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Abstract
Based on mesh deformation, we present a unified mesh parametrization algorithm for both planar and spherical domains. Our
approach can produce intermediate frames from the original meshes to the targets. We derive and define a novel geometric flow:
‘unit normal flow (UNF)’ and prove that if UNF converges, it will deform a surface to a constant mean curvature (CMC) surface,
such as planes and spheres. Our method works by deforming meshes of disk topology to planes, and spherical meshes to spheres.
Our algorithm is robust, efficient, simple to implement. To demonstrate the robustness and effectiveness of our method, we apply
it to hundreds of models of varying complexities. Our experiments show that our algorithm can be a competing alternative
approach to other state-of-the-art mesh parametrization methods. The unit normal flow also suggests a potential direction for
creating CMC surfaces.

Keywords: mesh parametrization, deformation, constant mean curvature, rotation, unit normal flow

1. Introduction

In this paper, we present a simple and novel algorithm of planar and
spherical mesh parametrization. Our methodology is not the same
as previous ones: we do not compute a direct embedding of a mesh
onto a planar or spherical domain. Instead, we deform it towards a
planar and spherical shape. Our method unifies planar and spherical
mesh parametrization into a single framework, which consists of
the iterations of two steps alternately: averaging face normal and
deforming the surface. For meshes of disk or spherical topology,
they converge to planar or spherical shapes automatically during
the iterations. Figures 1, 2 and 3 demonstrate the deformations
and their planar and spherical parametrizations, respectively. Our

approach produces locally injective mappings in general, although
no theoretical proof is given. Our method works by evolving the
normal of vertices, which leads to the updating of the positions.

The design methodology of major parametrization algorithms
in research community obtains the mapping by minimizing some
kinds of energies, which are often based on the measurements
of angle or area distortions. The conformal and area-preserving
parametrizations are computed separately. Then themixed result can
be achieved by combining them. Although conformal mapping can
preserve angles, it results in huge local area distortion, and the area-
preserving one makes shapes twisted. The ideal solution to textur-
ing applications should have both smaller area and angle distortions
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(a) (b) (c) (d) (e) (f)

Figure 1: The Buddha model deforms to a planar mesh.

(a) (b) (c)

(d) (e) (f)

Figure 2: (a) Texturing; (b) original mesh; (c,d,e) intermediate
deforming frames; (f) final planar mapping.

simultaneously. How to balance these two kinds of distortion is a
complicated problem. Intuitively, the balance should be determined
by the shape of a surface locally and globally.

Our algorithm works as follows. First, we compute the new nor-
mal of every point by averaging the normals of its neighbours.
Secondly, we reconstruct a surface which fits the current normals.
By alternating these two steps, we get a heat-like geometric flow
on surfaces, which we call the ‘unit normal flow (UNF)’. Honestly,
in this paper, we do not give a proof of convergence of unit normal
flow.What we prove is, on a smooth surface, ‘if’ the flow converges,
it will produce a constant mean curvature (CMC) surface, such as
a plane or a sphere. This observation guides the design of our al-
gorithm. Our experiments on hundreds of discrete meshes support
our claim that, as far as sphere and plane are concerned, the flow
can converge.

A surface must have CMCs on every point in order to be a CMC
surface. Given a non-CMC surface, our unit normal flow deforms it
to a CMC surface gradually. Every step of unit normal flow can be
viewed as a special smoothing operation. Yet it is very different from
the mean curvature flow and Willmore flow. It is well known that
mean curvature flow has singularities [CMI12], therefore it needs to
bemodified to avoid the singularities in every step [KSBC12]. How-
ever, our normal flow–based algorithm has not got any singularity
in our extensive experiments.

The most important application of planar parametrization is tex-
ture mapping. An example of our approach is exhibited in Figure 4.

Orignal(a) steps13(b) steps315(c)

steps665(d) steps3795(e) sphereFinal(f)

Figure 3: The deformation of Bimba model and its spherical
parametrization.

(a) (b) (c)

Figure 4: The texturing of the Buddha model.

We first render the planar mesh shown in Figure 1(f) using the
normals of the original 3D mesh; Then we draw textures on the
rendered image; Finally, the textured 3D mesh is exhibited. In our
attached video, we also show the special effect of two-dimensional
foil described in the science-fiction books [Liu14, Liu15, Mor17].

In summary, the contributions in this paper are: (1) defining
a novel geometric flow on surfaces: UNF; (2) establishing and
deriving the relationship between UNF and CMC surfaces; (3)
proposing a robust, simple-to-implement algorithm to discretize and
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Table 1: Five kinds of distortions.
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Table 2: The number of iterations in case of ring size of 2, 10, 24 and 50;
F = Flip.

Model #Faces Iter(2) Iter(10) Iter(24) Iter(50)

BallABF 1k 110 38 F F
Oni 3K 1481 97 F F
Hand 7k 262 103 F F
Bimba 11k 237 151 62 16
Moai 16k 226 155 70 20
MaxPlanck 84k 267 238 199 126
Slime 103k 186 154 126 78
Mannequin 109K 253 225 185 115
Superman 190k 252 201 167 107
Bear 296k 205 162 143 116
Buddha 471k 191 157 130 111

approximate the non-linear UNF; (4) applying the algorithm in the
application of planar and spherical mesh parametrization. Further-
more, our method has a special feature of mapping the selected
partial parts of meshes onto a plane and keeping the remaining parts
unchanged. Instead of computing positions directly, we work with
a new quantity called: unit normal field.

2. Related Work

Parametrization of triangle meshes is a problem with a long history
in computer graphics. Due to the abundance of literature on mesh
parametrization, wewill focus on the approaches which are themost
relevant to ours. For in-depth surveys, we refer to [FH05, SPR*07].

By fixing the boundary of a topological disk mesh to a convex
shape, the linear method [Flo03] produces bijective parametriza-
tion, but with huge angle and area distortion. The free-boundary
linear conformal methods [Flo03, DMA02, LPRM02, BCGB08,
MTAD08] fail in guaranteeing to have a bijective map. Non-linear
methods which minimizes the energies of conformal or isometric
distortion [SdS01, CPSS10, SS15, APL14, LZ14, FLG15] cannot
handle large models. In contrast, every step of our method solves
a linear system. The local–global approach [LZX*08] is similar to
ours. However, their iterations only works on two dimensions and
produces a lot of flipped faces. On the contrary, our method itera-
tively deforms meshes in 3D space and has no flips in practice. The
recent method [LYNF18] requires an initial bijective mapping as
starting step.

Some of injective [APL14, AL13, SKPSH13, FLG15, SS15,
RPPSH17, LGZ*16] and bijective [JSP17, SS15] mapping algo-
rithms work either through a flip-less initialization or by enforcing
a low bounded distortion. These methods need complicated and
non-linear computation to guarantee injectivity or bijectivity. Our
approach builds locally injective mappings automatically in most
cases. For a few of complicated shapes, our mappings are locally
injective and there are overlaps. However with a simple interactive
initialization, we can adjust these injective mappings to be bijective.

The planar mapping algorithms in [JKLG08, Luo04, ZLG*18,
SSP08] are founded on Ricci flow, Calabi flow, Yamabe flow, re-
spectively. These methods work on metric space and are intrinsic,
in contrast, our algorithm is extrinsic and can produce in-between
embedding. Optimal mass transport (OMT) based area-preserved
algorithms are proposed in [SCL*16, SCQ*16, SCL*17], and the
method in [YLZG18] can balance the area-preserved and angle-
preserved mapping. However, these methods need to solve a non-
linear Monge–Ampere equation.

For spherical parametrizations, the most related algorithms are
modified mean curvature flow (cMCF) [KSBC12] and conformal
Willmore flow [CPS13]. Mean curvature flow updates the positions
of surface points gradually byminimizing the gradient of the surface
embedding or the surface area [KSBC12, Tau95, DMSB99, Cho93,
PP93]. They are usually used in the applications of mesh smoothing

(a) (b) (c) (d) (e) (f) (g)

Figure 5: Images in (a) are the original meshes; (b,c,d,e) are intermediate deforming meshes; (f) are the final planar parametrizations and
(g) are the texturings. The meshes of ‘doghead’ and ‘linkedring’ have the number of faces of 4318, 100 000, respectively.

c© 2019 The Authors
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Table 3: The distortions by the fixed and updated Laplacian matrice; (Fix) denotes the fixed Laplacian matrix.

Model AreaSum EdgeSum AngleSum Symm Dirichilet Conformal AMIPS2D ASAP ARAP Green–Lagrange

Buddha 0.30 0.20 2.72*105 2.35*106 1.04*106 0.22 0.21 1.11
Buddha(Fix) 0.56 0.33 1.45*104 4.72*106 9.41*105 5.36*10−4 0.32 1.17
Hand 0.89 0.63 6.76*103 1.89*106 2.41*104 1.06 1.34 16.54
Hand(Fix) 1.38 1.02 5.36*103 1.28*1011 1.36*104 0.01 1.67 11.70
Santa 0.84 0.63 1.57*105 6.89*107 5.42*105 2.10 2.19 79.93
Santa(Fix) 1.43 1.06 1.38*105 2.96*1027 2.74*109 9.00*10−4 1.74 13.82
Slime 0.35 0.29 5.18*104 5.59*106 2.27*105 0.24 0.24 1.34
Slime(Fix) 0.66 0.43 2.47*103 1.81*106 2.06*105 3.34*10−4 0.39 1.41
Torso 0.68 0.55 8.55*104 6.44*106 2.91*105 1.46 1.47 28.11
Torso(Fix) 1.17 0.87 9.38*103 1.25*106 1.87*105 9.55*10−4 1.31 8.07

Table 4: Timing of our planar mapping algorithm.

Model Faces Iteration Time (s) Vertices

Bimba 11k 26 1.089 6k
Beetle 39k 14 1.777 20k
MaxPlanck 85k 29 8.458 42k
Gargoyle 99k 57 18.178 50k
Bunny 100k 45 15.375 50k
NicoloDaUzzano 100k 17 5.599 50k
Mannequin 109k 27 9.119 55k
Surperman 190k 25 15.144 96k
Bear 296k 21 19.31 148k
Buddha 471k 20 30.657 236k

and minimal surfaces. This flow has singularity and only some sim-
ple convex surfaces can converge [H*84]. The cMCF updates the
metric of the surface in every step and avoids singularity so that it is
stable. In [CPS13], they design a special Willmore flow: conformal
curvature flow. This flow runs in curvature space. Their ‘change
of variables’ methodology is similar to ours. [HFL18] decimates
meshes to obtain bijective isometric spherical mappings. In con-
trast, ours is deformation based. In [WLL14], the authors propose
a spherical parametrization which extends the planar As-Rigid-As-
Possible (ARAP) method, however this algorithm leads to flips in
high curvature sections.

The value of mean curvature of every point on a CMC sur-
face [Kap90, XZ08, Ren15] is constant. Minimal surfaces [XPB06,
PP93] are special CMC surfaces whose mean curvature value is
zero. Normally, CMC surface is constructed by minimizing the sur-
face area under the fixed volume constraints [Bra92, PR02, DH06,
Ren15], where a non-linear optimization needs to be solved. The
algorithm [PCL*12] creates a CMC mesh from an existing one,
however it changes the connectivity of the input mesh. Our method
keeps the mesh connectivity unchanged.

Gauss map diffusion (or spherical harmonic flow) is discussed
in [PKC*16], and normal field filtering is also exploited in [Tau01,
YOB02, TWBO02, TWBO03, SRML07, ZFAT11]. However, they
are only used in the application of mesh smoothing and denoising.
Here, we apply the flow to the mesh parametrization. The method
in [ZLJW06] maps one source surface directly to another target sur-

face of the same genus without the intermediate planar or spherical
domain, but it cannot guarantee that all source vertices lie on the
target surface.

Poisson system-based deformation [YZX*04] is a well-known
geometry modelling technique. After the rotations of the trian-
gle faces are known, they can be rotated into the new orienta-
tions, then a Poisson system is used to blend the triangles together
and reconstructs a new shape. The rotations can be achieved by
the interpolation from two corresponding meshes [XZWB06] or
from the rotations of the constraint faces [ZRKS05]. For the ap-
plication of mesh deformation [ZG16], a local–global method is
used to compute the optimal rotations. In polycube construction
[ZLL*17], the rotations are calculated according to the correspond-
ing polycube face normals. Our algorithm also relies on this kind of
methodology, however we compute the rotations by averaging face
normals.

3. Unit Normal Flow

Our motivation is to deform surfaces by the following observa-
tion, that the derivatives of surface normals with respect to time
should be equal to the Laplacians of the normals. In this section,
we define the ‘UNF’ mathematically. This flow is different from
the well-known mean curvature flow [KSBC12], averaged mean
curvature flow [XPB06], Willmore flow [BS05, WBH*07], Ricci
flow[JKLG08] and surface diffusion flow [SK01, XPB06]. All these
kinds of flows can bemodelled as geometric partial differential equa-
tions (PDEs) [XPB06, XZ08]. As far as we know, this is the first
time that this definition appears in the mathematical and graphical
research literature.

Let S be a smoothly immersed surface in R
3. Let g be the metric

on S restricted from R
3. Let n be the smooth unit normal vector

field on S. Denote 〈, 〉 as the inner product and �gn as the Lapla-
cians of the unit normals. The formal definition of ‘UNF’ is the
following:

dn

dt
= �gn − 〈�gn, n〉 · n. (1)

Notice that the norm of n is preserved under this flow, since
d

dt 〈n, n〉 = 〈n, d

dtn〉 = 〈n,�gn〉 − 〈n, �gn〉 = 0.

c© 2019 The Authors
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 6: Images in (a) are the original meshes; (b,e,c,f,g,h) are the intermediate deforming meshes; (i) are the convergent shapes; (j) are
the final normalized spherical parametrizaitons. Octupus, memento and dragon have the faces of 497 236, 99 932, 105 298, respectively.

Figure 7: The area-weighted average.

(a) (b) (c)

Figure 8: Image (a) is the original spherical pear mesh; (b) is the
deformed result by area-weighted average; (c) is the deformed result
by the simple average at the same number iteration with (b).

Lemma1. If the Laplacians�gn of the unit normal field n is parallel
to n, i.e. �gn//n, then the mean curvature H of S is constant.

Proof. We prove it with a local calculation.

Use an isothermal coordinate r(x1, x2) for S. Let z = x1 + ix2.
Write

∂

∂z
= 1

2

(
∂

∂x1
− i

∂

∂x2

)
,

∂

∂z̄
= 1

2

(
∂

∂x1
+ i

∂

∂x2

)
.

Let g = λ2((dx1)2 + (dx2)2) be the metric of S under the isothermal
coordinate. Define

� = 〈rzz, n〉.

Here, rzz is a shorthand for ∂2r

∂z2
.

The vectors {rz, rz̄, n} form a local frame of R3 on S. The next
step is to calculate its equations of motion. Notice that

〈rz, rz〉 = 〈rz̄, rz̄〉 = 0.

Therefore,

〈rzz, rz〉 = 〈rzz̄, rz〉 = 〈rzz̄, rz̄〉 = 〈rz̄z̄, rz̄〉 = 0.

On the other hand,

〈rz, rz̄〉 = 1

2
λ2.

Therefore,

〈rzz, rz̄〉 = λ λz.

c© 2019 The Authors
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(a) Original (b) Convergent shape (c) Normalized sphere

Figure 9: The convergent and normalization of the spherical de-
formations. Images in (b) are the convergent shapes of unit normal
flow and (c) are the normalized spheres.

(a) 1 (b) 17 (c) 29 (d) 81 (e) 100

Figure 10: The planar mapping and texturing of the same model
by the ring size of 1, 17, 29, 81 and 100, respectively.

Notice that the mean curvature

H = −1

2

(
1

λ2

〈
∂r

∂x1
,

∂n

∂x1

〉
+ 1

λ2

〈
∂r

∂x2
,

∂n

∂x2

〉)

= − 2

λ2
〈nz, rz̄〉

= 2

λ2
〈n, rzz̄〉.

(a) (b) (c) (d)

Figure 11: Image (a) is the original model; (b,c,d) are the interme-
diate deforming meshes at the iteration step of 200 for the ring size
of 3, 10 and 20, respectively.

Figure 12: The number of iterations decreases when the ring size
gets bigger.

By the definition of �,

〈nz, rz〉 = −〈n, rzz〉 = −�.

Combining the identities above, one has
⎧⎨
⎩

rzz = 2
λ
λzrz + �n

rzz̄ = λ2

2 Hn

nz = −Hrz − 2
λ2

�rz̄.

Let g denote the metric. Notice that for any function f on S,

�gf = 1√
det g

∂

∂xj

(
gjk

√
det g

∂f

∂xk

)

= 4

λ2
fzz̄.

Therefore,

�gn//n ⇒ nzz̄//n ⇒ −Hz̄rz − λ2

2
H 2n −

(
2�

λ2

)
z̄

rz̄

− 2

λ2
�

(
2

λ
λz̄rz̄ + �n

)
//n ⇒ Hz̄ = 0

⇒ H is a constant.

�
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Figure 13: The mapping qualities of different ring sizes of the
superman mesh.

(a) (b) (c) (d)

Figure 14: The planar mapping and texturing of four multi-
boundary meshes.

By Lemma 1, the critical point of UNF Equation (1) leads to a
CMC surface.

The proof of the singularity, existences, uniqueness and conver-
gence of the solution of the UNF of surfaces will be investigated in
our future study. They are still open problems. However, we prove
this mathematics fact: ‘if the UNF converges to a stable surface,
the surface is a CMC surface.’ Experimentally, we demonstrate that
the flows converge on most of discrete meshes of disk or spheri-
cal topology.

4. Our Algorithms

Motivated by Lemma 1 for UNF and the following ‘Hopf’ theorem,
we design a simple, elegant and practical algorithm for planar and
spherical mesh parametrization.

Theorem 1 (Hopf). Every closed immersed CMC surface of genus
0 in R3 is a round sphere.

(a) (b) (c)

(d) (e) (f)

Figure 15: The red arrows represent the natural face normals on
the boundary of the original mesh (a) and the green ones are the
normals we assigned; (d,e and f) are the deforming meshes by red
normals; (c) is the planar mesh deformed by the green normals. The
texturing is exhibited in (b).

(a) (b) (c) (d) (e)

Figure 16: Image (a) is the original mesh cutted; (b and c) are
the injective mapping and its texturing; (d and e) are the bijective
mapping and its texturing.

The UNF we defined in Equation (1) is a highly non-linear equa-
tion with respect to the position, which is hard to solve numerically
in this format. In order to solve this issue, we propose and use
the ‘change of variable’ strategy which has also been applied in
[CPS13]. That is, our algorithms do not compute the positions di-
rectly. Instead, we solve the current unit normal field in the first
place, and then reconstruct the geometry of the surface from it.

We approximate the smooth unit normal field n by the discrete
face normal field. Our UNF updates face normals instead of vertex
normals in every iteration.

The key point is the discretization of the Laplace operator. In
graphics community, the well-known cotangent Laplace operator
[PP93] is used for functions defined on the vertices of meshes.
Therefore, it cannot be used for our face normals. In this paper, we
propose a simple method to approximate the Laplacian operator of
normal functions defined on faces by the following formula:

�dni(t) =
∑

j∈Neighbour(i)
nj (t) − ni(t) ≈ �gn(t), (2)

where nj (t) denotes the unit normal of face i at time t, �dni

represents the normal under the discrete Laplace operator, the

c© 2019 The Authors
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(a) (b) (c) (d)

Figure 17: Images (a) and (b) are the planar mappings and corre-
sponding texturings by updating Laplacian matrix; (c) and (d) are
by fixing Laplacian matrix.

Neighbour(i) denotes the neighbours of the face i, which includes i
itself. Then the new normal at time t + 1 is computed like below:

ni(t + 1) = �dni(t) + ni(t) =
∑

j∈Neighbour(i)
nj (t). (3)

Our flow is defined on ‘unit’ face normals. Even though face nor-
mals ni have unit length, �dni are not guaranteed to be unit; we
need to normalize it. In practice, the faces in Neighbour(i) are not
constrained to be one-ring neighbours, k-ring neighbours can also
be used.

If we use the area-weighted average, then the flow will fail in
our experiments. The intuitive reason is that the centre of the area-
weighted average maybe not fall inside the face. For example, in
Figure 7, the average normal of neighbours of red face is not located
inside the red face. In Figure 8, we demonstrate the success of the
simple average over the area-weighted average.

After the new face normals are computed in every step, we rotate
all triangle faces from their old orientations to the current ones in-
dependently. However, the result triangle soup is not a valid mesh.
We use the Poisson system–based method [ZLL*17, ZG16] to re-
construct a valid manifold triangle mesh. This step can be regarded
as solving a system of the unknown positions from the known nor-
mal variables.

Let S be the original surface and S ′ be its deformed surface em-
bedded in three dimension. We denote a 3-vector xv be the position

(a) (b) (c) (d) (e) (f)

Figure 18: Images (a) and (b) are the parametrization and texturing
of scalable locally injective mappings (SLIM) [RPPSH17]; (c, d)
are of the results of our unit normal flow by fixed Laplacian matrix;
(e, f) are the ones by updated Laplacian matrix.

(a) (b) (c) (d) (e) (f)

Figure 19: The CMC-like surfaces generated by unit normal flow.
The radii and heights of the cylinders are (10,10), (10,15), (10,20),
(10,30), (10,40), (10,50), respectively.

associated with vertex v of S, and a 3-vector x ′
v with vertex v of S ′.

On every triangle of themesh, we define one rotationmatrix variable
referred to asR(t). Let hevw represent the half-edge from vertex v to
w. We denote the angle of the corner opposite to the half-edge hevw

in its triangle as avw . Finally, R(tvw) represents the 3 × 3 rotation
matrix associated with the triangular face whose half-edge is hevw .

After fixing a vertex, we can obtain the unknown position vari-
ables x ′ by solving a single linear system as follows [LZX*08,

c© 2019 The Authors
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(a) (b) (c) (d)

Figure 20: The half-sphere and unit disk (a) are assigned three
different set of boundary face normals; (b), (c), (d) show their cor-
responding convergent shapes.

Table 5: The distortions of our method (UNF), cMCF [KSBC12] and con-
formal Willmore flow [CPS13].

cMCF Willmore Our method

AreaMean 2.08*10−5 2.09*10−5 2.38*10−5

EdgeMean 1.01*10−5 1.01*10−5 9.56*10−6

AngleMean 0.04 0.14 0.12
Symmeric Dirichlet 4.18*109 3.7*109 5.79*107

Conformal AMIPS 2D 5.72*104 6.03*104 6.14*104

ASAP 7.31*10−4 0.10 0.04
ARAP 0.46 0.52 0.48
Green–Lagrange 1.07 1.62 1.77

CPSS10, ZG16]:∑
w∈N (v)

[cot(avw) + cot(awv)]
(
x ′

v − x ′
w

)

=
∑

w∈N (v)

[
cot(avw)R(tvw) + cot(awv)R(twv)

]
(xv − xw).

(4)

By defining the 3-vector at vertex v as:

bv :=
∑

w∈N (v)

[
cot(avw)R(tvw) + cot(awv)R(twv)

]
(xv − xw), (5)

we can rewrite the above system into matrix format as

Lx ′ = b, (6)

where L is the n-by-n Laplacian matrix, x ′ and b are n-vectors
of 3-vectors.

Given two unit normals, the rotation matrix R(t) between them
can be computed by the algorithm of Rodrigues’ rotation formula.
We solve Equation (6) by fixing the position of one vertex.

In summary, our algorithm consists of two steps. In the first step,
we average the unit face normals, and in the second step, we deform
or reconstruct the surface by the constraints of the current unit face
normals. After applying these steps, we get a new mesh which is

Table 6: The distortions of our unit normal flow (UNF) method and SLIM [RPPSH17]. UNF and UNF(fix) denote the updated and Fixed Laplacian matrice,
respectively.

Model Method Area Mean Edge Mean Angle Mean Symm Dirichlet Conformal AMIPS ASAP ARAP Green–Lagrange

Bimba(11k) SLIM 4.76*10−5 2.65*10−6 0.42 8.51*104 3.48*104 1.47 1.12 13.76
UNF(Fix) 9.89*10−5 5.65*10−5 0.03 5.71*106 2.26*104 1.45*10−3 1.23 3.90
UNF 6.21*10−5 3.26*10−5 0.31 1.58*105 3.06*104 1.19 1.25 17.71

Bunny(100k) SLIM 3.85*10−6 2.46*10−6 0.47 7.67*105 3.24*105 1.31 0.90 9.19
UNF(Fix) 1.05*10−5 4.58*10−6 0.09 1.21E+11 2.00*105 6.68*10−4 0.96 4.13
UNF 5.50*10−7 2.69*10−6 0.35 9.24*106 2.93*105 0.80 0.78 6.71

Buddha(471k) SLIM 5.1*10−7 2.6*10−7 0.20 2.22*106 1.04*106 0.22 0.17 0.81
UNF(Fix) 1.18*10−6 4.6*10−7 0.01 4.68*106 9.41*105 4.94*10−4 0.31 1.06
UNF 6.2*10−7 2.8*10−7 0.18 2.32*106 1.03*106 0.19 0.19 0.92

Table 7: The distortions of our method (UNF), cMCF [KSBC12] and harmonic spherical mapping [GWC*04].

Model Method Flip Area Mean Edge Mean Angle Mean Symm Dirich Conformal AMIPS2D ASAP ARAP Green–Lagrange

flow(29k) UNF 0 2.38*10−5 9.56*10−6 0.12 5.79*107 6.14*104 0.04 0.48 1.77
cMCF 0 2.09*10−5 1.01*10−5 0.04 4.22*109 5.72*104 8.03*10−4 0.46 1.08
Harmonic 1584 2.21*10−5 8.60*10−6 0.27 2.31*1010 3.60*105 0.14 0.45 1.87

armadillo(60k) UNF 0 1.95*10−5 8.66*10−6 0.23 9.81*106 1.43*105 0.10 1.20 6.00
cMCF 0 1.90*10−5 1.04*10−5 0.13 1.56E+12 1.21*105 7.09*10−4 1.24 3.77
Harmonic 7897 1.82*10−5 8.99*10−6 0.50 1.35E+12 1.74*106 0.11 1.19 5.62

bimba(100k) UNF 0 1.16*10−5 3.88*10−6 0.23 1.29*106 2.29*105 0.56 1.39 34.92
cMCF 0 1.26*10−5 4.53*10−6 0.02 2.23*106 2.00*105 2.87*10−3 1.14 9.10
Harmonic 0 9.50*10−6 3.74*10−6 0.42 6.16*106 4.94*105 1.99 2.02 56.14

c© 2019 The Authors
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 21: The first and third columns are the original meshes, the
second and fourth columns are the convergent CMC-like surfaces.
The radii and heights in (e), (g), (i), (k) are (10,120), (10,160),
(10,200), (10,300).

(a) (b) (c) (d)

Figure 22: Images in (a) and (c) are the original meshes; (b) and
(d) are the convergent CMC-like surfaces.

smoother than the previous one. These two steps are carried out
alternatively until the flow converges and the shape of the mesh
does not change anymore. In every iteration step i, we recompute
the rotation matrix Ri(t) by averaging the face normals. With the
new Ri(t), we update Li and bi . The iteration could be written as

Lix
′
i = bi . (7)

For small meshes, our algorithm converges quickly in a few iter-
ations. But for larger ones, it needs several thousand steps. In the
planar case, we speed up the algorithm by computing the average
normals of all triangular faces and add it to the average results when
updating the normals, as shown in Equation (8). The bigger the
parameter weight, the faster the convergence. However for meshes

(a) (b) (c) (d) (e)

Figure 23: The CMC-like surfaces generated by unit normal flow.
The top and bottom radii and heights of the cylinders are (10,20,20),
(10,15,20), (10,15,30), (10,15,40), (10,15,50), respectively.

Figure 24: The spheric mapping of cMCF (the second row), har-
monic (the thrid row) and UNF methods (the fourth row).

of bad quality, a big weight will lead to flipped faces. In practice,
we set it to 0.02. Surprisingly, this simple method decreases the
needed number of iterations to roughly a dozen for large meshes.
The experimental details are exhibited in the next section.

�dni =
∑

j∈Neighbour(i)
nj + weight ×

∑
k∈AllFaces

nk. (8)

After the flow converges, we need to do some post-processing.
For planar parametrizations, the convergent mesh probably does not
fall on a perfect plane. We rotate it and align the average normal

c© 2019 The Authors
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(a) (b) (c) (d) (e) (f) (g)

Figure 25: The deforming comparison of our method (the first row), cMCF [KSBC12] (the second row) and conformal Willmore flow [CPS13]
(the third row).

of all triangle faces to Z-direction, then project it onto the XY plane
to obtain their texture coordinates. And for spherical mappings, the
convergent shapes are not perfect spheres as well. So we need to
normalize the shapes, as exhibited in Figure 9. We first compute the
mean centre position C of all vertices. Then the average distance
R between all vertices and the mean centre C are calculated. Fi-
nally, the normalized position p′

i of the vertex i is computed by the
following formula:

p′
i = (pi − C) ×

(
R

‖pi − C‖
)

. (9)

5. Experiments

To demonstrate the efficiency and robustness of our algorithm, we
apply our algorithm to hundreds of challenging meshes of disk
and spherical topology, summarize its performance and compare
with other methods. All the demonstrations shown in this paper
are locally injective. We ran our experiments on a 12-core Xeon
clocked at 2.7 GHz, using the Eigen solver [GJ*10] as the linear
system solution.

In the graphics literature, there are several common definitions of
mapping distortions [LZX*08, RPPSH17, FLG15, ZMT05]. ARAP
and symmetric Dirichlet (SD) are two well-known isometric mea-
surements.While the zoo of conformal energies include As-Similar-

As-Possible (ASAP), conformal AMIPS (cAMIPS) and Green–
Lagrange (GL). Denote σ1, σ2 as the two singular values of the
triangle mapping, At as the area of triangle t, then these five kinds
of measurements are summarized in Table 1.

Besides these five kinds of distortions, we also calculate the
change ratios of areas, edges and angles. We use the extensive
experimental results to justify the robustness, applicability and per-
formance of our method.

5.1. The ring size of neighbours

The size of the neighbouring area in our algorithm affects the con-
vergence speed. The number of iterations decreases quickly when
the ring size enlarges. The relationship is illustrated in Figure 12.

However, when the number of rings is bigger than a certain thresh-
old, the mapping will not be flip-free. This value is not fixed and
depends on the shape and size of the mesh. We list the statistics
of iterations for several meshes with varying representative sizes in
Table 2.

The mapping quality does not change dramatically with the ring
size, as shown in Figure 13. Therefore, we have a wide and stable
spectrum for the ring size parameter. This fact makes our algorithms
practical and we do not need to tweak the parameter for every mesh.

c© 2019 The Authors
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(a) (b) (c) (d) (e) (f)

Figure 26: The centre faces in the original meshes (a) are selected and kept unchanged in our deformation; (f) exhibits the final partial
planar mesh mapping.

According to our extensive experiments on hundreds of meshes,
the above parameter works successfully for most of them. Further-
more, we can always obtain flip-less parametrization by shrinking
the neighbourhood in practice if the parameter fails in a few cases.
Figures 11 and 10 exhibit the effects of ring size for the meshes
of spherical and disk topology, respectively. In most of cases, disk
meshes can converge by dozens of iterations and the spherical ones
needs thousands of steps. We recommend the following empirical
values for the ring size:

ring =
⎧⎨
⎩
5 faces < 1000
10 faces < 10 000
20 faces ≥ 100 000.

5.2. Disk topology

We demonstrate our mapping and corresponding texturing of disk-
topology meshes with a single boundary in Figure 5 and multiple
boundaries in Figure 14. The intermediate deforming frames are
also exhibited in Figures 1 and 2.

In our experiments, the normals of the boundary face are not
fixed. Therefore, the unfolded result of our algorithm is affected by
the initial normals of boundary faces. When the boundary of a mesh

is small and tight, possibly it cannot be unfolded towards a plane
driven by its natural initial face normals. The mesh in Figure 15(a)
will be deformed to the non-planar shape of Figure 15(f) after 500
iterations through Figures 15(d) and (e) with its natural boundary
face normals. We solve this problem by assigning it a set of specific
boundary normals to pull faces apart, such that it can stretch to a
plane in Figure 15(c) whose corresponding texturing is shown in
Figure 15(b).

Our experiments produce bijective mappings for most of the
meshes with the natural initial face normals. In some complicated
cases, the naturally unfolded result may be injective, such as in
Figure 16(b). By adjusting its boundary normals manually and in-
teractively, we can turn this injective mapping into bijective, as
shown in Figure 16(d).

The options for Laplacian matrix. On smooth surfaces, the
Laplacian operator is dynamic and depends on the current deforming
surface. In our setting, we approximate it with the Laplacian matrix
of the initial mesh and keep it unchanged. Another alternative is
updating the Laplacian matrix of Equation (6) in every iteration
by the current geometry of the deforming mesh. The two kinds
of mappings and the distortions are manifested in Figure 17 and
Table 3. We conclude that the updated Laplacian matrix preserves
the area and edge length better, and the fixed one produces better
conformal mapping results.

c© 2019 The Authors
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The partial parametrization. Our deformation-based method
has a special feature, which is deforming parts of a mesh to planar
and keeps the rest unchanged, as shown in Figure 26. As far as we
know, this is the first approach which can mix two pieces of 3D and
2D mesh together seamlessly.

The comparisons.As same as some recent developed algorithms
[FL16, SPSH*17], we also compare all kinds of mapping distortions
of our algorithm with the ones in [RPPSH17], which is the standard
benchmark of bijective parametrizations.

For a multi-core implementation, we report the running time of
some of our experimental meshes of disk topology in Table 4. The
number of iterations and timing are the same magnitude as the
[RPPSH17]. On most of the meshes, our approach converges in a
few dozens or a hundred iterations. Our algorithm also scales well
on meshes in huge size as long as the linear system solver can
process it.

Due to the scope of the paper, we demonstrate the mapping
and texturing of our method and [RPPSH17] for several models in
Figure 18 and list the distortions in Table 6. More demos are pro-
vided in the supplemental material. We observe that our method is
less isometric than SLIM.

5.3. Spherical topology

In Figure 6, we demonstrate the deformation and parametrization of
several meshes of spherical topology. More exhibitions are shown
in the supplemental and attached video. Unlike the planar one,
the spherical unit normal flow converges slower and needs several
thousands iterations for most meshes.

The method of conformal Willmore flow [CPS13] requires
the meshes discretized without obtuse angles, which is a highly
strict requirement. But our method and cMCF can be applied to
most meshes. We exhibit the deformations of our method, cMCF
[KSBC12] and conformal Willmore flow [CPS13] on the same
bunny model of 28 576 faces in Figure 25. The measurements are
summarized in the Table 5. We notice that our method shows better
edge preserving and isometric performance than cMCF and confor-
mal Willmore flow.

In Figure 24, Table 7 and the supplemental material, we show the
spherical mappings and distortions of our method, cMCF and the
harmonic approach [GWC*04]. In all 14 meshes, the harmonic
approach cannot obtain bijective parametrization; the mappings
flip in only one model by our algorithm, six models by cMCF.
We observe that our method is more conformal than the harmonic
approach.

5.4. CMC-like surfaces

Plane and sphere are special and simple CMC surfaces. Our ap-
proximation and discretization of UNF work successfully on them.
For other kinds of CMC surfaces, our algorithm can also drive the
flow to deform the corresponding discrete meshes. However, the
convergent shapes are not CMC surfaces in an exact mathematical
sense. We call them CMC-like surfaces.

In Figure 19, we demonstrate the convergent shapes of the cylin-
ders of a set of different radii and heights, constrained by two sets of
the different boundary face normals, under our unit normal flow. In
this experiment, the positions of the boundary vertices of the cylin-
ders are fixed. The red arrows are the representatives of the first set
of the boundary face normals, and the green arrows are from the
second set. The convergent shapes are catenoid-like surfaces, while
the radii and heights we use do not satisfy the exact mathematical
formula of catenoids.

The cylinders with different top and bottom radii are exhibited
in Figure 23. In Figure 20, we deform a half-sphere and a unit
disk to the different CMC-like surfaces under varying face normals
constraints. Unduloid-like surfaces are demonstrated in Figure 21
and in them, all the boundary face normals are towards the centres.
More demons are revealed in Figure 22.

On the one hand, CMC-like surfaces suggest that UNF could be
mathematically convergent on smooth surfaces for all CMC sur-
faces. On the another hand, how to design a more accurate discrete
UNF for other kinds of CMC surfaces is a challenging problem
which remains as a future work.

6. Conclusion and Future Work

We propose a special UNF to deform surfaces. This flow averages
the normals of a smooth surface, and reconstruct the geometry to
fit the smoothed normals. We define the mathematical equation
of UNF, and prove that the convergent surface has CMC if the
flow is stable and converges. We also present an approximation
method on discrete meshes and apply it to the applications of planar
and spherical mesh parametrization. Our algorithm provides locally
injective mappings.

Some important problems remain untouched and will be explored
in the future. The reconstruction step is affected by the quality of
meshes and will fail if the mesh quality is extremely bad. The
convergence, singularity, existences and uniqueness of the UNF
are waiting to be proved. It is also a great challenge to design an
efficient, stable and accurate discrete algorithm to construct other
types of CMC surfaces besides the planes and spheres.
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