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ABSTRACT
Over 50% of the energy from power plants, vehicles, oil re-

fining, and steel or glass making process is released to the at-
mosphere as waste heat. As an attempt to deal with the grow-
ing energy crisis, the solid-state thermoelectric generator (TEG),
which converts the waste heat into electricity using Seebeck phe-
nomenon, has gained increasing popularity. Since the figures of
merit of the thermoelectric materials are temperature dependent,
it is not feasible to achieve high efficiency of the thermoelectric
conversion using only one single thermoelectric material in a
wide temperature range. To address this challenge, this paper
proposes a method based on topology optimization to optimize
the layouts of functional graded TEGs consisting of multiple ma-
terials. The objective of the optimization problem is to maximize
the output power and conversion efficiency as well. The proposed
method is implemented using the Solid Isotropic Material with
Penalization (SIMP) method. The proposed method can make
the most of the potential of different thermoelectric materials by
distributing each material into its optimal working temperature
interval. Instead of dummy materials, both the P and N-type

∗Address all correspondence to this author.

electric conductors are optimally distributed with two different
practical thermoelectric materials, namely Bi2Te3 & PbTe for P-
type, and Bi2Te3 & CoSb3 for N-type respectively, with the yield-
ing conversion efficiency around 12.5% in the temperature range
Tc=25 ◦C and Th=400 ◦C. In the 2.5D computational simulation,
however, the conversion efficiency shows a significant drop. This
could be attributed to the mismatch of the external load and inter-
nal TEG resistance as well as the grey region from the topology
optimization results as discussed in this paper.

1 INTRODUCTION
Since its discovery, the thermoelectric effect, which can con-

vert temperature differences into the electric voltage and vice
versa, has aroused a lot of interests among researchers, espe-
cially in such an energy sustainable society. One important ap-
plication of such effect is the thermoelectric generator (TEG),
which can transform a tremendous amount of waste heat gener-
ated from various sources like home heating, automotive exhaust,
and industrial processes into electricity [1]. Such devices occupy
unique advantages over other thermal power-generation devices.
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For example, it can be designed in flexible size, operate with-
out moving parts thus quite reliable, and very environmentally
friendly [2]. However, one major weakness is that the efficiency
of a TEG has been relatively low, which, to a certain extent, im-
pedes the broader application of such technology into various
fields.

Typically, besides the temperature difference between the
hot and cold end, the efficiency of a TEG relies heavily on the
figure of merit of the thermoelectric material, zT = α2T/ρκ ,
where T is absolute temperature, α is the Seebeck coefficient,
ρ is the electrical resistivity and κ is the thermal conductivity,
respectively [3]. Over the past several decades, tremendous ef-
fort has been made to enhance the zT value of the thermoelectric
materials. For example, several breakthroughs have been made
in the nanoscale from the standpoint of materials science, such
as the all-scale hierarchical architectures to reduce the thermal
conductivity [4], preparing thermoelectric materials like Bi2Te3
in quantum-well super-lattice structures [5] and band engineer-
ing [6, 7] to increase the power factor (α2/ρ). Due to these ad-
vances, the figure of merit of the TE materials could reach 1.8
with the corresponding conversion efficiency increasing to 11%-
15% [2].

In addition to the progress from the material science per-
spective, researchers from the mechanical engineering commu-
nity also contribute by exploring the full potential of the existing
thermoelectric materials. One typical example is the segmented
thermoelectric generator [8], in which the P and N-type elements
are usually divided into several segments. In each segment, a
proper thermoelectric material is employed to achieve the highest
efficiency in the temperature interval of that segment. For simple
regular geometry, it is convenient to determine the dimensions
for each segment. But it is difficult to treat with a TEG with
complex and irregular geometry. Therefore, in this paper, we
propose a new method based on topology optimization to find
the optimal thermoelectric materials distribution to achieve the
highest conversion efficiency.

Topology optimization has emerged for nearly 30 years
since its introduction by MP Bendse and N Kikuchi in 1988 [9],
which aims at finding the proper materials layout in a prescribed
domain to obtain the best performance for a certain purpose.
One outstanding characteristic of topology optimization lies in
that it can give you designs independent on your initial guess.
Several major topology optimization approaches have been pro-
posed over the years, including SIMP (Solid Isotropic Material
Penalization) [10,11], level set method [12,13], phase field [14]
and topological derivative [15]. In this paper, SIMP is employed
since it is quite straightforward. To implement the SIMP, sev-
eral relationships between the density variable and the thermo-
electric properties need to be established. And to make it more
accurate, the temperature-dependence of the thermoelectric ma-
terials properties are taken into consideration in the form of cubic
spline interpolation functions. The output power and conversion

efficiency are treated as the objectives to be optimized.
This paper is organized as follows: in Section 2, the govern-

ing equations for thermoelectric phenomena are introduced. The
topology optimization formulation is given in Section 3, includ-
ing computational model description, objective functions and
material interpolation scheme. Section 4 details the numerical
implementation, followed by the topology optimization results
and 2.5D numerical verification in Section 5. Finally, in Section
6, the results are discussed, and some concluding remarks are
given.

2 THERMOELECTRIC GOVERNING EQUATIONS
A typical TEG is shown in Figure 1, which usually consists

of heat source, heat sink, P and N-type thermoelectric elements,
external load, and electrodes (gray regions). It works based on
the Seebeck effect, where an electromotive force is built due to
the movement of charge carriers in the presence of a tempera-
ture gradient between the hot and cold ends. When connected to
an external load to build a circuit, there will be a current flow-
ing through to produce electric power. For P-type, the current
is carried by holes, while for N-type, it is by electrons. We can
imagine the potential application of such a TEG device wherever
there is a temperature gradient.

FIGURE 1: The configuration of a typical TEG device

This multi-physics optimization problem involves heat
transfer in solids, electron migration, and thermoelectric effect.
For simplicity, we only consider the steady state and assume that
the thermoelectric materials are isotropic with regards to the ther-
moelectric properties like Seebeck coefficient, electrical conduc-
tivity, and thermal conductivity. Consulting [16, 17], the govern-
ing equations for electrical and thermal conductions can be given
as follows:

2 Copyright c© 2019 by ASME



∇·J = 0 (1)
∇·q = f (2)

The above equation (1) and (2) are coupled with the follow-
ing thermoelectric constitutive equations:

J = σ(E−α∇T ) (3)
q = βJ−κ∇T (4)

where:
J = electric current density vector, A/m2,
q = heat flux density vector, W/m2,
f = J·E is the heat generation rate per unit volume, W/m3,
σ = electric conductivity, S/m,
E = -∇V , electric field intensity vector, V/m; V is electric
potential, V,
α = Seebeck coefficient, V/K,
T = absolute temperature field, K,
β = T·α denotes the Peltier coefficient, V,
κ = thermal conductivity, W/(m ·K).

The boundary conditions are:

V =V0,fixed electric potential (5a)
T = Tc,fixed temperature (5b)
T = Th,fixed temperature (5c)
n ·J = 0,electrical insulation (5d)
n ·q = 0, thermal insulation (5e)

By imposing the above boundary conditions, the equation (1) and
(2) can be solved with respect to the two state variables T and V ,
which will be further used to compute the objective functions and
constraints.

3 TOPOLOGY OPTIMIZATION FORMULATION
Topology optimization has been a robust tool for finding the

optimal materials layout for a particular purpose. In this paper,
different thermoelectric materials are to be optimally distributed
in the P & N-type thermoelectric elements, i.e., the design do-
main. For simplicity, in the topology optimization stage, only
2D problem is considered.

3.1 Computational model description
As seen in Figure 2, a 2D computational model is built. Un-

like the conventional configuration in Figure 1, this model adopts

FIGURE 2: Diagram of the computational model

a stack junction, which could reduce the parasitic losses from the
connection between the P and N-type electrical conductors [18].
The thickness is 1mm to make it a thin plate structure. The tem-
perature for the hot and cold end is set to be 400◦C and 25◦C
respectively. An electrical potential V0 is assigned to the bottom
surface. Copper acts as electrodes. An external load R is con-
nected to form an electrical circuit and produce power. All other
outer boundaries of the whole domain are electrically insulated
and adiabatic, corresponding to the Neumann boundary condi-
tions in equations (5d) and (5e).

3.2 Objective functions
In this topology optimization problem, we have two objec-

tive functions to optimize, namely output power and conversion
efficiency. When there is a large amount of heat sources, max-
imum output power is preferably wanted. While when the heat
source is limited, we prefer a maximum conversion efficiency,
which is defined as the ratio between output power and the total
heat flow from the source. For output power:

Pout =
∫

Ω1

J ·EdΩ (6)

where J is the electric current density vector; E is the electrical
field intensity vector as mentioned earlier; Ω1 is the external
resistor domain.

The conversion efficiency is defined as follows:
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η =
Pout

Q
=

∫
Ω1

J ·EdΩ

|
∫

Ω2
q dΩ |

(7)

where Q is the total heat flow from the source; q is the heat flux
density vector; Ω2 is the domain from which the heat flows in.

Thus, the objective of the topology optimization problem is
to maximize either the output power or the conversion efficiency,
which can be formulated as follows:

maximize J1 = Pout , (8)
or maximize J2 = η , (9)

subject to:

∫
ΩPN

dx <Vf ·A. (10)

In the above equations, ΩPN refers to regions occupied by ther-
moelectric materials of the final design; Vf is the volume ratio;
A is the initial area of the P and N-type elements. In practice,
a large number of TEG units would be connected electrically in
series and thermally in parallel to produce massive power, requir-
ing a lot of thermoelectric materials. Therefore, it is advisable to
impose a volume constraint in the designing process of a TEG
unit taking the total cost and weight into consideration.

3.3 Material interpolation scheme
The crux of the SIMP method is that a proper relationship

between the design variables and corresponding physical prop-
erties must be established. In this paper, both the P and N-type
thermoelectric materials are optimized. Following [19], we em-
ploy the following material interpolation scheme in this paper:

α(ρ1,ρ2) = ρ
p
1 (ρ

p
2 α1 +(1−ρ

p
2 )α2),

κ(ρ1,ρ2) = ρ
p
1 (ρ

p
2 κ1 +(1−ρ

p
2 )κ2),

σ(ρ1,ρ2) = ρ
p
1 (ρ

p
2 σ1 +(1−ρ

p
2 )σ2),

(11)

where 0< ρ1 < 1, 0 < ρ2 < 1; p is the penalty factor and is set to
be 3. The symbols αi,κi,σi, i = 1,2 denote the Seebeck coeffi-
cient, thermal conductivity and electrical conductivity of the two
thermoelectric materials respectively. At each point of the design
domain, there are two design variables, where ρ1 is used to de-
termine whether it is material or void and ρ2 is used to indicate
which material it is.

4 NUMERICAL IMPLEMENTATION
The procedures of the topology optimization process are

shown in Figure 3. To perform the numerical implementation,
the governing equations must be solved correctly to obtain the
state fields, i.e., temperature and electrical potential fields in
this case, and further to compute the objective functions and
constraints. If it is not converged, sensitivity analysis needs to
be conducted and later to update the design variables using the
Method of Moving Asymptotes (MMA) algorithm [20] in this
paper. Once converged, some post-processing steps, like smooth-
ing the boundary to facilitate the manufacturing process, need
to be included before the final design is presented. The above
procedures are realized with the Comsol multiphysics FEA soft-
ware.

FIGURE 3: The flowchart for the topology optimization process

4.1 Material properties
The properties of the copper electrodes are: α = 6.5×

10−6V/K,κ = 400W/(m∗K),σ = 5.998× 107S/m. Because
the temperature ranges from Tc=25 ◦C to Th=400 ◦C, two differ-
ent thermoelectric materials are employed for each of the P and
N-type elements, as shown in Table 1 based on the ZT value from
[1]. Such selection makes sure that there are a low-temperature
and high-temperature thermoelectric material relatively for each
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type element, making it possible to make the most of the thermo-
electric capability of each material.

P type Bi2Te3 PbTe

N type Bi2Te3 CoSb3

TABLE 1: Material selection

The temperature-dependency of thermoelectric materials
properties is taken into account and plotted based on the data
from [21, 22] in Figure 4.

4.2 Finite element formulation
The governing equations are highly nonlinear due to the cou-

pling of electrical and thermal conductions as well as the strong
temperature dependence of the thermoelectric materials proper-
ties. They are solved in discretized forms by standard finite ele-
ment method [23].

[
KV T KVV

KT T 0

]{
Tn

Vn

}
=

{
0

QP +QE

}
(12)

KV T =
n

∑
1

∫
Ωe
[B]T ασ [B]dΩ

e (13a)

KVV =
n

∑
1

∫
Ωe
[B]T σ [B]dΩ

e (13b)

KT T =
n

∑
1

∫
Ωe
[B]T λ [B]dΩ

e (13c)

QP =
n

∑
1

∫
Ωe
[B]T β [J]dΩ

e (13d)

QE =
n

∑
1

∫
Ωe
[N]T [J]T [E]T dΩ

e (13e)

where Tn,Vn represent the nodal temperature and nodal elec-
trical potential vector respectively. N is the linear shape func-
tion and B = ∇N. The finite element analysis is performed using
mapped quadrilateral elements.

The above discretized system is obtained following the gen-
eral procedures: first multiply the original governing equations
with test functions, integrate over the whole domain by parts,
and utilize the 2D divergence theorem.

4.3 Sensitivity analysis
The sensitivity information, i.e., the total derivative of

objective functions with respect to the design variables, must
be derived to update the design in each iteration. In this paper,
the adjoint method [24] is employed, which starts from the
discretized system as shown in Section 4.2. The equation (12)
can be rewritten in the following residual form.

R(ρ,U) = K(ρ,U) ·U−F(ρ,U) (14)

where R is the residual vector; K is the global stiffness matrix;
U is the state variable vector, i.e., {T,V} in this case and F is the
global load vector.

Then the general Lagrangian function can be formulated as:

L(ρ,U) = J(ρ,U)+λ
T ·R(ρ,U) (15)

λ T is the Lagragian multiplier. The differentiation of the ob-
jective function J in relation to design variable ρ is calculated by:

dJ
dρ

=
dL
dρ

=
∂J
∂ρ

+
∂J
∂U
· dU

dρ
+λ

T · [∂R
∂ρ

+
∂R
∂U
· dU

dρ
] (16)

The crucial point of the adjoint method in conducting sensitivity
analysis is to get rid of the derivative of the state variables with
respect to the design variables, which can be done by solving the
following adjoint equation for proper λ T :

λ
T · ∂R

∂U
=− ∂J

∂U
(17)

Once λ T is obtained, we can get the sensitivity information from
equation (16).

5 PRELIMINARY RESULTS
5.1 Topology optimization results

The following topology optimization results in Figure 5 are
obtained by setting the volume ratio Vf = 0.6 and the external
load R = 0.1Ω. The initial design is given such that ρ1 =Vf and
ρ2 = 1. With reference to Figure 4(d), the results make sense
in that the relatively high-temperature thermoelectric materials
PbTe and CoSb3 are distributed near the hot end, while the rela-
tively low-temperature thermoelectric materials Bi2Te3 near the
cold end. In other words, each thermoelectric material is placed
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(a) Seebeck coefficient (b) Thermal conductivity

(c) Electrical conductivity (d) Figure of merit

FIGURE 4: Thermoelectric materials properties

into its optimal working temperature interval to fully exploit their
thermoelectric capability. The conversion efficiency could reach
12.4%.

The convergence curves for conversion efficiency and out-
put power are shown in Figure 6. As expected, both objectives
improve significantly compared with the initial designs.

By tuning the volume ratio Vf from 1 to 0.4, we can obtain
a series of optimized TEG structure as shown in Figure 7 and
Figure 8. The highest conversion efficiency of 4 different volume
ratio cases could reach 13.24%. It is noticeable from Figure 8a
and 8b that although the initial volume ratio Vf is given as 1 and
0.8, the actual volume ratio of the final design is 0.936 and 0.745
respectively. This means that in terms of conversion efficiency,
it is not the more thermoelectric materials, the higher conversion
efficiency.

5.2 Numerical Verification
In this section, a 2.5D model is built and simulated based on

the optimized TEG structures obtained from the topology opti-
mization algorithm proposed in this paper. As shown in Figure
9 and Figure 10, two prototypes are built corresponding to the
results for both output power and conversion efficiency as the
objective function with the volume ration Vf = 0.6. The over-
all dimensions of these two models are 60×10×1 mm, which is
in consistence with the 2D geometry with a thickness of 1mm
as described in Section 3.1. The same boundary conditions are
applied as in Figure 2. That is: the two end surfaces of cop-
per are assigned low temperature with Tc=25 ◦C, and the middle
plane of the central copper electrode is treated as the hot end with
Th=400 ◦C. A zero electrical potential is placed on the lower end
copper surface. And all other surfaces of the domain are pre-
scribed as adiabatic and electrically insulated boundaries. The
external resistor is still set to be R = 0.1Ω.

The temperature and electrical potential distribution of the
two simulated models are shown in Figure 11, 12, 13 and 14 re-
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FIGURE 5: Topology optimization results for Vf = 0.6

FIGURE 6: Convergence history for Vf = 0.6

spectively. It is worth noticing, however, that the simulated out-
put power Pout = 0.036W and conversion efficiency η = 7.30%
are quite smaller than those from the topology optimization re-
sults. The causes of these discrepancies will be discussed in de-
tails in Section 6.

6 DISCUSSION AND FUTURE WORK
In this paper, a SIMP-based topology optimization method

is applied to the thermoelectric problems with the aim of maxi-
mizing the output power and conversion efficiency by optimizing
the layouts of different thermoelectric materials in a prescribed
domain. With the external load fixed at R = 0.1Ω, the highest
output power and conversion efficiency could reach 0.075W and
12.42% respectively for Vf = 0.6, which is quite promising com-
pared with the results from [8]. However, these two indexes ob-

(a) V f = 1
Pout=0.121W

(b) V f = 0.8
Pout=0.101W

(c) V f = 0.6
Pout=0.075W

(d) V f = 0.4
Pout=0.044W

FIGURE 7: Different results for output power as the objective

(a) V f = 1
η=13.13%

(b) V f = 0.8
η=13.24%

(c) V f = 0.6
η=12.42%

(d) V f = 0.4
η=10.89%

FIGURE 8: Different results for efficiency as the objective

tained from the subsequent 2.5D simulation are not that appeal-
ing, with each dropping nearly by 50%. This could be attributed
to the following aspects.

First, for a certain layout of the TEG structure, the maxi-
mum output power, and conversion efficiency can be achieved
when the external load value equals to or approach the internal
electrical resistance of the TEG [25]. This means that the value
of the external resistor needs to be updated in each iteration of the
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FIGURE 9: 2.5D model corresponding to Vf = 0.6 and output
power as the objective

FIGURE 10: 2.5D model corresponding to Vf = 0.6 and conver-
sion efficiency as the objective

topology optimization process to match that of the TEG function-
ing like a battery. But in this paper, the external load is kept as
a constant for all different volume ratio conditions, which could
leave some space for improvement of the two objective functions.
Nevertheless, it still makes sense, for example, when you intend
to optimize a TEG structure to charge a device whose electrical
resistance is a constant. In the 2.5D simulation, however, the in-
ternal resistance of the TEG changes due to the removing of TE
materials. As a consequence, the ratio between the fixed external
load R and the internal resistance changes accordingly, resulting
in a lower output power and conversion efficiency than expected.
This argument can be favored by the fact that an optimal exter-
nal load R can be found to achieve the highest value of the two
objective functions as shown in Figure 15. The black dash line

FIGURE 11: Temperature distribution corresponding to Vf = 0.6
and output power as the objective

FIGURE 12: Electrical potential distribution corresponding to
Vf = 0.6 and output power as the objective

corresponds to R = 0.1Ω as used in the 2.5D simulations.
Second and more important, as a common issue in SIMP-

based topology optimization methods, there would exist a grey
region representing the transition from one thermoelectric ma-
terial to the other. Such a grey area corresponds to no physical
material. One approach of getting rid of these transition zones
is “power-law”, in which a penalty factor is introduced in the in-
terpolation scheme to penalize the intermediate density variables
and force them to approach 0 or 1. In this paper, although the
penalty factor p is set to be 3, the topology optimization results
still show a quite large grey area. As shown in Figure 16, the sur-
face for ρ

p
1 ∗ρ

p
2 exhibits a quite large transition zone in the bot-

tom P-type element (circled areas). The clear boundary between
different thermoelectric materials can be obtained by setting up a
threshold for ρ1 and ρ2 to distinguish one thermoelectric material
from the other. However, this treatment would arouse another
problem. The final designs are, to a certain degree, like seg-
mented TEG. The performance of such structures depends not
only on combining different thermoelectric materials but also on
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FIGURE 13: Temperature distribution corresponding to Vf = 0.6
and conversion efficiency as the objective

FIGURE 14: Electrical potential distribution corresponding to
Vf = 0.6 and conversion efficiency as the objective

the compatibility factor. The compatibility factors must be close
enough to ensure high conversion efficiency [26, 27, 28]. Thus,
merely giving a threshold to separate one thermoelectric mate-
rial from the other manually could yield a substantial difference
in the compatibility factors and further low output power and
conversion efficiency.

Based on the above discussion, several strategies may be
adopted in the future to further improve current results: (1) in-
clude an inner optimization process to update the value of exter-
nal load to match that of the TEG to ensure highest output power
and conversion efficiency in each iteration; (2) try different inter-
polation scheme to reduce the grey region; (3) turn to alternative
topology optimization methods, e.g. level-set method, which is
known for its ability for making clear boundaries, to readdress
this problem.

FIGURE 15: Conversion efficiency and output power as a func-
tion of external load R in the 2.5D simulations

FIGURE 16: Grey region corresponding to Vf = 0.6 and conver-
sion efficiency as the objective
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