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ABSTRACT

This paper presents the first security study of THz networks with

Leaky Wave Antennas (LWAs). We employ a mix of analytical

models and over-the-air experiments to explore the unique security

properties of LWA links. We show via both models and experiments

that the LWA’s angle-frequency coupling leads to non-uniform se-

crecy capacity across sub-channels yielding advantages to an eaves-

dropper at edge frequencies. Yet, because different frequencies emit

energy at different angles, the eavesdropper is thwarted from easily

intercepting an entire wideband transmission. The experiments di-

verge from the analytical model in that the model underpredicts the

eavesdropper’s advantage at angles smaller than the target user and

subsequent asymmetric performance across angles. Nonetheless,

both the model and measurements show that increasingly wide

bandwidth and correspondingly wide beams have only a modest

marginal security penalty.
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1 INTRODUCTION

The use of frequencies above 100 GHz for wireless links is rapidly

emerging as one of the accepted paradigms for future (beyond 5G)

wireless systems [1, 17, 24, 28]. For the first time, in March 2019,

the US Federal Communications Commission (FCC) has adopted

rules to encourage development of technologies above 95 GHz [4].

Subsequently, in November 2019, the World Radiocommunication
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Conference adopted a resolution to encourage sharing between

active and passive radio services at frequencies up to 450 GHz

[5]. These high-frequency communications systems, which we will

refer to as terahertz (THz) links, offer numerous advantages, such

as plentiful bandwidth [26] for ultra-high-speed data transmission

[15, 18, 25]. Another commonly cited advantage is that of enhanced

resilience against malicious attacks, as these highly directional links

are presumably more secure against eavesdropping and jamming.

In the modern era of wireless interconnected devices, the issue of

security is a forefront concern.

Leaky Wave Antennas (LWAs) provide a promising foundation

for THz scale networking. While traditional phased arrays em-

ployed at millimeter wave encounter scaling limits impeding their

realization at THz [9, 14], LWAs are dynamically steerable via a

simple mechanism of frequency tuning. That is, a LWA’s emission

angle can be changed by controlling the carrier’s center frequency

[13, 16, 27].

In this paper, we perform the first security study of THz networks

with LWA antennas. In particular, we make the following three

contributions. First, we characterize the key elements of LWAs

under a threat model in which an eavesdropper Eve attempts to

intercept a directional THz transmission between Alice and Bob.

We describe how the aforementioned angle-frequency coupling

manifests via analytical models based on Maxwell’s equations. In

particular, because a LWA is a parallel plate waveguide with an

emission slot, its behavior can be reasonably approximated using

scalar diffraction theory. While the exact far-field radiation pattern

is intractable, closed form approximations are available for the

dominant transverse electric mode [12, 30]. Because this angle-

frequency coupling that does not manifest in traditional systems

such as phased arrays, we define a new security metric that we term

subchannel secrecy capacity. Thus, we can understand security not

only in aggregate, but also in its individual frequency-dependent

components.

Second, we study the security properties of the THz link based

on the physical model and the subchannel secrecy capacity metric.

We first show that subchannel secrecy capacity is not symmetric

around the transmission’s center frequency. The key reason is that

when Eve is at a different angle from Bob, she intercepts a different

frequency profile due to the LWA’s fundamental characteristics. For

Eve at an angle larger than Bob’s angle, she intercepts low frequen-

cies better than high frequencies and vice versa. Consequently, her

relatively high SNR in this regime sharply reduces secrecy capacity.

We next explore the impact of bandwidth and beamwidth coupling

in LWA links. Because wider bandwidth (using a wider range of

frequencies) corresponds to a wider beamwidth (wider range of
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fluctuation below 40 GHz suggests that some subchannels have

especially evident side lobes so that when those subchannels are

included in the transmission, the minimum security separation

increases unexpectedly. Nevertheless, with increasing bandwidth,

the irregularity in each subchannel also averages out and shows a

trend similar to the model prediction. The increase of the minimum

secure separation indicates the trade-off between bandwidth and

security for a LWA link when the security requirement is high.

Finally, observe that the experimental minimum security sepa-

ration is smaller than the model prediction for the lower security

requirement of 0.3, but larger than the model prediction when the

security requirement is higher at 0.8. Recall that the measured radi-

ation pattern is asymmetric that the beam pattern on the smaller an-

gle side of the peak is underestimated. When Eve locates relatively

close to Bob on the larger angle side, the model underestimates the

secrecy capacity and therefore predicts a larger minimum security

separation. In contrast, the model predicts that the radiation pattern

dies off almost monotonically and does not predict the possible side

lobes in an actual LWA link. As a result, the model predicts a rela-

tively optimistic minimum security separation, not incorporating

the potential side lobes that would otherwise make the minimum

security separation wider.

5 CONCLUSIONS

This paper presents, for the first time, a study of the security of a

THz link created by a leaky wave antenna. We perform an analytic

and experimental investigation to show how the link’s unique

angle-frequency coupling impacts security, in some cases aiding

the adversary (e.g., more vulnerable to Eve in the negative angle

due to beam pattern asymmetry) and in other cases hindering the

adversary (e.g., a wide-band transmission is also wide-angle, and

therefore difficult to intercept all frequency band).
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