of such HCF simulations are performed by varying the loading
amplitude. Results of those simulations are presented in Fig. 18 in the
e¼ 1mm and (b) maximum stress versus element size at the notch root.

n (colored by von-Mises stress in logarithmic scale), (b) damage accumulation at



Fig. 18. S-N curves obtained from series of HCF simulations on the
notched specimen.
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form of S-N curve. It is shown that more than 1 million cycles are
simulated by the proposed framework. To the best of our knowledge,
such direct 3D HCF simulations have not been reported elsewhere.
Furthermore, both tensile and compressive mean stress effects are
simulated to demonstrate the capability of the proposed framework in
terms of handling complex fatigue loading conditions. For the simula-
tions on mean stress effects, a constant load is also imposed on the
traction surface of the notched specimen. The total loading history is then
expressed as P(t)¼ P0sin(40πt) þ P1H(t) MPa, in which H(t) is the
Heaviside function, P0 and P1 are the amplitudes of cyclic and constant
Fig. 19. Parallel performance of the two-scale damage model on CPUs: (a) wall-clock
inset box), (b) speedup vs. number of CPU cores for different number of Gauss poin

Fig. 20. Parallel performance of the two-scale damage model on GPUs: (a) wall-clock
box), (b) speedup vs. number of GPUs for different number of Gauss points (shown
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loads, respectively. Here we consider two scenarios with constant loading
amplitudes P1¼�10MPa, which represent tensile and compressive
mean stresses respectively. The S-N curves obtained from both scenarios
are plotted in Fig. 18 and compared with the fully-reversed case. The
mean stress effects on fatigue life is effectively captured by the two-scale
damage model with a microdefects closure parameter h¼ 0.2. It can be
clearly observed that tensile mean stresses reduce fatigue life while
compressive mean stresses extend fatigue life. Hence, a potential appli-
cation of the proposed framework along this line is to study the effects of
mean stress on fatigue life, which can be induced by surface treatments
[65,66].

5.2.3. Parallel performance of the two-scale damage model
Fig. 19(a) shows the wall-clock time usage by the damage model for

100 loading cycles versus number of Gauss points for different number of
CPU cores. The CPUs used are Intel Xeon E5-2690 v3 (2.6 GHz). The
computational complexity of the damage algorithm is O(N), where N is
the number of Gauss quadrature points. Parallel efficiency of the OpenMP
version damage code is illustrated in Fig. 19(b) and shows an optimal
speedup. Similarly, performance of the CUDA version damage code is
illustrated in Fig. 20. The GPUs employed is NVIDIA TESLA K40. The
maximum number of GPUs employed for testing is 4. In Fig. 20(b), the
speedup of the CUDA version damage code shows a low performance for
the coarse mesh (N¼ 14,592) when number of GPUs> 2, which is caused
by insufficient GPU occupancy. Performance of the CUDA version im-
proves with the increasing number of Gauss points and reaches an
optimal efficiency for the fine mesh.

Based on the performance demonstrated so far, we conclude that the
developed framework is efficient and has a good parallel scalability,
time vs. number of Gauss points for different number of CPU cores (shown in the
ts (shown in the inset box).

time vs. number of Gauss points for different number of CPUs (shown in the inset
in the inset box).



Fig. 23. Mesh convergence for the biaxial HCF specimen.
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thereby enabling the large-scale applications.

5.3. Biaxial HCF of a cruciform specimen

5.3.1. Problem statement
Based on the series of biaxial HCF experiments conducted by Poncelet

et al. [67] and Cl�audio et al. [68], biaxial HCF simulations are performed
to further demonstrate the capability of the developed framework on
handling complex multiaxial loading conditions. The biaxial specimen
considered here is adopted from Ref. [67]. Geometry and dimensions of
the specimen are provided in Fig. 21. The cruciform specimen has a
thinned circular region located at its center, which serves as a stress
concentration zone for fatigue damage accumulation and crack initiation.
Fatigue loadings are imposed along both x and y directions. The edges
opposite to the traction surfaces are fixed in both the out-of-plane and the
corresponding loading directions. The material parameters are chosen to
be the same as in the previous example.

A mesh convergence study is conducted under an equibiaxial cyclic
load with an amplitude of 45MPa and a frequency of 10 Hz. In this
benchmark example, the second-order, 20-node hexahedral element with
reduced integration (C3D20R) is employed for spatial discretization. To
further improve accuracy and efficiency, a gradient, structured mesh
pattern is created, which is shown in Fig. 22. The finest discretization is
located at the center of the thinned circular region, which is called the
gauge zone and has a uniform element size. The size of this squared gauge
zone is 10mm by 10mm. Fig. 23 shows that the maximum von-Mises
stress converges when the element size is less than 0.5mm in the
gauge zone. In fact, the relative error of stresses between the coarsest and
the finest discretizations is only 0.3% due to the higher-order element
formulation. Therefore, the element size of 0.5mm at the gauge zone is
Fig. 21. Geometry and dimensions of the

Fig. 22. Spatial discretization of the biaxial spec
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employed for the subsequent HCF simulations. It leads to a mesh size of
19,200 elements, 89,133 nodes, and 1,604,394 DOFs. The same time
stepping strategy as in the previous example is used for tracking the
initiation and propagation of HCF failure.

5.3.2. Results of biaxial HCF simulations
The first biaxial HCF simulation is performed under the same loading

condition as in the equibiaxial case for the convergence study. The cracks
initiate at 82,910 cycles and are located at the center of the gauge zone,
the thinnest section of the specimen. After this, two orthogonal cracks
cross-shaped biaxial HCF specimen.

imen, dashed box indicates the gauge zone.



Fig. 24. Crack initiation and propagation of the biaxial HCF specimen (colored by von-Mises stress in logarithmic scale).
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propagate along both x and y directions to the critical crack length (the
size of the gauge zone) at 98,420 cycles. The process of crack initiation
and propagation are illustrated in Fig. 24. Crack growth data obtained
from the simulation is plotted in Fig. 25 against the number of cycles.
Like the previous benchmark example, most fatigue life of the biaxial
specimen is consumed by crack initiation. Due to the symmetry of ge-
ometry and loading, the crack growth along both directions are identical.
The symmetry of simulation results can be clearly observed from Fig. 24.

To further study the interactions between loadings that are applied in
different directions, two groups of biaxial HCF simulations are carried
out. In the first group, fully-reversed biaxial cyclic loadings with constant
amplitude are applied in both x and y directions. Load amplitudes in each
direction, i.e. Px and Py, are varied from 35 to 55MPa with an interval of
5MPa. Thus, a total 25 combinations of load amplitudes are generated.
Fig. 25. Cracks growth of the biaxial specimen.

Fig. 26. Biaxial fatigue life as function of stress amplitudes in both x and y directions
plot (dots are simulation results; trend surface is obtained from a curve fitting).
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The number of simulations is reduced to 15 combinations due to sym-
metry in x-y plane. Results of this group of biaxial HCF simulations are
presented in Fig. 26, in which the discrete dots denote the simulation
data and the trend surface is obtained from a curve fitting. Note that the
case of Px¼ Py¼ 35MPa is a runout, i.e. no damage initiation occurred
during the entire simulation. From Fig. 26(a) it can be clearly observed
that the fatigue life is monotonically increasing along the diagonal di-
rection, where the biaxiality ratio is 1, i.e. Px¼ Py. However, as shown in
Fig. 26(b), for a fixed value of Py the fatigue life is not always mono-
tonically increasing with the decrease of Px. A 2D contour plot of the
fatigue life shown in Fig. 26(c) clearly demonstrates such complex in-
teractions between Px and Py.

In the second group of biaxial HCF simulations, the constant ampli-
tude, fully-reversed cyclic loading is imposed only along the x direction.
Amplitude of the cyclic loading is fixed at 30MPa. A constant tensile load
: (a) the 3D plot, (b) the projected 2D view of the 3D plot, and (c) the 2D contour

Fig. 27. Results of biaxial HCF simulations conducted under cyclic loading
along x direction and constant loading along y direction.



Table 9
Computational performance of the proposed framework.

Number of
DOFs

Number of
compute nodesa

Wall-clock time usage (s)

Preconditioner Solver
(each step)

Damage (100
cycles)

1,604,394 1 10.0 2.1 70.2
3,034,890 2 18.4 2.7 69.6
10,025,820 6 54.3 8.2 77.3
15,557,778 10 93.9 10.0 73.3

a With 4 MPI processes per node and 6 OpenMP threads per process.
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is applied in the y direction with amplitude varying from 0MPa to
30MPa with an interval of 5MPa. Fig. 27 presents the results of the
second group of biaxial HCF simulations. It shows that fatigue life de-
creases with the increasing amplitude of the constant load.

5.3.3. Computational performance
For different number of unknowns, the wall-clock time usages for

three of the most computationally intensive parts are summarized in
Table 9. Note that the time usage of damage model is based on the
OpenMP version with 24 CPU cores per compute node. Table 9 shows
that in HCF simulations the computing time is dictated by the solution of
the nonlinear fatigue damage model. For each space-time slab, time
usage of the damage model is about 7–35 times of the hybrid solver
depending on problem size.

6. Conclusions

In summary, a high-performance multiscale computational frame-
work is presented for direct numerical simulations of 3D HCF problems.
The proposed framework is established by integrating the Extended
Space-time Finite Element Method with the Continuum Damage Mechanics.
The current work has been mainly focused on improving the numerical
efficiency of the framework for practical HCF applications. This objective
is achieved by developing a novel hybrid iterative/direct linear system
solver and a high-performance hybrid parallel computing framework.
Benchmark examples show that the serial version of the hybrid solver is
at least 1–2 orders of magnitude faster in computing time and cheaper in
memory consumption than the conventional solvers. The parallel hybrid
solver efficiently handles XTFEM stiffness matrix equations with over
100 million unknowns using 64 CPU cores. Parallel implementations of
the CDM-based two-scale damage model using CPUs and GPUs both
achieve optimal speedup. Series of HCF simulations on the single edge
notched specimen and the cruciform biaxial specimen demonstrate the
capabilities of the proposed framework on handling large 3D problems
and complex fatigue loading conditions.

With significant improvement in the numerical efficiency that is
enabled by the proposed algorithms, the framework of XTFEM/CDM is
ideal and efficient for predicting HCF responses in many engineering
structures and components. The proposed approach can also serve as a
robust tool for facilitating the experimental studies of HCF. Future efforts
are directed towards integrating multiphysics methods such as thermo-
mechanical coupling, analysis the effects of surface treatments induced
residual stress on fatigue life, and fatigue problems in broad engineering
applications.
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