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a b s t r a c t

Optimal mass transportation (OT) problem aims at finding the most economic way to transform one
probability measure to the other, which plays a fundamental role in many fields, such as computer
graphics, computer vision, machine learning, geometry processing and medical imaging. Most existing
algorithms focus on searching the optimal transportation map in Euclidean space, based on Kantorovich
theory or Brenier theory. This work introduces a novel theoretic framework and computational
algorithm to compute the optimal transportation map on the sphere. Constructing with a variational
principle approach, our spherical OT map is carried out by solving a convex energy minimization
problem and building a spherical power diagram.

In theory, we prove the existence and the uniqueness of the spherical optimal transportation map;
in practice, we present an efficient algorithm using the variational framework and Newton’s method.
Comparing to the existing approaches, this work is more rigorous, efficient, robust and intrinsic to the
spherical geometry. It can be generalized to the hyperbolic geometry or to higher dimensions.

Our experimental results on a variety of models demonstrate efficacy and efficiency of the proposed
method. At the same time, our method generates diffeomorphic, area-preserving, and seamless
spherical parameterization results.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation

Mesh parameterization. Mesh parameterization refers to the
process of mapping a surface onto a canonical domain, which
plays a fundamental role in computer graphics and geometry
processing. In general, mesh parameterization will unavoidably
introduce distortions, angle distortion and area distortion. Typ-
ically, parameterization methods emphasize the importance of
angle preservation, which may induce huge area distortion and

✩ This paper has been recommended for acceptance by Pierre Alliez, Yong-Jin
Liu & Xin Li.
✩✩ No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict with
this work. For full disclosure statements refer to https://doi.org/10.1016/j.cad.
2019.05.024.
∗ Corresponding author at: DUT-RU ISE, Dalian University of Technology,

Dalian, China.
E-mail addresses: licui@bnu.edu.cn (L. Cui), xinqi@cs.stonybrook.edu

(X. Qi), chwen@cs.stonybrook.edu (C. Wen), nalei@dlut.edu.cn (N. Lei),
xli@cs.stonybrook.edu (X. Li), mzhang@math.harvard.edu (M. Zhang),
gu@cs.stonybrook.edu (X. Gu).

cause numerical unreliability. For many applications in graphics,
such as normal map and texture map, it is highly desirable
to develop area-preserving parameterization algorithms. How-
ever, compared to conformal parameterizations, area-preserving
parameterizations are much less studied in the literature [1,2].

Most parameterization algorithms can only handle topolog-
ical disks, namely genus zero surfaces with single boundary.
In order to process closed meshes, such as topological spheres,
the mesh needs to be partitioned into a collection of simply
connected patches, before each patch can be parameterized in-
dividually. This will introduce severe discontinuities along the
boundaries of the patches. In practice it is valuable to design
global parameterization methods, that can handle the whole
closed meshes without partitioning.

The goal of this paper is to develop a novel spherical area pre-
serving parameterization method based on optimal mass trans-
port theory, that maps any genus zero closed mesh onto the unit
sphere without area distortion nor slicing the mesh open.

Optimal mass transportation. Optimal transportation is well
known for the ability to transfer one probability measure to
another with the least cost and has become a powerful tool
for both theoretic development and engineering applications.
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Optimal transport has intrinsic relations with many other
branches in mathematics. For example, Brenier’s theory [3] fo-
cuses on finding the optimal transportation map with L2 cost and
reduces the problem to Monge–Ampere equation, which is equiv-
alent to the Alexandrov theory [4] in convex geometry. Optimal
transport has been applied for medical imaging applications [5,6].
Recently, optimal transport itself has been applied in data sci-
ences, especially Wasserstein distance is used for constructing
generative adversarial networks [7,8].

Optimal transportation theory has been applied for surface
and volume parameterizations as well. Dominitz and Tannan-
baum proposed a spherical area-preserving parameterization
method in [9], which is based on the fluid mechanics view
of the optimal mass transportation theory, and uses gradient
flow method to optimize an energy function. The method is
implemented iteratively and requires many variables, resulting
in complicated computation and slow convergence.

Recently, semi-discrete optimal mass transportation map has
been introduced for surface and volume parameterization by
Levy [10], Su [11] and Su [12]. This method is also general-
ized to compute angle–area-distortion balancing parameteriza-
tion in [13]. These methods are based on the intrinsic relation
between optimal transportation and the convex geometry, and
formulated as a variational framework and reduced to a convex
optimization problem with O(n) variables [14].

Unfortunately, the method introduced in [11,13] is based on
Euclidean geometry. For spherical mapping, it maps the unit
sphere onto the plane either by using stereo-graphic projection
or by slicing into two disks, and converts the spherical optimal
transportation map into a Euclidean one. The solution heavily
depends on the choice of the north pole, therefore, the method
is not intrinsic.

Proposed method. In this work we propose a novel method for
computing spherical optimal transportation maps, which is in-
trinsic to the spherical geometry. It generalizes the theory of
semi-discrete optimal transportation in Euclidean background ge-
ometry [14] to the spherical background geometry. Both methods
are variational, with convex energies and the Hessian matrices
have explicit geometric interpretation. Furthermore, both meth-
ods require only O(n) variables and can apply Newton’s method
directly.

Similar to the semi-discrete optimal transportation map
method in Euclidean geometry [10,14], the spherical optimal
transportation map is also given by a spherical power diagram,
the power can be found by a convex optimization, the existence
and the uniqueness of the solutions are claimed in Theorems 1,
2 and 4. The gradient and the Hessian of the energy have explicit
geometric meanings as claimed in Lemmas 3, 4, and Eq. (17). Due
to the nature of spherical geometry, all the formulations are more
complicated than Euclidean counter parts; furthermore, if we let
the variables go to infinitesimal, the spherical formula converges
to Euclidean ones asymptotically.

Comparing to the existing spherical area-preserving
algorithms, the proposed method is based on Newton’s method,
therefore much more efficient than Dominitz and Tennanbaum’s
algorithm [9]; our method is intrinsic to the spherical geome-
try, independent of the choice of the north pole, hence more
robust than Su et al.’s algorithm in [11]. The experimental results
demonstrate the efficiency and efficacy of the method, such that
the spherical area-preserving map can efficiently generate the
diffeomorphic, area-preserving, and seamless parameterizations
of large models.

1.2. Our contribution

We summarize our contributions in this paper as follows:

• Generalize the Euclidean semi-discrete optimal transport
theory to spherical setting via spherical power diagram;
• Construct area preserving mapping from topological spheres

to unit spheres without slicing the surface into patches or
stereo-graphic projection, leading to an efficient, robust and
accurate algorithm based on rigorous mathematical theory.

2. Prior work

Mesh parameterization has been a vastly popular research
topic for decades, resulting in the abundant literature in this area,
and a thorough survey is beyond the scope of current work. We
will focus on the works most directly related and recommend the
readers [15–17] for more comprehensive details.

2.1. Optimal transport theory

Regarding optimal transport (OT) theory, approaches based
on Monge–Kantorovich theory was first introduced as a linear
programming problem in [18,19]. Image registration and warping
is an intuitive application based on linear programming. Haker
et al. proposed to use OT for general image registration, with
the global optimization. For 3D image registration, a method
was proposed in [20] stating the importance to find efficient
numerical methods to deal with the expensive computation. [9]
uses OT for texture mapping purpose by starting with an angle-
preserving mapping between a topological sphere and the unit
sphere, via a gradient flow with multiple level of resolutions to
accelerate the convergence.

Some other researches are based on Monge–Brenier theory [3].
De Goes et al. proposed to use OT for 2D shape reconstruc-
tion and simplification [21], as well as formulated the capacity-
constrained Voronoi tessellation as an optimal transport problem
for blue noise processing purpose [22]. A multi-scale approach
to solve the optimal transport problem was proposed in [23].
Most of these researches are focusing on 2D image registration
and processing, while there are some other researches dealing
with 3D surfaces. Incorporating with the conformal mapping
method, the equiareal mapping can optimize the angle distor-
tion at the same time [9,11,24]. To compute the area-preserving
brain mapping, [5] proposed to first map the brain, which is a
topological sphere, to unit disk parameter domain. This work was
later improved with a divide-and-conquer scheme in [13] by first
slicing the sphere into two topological disks and using conformal
welding technique to glue the two hemispheres to cover the
entire complex plane, including the infinity point. Heat Kernel
was used for approximation in [25,26] to compute Wasserstein
distances.

In our approach, we compute the power diagram on the unit
sphere without ever slicing or removing triangle faces from the
surface, making our method intrinsic and independent of the
locus of the slicing introduced in [5,13].

2.2. Spherical parameterization

Spherical parameterization is a worthwhile approach in com-
puter graphics for surface matching, morphing, and texture map-
ping. In particular, as the cortical surfaces are usually represented
by a closed genus 0 surface, spherical map becomes valuable
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for anatomical analysis [27–29]. Recently, a number of spheri-
cal parameterization methods aim to minimize the parametric
distortion. The conventional consideration is either about angle
distortion or area distortion.

To minimize the angle distortion, many of the spherical pa-
rameterizations mimic angle-preserving (conformal) maps. Now
we briefly summarize some of the work. Haker et al. [30] ap-
proximated the conformal map over the sphere based on the
procedure: remove one triangular face, then map the remaining
surface onto a complex plane, and finally, map the plane to
the sphere using the inverse stereographic projection. Gu and
Yau [31] solved the spherical conformal mapping based on the
harmonic energy minimization. While this approach may in-
duce the undesired parameterization foldings when the input
mesh contains long sharp features. To improve the bijectivity
in [31,32], Lai et al. [33] propose a folding removal iteration
by taking advantages of the weighted Laplace–Beltrami eigen-
projection. Lefévre and Auzias [34] have recently considered the
Laplace–Beltrami eigenfunctions and got an approach faster than
that of [33]. However, the flipped triangular faces may be ob-
tained due to the irregularities of the input mesh. Aigerman and
Lipman [35], according to the harmonic energy method, con-
structed a seamless bijection by flattening the topological sphere
to tile the infinite plane periodically. Curvature flow, redistributes
the Gaussian curvature [36] or the mean curvature [37], is an-
other kind of procedure to accomplish the conformal spherical
map.

There exist some tasks that show a compromise between the
area and angle distortion. For example, Friedel et al. [38] derived
the harmonic energy minimization methods of planar parameter-
izations to sphere while blended several measures for controlling
the area and angle distortion. Zayer et al. solved the scalar quasi-
harmonic equation to improve the area distortion in [39]. First,
the input mesh is cut along a line connecting the user prescribed
poles; the initial map is then found by solving a Laplace equation
in the curvilinear coordinates. The parameterization distortion is
then reduced using a variant of quasi-harmonic maps, and finally,
a local smoothing is performed along the seam to diminish the
distortion.

Some of the spherical parameterizations, however, do not
explicitly deal with the distortion issues. Grimm [40] built a patch
embedding relied on the hierarchical B-splines. The overlap of
the patches is blended together to get the surface embedding
as a whole. Praun and Hoppe [41] proposed an algorithm which
progressively embeds a surface onto a sphere while minimizing
the stretch norm. Asirvatham et al. [42] solved a constrained
spherical parameterization based on the approach in [41]; the
feature points are given manually and the alignment is enforced
on the coarsest resolution on the sphere. Gotsman et al. [43]
formulated the method of spherical barycentric coordinates based
on the Tutte’s embedding. The spherical map can be solved by a
nonlinear system of quadratic equations. Saba et al. [44] improved
the efficiency of this system.

3. Background

3.1. Spherical geodesics and cosine law

A great circle of S2 is a circle which intersects S2 with a plane
passing through the center. Geodesics are portion of some great
circles on sphere. The geodesic distance between two points p, q
on S2 is measured by the shortest arc length between them:
dS2 (p, q) = cos−1⟨p, q⟩. Consider the points A, B, C of a spherical
triangle △ on S2, as shown in Fig. 1. Let a, b, c be the subtended

Fig. 1. Triangle and circle on unit sphere.

Fig. 2. Geometric interpretation to Euclidean and Spherical power distances.

angles at the center of S2. In fact, a, b, c also measure the geodesic
distances dS2 (B, C), dS2 (C, A), and dS2 (A, B).

Given a point pi on S2 and 0 ≤ ri ≤ π/2. A geodesic circle ci is
defined by ci = {p ∈ S2

| dS2 (p, pi) = ri} where pi is the center
and ri is the radius.

Let A, B, C also denote the angles at A, B, C respectively. The
area of triangle on the sphere is

Area(△) = A+ B+ C − π

Let a, b, c be the subtended angles at the center of S2. We have
spherical cosine laws:

cos a = cos b cos c + sin b sin c cos A
cos b = cos c cos a+ sin c sin a cos B
cos c = cos a cos b+ sin a sin b cos C

(1)

and spherical sine law:

sin a
sin A

=
sin b
sin B

=
sin c
sin C

. (2)

For right triangle, suppose the angle at C is π/2. Then the area is
Area(△) = A+ B− π/2. Sides length and angles of right triangle
have following relationship:

cos c = cos a cos b (3)

3.2. Spherical power diagram

Suppose that we are given a set of circles C = {c1, c2, . . . , ck}
on S2, ci is a spherical circle with center pi and radius ri. Similar to
Euclidean power distance in Fig. 2(a), we can define the Spherical
power distance as follows:

Definition 1 (Spherical Power Distance). Given a geodesic circle
ci(pi, ri) and a point p ∈ S2, the spherical power distance between
p and ci is given by
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Fig. 3. Euclidean and Spherical equi-power-distance locus LB(ci, cj).

pow(p, ci) =
cos dS2 (p, pi)

cos ri
=
⟨p, pi⟩
cos ri

where ⟨·, ·⟩ is the Euclidean dot product.

By cosines law on the sphere, pow(p, ci) = cos dS2 (p, q), where
pow(p, ci) measures the length of the geodesic arc tangent to
circle ci when p is outside ci, as shown in Fig. 2. Note that the
definition is consistent when the point p is inside the circle ci,
in which case we have pow(p, ci) > 1, and the power distance
cannot be visualized as simple as the case that p is outside ci. For
convenience, we use pow(p, pi) to represent pow(p, ci) when the
circles are implicitly provided as {(pi, ri)}.

Now the Spherical power diagram, shown in Fig. 4, can be
defined as follows:

Definition 2 (Spherical Power Diagram). Given a set of geodesic
circles on the unit sphere, C = {(pi, ri)}, i = 1, 2, . . . k, the
spherical power diagram is a cell decomposition of the sphere

S2
=

k⋃
i=1

Wi(C),

where each spherical power cell is given by

Wi(C) := {p ∈ S2
|pow(p, pi) ≤ pow(p, pj),∀j}

For two circles ci and cj with center pi and pj, Laguerre bisector,
shown as γ in Fig. 3, is given by

LB(ci, cj) = {p ∈ S2
|pow(p, pi) = pow(p, pj)},

If p ∈ LB(ci, cj), p satisfies

⟨p, pi⟩
cos ri

=
⟨p, pj⟩
cos rj

(4)

The Laguerre bisector LB(ci, cj) is a great circle, and it perpen-
diculars to the great circle passing through pi and pj. The partition
of S2 by these bisectors gives the spherical power diagram, as
illustrated in Fig. 4. The algorithm of computing spherical power
diagram is shown in [45].

Here are some terminologies we use throughout this work.
Fig. 5 shows one spherical triangle ∆pipjpk, where pi, pj and pk

are vertices with the radii ri, rj and rk. o is the power center of the
triangle with equal power distances to three vertices:

pow(o, pi) = pow(o, pj) = pow(o, pk) (5)

Through the power center draw great circular arcs perpendicular
to three edges, the perpendicular feet are qi, qj, qk. The three inner
angles at o are θi, θj and θk, which determine the areas of the cells
wi, wj and wk respectively.

Fig. 4. Spherical power diagram. The green circles represent the set of geodesic
circles and the pink line indicates the power diagram. The blue lines orthogonal
to pink lines form the weighted Delaunay triangulation on the sphere. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. One Spherical triangle and the edges of the power diagram inside the
triangle.

4. Spherical semi-discrete optimal transportation

In this section, we generalize the Euclidean optimal transport
to spherical situation. The main problem we want to solve is as
follows:

Problem 1 (Spherical Optimal Transportation). Given an absolutely
continuous probability measure µ defined on the unit sphere, and
a Dirac measure ν =

∑k
i=1 νiδpi , pi ∈ S2 and

⋃k
i=1 pi cannot be

covered by any hemisphere H2
S ⊂ S2(a.k.a {pi} are at generic

positions), such that µ(S2) =
∑k

i=1 νi, find a cell decomposition
of the unit sphere, S2

=
⋃k

i=1 Wi, such that each cell has the
measure µ(Wi) = νi, and the mapping Wi ↦→ pi minimizes the
transportation cost defined as Eq. (6).

4.1. Optimal transportation map

Given a probability density function µ : S2
→ R+, which is

absolutely continuous with respect to the Lebesgue measure of
the unit sphere. Furthermore, by scaling, we can assume the total
volume is 4π , µ(S2) = 4π . The µ-volume for each power cell is
defined as

wi(h) := µ(Wi(h)) =
∫
Wi(h)

dµ

where h is the height vector defined as hi = − ln cos ri given that
ri is the radius of the ith circle ci.

From the Kantorovich formulation, Wang [46] deduced the
cost function in reflector design to be − log(1−⟨x, y⟩). Following
the same approach, we obtain the cost function for the current
problem is log⟨x, y⟩. Thus, the transportation cost is defined as
follows:



L. Cui, X. Qi, C. Wen et al. / Computer-Aided Design 115 (2019) 181–193 185

Definition 3 (Spherical Transportation Cost). Given a probability
density function µ : S2

→ R+, a set of geodesic circles C, V(C) is
a cell decomposition of S2,

S2
=

k⋃
i=1

Wi.

The transportation map is defined as T : Wi ↦→ pi. The cost of T
is defined as

C(T ) := −
k∑

i=1

∫
Wi(h)

ln⟨p, pi⟩dµ (6)

The following lemmas show the relation between finding
the spherical power diagram and minimizing transportation cost
C(T ).

Lemma 1 (Minimizing Transportation Cost). Given a probability
density function µ : S2

→ R+, a set of geodesic circles C, the
spherical power diagram is V . For any other cell decomposition Ṽ ,
S2
=

⋃k
i=1 W̃i, such that µ(Wi) = µ(W̃i) for all i, the transportation

cost of V is no greater than that of Ṽ .

Furthermore, the relationship between power cell areas and
power circle radii are stated in the following lemma.

Lemma 2. The power cell areas are analytic functions of circle radii.

Both proofs for Lemmas 1 and 2 can be found in the Appendix.
Given the relationship of power cell areas {wi} and power

circle radii {ri}, along with the identity that hi = − ln cos ri, we
consider the vector of the cell areas, w = (w1, w2, . . . , wk), it is
obvious that the total area equals 4π , the space of all possible w’s
is defined as

W :=

{
w

⏐⏐⏐⏐ k∑
i=1

wi(h) = 4π, wi(h) > 0

}
and the space of all possible height vectors is defined as

H :=
{
h
⏐⏐⏐ min
i∈[1,k]

hi = 0, wi(h) > 0
}

Theorem 1 demonstrates the local rigidity property of our
problem:

Theorem 1. Given a set of spherical geodesic circles C = (c1, c2,
. . . , ck), the spherical power diagram induces a mapping φ : H →
W . The mapping is locally diffeomorphic.

The proof of Theorem 1 can be found in the Appendix.

Theorem 2. Suppose {p1, p2, . . . , pk} ⊂ S2 is a set of points on
the unit sphere at generic positions, C = {c1, c2, . . . , ck} is a set
of geodesic circles on the sphere, ci is centered at pi with radius
0 < ri < π/2. Let h = (h1, h2, . . . , hk) satisfies hi = − ln cos ri.
C induces a power diagram, each cell area is wi(h), then the energy
function

E(h) =
∫ h

w1dh1 + w2dh2 + · · · + wkdhk

is well defined on H, and locally strictly convex.

In fact, if we construct a differential form ω =
∑k

i=1 wi(h)dhi,
we will need
∂wi

∂hj
=

∂wj

∂hi
(7)

to ensure that ω is indeed a closed 1-form. Fortunately, the
following lemmas will guarantee that Eq. (7) is correct.

Fig. 6. Modifying ri solely will result in the change of wi, wj and wk . (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. Symmetry of the derivative.

Lemma 3. Let w
jk
i := Area(Wi ∩∆pipjpk). The partial derivative of

w
jk
i with respect to hi = − ln cos ri is given by

∂

∂hi
wik

j = −
R2
ijk sin dk

sin γij cos2 dk
cos ri cos rj (8)

where Rijk is the power distance pow(o, pi) of the triangle ∆pipjpk,
γij = γi + γj. The other notations are shown in Fig. 6.

The proof of Lemma 3 and Eq. (8) can be found in the
Appendix.

Now we have the Hessian matrix with elements defined in the
following lemma:

Lemma 4. The power diagram constructed as mentioned above
has the symmetric configuration as shown in Fig. 7, and the partial
derivatives are given by

∂wi

∂hj
=

∂wj

∂hi
= −

cos ri cos rj
sin γij

(
R2
l sin dl
cos2 dl

+
R2
k sin dk
cos2 dk

)
(9)

∂wi

∂hi
= −

∑
j̸=i

∂wi

∂hj
(10)

where ok and ol are the power centers of triangle ∆pipjpk and
∆pjpipl, the power distances between each vertex of the two trian-
gles to the power centers are Rk and Rl respectively, and the distances
from the power centers to the common edge are dk and dl.

Note that for any triangle, the power distances from each
vertex to the power center are identical. Also note that one of
dk and dl can be negative (when ol is located in triangle ∆pipjpk
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Fig. 8. Spherical power diagram and convex polyhedron construction. Note that
e−hk = cos rk , and it is the euclidean distance from the sphere center O to the
plane πk .

for instance, thus dk > 0, dl < 0, |dk|> |dl|), but not both, making

the term
∂wi

∂hj
to be negative for all i and j.

Moreover, in the situation of non-constant source measure,
namely µ = µ(θ̃ , φ̃), according to Eq. (25), Eq. (9) will become
the following form:

∂wi

∂hj
=

∂wj

∂hi
= −

cos ri cos rj
sin γij

(
D · R2

l

cos2 dl
+

C · R2
k

cos2 dk

)
(11)

where C =
∫
dk

µ(θ, φ) cos θdθ and D =
∫
dl

µ(θ, φ) cos θdθ and
the notations are consistent with the notations Fig. 7 and Eq. (25).
The (θ, φ) is the local coordinate chosen to satisfy that the iso-θ
curve and iso-φ curve is orthogonal and dk lies on the iso-φ curve
while γij lies on the iso-θ curve, similar to the (θ̃ , φ̃) coordinate
in Fig. 17. Therefore, the symmetry of the Hessian matrix is
guaranteed as well.

Finally, we proved Eq. (7) and thus the differential form ω =∑k
i=1 wi(h)dhi is closed. Since H is simply connected, ω is exact.

The energy function E =
∫

ω is well defined. The gradient of E is
given by

∇E = (w1, w2, . . . , wk)T (12)

The Hessian matrix element wij = ∂wi/∂hj in Eq. (9) is negative,
and the diagonal element is defined as wii = −

∑
j̸=i wij. There-

fore, the Hessian matrix is diagonal dominant in H. The energy
function is locally convex.

Global Rigidity Given a set of spherical circles C = {(p1, r1), . . . ,
(pk, rk)}, one can construct the spherical power diagram and a
convex polyhedron, where the central projection of the poly-
hedron to the sphere gives the power diagram, hence both of
the power diagram and the convex polyhedron have the same
combinatorial structures. Through each spherical circle (pi, ri),
there is a Euclidean plane in R3 as shown in Fig. 8 where
cos ri = e−hi ,

πi(p) := ⟨pi, p⟩ − cos ri.

The plane πi divides R3 into two half spaces, the intersection of
all such half spaces containing the origin is a convex body

P(C) :=
k⋂

i=1

{p ∈ R3
|πi(p) < 0}.

The boundary of P(C) is a convex polyhedron. The central pro-
jection of the convex polyhedron on the sphere gives the power
diagram. The intersection between two cells Wi∩Wj is the projec-
tion image of the intersection line between πi and πj. Therefore
the combinatorial structure of the convex polyhedron gives that
of the power diagram.

Definition 4 (Minkowski Sum). Suppose P1 and P2 are sets in Rn,
the Minkowski sum of P1 and P2 is given by

P1 ⊕ P2 := {p1 + p2 ∈ Rn
|p1 ∈ P1, p2 ∈ P2}.

The following Brunn–Minkowski inequality [47] is well
known.

Theorem 3 (Brunn–Minkowski). Let n ≥ 1 and let µ denote the
Lebesgue measure on Rn. Let A and B be two nonempty compact
subsets of Rn. Then the following inequality holds:

[µ(A⊕ B)]
1
n ≥ [µ(A)]

1
n + [µ(B)]

1
n . (13)

Let ti := cos ri, the vector t := (t1, t2, . . . , tk). The plane
is defined as πi(p) := ⟨p, pi⟩ − ti. The intersection of the half
spaces induced by the planes is P(t). The central projection of P(t)
produces a spherical power diagram. The spherical area of each
cell is denoted as wi(t). We define the space of t as follows:

T :=

{
t |

k∑
i=1

ti = 1, wi(t) > 0, i = 1, 2, . . . , k.

}
.

Lemma 5. The parameter space T is a non-empty convex set in
Rk.

Proof. First, let ti equal to 1
k , then we obtain the spherical

Voronoi diagram, pi ∈ Wi, all the cells are non-empty. This shows
( 1k , . . . ,

1
k )

T
∈ T , T is non-empty.

Second, suppose t1, t2 ∈ T , namely wi(t1) > 0 and wi(t2) > 0.
For any λ ∈ [0, 1],

P(λt1 + (1− λ)t2) = λP(t1)⊕ (1− λ)P(t2),

We use w̃i to represent the polyhedron face area. It is obvious
that wi > 0 if and only if w̃i > 0. According to Brunn–Minkowski
inequality

w̃i(λt1 + (1− λ)t2)
1
2 ≥ λw̃i(t1)

1
2 + (1− λ)(w̃i(t2)

1
2 ) > 0.

Therefore λt1 + (1− λ)t2 ∈ T , T is convex. □

Lemma 6. Suppose Ω ⊂ Rn is a convex set, f : Ω → R is a
C2 strictly convex function (the Hessian matrix is positive definite
everywhere in Ω), then the gradient mapping ∇f : Ω → ∇f (Ω) is
a diffeomorphism.

We use this well-known lemma to prove the following theo-
rem:

Theorem 4. Given a point set {p1, p2, . . . , pk} ⊂ S2 in generic
positions, given t ∈ T , construct the spherical power diagram D(t),
where each cell area is wi(t). Obtain the mapping

ϕ : t ↦→
(

w1

t1
,
w2

t2
, . . . ,

wk

tk

)T

is diffeomorphic.

Proof. Consider the closed differential 1-form,

ω =

k∑
i=1

wi(h)dhi = −

k∑
i=1

wi(h(t))
dti
ti

,



L. Cui, X. Qi, C. Wen et al. / Computer-Aided Design 115 (2019) 181–193 187

the energy is defined as the integration of ω,

E(t) =
∫ t

ω,

then the gradient of the energy is

∇E(t) = −
(

w1

t1
,
w2

t2
, . . . ,

wk

tk

)T

From Eq. (9), the Hessian matrix element is

∂2E
∂ti∂tj

= −
∂

∂tj

wi

ti
= −

1
sin γij

(
Rl

2 sin dl
cos2 dl

+
R2
k sin dk
cos2 dk

)
(14)

and

∂2E
∂t2i
= −

∑
i̸=j

∂2E
∂ti∂tj

.

Similar to Eq. (11), we replace sin dk and sin dl with C =∫
dk

µ(θ, φ) cos θdθ and D =
∫
dl

µ(θ, φ) cos θdθ to get the fol-
lowing formulae in the situation that the source measure is not
constant:

∂2E
∂ti∂tj

= −
∂

∂tj

wi

ti
= −

1
sin γij

(
Rl

2
· D

cos2 dl
+

R2
k · C

cos2 dk

)
(15)

and

∂2E
∂t2i
= −

∑
i̸=j

∂2E
∂ti∂tj

.

In both situations, the Hessian matrix is diagonally domi-
nant with positive diagonal elements. Therefore, the energy is
strictly convex on T . By Lemma 6, the gradient mapping is
diffeomorphic. □

4.2. Computational algorithm

The variational formulation of spherical optimal transporta-
tion problem in previous section leads to an efficient algorithm.
The energy E(h) can be minimized with Newton’s method.

The input to our algorithm is a topological sphere. Harmonic
map, conformal for spherical case, is first applied to map the
input to a unit sphere, and the mapping is well known for the
uniqueness up to a Möbius transformation. Furthermore, the
conformal factor of such conformal map gives a direct measure
of area distortion. Our aim is to eliminate area distortion. For
efficient spherical harmonic map algorithms, please see [48] for
more details.

Suppose M be a topological sphere, and M is mapped to the
unit sphere S0(P) ⊂ S2 by harmonic map, where P are the
vertices’ positions on S2. We can assign an optional measure µ

on S2. Practically we assign µ a value at pi ∈ P and regard µ as
a piecewise linear function on S2. µ can be 1 everywhere in the
simplest case, which is the default measure. The total measure∫
S2 µ can be obtained by numerical integration: on each spherical

triangle, a three-points Gaussian numerical integration formula is
used. The term ‘‘measure’’ also denotes the integral of µ on some
region, which is the spherical area if µ = 1. We use term ‘‘area’’
instead of ‘‘measure’’ at some place for clarity.

We then compute the power diagram of the unit sphere given
P and some power radius r. The power diagram V(P, r) is a cell
decomposition of S2. Such decomposition gives us a map:

T : Wi ↦→ pi ∀ Wi ∈ V(P, r)

where each cell Wi of the power diagram is mapped to a point pi.

Spherical power diagram is computed using Sugihara’s algo-
rithm [45], which translates the construction of a spherical power
diagram to computing the corresponding convex hull, as shown
in Fig. 8, with the time complexity O(n log(n)).

The target measure ν is a Dirac measure: we assign a weight
νi at every pi, i.e. ν =

∑
i νiδ(p − pi). In order to compute a

spherical area-preserving mapping, we set νi to be the vertex area
on original surface M , namely one-third of surrounding triangles’
area at each vertex. The total area of M is normalized to then total
measure of S2.

Input: Genus 0 closed surface M , source measure µ : S2
↦→ R+,

target measure ν =
∑k

i=1 νiδ(p− pi), such that∑
i νi =

∫
S2 µ

Output: spherical area-preserving parameterization
Compute conformal map from M to unit sphere, obtaining S0(P);
Compute vertices’ area of M and normalize the total area to be∫
S2 µ, obtain ν;

Initialize the power radius h = (h1, h2, · · · , hk) = (0, 0, · · · , 0);
while true do

if ∥∇E∥ < ε then
break;

end
Compute power diagram V given S0(P) and h;
Calculate gradient ∇E by Eq. (17);
Calculate Hessian matrix H by Eqs. (9) and (10) or Eq. (11)
depending on the source measure µ;
Solve linear equation H · δh = ∇E;
λ← 1;
while true do

Compute the power diagram V(P,h+ λδh);
if ∀ Wi ∈ V not empty then

break;
end
λ← 1

2λ;
end
h← h+ λ · δh

end
Compute the centroid of each power cell ∀ Wi ∈ V(P, h) return
the mapping from each vertex vi to the centroid of Wi

Algorithm 1: Spherical Area Preserving Parameterization

Initially the area of Wi may not equal to νi. We adjust the
height vector h by minimizing the energy

E(h1, h2, . . . , hk) =
∫ (h1,h2,...,hk)

0

k∑
i=1

(wi(τ )− νi)dτi (16)

then we obtain an updated power diagram, in which Wi’s areas
are closer to νi’s. The gradient of the energy is given by

∇E = (w1 − ν1, w2 − ν2, . . . , wk − νk)T (17)

At the unique minimum point h∗, ∇E(h∗) = 0, the corresponding
power diagram gives us the desired optimal transportation map:

T ∗ : Wi ↦→ p∗i ∀ Wi ∈ V(P,h∗)

s.t.
∫
Wi

dµ = νi, i = 1, 2, . . . , k.

Furthermore, we compute the centroids of the power cells,
denoted as P∗, then we map each field Wi to p∗i , this gives an
area-preserving spherical parameterization M ↦→ P∗ ⊂ S2.

Recall that ν are vertices’ area on the original surface,
∫
Wi

dµ =
νi, i = 1, 2, . . . , k, meaning that we find a partition of unit sphere
such that each cell’s area equal to original surface’s vertices’ area.
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Fig. 9. Area-preserving parameterization of bunny model. left: bunny model; middle: initial conformal map; right: area-preserving map.

Fig. 10. Area-preserving parameterization of gargoyle model. left: gargoyle model; middle: initial conformal map; right: area-preserving map.

Computing the centroids of power cells, we obtain the target
positions, which is the parameterization.

The convex energy E(h) can be minimized by the Newton’s
method. Given initial height vector h, we compute the spherical
power diagram where hi = − ln cos ri, then compute the gradient
in Eq. (17) and Hessian matrix in Eqs. (9) and (10), and update the
height vector h:

h← h+ λH−1 · ∇E.

The step length parameter λ is chosen such that all cells Wi of
the power Diagram are non-degenerated. In practice, if some cells
are degenerated, we reduce λ by half and recompute the power
diagram, until all cells are non-degenerated. The algorithmic de-
tails for spherical area-preserving parameterization can be found
in Algorithm 1.

Our algorithm is similar to the damped Newton’s algorithm
analyzed by Kitagawa et al. [49]. Theorem 1.5 in [49] claims that
if some mild conditions are satisfied, such as

• the regularity, twist condition and Leoper’s condition (Ma–
Trudinger–Wang condition) of the cost function;
• the α-Holder continuity, the weighted Poincaré–Wirtinger

inequality of the source density function;
• the compactness and the c-convexity of the support of the

source measure,

then the damped Newton algorithm for semi-discrete optimal
transport converges globally with linear rate and locally with rate
1+ α.

In the algorithm, the spherical power cells should have posi-
tive mass at each iteration greater than ε. According to Theorem
4.1 in [49], this guarantees the regularity of the Kantorovich

potential to be C2,α , where α depends on the power cell masses
ε, thus Newton’s method can be performed.

Note that the target measure need not to be vertices’ areas of
original surface. In fact, it can be arbitrary as long as the total
measure equals µ(S2). This flexibility enables us to compute not
only area-preserving map but also area-controllable map. We
can enlarge or shrink certain regions for better visual effects by
setting the desired target measure.

Also note that we have constraints on the target point set pi
such that not all points are contained within any hemisphere.
Otherwise, the dual convex polyhedron is not closed, resulting
in some power cells with negative areas, and this will violate the
regularity conditions of the Theorem 4.1 in [49].

5. Experiments and evaluation

In this section, we present some evaluation of our algorithm.
We use pure Matlab to implement our algorithm and the exper-
iments conducted on a laptop with 2.4 GHz CPU and 8 GB RAM.
By setting target measure of vertices to be the normalized area
of the input surface, our algorithm computes an area-preserving
mapping from genus 0 surface to unit sphere.

In Fig. 9, the bunny model (left figure) is initially mapped
to unit sphere with conformal mapping [32,33]. In the middle
of center figure, the ear regions shrink seriously and are barely
recognizable. Setting target area to be vertices’ area of initial
mesh, we obtain an area-preserving map, by Algorithm 1, as
shown in the right figure. Now the ear region is parameterized
nicely to observe its details.

We show two more experimental results in Figs. 10 and 14.
Area elements of both models are well preserved as shown.
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Fig. 11. Area distortion of bunny model. left: initial conformal map; right: area-preserving map.

Fig. 12. Area distortion of gargoyle model. left: initial conformal map; right: area-preserving map.

Fig. 13. Area distortion of Max Planck model. left: initial conformal map; right: area-preserving map.

For even more challenging models, like the lion and the horse
shown in Fig. 15, traditional methods can introduce severe area
distortion in the leg parts, as shown in the second column of
Fig. 15. However, our algorithm manages to generate area pre-
serving parameterization, shown in the third and fourth columns
in Fig. 15, such that the feet and legs are still recognizable after
the parameterization process.

Area distortion is measured by log of area ratio. Ideally this log
area ratio should be equal to 0 for area-preserving parameteriza-
tion. We show the histogram of area distortion for three models

in Figs. 11–13. It is clear that parameterizations of our algorithm
preserves area accurately.

Running time of our algorithm is summarized in Table 1. We
compute the optimal transport mapping to unit sphere for genus
0 surfaces. The number of iterations needed for convergence is
generally not relevant to mesh size. Instead, it is more affected
by the area distortion induced by the initial mapping (spherical
conformal mapping in our case). As shown in Figs. 9 and 10, the
initial area distortion (conformal factor) can be enormous when
the input surface has ear-shape components.
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Fig. 14. Numerical experiments. Top row shows the Maxplanck model, and skull and squirrel models are shown in the middle and bottom rows. The original input
surface, conformal mapping results and area-preserving mapping results are shown in left, center and right column accordingly.

Table 1
Performance statistics. 4th column is running time of our algorithm, 5th column
is running time of Dominitz and Tannanbaum’s algorithm [9]. 6th column is the
speedup ratio.
Model # vertices # iter Time (s) Time* (s) Ratio

Squirrel 2.5k 11 2.21 971 439.3
Gargoyle 10k 11 9.57 1451 151.6
Maxplanck 12.5k 6 5.29 2460 465.0
Skull 20k 5 6.9 2132 308.9
Bunny 35k 30 181 3093 17.1

In Table 1, we also compare the running time of our algorithm
with algorithm of [9], as shown in fifth column. Our algorithm
is generally tens to hundreds times faster. There are two factors
contributing to such performance improvement. The first one is
that our algorithm applies Newton’s method while the algorithm
in [9] is essentially gradient decent method. The second factor is

that the number of unknowns in our algorithm is |V | comparing
to |V |2 in [9].

6. Conclusion

In this paper, we generalized the semi-discrete optimal trans-
portation theory from Euclidean geometry to spherical geometry,
and applied it for spherical area-preserving parameterization.

The spherical optimal transportation map is given by a spher-
ical power diagram, the powers can be obtained by optimizing a
convex energy. We proved the existence and the uniqueness of
the solutions, and give the explicit geometric interpretations to
the gradient and the Hessian matrix of the energy. The variational
theoretic framework leads to an efficient and robust algorithm for
area-preserving parameterization.

Experiments show that our algorithm is able to compute area-
preserving parameterization with high accuracy. Our algorithm
is tens to hundreds time faster than previously developed algo-
rithms.
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Fig. 15. Numerical experiments on irregular meshes. Both models (first column) have long legs and are far from regular sphere shape, resulting in challenges for
conformal parameterization (second column). Results from our method are shown in the third and fourth columns, where faces and legs are represented accordingly.
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Appendix

In this section, we will present some proof of the theorems
and lemmas mentioned in previous sections in detail.

Proof of Lemma 1

Proof. Given a point p ∈ Wi ∩ W̃j ≜ Wij, then

− ln⟨p, pi⟩ − hi ≤ − ln⟨p, pj⟩ − hj

hence∑
i

∫
Wi

(− ln⟨p, pi⟩ − hi)dµ =
∑

i

∑
j

∫
Wij

(− ln⟨p, pi⟩ − hi)dµ

≤

∑
i

∑
j

∫
Wij

(− ln⟨p, pj⟩ − hj)dµ =
∑

j

∫
W̃j

(− ln⟨p, pj⟩ − hj)dµ

from measure-preserving condition,∑
i

∫
Wi

hidµ =
∑

i

hiµ(Wi) =
∑

j

hjµ(W̃j) =
∑

j

∫
W̃j

hjdµ

the above is simplified to C(V) ≤ C(Ṽ). □

Proof of Lemma 2

Proof. As shown in Fig. 5, it is enough to show that {ri, rj, rk}
determine {θi, θj, θk} analytically. In the spherical triangle ∆piqkqj,

assume the arc lengths of piqk and piqj are α and β respectively,
then by spherical cosine law

cos γ = cosα cosβ + sinα sinβ cos σi. (18)

By spherical sine law,
sin σi

sin γ
=

sin∡1
sinα

=
sin∡2
sinβ

. (19)

In the spherical triangle ∆qkoqj, by spherical cosine law

cos θi = − cos∡3 cos∡4+ sin∡3 sin∡4 cos γ

= − sin∡1 sin∡2+ cos∡1 cos∡2 cos γ .
(20)

By combining Eqs. (18)–(20), we can obtain the analytic formula
for the inner angle θi, inside triangle ∆pipjpk. We rewrite the
angle θi as θ

jk
i , the cell area wi equals

wi = 2π −
∑
jk

(π − θ
jk
i ).

This shows that wi is an analytic function of the radius of vertex
pi and radii of vertices adjacent to pi. □

Proof of Theorem 1

Proof. As shown in Fig. 16, assume two cells Wi and Wj are
adjacent. Suppose all circles are fixed except ci, if ri increases,
cos ri decreases, hi = − ln cos ri increases, then wi increases.
Therefore, we have
∂wi(h)

∂hi
> 0.

On the other hand, for all neighboring cells wj(h)’s, the partial
derivatives
∂wj(h)

∂hi
< 0.

For all cells Wk’s which are not adjacent to Wi, ∂wk(h)/∂hi = 0.
Because the total area is fixed, we obtain
k∑

j=1

∂wj(h)
∂hi

= 0.
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Fig. 16. The variation of a spherical power diagram, the cell Wi is enlarged by increasing ri .

This shows the Jacobian matrix of the mapping ϕ : H →

W has a null space spanned by (1, 1, . . . , 1)T . The space H is
orthogonal to the null space, therefore the Jacobian matrix is
diagonal dominant. The matrix is non-singular on the space H.
Therefore, by implicit function theory, the mapping ϕ is locally
diffeomorphic. □

The proof of Lemma 3

To prove the correctness of Lemma 3, we directly use the
following equations from Eq. (4) :{
γi + γj = γij

cos γiehi = cos γjehj
(21)

Thus, we obtain⎧⎪⎪⎨⎪⎪⎩
dγi

dhj
= −

R2
ijk

sin γij cos2 dk
cos ri cos rj

dγi

dhj
=

dγj

dhi

(22)

By changing hi to hi + δhi, γj shrinks to γj − δγj, then the power
center moves from o to o1, shown in Fig. 6. The reduced region
is illustrated as a blue spherical quadrilateral and a higher order
infinitesimal triangle region. We use the following lemma to
compute the area of the quadrilateral:

Lemma 7. As shown in Fig. 17, the area of the spherical quadrilat-
eral is given by∫ π/2

π/2−θ̃

∫ φ̃

0
sin θdφdθ = φ̃ sin θ̃ (23)

By Eqs. (22) and (23), the area of the quadrilateral colored in
blue in Fig. 6 is

sin dkδγj = sin dk
−R2

ijk

sin γij cos2 dk
cos ri cos rjδhi (24)

Then we get Eq. (8). Furthermore, the formula is symmetric
with respect to the indices i and j, hence we obtain
∂

∂hi
wik

j =
∂

∂hj
w

jk
i

In the situation of non-constant source measure, namely µ =
µ(θ, φ), the measure of the quadrilateral colored in blue in Fig. 6
will become the following:

C · δγj = C ·
−R2

ijk

sin γij cos2 dk
cos ri cos rjδhi (25)

Fig. 17. Spherical quadrilateral.

where C =
∫
dk

µ(θ, φ) cos θdθ , the (θ, φ) is the local coor-
dinate chosen such that the iso-θ curve and iso-φ curve are
orthogonal and dk lies on the iso-φ curve while γij lies on the
iso-θ curve. In general, we are replacing sin dk in Eq. (24) with∫
dk

µ(θ, ϕ) cos θdθ.
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