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ABSTRACT: Asymmetric intramolecular hydrofunction-
alization of tertiary allylic alcohols is described. This metal
hydride-mediated catalytic radical—polar crossover reac-
tion delivers corresponding epoxides in good to high
enantioselectivity and constitutes the first example of
asymmetric hydrogen atom transfer-initiated process. A
series of modified cobalt salen complexes has proven
optimal for achieving good efficiency and asymmetric
induction. Experimental data suggest that cationic cobalt
complexes may be involved in the enantiodetermining
step, where cation—z interactions in the catalyst
contribute to the asymmetric induction.

M etal hydride-initiated radical reactions serve as a highly
chemoselective means for Markovnikov hydrofunction-
alization of alkenes under mild conditions."”” The intermediate
carbon-centered radicals generated upon hydrogen atom
transfer (HAT)> to a carbon—carbon double bond can react
with atom- and group-transfer reagents,” undergo addition to
multiple bonds,® and participate in cross-coupling reactions’ to
introduce new functional groups and structural motifs.
However, corresponding stereoselective processes are repre-
sented almost exclusively by the instances of stereochemical
relay, including examples of auxiliary-controlled hydration and
hydrohydrazination of a,3-unsaturated amides.”’ These
limitations are not surprising due to the inherent challenge
associated with enantiodifferentiation in prochiral alkyl radical
intermediates.” In this context, early reports of a highly
selective cis addition of putative cobalt(IlI) hydride inter-
mediates” to 1,2-disubstituted alkenes involving rapid collapse
of a radical pair in a solvent cage constitute the only relevant
instances of efficient stereocontrol.'”'" Here we show the first
example of a highly enantioselective HAT-initiated hydro-
functionalization (Figure 1). This radical—polar crossover
process is catalyzed by a series of modified cobalt salen
complexes and allows for conversion of tertiary allylic alcohols
to the corresponding enantioenriched epoxides. We present
data suggesting that cationic cobalt complexes may be involved
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Figure 1. Catalysis by alkylcobalt(IV) complexes allows for efficient
asymmetric induction in HAT-initiated hydrofunctionalizations.
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in the enantiodetermining step, where cation—7 interactions in
the catalyst contribute to the asymmetric induction. We also
demonstrate the application of this chemistry in a formal
Markovnikov hydrofunctionalization of tertiary allylic alcohols
for enantioselective installation of trisubstituted stereocenters
including those bearing amine, sulfide, and nitrile function-
alities.

Building on the earlier work in the field,'* we recently
reported HAT-initiated radical—polar crossover reactions of
tertiary allylic alcohols that afforded corresponding epoxides
and semipinacol rearrangement products.”” In that setting, the
outcome of the hydrofunctionalization event was under strong
catalyst control, which suggested participation of alkylcobalt
complexes as electrophilic intermediates.'* We reasoned that a
proper choice of a scalemic chiral catalyst would allow for
efficient enantioinduction provided that generation of the
product could be limited to the putative alkylcobalt-based
pathway. Initial experiments with tetrahydropyran derivative 1
and enantioenriched complex 4, which had previously proven
competent in the HAT-initiated synthesis of epoxides,"
delivered product 2 with low but measurable enantiomeric
excess (Table 1). Extensive experimentation with modifica-
tions in the ethylenediamine-derived fragment led to
identification of a series of o-biaryl-substituted complexes
that delivered the desired product with improved levels of
asymmetric induction. Thus, application of complex §
delivered epoxide 2 with moderate enantioenrichment.
Introduction of extended aromatic motifs in the o-biaryl
substituent (e.g, complexes 6 and 7) allowed for significant
enhancement of enantioselectivity and a complementary
increase in the efficiency. Ultimately, dibenzofuran-containing
complex 8 demonstrated optimal performance among the
evaluated catalysts."> The process could also be conducted at
low catalyst loadings without detrimental effects on the
enantioselectivity, but required extended reaction times to
achieve appreciable conversion of alcohol 1.

Brief exploration of the substrate scope identified a series of
cyclic dialkyl(vinyl)carbinols that successfully participated in
our enantioselective HAT-initiated hydro-functionalization.
Thus, derivatives of tetrahydropyran and piperidine (products
2, Table 1, and 9—11, Table 2) and their bicyclic counterparts
(products 12 and 13) underwent conversion to the
corresponding epoxides with good to high levels of asymmetric
induction. Single-crystal X-ray analysis of product 11
established the absolute configuration of the newly formed
stereocenter to be R, which is likely shared with other
enantioenriched epoxides obtained in this study. Similarly
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Table 1. Effect of the Catalyst Structure on the
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“Reaction time was 18 h; catalysts 4—8 were >95% ee; see SI for
details. "Yields were based on internal standard and determined by 'H
NMR; see SI for details. “Reaction with 0.5 mol% of catalyst 8
afforded 51% yield (65% conversion of alcohol 1) after 48 h.

good performance was observed with various functionalized
cyclohexanes (products 14—20). Simple cyclohexanes includ-
ing those containing only alkyl substituents (products 21—23)
produced low to moderate degrees of enantioinduction.
Application of acyclic substrates was unsuccessful (e.g.,
product 24). Attempted reactions of cycloalkanols containing
five- and seven-membered rings led to the corresponding
semipinacol rearrangement products (e.g., 25 and 26), ° which
were produced with low levels of stereocontrol.

Table 2. Preliminary Substrate Scope of the HAT-Initiated
Enantioselective Hydrofunctionalization”
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“0.05 M of allylic alcohol; see SI for details. Reaction time was 18 h.
“Yields were based on internal standard and determined by "H NMR.
#Yield of isolated material for characterization purposes was 48%.
“Absolute configuration was determined by X-ray crystallographic
analysis. /Reaction time was 48 h. €At —60 °C. "Yield of isolated
material for characterization purposes was 38%. ‘Epoxide was not
observed.

Analysis of the differential activation parameters in the
hydrofunctionalization of allylic alcohol 1 in the presence of
catalysts 5—8 revealed that enantioselectivity was enthalpically
controlled and the magnitude of differential enthalpy
correlated positively with the expanse of the aromatic moieties
(Table 3)."” This enthalpic gain was attenuated by the
corresponding increase in the differential entropy terms
observed across the series of catalysts 5—8. These data are in
principle consistent with a simple steric explanation that
increasing the size of the arene fragment leads to
destabilization of the minor transition state assembly in the
enantiodetermining step. However, current understanding of
the electronic structure of relevant cobalt complexes also
suggests an intriguing possibility for the role of stabilizing non-
covalent interactions in the observed effects. Previous

DOI: 10.1021/jacs.9b10645
J. Am. Chem. Soc. 2019, 141, 17527—17532


http://dx.doi.org/10.1021/jacs.9b10645

Journal of the American Chemical Society

Communication

Table 3. Eyring Analysis of Enantioselectivity in the
Hydrofunctionalization of Allylic Alcohol 1¢

N 5 mol% catalyst Me e OOTf
OH 3 equiv. 3 o Z
3 equiv. PhSiH,Me
—_— AR AN
o (CD3),CO o Me @’z Me
1 2 3
catalyst RrR? AAH¥ (kcal/mol) AAS* (cal/mol-K)
S 0.98 —1.82 + 0.07 —4.9 + 0.2
6 0.99 -3.28 + 0.07 —-9.5 £ 02
7 0.99 —-5.38 + 0.27 —-172 + 0.9
8 0.99 —6.54 + 0.23 —-20.7 + 0.7

“Based on six data points per catalyst, T = 233—292 K; see SI for
details.

spectroscopic and computational studies of alkylcobalt(IV)
glyoximates, porphyrins, and corrins as well as cobalt(III) salen
derivatives indicate that radical cations resulting from ligand-
to-metal charge transfer can contribute to the electronic
structure.'®'” We therefore proposed that cationic cobalt
complexes may experience cation—7x interactions between the
radical cation of the salen motif and the biaryl substituents of
the ethylenediamine-based fragment (Figure 2).2° In this

o7
o t-Bu
' = %o
t-Bul o

Figure 2. Representation of a radical cation of the putative
alkylcobalt(IV) intermediate derived from catalyst 8 and substrate 1
(L is likely to be solvent). Red dotted lines indicate the proposed
cation—7 interactions between the radical cation of the salen motif
and the biaryl substituents.

setting, extension of the participating arenes would lead to
more stabilizing interactions and their energetic benefits would
be manifested enthalpically.”' We found that enantioselectivity
correlated strongly with both the polarizability and the
quadrupole moment of the aromatic hydrocarbons correspond-
ing to the varied substituents in complexes $—7.>* Since the
strength of cation—n interactions should primarily be a
function of electrostatic and dispersion forces,”** the
observed correlations between the underlying physical proper-
ties and the degree of asymmetric induction suggest that
cation—7 interactions contribute to the improved stereo-
chemical outcomes. Should the effect of the substituents be
largely steric in nature, such significant correlations would not
be expected.'”** This proposal is also consistent with the
observation that introduction of electron-rich arenes results in
additional enhancement of enantioselectivity (e.g, compare
complexes 7 and 8).”° We note that continued expansion of
the aromatic moieties (e.g, introduction of pyrenyl and
triphenylenyl groups) becomes detrimental to the performance
of the catalyst. We attribute this effect to increasing steric
interactions between the biaryl fragments and the bulky tert-
butyl substituents of the hydroxynaphthaldehyde-derived
motif, which could lead to disruption of the cation—z
interactions.

Analysis of structural features found in the well-performing
allylic alcohols (see Table 2) revealed additional correlations.
The presence of properly positioned heteroatom-containing
substituents appears to result in superior enantioselectivity
during the epoxide formation. For example, functionalized
epoxides 18—20 were produced with good enantio-
selectivities.”” In contrast, epoxides 21—23 were obtained
with significantly lower asymmetric induction under identical
conditions, suggesting that steric factors are not the sole
determinant in enantioselectivity. The superior outcomes
observed with products 18—20 may stem from additional
stabilizing interactions between the functionalized cyclohexane
fragment and the radical cation of the cobalt salen motif in the
enantiodetermining step. Similar considerations should be
applicable in the cases of products 2, 9—17.7°

Taken all together, these observations suggest involvement
of cationic cobalt complexes in the enantiodetermining step.
For example, diastereomeric alkylcobalt(IV) intermediates may
undergo kinetic resolution” during the intramolecular
nucleophilic displacement (see eq 1). In this scenario, an

A [Co-H] Me . [Co] Me,,'. [Co] Me [Co]
OH j<or| — Jzou + IOH
R™ 'R HAT R” "R R” R R R

l -e® l AC)

enantio-determining - 1@ 1®

Me displacement Me,, _[Co] Me [Co]

o) jzo - Lou -— Iou
R R R R R R

increase in the cation—x interactions in the catalyst would
stabilize the electrophiles, leading to a later transition state and
enhanced enantioselectivity. Additional interactions between
the heteroatom-containing substituents of the well-performing
substrates and the radical cation of the salen motif would have
a similar effect on the displacement. Diastereomeric
alkylcobalt(IV) intermediates may interconvert upon epimeri-
zation of the stereocenter bearing the homolytically labile
carbon—cobalt bond.’® Relevant rearrangements of alkyl
substituents in organocobalt complexes were previously
demonstrated to proceed via a radical chain mechanism.’!
Formation of alkylcobalt(IV) intermediates may involve
oxidation of the corresponding alkylcobalt(III) complexes,"*
which can be generated via HAT from the putative cobalt(III)
hydride intermediates to alkenes followed by radical pair
collapse.”> An alternative scenario may involve enantio-
determining diffusion of alkyl radicals into the solvent cage
during the capture by cationic cobalt(III) complexes en route
to the corresponding alkylcobalt(IV) intermediates.”**° Both
scenarios are also consistent with the superior performance of
polar solvents: cyclization of allylic alcohol 1 in the presence of
catalyst 8 produces epoxide 2 in only 26% ee when acetone is
replaced with dichloromethane.

Combination of our HAT-initiated cyclization of dialkyl-
(vinyl)carbinols with the well-established reactivity of trisub-
stituted epoxides in Sy2 reactions provides an entry into a
formal enantioselective hydrofunctionalization of tertiary allylic
alcohols with Markovnikov selectivity. Thus, reaction of
epoxide 11 with Boc-protected piperazine produced amino-
alcohol 27 in high yield (Scheme 1). Related structural motifs
previously found application in medicinal chemistry efforts.””
Similar displacements with a thiolate, an allyl Grignard reagent,
and Nagata’s reagent delivered corresponding sulfide 28,
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Scheme 1. Derivatization of Epoxide 11
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alkene 29, and nitrile 30, respectively, with good efficiency. In
all cases, excellent levels of stereoinversion were observed,
demonstrating the potential of this approach in the enantio-
selective synthesis of polyfunctional building blocks.

In summary, we show the first example of a highly
enantioselective HAT-initiated hydrofunctionalization cata-
lyzed by a series of new cobalt salen complexes. Our
observations are consistent with the proposed participation
of alkylcobalt(IV) complexes, which accounts for strong
catalyst control and allows for direct conversion of dialkyl-
(vinyl)carbinols to the corresponding scalemic epoxides. The
experimental data suggest that cationic cobalt complexes may
be involved in the enantiodetermining step, where cation—x
interactions in the catalyst contribute to the superior
asymmetric induction obtained with the new cobalt salen
derivatives. The radical—polar crossover reactivity described
herein is expected to serve as a starting point for overcoming
the challenges of absolute stereocontrol in the development of
asymmetric HAT-initiated processes and for future studies of
the mechanistic underpinnings associated with this fascinating
class of chemical transformations.*®
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