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Computing measure controllable parameterizations for general surface is a fundamental 
task for medical imaging and computer graphics, which is designed to control the 
measures of the regions of interest in the parameterization domain for more accurate 
and thorough detection and examination of data. Previous works usually handle just some 
certain kind of topology and boundary shapes, or are computationally complex. In this 
paper, a modified approach based on the technique of lie advection is presented for 
the measure controllable parameterization of geometry objects in the general context 
of 2-manifold surfaces. Given a general surface with arbitrary initial parameterization 
without flips but usually with great area distortion, the Lie derivative is introduced 
to eliminate the difference between the initial parameterization and the prescribed 
measure. The vertices flow in the directions derived through the Lie derivative and finally 
converge to the ideal measure, and by its geometric meaning, this method will be called 
as DLF (Discrete Lie Flow) intuitively. Compared with previous methods based on Lie 
derivative, two key modifications were made: an adaptive step-length scheme resulting 
in a substantive acceleration and robustness and a measure controllable function. Area 
preserving mapping can be generated easily through our DLF algorithm as a special case 
for measure controllable parameterization. With various algorithms developed for mesh 
parameterization based on energy optimization approaches in recent years, our DLF is 
the minority that is supported by a solid differential geometric theory. We tested our 
method on plenty of cases, including disk models with convex and non-convex boundaries, 
and spherical models. Experimental results demonstrate the efficiency of the proposed 
algorithm.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Parameterization is a foundational problem in computer graphics and geometry processing and is relevant to many 
other processes such as texture mapping, surface registration (Zeng and Gu, 2013), shape correspondence (Van Kaick et al., 
2011), remeshing (Su et al., 2019) and so on. Moreover, many techniques of parameterization have recently been proposed 
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Fig. 1. Flowing process of area-preserving mapping via DLF using Tutte embedding as initial parameterization.

to medical imaging (Wang et al., 2012). For example, obtaining the flattened representations of the highly undulated and 
branched brain surface, which is important in the study of neural activities. Also, flattened representation will be a good 
complement for CT colonoscopy or virtual colonoscopy.

Among the various approaches of mesh parameterization, usually the key feature is the minimization of distortion, 
i.e. angle distortion and area distortion, which is like the two sides of a coin, we can only achieve either of them, or 
alternatively seek for a compromise. For minimizing angle distortion, the problem has been extensively studied with a 
plethora of algorithms. See Levy et al. (2002), Gu and Yau (2003), Jin et al. (2008), Wang et al. (2009), Bright et al. (2017), 
and the references therein. On the other hand, for minimizing area distortion, to the best of our knowledge, only a limited 
number of mature methods have been invented. See Angenent et al. (2000), Zhu et al. (2003), Zou et al. (2011), also 
Aigerman et al. (2015) and references therein.

Measure controllable parameterization, further on, can be regarded as a more general form of area-preserving parame-
terization. It enables users to select Regions Of Interests (ROIs) to enlarge (or shrink) the area elements for more advanced 
applications, such as more accurate detection and thorough examination in medical imaging. It is also a prerequisite in 
modeling and rendering techniques, like remeshing, morphing, texture mapping, etc. A very popular method for measure 
controllable is Optimal Mass Transport (OMT for short), we refer readers to Zhao et al. (2013), Dominitz and Tannenbaum
(2010), Su et al. (2016a; 2016b; 2017) and Lei et al. (2019). However, OMT is based on Brenier’s theorem for the optimal 
and unique mapping, and the governing Partial Differential Equations (PDE for short) Monge-Ampere (Bonnotte, 2013) is 
highly non-linear. The construction and maintenance of the geometric data structure is complicated, and with high spacial 
complexity with the increase of the dimension. Furthermore, convexity of the source surface is required, otherwise the 
resulting diffeomorphic map will not be able to be extended to the boundary.

In our paper, we generalize the work in Angenent et al. (2000) and Zou et al. (2011), a modified approach based on the 
technique of Lie advection is presented for the measure controllable parameterization of geometry objects in the general 
context of 2-manifold. We call this method Discrete Lie Flow (DLF for short). The construction of our algorithm stems from 
three observations: firstly, the gradient of vertex positions can be approximated from the solution of Poisson equation; 
secondly, the optimal steps can be derived by finding the critical flip-preventing condition; lastly, a density function can be 
assigned to parameterization domain for controlling ROIs measure explicitly.

Given a general surface with arbitrary initial parameterization without flips but usually with great area distortion, DLF 
quantifies the difference between initial parameterization and prescribed measure, then leads the vertices to flow in the 
directions which is designed to decrease the measure difference, and finally converge to the minimal area distortion pa-
rameterization. In Fig. 1, for the model Bear, we use a simple Tutte embedding (Tutte, 1963) for flattening the Bear onto a 
disk parameterization domain and produce an area-preserving parameterization via DLF. Visually, we can see the triangles 
huddled in the center flow evenly throughout the entire mesh. For more precision, in another Fig. 2, we made the Gargoyle 
model textured, in the initial parameterization through Tutte embedding we can see the checkerboard texture pulled back 
to the model is highly area-distorted. After the flowing process, every blocks of the texture become equal in area.

In our DLF method, the governing PDE is the linear Poisson equation, which is fundamentally superior to that of OMT 
solving non-linear Monge-Ampere equation. Although DLF may not be optimal in the theoretical category, our area preser-
vation ability in practice turns out to be generally better than OMT. Also, the convex restriction for source domain can be 
removed, and we can derive measure controllable parameterization from initial conditions where OMT can never handle.

In summary, our method DLF has plenty of prominent features, listed as follows:

• Measure controllable parameterization supported by a rigorous and unified theory. We present an efficient and robust 
method based on discrete Lie derivative to generate measure controllable parameterizations.

• Adaptive Step-length Scheme. We propose the Adaptive Step-length Scheme, which greatly enhances the efficiency and 
robustness compared with Zou et al. (2011), a latest work also based on discrete Lie derivative.
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Fig. 2. Flowing process of texture mapping (top); flowing process of parameterization domain mesh (bottom).

• A good approximate for optimal transportation map. Our method also offers a good approximation for computing 
optimal transportation map and Wasserstein distance, whose governing PDE is the linear Poisson equation.

2. Previous works

Surface parameterization was initially introduced to the computer graphics community as a method for mapping textures 
onto surfaces, which is one of the most researched subjects in computer graphics, and specifically the problem of reducing 
area distortion of surface parameterization has garnered a lot of attention in past decades. In this section, we mention only 
the most related works on the topic of area-preserving and measure controllable parameterization. For in-depth surveys of 
parameterization, we refer to Hormann et al. (2008) and Sheffer et al. (2006).

For an arbitrary surface, there is no really isometric parameterization that preserves both angles and areas. Nevertheless, 
there is a class of methods called low stretch parameterization. They usually try to minimize a distortion energy that 
consists of both angle errors and area errors, like Hormann and Greiner (2000) did and Wang et al. (2002) did in their 
works. For low-stretch parameterization, there are two categories of approaches, including linear and non-linear methods. 
Linear methods compute mesh parameterization by solving a linear system, where each vertex is represented as a weighted 
average of a N1 ring, like in Aigerman and Lipman (2015), where the authors proposed to parametrize topological disks 
with low-stretch property. However, the majority of methods for this problem are non-linear, with numerous non-linear 
deformation energies proposed in the literature for isometric distortion. Standard optimization methods are typically used to 
minimize these energies, such as Newton, Gauss-Newton, quasi-Newton, and second-order cone programming. For example, 
in Angenent et al. (2000), the authors combined the ideas of conformality derived via the minimization of the Dirichlet 
integral and area preservation to describe a new approach to area preserving diffeomorphism. Another example is Yoshizawa 
et al. (2004), where they proposed a fast and simple method based on the work in Floater (1997); given a triangle mesh, 
they start from the Floater shape preserving parameterization and then improve the parameterization gradually. Moreover, in 
Aigerman et al. (2015), authors introduced a weaker condition for bijective mapping allowing them to just optimize locally 
parameterization of two surfaces into the plane, and finally by a convexification trick they derive a low-stretch mapping; in 
Rabinovich et al. (2017), a fast and efficient algorithm was proposed based on optimization of flip-preventing energies; in 
Hu et al. (2018), authors proposed a very robust hierarchical algorithm for spherical parameterization; in Zhao et al. (2019)
introduced Unit Normal Flow for planar and spherical parameterization based on constant mean curvature deformation.

Although a low stretch mapping can be derived, it is not actually the area-preserving mapping, not to mention being 
measure controllable. For purely area-preserving and measure controllable parameterization, as is mentioned above, OMT 
is a popular approach. In Zhu et al. (2003), authors utilize OMT to flatten closed anatomical surfaces in an area-preserving 
way. Dominitz and Tannenbaum (2010) point that OMT can be used to derive an optimal mapping with area-preserving 
and minimal angle-distortion based on Monge-Kantorovich approach, which is time consuming and numerically complex. 
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Later in Zhao et al. (2013), based on Monge-Brenier’s Approach, authors reduced the computational cost. Recently, in Su et 
al. (2016a), area-preserving mappings can be generated for poly-annulus surfaces. Su et al. (2016b) enable one obtaining 
measure controllable parameterization for volumetric mesh based on the technique of OMT. However, the main drawbacks 
of OMT may be its computational difficulty, and requirements on topology and convexity. In addition to the OMT approach, 
Angenent et al. (2000) first use Lie derivative to generate area-preserving mappings for spherical cases, later in Zou et al.
(2011), they demonstrate that the method can also be applied to a topological disk case based on exactly the same method.

Although this paper is not the first proposal for Lie derivative method, we must stress that, until Zou et al. (2011), a major 
problem of Lie derivative in discrete conditions still remained unnoticed, unmentioned and therefore unsolved — selecting 
step-lengths. A valid step-length, in our experiments, may vary irregularly in several orders of magnitude, for example, 
from 5E − 10 to 5E − 1, among different models with different initial parameterizations, and among different iterations in 
a complete flowing procedure. This problem makes previous works based on Lie derivative far from practical applications, 
as the parameterization easily gets collapsed with incorporate steps. Moreover, no measure controllable approach has been 
mentioned before.

In this paper, we firstly prove a more general mathematical framework for computing measure controllable parame-
terizations which adapts to various topology and boundary conditions. Based on an any-dimensional theorem, our DLF is, 
further more, able to handle high dimension measure controllable parameterizations, e.g. for tetrahedral meshes. Besides, 
we incorporate an adaptive step-length scheme into DLF, which not only greatly accelerates the flow process, but also makes 
it a robust and reliable parameterization method for the first time. Our algorithm is specifically designed to apply to various 
cases with affordable costs, which is different from most existing methods that handle just a limited number of cases, e.g. 
disk cases and sphere cases etc. With various algorithms having been developed for mesh parameterization based on energy 
optimization approaches in recent years, our DLF is the minority that is supported by the solid differential geometric theory.

3. Overview

In this section, we outline an overview of the following sections of our paper for the convenience of readers.

• We firstly give a stretch of the mathematical framework of our method.
• Then we discretize the Lie derivative on triangle meshes.
• Next we illustrate the key process of our methods, the adaptive step-length scheme. Also we summarize the algorithm 

and pipeline.
• Finally we test our algorithm using plenty of models with multi-scale mesh and compare our method with several other 

methods.

4. Sketch of relevant mathematical theory

In this section, we outline the mathematical justification of our mapping procedure for area preserving parameterization. 
This is based on the idea of correcting the initial parameterization’s area defects through DLF, which will decrease the 
distortion gradually. Finally, the flow will converge to a minimal area distortion state. Repeating the above process with a 
density function will allow us to extend this method to a measure controllable case.

By area preserving mapping f for two manifolds M and N with ωM and ωN as volume form respectively, we actually 
mean f ∗(ωN ) = ωM , where f ∗(ωN ) is the pullback differential form of ωN via f. Therefore the problem of seeking an area 
preserving mapping is reduced to find a mapping preserving the volume form. In the proof of main theorem, we will use 
some notations and concepts in differential geometry, we will explain some of main concepts roughly.

Basic concepts The Lie derivative measures the change of a tensor field along the flow of another vector field. More precisely, 
given a differentiable tensor field T of rank(q,r) and a differentiable vector field Y, then the Lie derivative of T along Y can 
be defined as follows. For some open interval I around 0, φ : M × I → M be the one-parameter diffeomorphism group of M 
induced locally by Y and denote φt(p) := φ(p, t). The Lie derivative of T is defined at a point p by

(LY T )p = d

dt
|t=0((φ−t)∗Tφt (p)) = d

dt
|t=0((φt)

∗T )p

where (φt)∗ is the push-forward along the diffeomorphism and (φt)
∗ is the pullback along diffeomorphism. Also we will 

utilize Cartan’s magic formula: LY = d ◦ (iY ) + iY ◦ d, where iY is the interior product which defined as iY (ω)(X) = ω(Y , X)

where X is a differentiable vector field, ω is a two-form. For more details, we refer to Levy (1964). Then we state our main 
theorem as follows: Given any initial parameterization f of smooth 2-manifold M to �, we can always find a one parameter 
group φt(p) : � → �, t ∈ [0, 1], such that φ1 ◦ f is an area-preserving parameterization.

Proof. First, let the volume element of M and � be denoted by n-forms ωM and ω� . If we wanna find an area-preserving 
mapping μ : M → �, then we must have μ∗(ω�) = ωM . For this, we can just need to find an automorphism φ : � → �, 
which satisfies φ∗(ω�) = ( f −1)∗(ωM), since
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(φ ◦ f )∗(ω�) = f ∗ ◦ φ∗(ω�) = ωM

In order to find this φ, we let X ∈ �(T�) be a section of tangent bundle of �. And γ (p, t) is the integral curve of X with 
the initial point p ∈ �, that is,

dγ (p, t)

dt
= X(γ (p, t))

γ (p,0) = p

let φt be the one parameter group generated by the vector field X , then we have φt(p) =: γ (p, t). This is observed by Zou 
et al. (2011). That

ωt = (1− t)ω� + t( f −1)∗(ωM), t ∈ [0,1]
flow in the direction of our desired result. So inspired by this observation, we let our pullback volume element by φt flow 
in the same direction. By this we mean,

dφ∗
t (ω�)

dt
= ( f −1)∗(ωM) − ω�

However, this is just the Lie derivative of ωt w.r.t. X . According to Cartan’s magic formula, we have

LXωt = d ◦ ιXωt + ιX ◦ dωt ,

if ωM and ω� are denoted by ω� = g�dx1 ∧ dx2 and ( f −1)∗(ω�) = gMdx1 ∧ dx2. We yield to

d ◦ ιXωt = ( f −1)∗(ωM) − ω� (1)

we found that

X(t) = 1

(1 − t)g� + tgM
∇h,

where h satisfies

�h = gM − g�

solves our equation. Since

ιXωt(
∂

∂x1
,

∂

∂x2
, . . . ,

∂̂

∂xi
, . . . ,

∂

∂xn
)

= (−1)i+1 ∂h

∂xi

so finally, we get

ιXωt =
n∑

i=1

(−1)i+1 ∂h

∂xi
dx1 ∧ dx2

We yield to

d ◦ ιXωt = �hdx1 ∧ dx2

That is,

�h = gM − g�

is the desired h.
Since we found that φ∗

1(ω�) = ( f −1)∗(ωM). That is, the φ1 is desired diffeomorphism, which is derived by integrating 
the vector field X(t) from 0 to 1. We get

φ1 =
1∫

0

X(t)dt =
1∫

0

1

(1− t)g� + tgM
∇hdt = ln gM − ln g�

gM − g�

∇h

Then we compose φ1 and f , finally we can derive the volume-preserving mapping φ1 ◦ f we want. �
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5. Discrete Lie flow

In this section, our main purpose is to derive an efficient and robust algorithm, based on our theorem, to compute 
measure controllable parameterizations. Source domain will be denoted by (M, V , E, F ), standing for model M with vertices 
V , edges E and triangle faces F . Given an initial parameterization φ, the induced mesh on parameterization domain will be 
denoted by (�, V̂ , Ê, F̂ ).

5.1. Initial parameterization for triangular meshes

The DLF approach for measure controllable parameterization is qualified for any types of initial parameterization. For 
testing the efficiency and efficacy, the DLF will be applied to several different initial parameterizations. We won’t discuss 
the initial parameterization process in details otherwise attention will be distracted. However, reference for these methods 
will be listed. For conformal parameterization, we used the method in Gu and Yau (2003). The work in Rabinovich et al.
(2017) is implemented for Scalable Locally Injective Mappings. Also Least Square Conformal Maps in Levy et al. (2002) and 
Harmonic Global Parameterization in Bright et al. (2017) are utilized in our paper.

There is no strict requirement for the initial parameterization. However, we would like those that have no flips. Although 
some simple methods may not meet this demand intrinsically, e.g., harmonic maps (Floater, 1997) may cause a flip when 
the sum of opposite angles of an edge is larger than π . Nevertheless, the minor flips of the initial parameterization can be 
mended simply. For example, we can recalculate the coordinate of a flipped vertex, by an affine combination of the good 
vertices nearby.

Mesh Optimization. To explain why we need optimization, imagine a common occasion where, in area-preserving pa-
rameterizations regardless of angle distortion, many triangles are deformed long and thin to better preserve areas. As we 
will see in the following section, we need to compute the cotangent Laplacian of the flowing mesh. If the mesh is not 
Delaunay triangulation, the angle may cause some singular entries of the Laplacian matrix, as the cotangent value of 0 and 
π is infinity. To deal with that, we need to do edge-flipping for the flowing mesh every time before further operations.

5.2. Solving the Laplacian equation

As is proved in the previous section, the main theorem of DLF can be demonstrated by the equation

�h = g� − gM

To discretize this problem, we need to explain the discrete version of area elements and the cotangent Laplacian on trian-
gular mesh. By area element, we mean the N1(i) − ring area for any vertex i. More specifically,

A(i) = 1

6

∑
i jk∈F

|ei j × eik| (2)

Now we let g� and gM be two functions defined on parameterization �, where g� is the original area elements on �
and gM is the pullback area elements on � through the inverse of initial parameterization f −1, e.g. the corresponding area 
elements on M for area-preserving purpose.

Cotangent Laplacian The well-known cotangent Laplacian is actually derived by first order element method through Galerk-
in’s approach, which is defined as follows:

Li j =

⎧⎪⎨
⎪⎩

1
2

∑
ei j∈Ê(cotα j + cotβ j), i=j,

− 1
2 (cotα j + cotβ j), ei j ∈ Ê

0, otherwise

Of course there are some other approaches to discretize Laplacian, while cotangent Laplacian is the most suitable one for 
our context

Von Neumann boundary value problem When we address with the topological disk, we are actually solving the following Von 
Neumann boundary value problem:{

�h = g� − gM
∂h
∂�n = 0

(3)

where the �n is the unit normal vector of the parameterization disk.
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5.3. Generate one parameter group

According to our main theorem, we know that

X(t) = 1

(1 − t)g� + tgM
∇h

where g� is the area elements of parameterization domain � and gM is the pullback area elements through the inverse of 
initial parameterization f −1. And the mapping we desire is

1∫
0

X(t)dt = ln gM − ln g�

gM − g�

∇h

So we want to use the gradient ∇h to approximate our auto-diffeomorphism. For convenience, we made some simplification. 
Firstly, we normalized g� and gM , then it’s easy to find

φ1 = ln gM
gM − 1

∇h

When gM is close to 1, we have

lim
gM→1

ln gM
gM − 1

∇h = ∇h

This inspires us to approximate φ1 via ∇h. And we found it achieves a well-behaved performance in our experiments. In a 
word, every time we will apply the displacement vector field ∇h to vertices of the parameterization domain mesh.

Gradient decomposition In order to let the mesh flow on the sphere, we have to decompose our gradient ∇h along the 
normal and tangent direction, since we’ll use the ∇h to approximate our diffeomorphism φ1 and finally use φ1 to generate 
the new mesh. When we use ∇h, we have killed the normal components of it and let mesh flow along the tangent direction. 
To be more specific, we compute the normal component of ∇h as follows.

∇h⊥ =< ∇h, �n > �n
�n is still the unit normal vector of the sphere. Finally, we yield to the tangent directional component

∇h‖ = ∇h − ∇h⊥

Then we can use ∇h‖ to replace ∇h and use it to flow our original mesh on the parameterization domain. More precisely, for 
each vertex p ∈ � on parameterization domain mesh, the displacement vector field will be applied as follows p̂ = p +λi∇h. 
Where λi is the i-th step for the displacement.

5.4. Adaptive step-length scheme

Importantly, a key problem is that we have to select the step-length in the directions of the vector field to make our 
parameterization flow. Rather than a fixed step, or any tentative ones, we creatively take a series of precise and reliable 
adaptive step-lengths strongly relative to the status of the current flowing mesh for each iteration.

A example for applying steps that’s too large, is shown in Fig. 3. We can see that, once the flowing mesh collapsed one 
time, it may even collapse worse rather than rehabilitate itself, and finally no valid result is guaranteed. On the other hand, 
if we cautiously select steps that is too small, the deformation requires hundreds and thousands of iterations to converge.

We investigate the step principle in previous work (Zou et al., 2011). They firstly selected the amount of iterations K
as a hyper-parameter, and derive a step for the k-th iteration from K and the current per-vertex surface/domain area ratio. 
Obviously, this operation did not turn out to be a solution satisfying enough, and the paper did not even give a convincing 
scheme how we can compute or estimate K in practical applications.

In our paper, we propose the adaptive step-length scheme and incorporate it into the DLF. The adaptive step-length 
is decided by the flip-preventing condition which was explained in the previous section. With the aim of preventing flip, 
consider that the critical time of collapsing is when some points of a triangle just reach its subtense. Given this numer-
ical prerequisite, when flowing on planes, for any triangle in F we definitely have the coordinates for three vertices, say 
v1(x1, y1), v2(x2, y2), v3(x3, y3), and the gradient ∇h(vi) = (h1i , h

2
i )

T for i = 1, 2, 3; for spherical conditions, the coordinates 
and gradient can be isometrically rotated into the XY plane by each triangle, to convert to a 2-dimensional situation. We 
let λ̃ be the critical step for any triangle, then we have three lines as follows.

l12 : (y2 − y1 + λ̃(h2 − h21))x− (x2 − x1 + λ̃(h1 − h11))y+
2 2
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Fig. 3. DLF flowing without adaptive step-lengths. (a): original mesh; (b): mesh beginning to collapse; (c): mesh just collapsed; (d): mesh collapsed worse.

x2 y1 − x1 y2 + λ̃(y1h
1
2 − y2h

1
1) + λ̃2(x2h

2
1 − x1h

2
2) = 0

l23 and l31 are just similar, readers can derive them by cycle the index. By assuming the vertex v3 is just lying on the 
line l12, we can know the step λ̃ explicitly, by solving the following equation for λ̃

(y2 − y1 + λ̃(h22 − h21))(x3 + λ̃h13) − (x2 − x1 + λ̃(h12 − h11))(y3 + λ̃h23)+
x2 y1 − x1 y2 + λ̃(y1h

1
2 − y2h

1
1) + λ̃2(x2h

2
1 − x1h

2
2) = 0

we yield to

�λ̃2 + Sλ̃ + Q = 0

where

� = x2h
2
1 − x1h

2
2 + h13(h

2
2 − h21) − h23(h

1
2 − h11)

S = h13(y2 − y1) + x3(h
2
2 − h21) − h23(x2 − x1) − y3(h

1
2 − h11 + y2(h

1
2 − h11)

Q = x2 y1 − x1 y2 − y3(x2 − x1)

if we have � = 0, we simply derive λ̃ = − Q
S ; or else we can as well get λ̃ by the quadratic formula,

λ̃ = −S ±
√
S2 − 4�Q

(4)

2�



K. Su et al. / Computer Aided Geometric Design 72 (2019) 49–68 57
Fig. 4. The pipeline of our DLF based measure controllable framework.

if we have the quadratic discriminant S2 − 4�Q ≥ 0.
For each triangle t ∈ F , we pick only the minimal positive real value of λ̃ and note that value as λ̃+

t , which stands for 
the maximum step for the flip-preventing condition of triangle t . If λ̃+

t does not exist — e.g. both the roots are negative, or 
the quadratic discriminant is negative — we alternatively assume it to be +∞, which means t itself has a flip-preventing 
gradient for any positive steps. Then the adaptive step-length λ for the entire mesh, finally, can be derived through

λ = μ ·min(λ̃+
t ) (5)

where μ < 1 is a ratio value. In our experiments, μ can be a relatively considerable proportion from 0.2 to 0.8, which 
promotes fast and stable convergence. The time complexity of computing one adaptive step-length is O (n), and is ignorable 
under that of solving a Poisson equation. In later experiments, without special remarks, we will always use this scheme to 
select steps.

Generally, adaptive step-length prevents triangle flipping intrinsically, as it is taken from the step-length that brings 
about the very first triangle flipping. Although it could be imagined that a vertex might keep tending towards an edge 
infinitely and cause a degeneration to line, the edge-flipping operation we proposed previously would then replace the edge 
that is getting in the way, so that the vertex could move on flowing.

5.5. Measure controllable parameterizations and ROIs

Another prominent features of our approach and is that it can be applied to generate not only area-preserving mapping 
but also measure controllable parameterizations. We first mark our regions of interests, known as ROIs, then we multiply a 
vector density function ρ(x) with the area elements on the original model gM . We can write it mathematically

ˆgM = ρ(x) ⊗ gM (6)

Actually, the thought behind our approach is very natural. In area-preserving mappings, g� is iteratively moving closer to 
gM ; while in measure controllable conditions, we replace gM by ˆgM so as the derived parameterization can have arbitrary 
regions enlarged or shrunk.

5.6. Algorithm

We summarize algorithm of our methods for measure controllable parameterization as Algorithm 1. By simply assigning 
ˆgM = gM , we can also obtain an area-preserving parameterization from the pipeline, since it is a special case of measure 

controllable parameterization (see Fig. 4).

Algorithm 1 Discrete Lie Flow for measure controllable parameterization.
Input:

The original model M; an initial parameterization f : M → �;
prescribed measure density function ρ(x)

Output:
A mapping φ : � → �, such that u = φ ◦ f is the expected measure controllable mapping.

1: Initialize φ(vi) = vi and hM =∗ ( f∗(ωM ));
2: Optimize the mesh on parameter domain � by edge-flipping;
3: Compute h� =∗ (ρ(x)φ∗(ω�)) and scale it, such that ∫ h� = ∫

hM ;
4: Solve Poisson Equation �g = hM − h� with Neumann boundary condition ∂h/∂n = 0;
5: Compute vertex gradient ∇g from g;
6: Compute adaptive step-length λ = μ ·min(λ̃+

t );
7: Apply displacement vector field to φ , such that φ(vi) = φ(vi) + λ∇g;
8: Repeat step 2 to step 7 until ‖hM − h�‖2 < threshold;
9: return φ.
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Table 1
Four kinds of distortions.
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Fig. 5. Area-preserving mapping to a square for Buddha via DLF using harmonic mapping as initial parameterization.

6. Experimental results

To demonstrate the efficiency and robustness of our algorithm, we test our algorithm on hundreds of meshes with a va-
riety of initial parameterizations, including topological disk meshes with circle, square and irregular non-convex boundaries, 
and topological sphere meshes. More importantly We have implemented our algorithms using parallel C++ on a Windows 
10 platform, with 4-core 3.2 GHz i5-6500 CPU, 8 GB DDR4 memory. All the geometric data come from public resources, 
either manually modeled, acquired from real life by laser scanning or reconstructed from geological data. All the geometric 
data are represented as triangle meshes.

Measurements Usually in computer graphics, energies are introduced to measure the area and angle distortion. Our DLF 
are not designed to minimize a certain energy, yet we will use four area-related energies for convenience to compare 
with other methods. Wasserstein Distance, As-Rigid-As-Possible(ARAP), Symmetric Dirichlet and Darea , these four kinds of 
measurements are listed in Table 1. We have to stress that our DLF, unlike other methods based on energy optimizing, is 
not designed to minimize any of these energies, through it may appear to perform well in some. We cite these energies for 
a comprehensive evaluation of our method, and for convenience in comparing with other unmentioned methods.

Benchmark We test the practical robustness on a data set consisting of hundreds of models. Our method successfully finds 
the area-preserving parameterizations for all models with arbitrary ROIs.

6.1. Area-preserving parameterizations

We handle models with different topology and different kinds of initial parameterizations to realize ordinary area-
preserving parameterizations and demonstrate its efficiency and efficacy. Fig. 5 and Fig. 6 shows DLF on a topological 
disk model with squared boundary, and Fig. 7 shows a detailed procedure of DLF on a topological disk model with circle 
boundary. The initial parameterization methods we used here are Pinkall and Polthier (1993), Tutte (1963) and Jin et al.
(2008).

We also noticed that for many low-stretch parameterization approaches, they require the convexity of parameterization 
domain, otherwise, for example, OMT in the interior is homeomorphic, but the homeomorphism cannot be extended to the 
boundary. DLF overcomes this shortcoming, and doesn’t need the convexity; as is shown in Fig. 10, we map the Monkey 
onto an arbitrary domain and implement the DLF to it to generate a non-convex area-preserving mapping. While Fig. 8 and 
Fig. 9 are good examples for topological sphere models. The method we used here to generate initial parameterizations is 
CMC (Kazhdan et al., 2012).

Accuracy To verify the accuracy of the computational results visually we make 2 histograms of logarithmic area ratios of 
model Maxplanck and model Buddha. More precisely, for each vertex i we compute corresponding the logarithmic area ratio 
pi by
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Fig. 6. Area-preserving mapping of Slime to a square via DLF using Tutte embedding as initial parameterization.

Fig. 7. Area-preserving mapping of Bear to a disk via DLF using Riemann mapping as initial parameterization.

Fig. 8. DLF deformation of Yoda to a sphere.

pi = log(
A�(i)

AM(i)
)

where A�(i) is the area element of vertex i of � computed by Eq. (2), and AM(i) is that of M . The result is shown in 
Fig. 11, where initial parameterizations are colored in orange and DLF area-preserving parameterizations are colored in 
blue. As can be seen directly, area ratios of the initial parameterizations are distributed dispersedly; and right after DLF, 
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Fig. 9. DLF deformation of Vase to a sphere. The original model is like a double-cover surface.

Fig. 10. DLF deformation of model with non-convex boundary proves that it can handle non-convex domains.

Fig. 11. Histograms of logarithmic area ratios between input initial parameterizations and output area-preserving parameterizations derived via DLF. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

they are obviously centralized to 0, which means areas of the derived parameterization are highly concordant with those of 
the original mesh. For rigorous numerical comparisons we will provide them in later sections.

6.2. Adaptive step-length scheme

Through these two experiments Fig. 12 and Fig. 13, we can have a glimpse of the fact that DLF is unpredictably sensitive 
to step-lengths. It is hard to determine even the rough magnitude by hand or by experience, for it differs enormously in 
various cases. Due to insufficient investigates in selecting steps, previous works are far from being applicable.

Our adaptive step-lengths determined by the formula Eq. (5) is the mathematical interpretation of the flip-preventing 
condition that guarantees mesh will not collapse in midway of the flowing. It determines a safe and effective step reliably 
for every single steps of DLF. In Fig. 12 our adaptive step-lengths reduce the number of iterations needed from 548 to 25 
on model David; and in Fig. 13 especially, our adaptive step-lengths make DLF accomplish in 37 iterations, which is not 
excessive to call a miracle in previous discrete Lie derivative methods. For more cases, we refer readers to Table 2.
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Fig. 12. Flowing results with different step choices of model David. The first entry of the binary below represents the scale of step, the second represents 
the number of iterations. C means the midway collapsing of mesh.

Table 2
The number of iterations for various models with step 0.1, 0.01, 
and 0.001, where c means the collapsing of mesh.

Model #F 0.1 0.01 0.001 Adaptive

Man 347360 c 681 >2000 56
Chinese lion 100002 c c 3975 48
Bimba 11253 c 369 >2000 21
Superman 190471 c 525 >2000 133
Buddha 470507 c 657 >2000 34
Dragon head 26843 c c c 66
Moai 16493 c 378 >2000 13
Mouse 25440 c 461 >2000 23
Horse 21423 c c c 19
Max Planck 84705 c 594 >2000 50
Bodahisattva 160098 c c 4050 106

According to Fig. 14, we can see that the absolute value of slope of the line representing the DLF with our adaptive step-
length is prominently larger than that with (a most successful) fixed step. With our adaptive step-length, area-preserving 
mappings can usually be derived in merely dozens of iterations.

6.3. Measure controllable parameterizations

By adding a density function Eq. (6) to the area elements of the original mesh M , our DLF can realize the measure 
controllable purpose to get any regions of interests (ROIs) enlarged or shrunk to produce any user-defined parameterizations 
accurately. For testing the totipotency of our approach, we do the following experiment for a topological sphere Earth model. 
As is shown in Fig. 15, starting from the ordinary Earth model with texture, we apply DLF to scale Europe by different 
factors. Another Fig. 16 demonstrates our measure controllable parameterizations for Killer Crock model possessing a disk 
topology.

6.4. Comparisons with other methods

Our DLF method is compared with several state-of-the-art parameterization methods to demonstrate its accuracy and 
efficiency. In Yoshizawa et al. (2004), they proposed a fast and simple methods for stretch-minimizing parameterization 
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Fig. 13. Flowing results with different step choices of model Totoro. The first entry of the binary below represents the scale of step, the second represents 
the number of iterations. C represents the mesh collapsed.

with square boundaries, for convenience, we will call their method FSP. Later in the work Su et al. (2016a) and (2016b), the 
OMT is utilized as an efficient way to generate area-preserving and measure controllable parameterization, and their code 
implementation handles circle boundaries. When comparing with FSP and OMT, we will use DLF with their corresponding 
boundary shapes to eliminate unnecessary variables, and note DLFC for DLF with circle boundaries, DLFS for DLF with square 
boundaries. And, for topological sphere, we will compare with the method in Hu et al. (2018), where the authors proposed 
an efficient method for spherical parameterization, and for convenience, we will call it AHSP.

Timings Generally speaking, the typical running times of the DLF for a model with dozens of thousands of vertices are 
usually in ten seconds. The detailed results are listed in Table 3 and Table 5. Compared to FSP, our DLF is usually slightly 
slower with small models with no more than 100K faces, but in larger cases we become drastically faster. Compared to 
OMT, although with much reputation, our DLF is much faster in all cases, and the disparity becomes larger for huge models 
with more than 200K faces. Compared to AHSP, our method is also superior in speed.

Distortion The measurements are summarized in Table 4 and 3. We can see that the area-preserving ability of DLF, which 
is denoted by Darea , is outstanding among both the other methods with no doubt with absolute predominance, even beyond 
the theoretically optimal OMT. However, we have to admit that, for other energies that more or less take angle distortions 
into account, we won’t deny that our DLF may not behave the best. We will also list these energies in our following tables 
for readers to have an objective understanding of DLF.
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Table 3
Timing comparison (in sec.) for Authalic parameterization between differ-
ent methods.

Model #F #V OMT.t DLFC.t FSP.t DLFS.t

Bear 296K 148K 439 45 91 39
Bimba 11K 56K 10 2 1 2
David 48K 24K 33 6 4 6
Buddha 470K 235K 594 34 135 36
Maxplanck 84K 42K 58 8 8 5
Nicolo 99K 50K 52 4 8 4
Slime 103K 51K 68 9 12 8
Superman 190k 96k 1989 47 40 33
Torsowoman 88k 44k 51 5 6 3
Totoro 20k 10k 28 7 1 7

Table 4
Measurements of several different energies of DLF, OMT and FSP. SD is short for 
Symmetric Dirchlet.
Model #F #V Methods Darea SD ARAP

Bear 296K 148K OMT 3.19 1.01 ∗ 1010 1.21
DLFC 2.07 1.21 ∗ 108 0.79
FSP 2.10 2.33 ∗ 106 1.31
DLFS 2.08 2.27 ∗ 107 1.09

Bimba 11K 5K OMT 2.06 3.22 ∗ 105 2.25
DLFC 2.09 2.50 ∗ 105 2.22
FSP 2.24 1.23 ∗ 105 3.40
DLFS 2.24 9.41 ∗ 106 2.86

Buddha 470K 235K OMT 2.46 5.69 ∗ 109 0.63
DLFC 2.02 8.97 ∗ 106 0.39
FSP 2.17 2.93 ∗ 106 0.35
DLFS 2.02 4.10 ∗ 106 0.56

David 48K 24K OMT 2.44 2.48 ∗ 109 1.85
DLFC 2.08 8.73 ∗ 105 1.58
FSP 2.23 3.96 ∗ 105 1.89
DLFS 2.11 1.61 ∗ 106 2.51

Maxplanck 84K 42K OMT 2.04 1.67 ∗ 106 1.72
DLFC 2.03 3.28 ∗ 106 1.62
FSP 2.22 6.95 ∗ 105 1.83
DLFS 2.05 6.51 ∗ 106 2.51

Nicolo 100K 50K OMT 2.18 1.57 ∗ 107 0.37
DLFC 2.02 3.06 ∗ 106 0.22
FSP 2.11 5.24 ∗ 105 0.36
DLFS 2.01 7.40 ∗ 105 0.49

Slime 103K 51K OMT 3.01 1.36 ∗ 108 0.83
DLFC 2.05 1.17 ∗ 107 0.52
FSP 2.05 6.21 ∗ 105 0.70
DLFS 2.04 1.88 ∗ 106 0.75

Totoro 20K 10K OMT 2.33 4.38 ∗ 108 1.61
DLFC 2.09 6.18 ∗ 105 1.23
FSP 2.19 2.39 ∗ 105 2.55
DLFS 2.14 7.22 ∗ 106 1.83

Table 5
Comparison of distortion and running time between DLF and AHSP.
Model #F #V Methods Time Areatotal Darea

Armadillo 92K 46K DLF 15 0.21 2.18
AHSP 105 0.67 2.85

Armchair 100K 50K DLF 10 0.06 2.01
AHSP 54 0.25 2.12

Bear 35K 17K DLF 5 0.08 2.05
AHSP 57 0.55 2.51
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Fig. 14. Darea decreases along the iterations. Records of our adaptive step-length is colored in red, while that of a tentative step 0.01 is colored in blue.

Fig. 15. Measure controllable mapping for Earth. Europe is selected as ROIs, the factor is listed below.

6.5. Measure controllable parameterization and comparisons with OMT

In theory, DLF is capable of obtaining measure preserving maps, however we don’t have a proof that it is the optimal 
solution. By the optimal solution we mean the Wasserstein distance of it is smallest among the set of area preserving 
mappings. The OMT method (Optimal Mass Transport, see Dominitz and Tannenbaum (2010), Zhao et al. (2013), Su et al. 
(2016a) and (2016b)) is another approach for area-preserving and measure controllable parameterization with a good repu-
tation, and from the mathematical perspective, the parameterization derived through the OMT is the optimal solution.

We design an experiment to quantify the difference between DLF and OMT in order to demonstrate the between DLF 
and the theoretical optimality. Let (S, g) be a topological disk with associated Riemannian metric, φ0 and φ1: (S, g) → D2, 
where φ0 is obtained by OMT, φ1 by DLF. Results of these two mappings are shown in Fig. 17 and Fig. 18. We have
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Fig. 16. Measure controllable mapping for Killer Crock. Head is selected as ROIs, the scaling factor is listed below.

Fig. 17. Comparison between DLF and OMT for measure controllable parameterization of model Cat. We select the head of cat as ROIs and the deformation 
is depicted above. In turn, the measure head is shown by the factor of 0.5, 1, 2 and 4. The above row is derived via DLF, the intermediate row is computed 
by OMT, and the bottom row is the frequency histogram of the norm of the Beltrami coefficient μψ . The result shows that there is no significant difference 
between DLF and OMT.

ψ = φ1 ◦ φ−1
0 : (D2,dx∧ dy) → (D2,dx∧ dy)

As shown in Fig. 17 and Fig. 18, we use the Beltrami coefficient μψ of ψ to measure the difference between φ0 and φ1

quantitatively. Recall that the Beltrami coefficient can be computed as follows:

μψ = ∂ψ

∂ ẑ
/
∂ψ

∂z

Let the coordinates on the result domain of the DLF and OMT be (x,y), (u,v) respectively. Then the Beltrami coefficient 
can be computed through the formula:

μψ = β

α

where α = yu+xv
2xy and β = yu−xv

2xy . The Beltrami represents the distortion, it will tend to zero as ψ approximates the identity. 
The Beltrami coefficients of ψ for different models are depicted in the bottom row of Fig. 17 and Fig. 18. We can see from 
the histogram that the Beltrami coefficients of ψ are concentrated at 0, which means the results of DLF are extremely 
similar to those of OMT.

Finally, we also compute the transportation cost through Wasserstein distance. Generally speaking, a difference in 
Wasserstein distance within 3% is a symbol for highly resembling each other. As is shown in Table 6, the average dif-
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Fig. 18. Comparison between DLF and OMT for measure controllable parameterization of Chinese Vase. Measure controllable mapping for model: Chinese 
Vase. We select the bottleneck of Chinese Vase as ROIs and the deformation is depicted above. In turn, the bottleneck is showed by the factor of 0.5, 1, 2 
and 4. The above row is derived via DLF, the intermediate row is computed by OMT, and the bottom row is the frequency histogram of the norm Beltrami 
coefficient μψ . The result shows that there is no significant difference between DLF and OMT.

Table 6
Similarity comparison between DLF and OMT. Here we use the sum of 
squared Euclidean distance between DLF/OMT and the original parameteri-
zation as measure.

Model DLF OMT Difference

Cat×0.5 3299.30239 3306.899436 0.2302622%
Cat×1 3457.758768 3457.04257 0.0207128%
Cat×2 6714.249024 6692.770138 0.3199001%
Cat×4 13700.85689 13461.32009 1.7483345 %
ChineseVase×0.25 12008.67629 12237.21035 1.9030745%
ChineseVase×0.5 12415.7497 12647.75603 1.8686454%
ChineseVase×1 13163.49626 13429.23322 2.0187415 %
ChineseVase×2 14573.754 14844.32246 1.8565456%
ChineseVase×4 16934.09609 17189.995955 1.5111516%
ChineseVase×8 20421.18237 20564.54963 0.7020517%
ChineseVase×16 24719.81954 24550.11919 0.6864951%

ference of 2 models among 11 different measures is 1.16%, and the maximum is 2.01%. This result also indicates the high 
accuracy of DLF when compared with OMT.

7. Summary

We present a efficient and robust method based on discrete Lie derivative to compute area-preserving parameterizations, 
and further on employ it to generate measure controllable parameterizations which is demanding in various applications 
such as physical modeling and medical imaging. Secondly, we invent the Adaptive Step-length Scheme and solve the evasive 
conundrum of selecting steps, which greatly enhances the efficiency and robustness, and make discrete Lie derivative reliable 
in applications for the first time. For parameterization methods, it is usually difficult to equip the algorithm with a solid 
mathematical framework, so researchers are more or less lacking in convincingness, but our DLF has a solid one.
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7.1. Admissions

Due to constraints from a variety of aspects, we failed to obtain more abundant examples of other methods to give 
readers a more comprehensive view on the competitive power of our DLF method. And we also noticed that, in spherical 
cases, although DLF is pressure-free in the flowing procedure, a significant challenge comes from the long-existed problem 
in generating the initial parameterization for models with long protrudent parts. In this paper, we use conformal param-
eterizations as initialization mostly because it’s fast to compute; however, in precious few occasions, some triangles were 
deformed so small that they reached the limit of double-precision floating points, and as a result DLF is unable to start 
flowing.

7.2. Future works

A fully reliable initial parameterization method for all kinds of models is in demand. We also need to compare more 
existing initializing methods and analysis the pros and cons for DLF in particular. Besides, although we have proved that 
DLF is capable for high dimensional situations such as generating volume-preserving parameterizations for tetrahedron 
meshes, yet more researches and practices need to be done to migrate DLF into higher dimensionality.

Currently, our DLF uses edge-flipping operations to keep the mesh in Delaunay triangulation and avoid singularities of 
cotangent values in the Laplacian. This is necessary for pushing forward the flowing process, but it also causes changes in 
topology. When we use the resulting vertex coordinates with the original connectivity, chances are that a minor of triangles 
may flip. For applications that are sensitive to the possible flips, we refer readers to the work by Liu et al. (2015) and that 
by Yi et al. (2018). They studied on how to construct local Delaunay without changing the connectivity.

Our method is adaptable to the Riemannian manifold in theory, although we currently realized it on 2-dimensional 
manifolds embedded in 3-dimensional Euclidean space in this paper. The overall framework is clear: firstly, we calculate the 
changes in the area elements (or volume elements, for volumetric meshes) of the vertices; secondly, we apply the changes 
to edge lengths in the metric space. The detailed implementation, however, still needs exploring in future works.
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