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ABSTRACT

Topology optimization has been proved to be an automatic,
efficient and powerful tool for structural designs. In recent years,
the focus of structural topology optimization has evolved from
mono-scale, single material structural designs to hierarchical
multimaterial structural designs. In this research, the multi-
material structural design is carried out in a concurrent para-
metric level set framework so that the structural topologies in
the macroscale and the corresponding material properties in
mesoscale can be optimized simultaneously. The constructed
cardinal basis function (CBF) is utilized to parameterize the level
set function. With CBE, the upper and lower bounds of the design
variables can be identified explicitly, compared with the trial and
error approach when the radial basis function (RBF) is used.
In the macroscale, the ‘color’ level set is employed to model
the multiple material phases, where different materials are rep-
resented using combined level set functions like mixing colors
from primary colors. At the end of this optimization, the opti-
mal material properties for different constructing materials will
be identified. By using those optimal values as targets, a sec-
ond structural topology optimization is carried out to determine
the exact mesoscale metamaterial structural layout. In both the
macroscale and the mesoscale structural topology optimization,
an energy functional is utilized to regularize the level set function
to be a distance-regularized level set function, where the level set
function is maintained as a signed distance function along the
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design boundary and kept flat elsewhere. The signed distance
slopes can ensure a steady and accurate material property in-
terpolation from the level set model to the physical model. The
flat surfaces can make it easier for the level set function to pen-
etrate its zero level to create new holes. After obtaining both the
macroscale structural layouts and the mesoscale metamaterial
layouts, the hierarchical multimaterial structure is finalized via
a local-shape-preserving conformal mapping to preserve the de-
signed material properties. Unlike the conventional conformal
mapping using the Ricci flow method where only four control
points are utilized, in this research, a multi-control-point con-
formal mapping is utilized to be more flexible and adaptive in
handling complex geometries. The conformally mapped multi-
material hierarchical structure models can be directly used for
additive manufacturing, concluding the entire process of design-
ing, mapping, and manufacturing.

1 Introduction

With the rapid development of the structural design method-
ology and the modern additive manufacturing technology, in
recent years, building multiscale structures with space-varying
metamaterials has become possible [1, 2, 3]. On the other
hand, by introducing different construction materials to be re-
distributed inside the design domain properly, the final multima-
terial structure can be expected to have a performance boost [4].
Besides, introducing multiple constructing materials can make
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some design objectives easier to be achieved, compared with us-
ing only one material [5]. This paper is aiming at designing hier-
archical multimaterial structures

Topology optimization is a powerful and advanced tool for
designing structures with high performances. There are a num-
ber of different approaches in this field and a comparative re-
view between can be found in [6]. Among those approaches, the
level set methods stand out for its flexibility in handling topolog-
ical changes and in generating clear design boundaries [7, 8, 9].
For more details about the level set methods, the readers can be
referred to [10] for more information. Generally, by using the
zero level of the level set function to model the structural design
boundary [11], one level set function can separate the design do-
main into two sub-domains: the void domain and the material
domain. However, when two or more material phases have to be
included, this implicit boundary representation has to be modi-
fied accordingly. The ‘color’ level set method [12], the piece-
wise constant level set method [13] and the reconciled level set
method [14] are several widely used schemes for modeling multi-
ple material phases within the level set framework. In this paper,
the ‘color’ level set method is utilized. Similar to mixing colors
from three primary colors, the ‘color’ level set method uses n dif-
ferent level set functions to represent up to 2" different material
domains. Therefore, the overall effective material property can
be interpolated by assembling the separate constitutive material
together with the help of the Heaviside function of each level set
function.

On the other hand, structures with multiple scales possess
fine-tuned mesoscale filling properties with a low overall den-
sity [15,16,17]. Thus, they can be found in a wide range of engi-
neering applications [18]. In multiscale or hierarchical structure
designing, the key issue is to find the constructing metamateri-
als with tailored properties. Within the level set framework, the
metamaterial designs have covered the topics of designing the
negative permeability metamaterails [19], the negative Poisson’s
ratio metamaterials [20, 21], the electromagnetic metamaterials
[22], the zero/negative thermal expansion metamaterials [23] and
so on. However, only designing the metamaterial to be filled
inside the macroscale structure can not fully explore the poten-
tial of the multiscale structure. Ideally, the mesoscale structures
and the macroscale structures should be designed in a concurrent
manner since the macroscopic loading and boundary conditions
will affect not only the macroscale overall structural layout, but
also the optimal mesoscale metamaterial properties. Sivapuram
et al. [24] developed the concurrent structural topology optimiza-
tion for multiscale structures where the mesoscale metamaterials
have fixed pre-defined locations. Wang et al. [25] proposed the
concurrent design of multiscale structures filled with spatially-
varying graded microstructures to ensure the connectivity be-
tween adjacent mesoscale units. Both Sivapuram’s work with
pre-defined metamaterial locations and Wang’s work with sim-
ilar topological feature metamaterials are all meant to alleviate

the heavy computational cost of introducing too many different
types of metamaterials in different locations. Another approach
for the concurrent design of multiscale structure is proposed by
Li et al. [26], where the density based method is employed in
the macroscale and the level set approach is employed in the
mesoscale. The mesoscale metamaterial is determined by the in-
termediate density generated from the macroscale optimization.
This combination converts the undesired intermediate densities
of the density based approach into an advantage of the entire de-
sign methodology and the numerical examples have verified the
effectiveness of this process.

Conventionally, the level set methods use a virtual velocity
field derived from the sensitivity analysis to evolve the design
boundary [27, 28, 7] and solve the Hamilton-Jacobi partial dif-
ferential equation (PDE) to describe the dynamics of the bound-
ary motion [29]. However, this level set framework faces some
drawbacks [30,31]. A promising solution is to employ the pa-
rameterized level set method [32]. Combined with mathemati-
cal programming and the gradient-based optimizer MMA [33],
introducing multiple design constraints can become straightfor-
ward and the numerical efficiency can be improved. The op-
timal structure generated via parametric level set approach has
also been reported having the advantage of requiring less pre-
fabrication time for additive manufacturing [34], which is a pre-
ferred feature for combining designing with applications. How-
ever, when the radial basis function (RBF) is used in the conven-
tional parametric level set method (PLSM) [30, 35], the upper
and lower bounds for the design variable can not be explicitly
identified. Therefore, in our previous research, a cardinal basis
function (CBF) is proposed [36] to replace the RBF kernel func-
tion. With CBFs, the design variable bounds can be explicitly
set to be the lower and upper bounds of the corresponding level
set function, avoiding the trial and error approach when the RBF
kernel function is used. Moreover, by introducing a distance reg-
ularization energy functional [37] to regularize the shape of the
level set function throughout the optimization process, the level
set function can be maintained a distance-regularized shape for
an accurate material property interpolation. The flat surfaces of
the distance-regularized level set function can stabilize the opti-
mization process and can help to create of new holes [36].

This paper further develops our previous concurrent topol-
ogy optimization of multiscale structures [38, 39] from single
material to multiple materials. The ‘color’ level set method is
utilized for the multimaterial representation. On the macroscale,
the overall structural topology and the optimal corresponding
mesoscale metamaterial properties are optimized simultaneously.
By using the optimal metamaterial properties as targets, a sec-
ond optimization process is carried out to find out the structural
layout with an isotropy constraint [40,41,42]. The structural
topology optimization on both scales are all carried out within
the CBF-based parametric level set method framework. The dis-
tance regularization energy functional is minimized during the
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optimization process to maintain the distance-regularized shape
of the level set functions. After achieving the structural layouts
for both scales, the angle-preserving conformal mapping is em-
ployed to finalize the multiscale structure. The angle-preserving
mapping characteristic and the isotropy of the mesoscale meta-
materials can mathematically ensure the consistency of the ma-
terial properties after the mapping of the multiscale structure.

The remaining paper is organized as follows. In section 2,
the ‘color’ level set method for designing multimaterial struc-
ture is introduced. The CBF kernel functions and the concur-
rent parametric level set function are detailed in section 3. Sec-
tion 4 presents the mesoscale metamaterial design and the multi-
control-point conformal mapping technique used for multiscale
structure finalization. The numerical examples are listed in sec-
tion 5. The conclusions are drawn in section 6.

2 ‘Color’ Level Set Model for Multimaterial Represen-

tation

In the conventional level set representation with a single
level set function, the design boundary is implicitly described
as the zero level of the one dimensional higher level set func-
tion [8, 7]. However, when multiple structure phases are intro-
duced, the number of the level set functions has to increase as
well. With the ‘color’ level set representation, n level set func-
tions can divide the design domain into up to 2" different regions.
The level set functions used can be described as:

Dp(x) >0, (xeQ\Iy)
Q(x) =0, (x€Tly), k=1,...,n, (1)
<I>k(x) <0, (xG D\Qkul“k)

In Eq. 1, ®; denotes the kth level set function and Qy, I’y
represent the region where the kth level set function has positive
value and its corresponding boundary, respectively. D represents
the design domain. The example of identifying different regions
inside the design domain by the sign of the level set function is
illustrated in Figure 1.

With this ‘color’ level set representation, each material
phase can be represented by combining different level set func-
tions together. For example, the elastic tensor of a two-material
structure at a given point x can be expressed as:

D (x,®) = H(®){[1 —H(®2)|D| +H(®2) D} +[1 — H (P )] Dy.

2

In Eq.2, the D represents the interpolated elastic tensor
with two materials. The H(®) is the Heaviside function of the
level set function ®. D; and D, are the elastic tensors of two
different constructing materials.The Dy is a dummy elastic tensor
with a small positive value to avoid singularities. Generally, as

Level Set Function @,
—

Level Set Function @,

(d)

FIGURE 1. The ‘color’ level set representation. (a) The two level set
functions. (b) The sign of level set function 1. (c) The sign of level
set function 2. (d) The combination of two level set functions. In this
research € represents the 1st material phase with boundary I'; and ;
represents the 2nd material phase with boundary I';. The reset regions
are considered as void inside the design domain D.

can be seen from Figure 1, the level set function @, is used to
distinguish the material region from the void region. Next, inside
the material region, the level set function @, is used to determine
whether the given region should have the material property 1 or
2. With this ‘color’ level set, the material property inside the
design domain can be calculated. Although the whole process is
similar to the multimaterial representation of the density-based
approach, the ‘color’ level set scheme can retain the clear design
boundary advantage of the level set methods.

3 Concurrent Macro-scale and Meso-scale Optimiza-
tion with CBF-based Parametric Level Set Method
(PLSM)

With a given kernel function at the jth node as ¥';, the kth
level set functions for multimaterial representation can be param-
eterized into the following form:

Dp(x) = Y WX, k=1,..n. 3)

In conventional parametric level set method, the kernel func-
tion is commonly selected as the RBF. However, with a given
support radius, the neighbouring RBF kernel functions will over-
lap with each other. Therefore, the corresponding weights,
namely L ; in Eq.3, do not have a clear upper and lower bounds.
As the design variables [30], those bounds should be passed to
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the optimizer explicitly. This issue can be solved by construct-
ing the cardinal basis function (CBF) as the kernel function for
the level set function parameterization [36]. The CBF has the
Kronecker delta property as:

‘Pj(xi):{l’ (’:f{;g j=1,..m. @)

When the CBF is used for the level set function parameter-
ization, the corresponding weights will be the upper and lower
bounds of the level set function itself. This explicit bounds can
maintain the numerical stability of the optimizer and avoid the
trial and error approach for guessing those bounds.

Generally, a multimaterial optimization for minimal mean
structural compliance can be formulated as:

Min: J :/l;s(u):D*:e(u)dQ

st.: a (u,v,®)=1I1(v,P)
Voly <Vol, (k=1,...,n)

w < <pg, (i=1,...,m). )

In Eq.5, the €(u) : D* : €(u) represents the stain energy den-
sity of the structure with a elastic tensor D* calculated from the
aforementioned ‘color’ level set multimaterial representation. u
is the displacement field and v is the test function. The kth ma-
terial has the volume of Vol that is constrained by its volume
target Vol,’(. At most, the number of different material phases can
reach to 2". However, in this paper, this is simplified to only
n different phases. The lower and upper bounds for the design
variable i ; can be easily get from the upper and lower bound of
the corresponding level set function. The energy bilinear form
a(u,v,¥) and the load linear form (v, ¥) are detailed as:

a (u,v,®) = /De(u) D" e(u)dQ

[ (v,®) = /r t-vdr. ©)

To calculate the volume for each material phase, the follow-
ing equation can be formulated:

k
Volk:/HH(d>,-)dQ, i=1,n. )
Di=i

This volume fraction formulation can be understood in a
more intuitive way. For example, when 2 level set functions are
used, the total number of potential material phases can reach up

to 22 = 4. However, in this research for simplification, 2 level set
functions are used to only represent 2 material phases:

Vol; = /D H(®)dQ , Vol = /D H(®)H(®,)dQ.  (8)

Here, Vol; is utilized to calculate the total volume and Vol, is
used to calculate one of the two separate material volumes. The
other material volume can be easily achieved by finding the dif-
ference between these two.

When combined with the gradient-based optimizer MMA,
the derivatives of the objective function and the constrains with
respect to the design variable have to be calculated through the
sensitivity analysis [43,44]. By given a pseudo time interval ¢
and considering a two-material structure, the derivative of J in
Eq.5 can be expressed as [45]:

ﬂ
dt

:i(/ gy a1 s (o)

D j=1 D dt

where B* takes the form:

OD(x,®)

ﬁk = —E(M) aq)k

- €(u) (10)

By applying the chain rule, the derivative of the objective
function with respect to the design variables can be expressed as:

aJ L
— = Y .dQ i=1,...m; k=1,2 11
P /Dﬁ dQ, (j=1,..m ) an

Similarly, the derivatives for the volume constraints can be
achieved in a similar manner:

dVol; / .
— [ §(@))WidQ j=1,.., 12
= [@nwae =t a2
dVoly :/5(¢I)H(c1>2)lpjd9 j=1,..m  (13)
duy; D
dvoly :/S(CIDZ)H(CI)l)‘deQ j=1..m (14
d,uzj D

To optimize the material properties of the two constructing
material along with the topology of the entire structure, the ma-
terial properties can be treated as design variables [39]. The cor-
responding derivatives are achieved via the forward finite differ-
ence scheme. In a general form, the derivative of function f at
point x can be defined as:
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f'(x) = lim

h—0

et )= f18) s

An energy functional can be minimized along with the ob-
jective function to maintain the distance-regularized level set
function. The readers can be referred to our previous works
[30,36] regarding the energy functional formulation and deriva-
tives.

4 Formulations for Optimization and Conformal Map-
ping of Isotropic Metamaterials
With the optimal material properties achieved in the previ-
ous stage, in this section, the structural topology optimization of
the metamaterial [39] is introduced. To ensure the isotropy of the
metamaterial, an extra isotropy constraint is included in the least
square optimization statement:

l n

Min: Jmeta = 5 Z(C{}Ikl - Cl*]kl)z
ijkl
s / H(®)dQ < Vol, .36
D

a(u,v,®) =1(v,®)
Ciaia = (CHhy1 +Chhon) /4 — Clina /2

Here the @ is the corresponding level set function for the
metamaterial design. The Cgkl is the homogenized elasticity
tensors with the targets at C;‘jkl. The volume of the metama-
terial is constrained by the volume target Vol;,. The structural
isotropy [46] is ensured when the condition of C},,, = (CH || +
Cl,,) /4 —CH,, /2 is satisfied. With the strain energy method,
the derivatives can be calculated by using the strain energy un-
der different loading scenarios. The details of this process can be
found in [39].

With the optimal overall layout of the multimaterial struc-
ture and the detailed layout of the metamaterials, the multima-
terial, multiscale structure can be formulated by the local shape-
preserving conformal mapping [47]. Some similar works can be
found in [48]. The angle-preserving effect of conformal mapping
can be illustrated as follows. As can be seen from Figure 2, the
pattern on the human face freeform surface in Figure 2(b) still
keeps the angles of the checkerboard from Figure 2(a). That is
to say the properties can be preserved after the mapping when
the boxes are considered as metamaterial unit cells. Below are
some basic information about the multiple control point confor-
mal mapping. Let @ = f(z) : C — C be a complex function on
the plane. Denote:

912,90,
lay,

92~ 2'ax (

where i is the unit imaginary root. Then f is said to be conformal
if

of

5 =0 (18)

Under discrete settings, conformal mappings can be com-
puted by discrete Ricci flow method [49, 50, 51]. Some more
discrete Ricci flow algorithms regarding efficiency and adaptiv-
ity improvements are reported in [52,53]. For further conformal
mapping algorithms, the readers are refereed to [54] for more
information..

The isotropy of the metamaterails will be insensitive to the
rotation caused by the mapping and the angle preserving charac-
teristic will ensure the consistency of the designed metamaterial
properties. When a highly distorted area has to be mapped, the
sharp corners need to be taken care of. By introducing multiple
control points, the adaptivity of the mapping to the area distor-
tions can be improved.

Given a triangular mesh £ = (V,F,E), a face element is de-
noted with corner vertex v;,v; and v by fij, and the angle be-

- = i .
tween rays are denoted as ij and ik by Gl/k. Then the discrete
Gaussian curvature at vertex v; is defined by

2~ cr 0/ ifv¢ oz,
K= e (19)
n_zfijkEF ei] ifV[ € &E,

where dX is the boundary of mesh ¥. Now the discrete Ricci
flow is defined as follows. Given a circle packing metric to X, i.e
on each vertex v; a positive real number is defined as ¥, then the
edge length between vertices v; and v; is [;; = ¥ + ;. With those
parameters, all angles can be calculated in X. Denote u; = log?y;,
then the discrete Ricci flow is defined as

du,’([)_ -
7 = (Ki— Ki), (20)

where k = (K1,K>, ...,K;,)T is the user defined target curvature.

In our case, a conformal mapping from a irregular planar
region to a polygonal region needs to be found such that the inner
angles are either /2 or 37 /2. The polygonal region is filled with
regular metamaterial structures, and then they are mapped back
with the inverse of the computed conformal mapping, which is
also a conformal mapping that preserves local shapes. To realize
this, on the boundary of input mesh dX, multiple control points
W = {wi,wy,...,w;} C JX can be selected based on the need.
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FIGURE 2. The conventional conformal mapping Ricci flow method.
(a) The Checkerboard Pattern. (b) The Freeform Surface.

Then the target curvature on each vertex are defined by:

if v ¢ 9%,
if v € 9T\ W, Q1
—n/2orm/2 ifvieW.

0
k=10

Here K; = 7/2 is chosen if the target polygonal region has a
outward right angle and K; = —7/2 is chosen if the target polyg-
onal region has a inward right angle at point v;. Compared to
Ricci flow method, as shown in Figure 2, which will map the in-
put region to a freeform surface via four control points, the pro-
posed multi-control-point method provides more flexibility with
the benefit of lower area distortion. The detailed information and
the mapping work flow can be found in our recent paper [39].

5 Numerical Results
5.1 MBB Beam

In this section, a multimaterial MBB beam structure is de-
signed under the CBF-based concurrent PLSM framework. The
macroscale topology optimization boundary condition is illus-
trated in Figure 3. A F = 1 force is applied at the lower center
of a 2-by-1 domain with fixed lower corners. The domain is dis-
cretized into 100 x 50 elements. The Young’s modulus of the
soft material is given the range from 0.05 to 0.1 and the hard one
is between 0.15 and 0.2. The initial Young’s modulus values of
the soft material and the hard material are given 0.075 and 0.175,
respectively. The overall material volume is constrained at 60%
and the hard material volume is constrained at 30%. The con-

s l 7
F
FIGURE 3. The Boundary Condition of the MBB Beam Structure
Example

vergence history of the optimization process is shown in Figure
4. The total and the hard material volume for the final design
is 59.995% and 29.995%, respectively. The Poisson’s ratio for
all materials are set to be 0.3. The optimal Young’s modulus
for the soft metamaterial is 0.1 and the hard one is 0.2, respec-
tively. By using these two values as targets, the second topology
optimization is carried out to get the isotropic metamaterial lay-
outs. The Young’s modulus for constructing both metamaterials
is the same at 1. The volume is 30% and 40% for the soft and
hard metamaterial, respectively. A bounding box is introduced
to the metamaterials to ensure the connectivity of the adjacent
metamaterial unit cells. An isotropy polar plot scheme, as shown
in Figure 5, is utilized to illustrate the isotropy of the designed
metamaterials, since it is not practical to hit all the targets in
the least square objective function in Eq.16. The details of this
plot can be found in [39]. By using the conformal mapping, the
mapped MBB beam structure is illustrated in Figure 6. By ex-
porting the conformally-mapped structure as a CAD model and
send it into FEA package, the actual structural performance can
be calculated as 86.29, compared with 72.3939 in Figure 4. For
more details about exporting the CAD model and the FEA anal-
ysis, the readers are referred to our further journal version of this

paper.

5.2 Michell-type Structure

In this section, the Michell-type structure is designed with
the boundary condition shown in Figure 7. With the same op-
timization setting, the structure topology optimization is carried
out with the total volume constraint of 80% and the hard material
volume constraint of 40%. The evolution of the design is shown
in Figure 8, with the optimal Young’s modulus of 0.1 and 0.2
for the soft and hard metamaterial, respectively. The final struc-
ture has the total volume of 80% and the hard material volume
is 39.992%. The corresponding conformally mapped multiscale
structure is shown in Figure 9. The corresponding FEA verifica-
tion calculates the actual total strain energy as 121.42, compared
with 102.5102 shown in Figure 8.
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FIGURE 4. The Evolution History of the MBB Beam Structure Ex-
ample. (a) The Evolution History of the First Zero-Level Set Function.
(b) The Evolution History of the Second Zero-Level Set Function. (c)
The Evolution History of the Actual Multimaterial Structure. Red: Soft
Material. Green: Hard Material.

Unit Cell of the
Soft Metamaterial

Young’s M(g;iulus =0.1 (b)
.
0.5/
> 0
Unit Cell of the 05
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Young’s Modulus = 0.2 LR

(©) d)

FIGURE 5. Metamaterials and their isotropy plot. (a) The Soft Meta-
material. (b) The Isotropy Polar Plot of the Soft Metamaterial. (c) The
Hard Metamaterial. (d) The Isotropy Polar Plot of the Hard Metamate-
rial. (Red: Reference Standard Circle. Blue: Isotropy Polar Plot of the
Current Metamaterial.)

5.3 Short Cantilever Beam

In this section, the short cantilever beam structure is de-
signed within a 1-by-1 design domain discretized into 50 x 50
elements. The boundary conditions are shown in Figure 10. The
material property settings and the topology optimization settings
are kept the same as the previous ones. The total volume con-
straint is 80% and the hard material volume constraint is 40%.

3

Unit Cell of the
Soft Metamaterial

Unit Cell of the
Hard Metamaterial

.

(54 1)

)
Y Y

Optimized Design with
Conformally Mapped Metamaterials

FIGURE 6. The Optimized MBB Beam Structure with Conformally
Mapped Hard (Red) and Soft (Green) Metamaterials.

R T

5 >

FIGURE 7. The Boundary Condition of the Michell-type Structure
Example

190 Final Objective = 102.5102; Toal Vol = 0.8; Hard Vol = 0.39992;Soft E = 0.1; Hard E = 0.2
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FIGURE 8. The Evolution History of the Michell-Type Beam Struc-
ture Example. (a) The Evolution History of the First Zero-Level Set
Function. (b) The Evolution History of the Second Zero-Level Set Func-
tion. (c) The Evolution History of the Actual Multimaterial Structure.
Red: Soft Material. Green: Hard Material.
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FIGURE 9. The Michell-type Structure with Conformally Mapped
Hard (Green) and Soft (Red) Metamaterials.

v F

FIGURE 10. The Boundary Condition of the Short Cantilever Beam

The evolution of the design is shown in Figure 11. The final de-
sign has the total volume of 79.972% and the hard material vol-
ume of 39.989%, together with the optimized Young’s modulus
of 0.1 and 0.2 for the soft and hard metamaterial, respectively.
The corresponding conformally mapped multiscale structure is
shown in Figure 12. The corresponding total strain energy for
the conformally-mapped structure is calculated as 71.12 in FEA,
compared with 67.7091 as shown in Figure 11.

6 Conclusions

In this paper, a concurrent CBF-based PLSM topology opti-
mization framework is proposed to design multimaterial hierar-
chical structures. With the ‘color’ level set representation, mul-
tiple material phases can be discriminated inside the design do-
main. By using the CBF kernel function, the explicit design vari-
able bounds can be passed to MMA. The proposed approach can
handle multiple constraints in a straightforward manner. With the
help of the local shape-preserving conformal mapping with mul-
tiple control points, the designed metamaterial properties can be
mathematically preserved after the mapping when the isotropic
metamaterials are used. The FEA analysis results verify the

Final Objective = 67.7091; Toal Vol = 0.79972; Hard Vol = 0.39989;Soft E = 0.1; Hard E = 0.2
]

120
. / \

60 !
0 10 20 30 40 50 60 70
Iteration

-
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©
o
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3
=]

FIGURE 11. The Evolution History of the Short Cantilever Beam
Structure Example. (a) The Evolution History of the First Zero-Level
Set Function. (b) The Evolution History of the Second Zero-Level Set
Function. (c) The Evolution History of the Actual Multimaterial Struc-
ture. Red: Soft Material. Green: Hard Material.

o

Unit Cell of the
Soft Metamaterial

Unit Cell of the
Hard Metamaterial

Optimized Design with
Conformally Mapped Metamaterials

FIGURE 12.  The Short Cantilever Beam Structure with Conformally
Mapped Hard (Green) and Soft (Red) Metamaterials

high fidelity of the proposed mapping scheme. Therefore, the
designing-mapping-manufacturing process is concluded.
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