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ABSTRACT
Modifications of the matter power spectrum due to baryonic physics are one of the major
theoretical uncertainties in cosmological weak lensing measurements. Developing robust
mitigation schemes for this source of systematic uncertainty increases the robustness of
cosmological constraints, and may increase their precision if they enable the use of information
from smaller scales. Here we explore the performance of two mitigation schemes for baryonic
effects in weak lensing cosmic shear: the principal component analysis (PCA) method and the
halo-model approach in HMCODE. We construct mock tomographic shear power spectra from
four hydrodynamical simulations, and run simulated likelihood analyses with COSMOLIKE

assuming LSST-like survey statistics. With an angular scale cut of �max < 2000, both methods
successfully remove the biases in cosmological parameters due to the various baryonic physics
scenarios, with the PCA method causing less degradation in the parameter constraints than
HMCODE. For a more aggressive �max = 5000, the PCA method performs well for all but
one baryonic physics scenario, requiring additional training simulations to account for the
extreme baryonic physics scenario of Illustris; HMCODE exhibits tensions in the 2D posterior
distributions of cosmological parameters due to lack of freedom in describing the power
spectrum for k > 10 h−1 Mpc. We investigate variants of the PCA method and improve the
bias mitigation through PCA by accounting for the noise properties in the data via Cholesky
decomposition of the covariance matrix. Our improved PCA method allows us to retain more
statistical constraining power while effectively mitigating baryonic uncertainties even for a
broad range of baryonic physics scenarios.

Key words: cosmological parameters – cosmology: theory – large-scale structure of Uni-
verse.

1 IN T RO D U C T I O N

The origin of the accelerated expansion of the Universe has been
one of the most profound mysteries in modern cosmology since
its discovery (Riess et al. 1998; Perlmutter et al. 1999). The �

cold dark matter (�CDM) framework is currently consistent with
observations of the expansion history of our Universe from early
(Planck Collaboration XIII 2016) to late times (Abbott et al. 2018).
Ongoing photometry surveys such as KiDS (Kilo-Degree Survey1),
HSC (Hyper Suprime-Cam2), and DES (Dark Energy Survey3)
or future experiments such as LSST (Large Synoptic Survey

� E-mail: hungjinh@andrew.cmu.edu
1http://www.astro-wise.org/projects/KIDS/
2http://hsc.mtk.nao.ac.jp/ssp/
3www.darkenergysurvey.org/

Telescope4), Euclid,5 and WFIRST (Wide-Field Infrared Survey
Telescope6) experiments aim to constrain cosmological parameters
to higher precision and search for deviations from �CDM in order
to understand the nature of dark energy and general relativity.

Weak gravitational lensing (WL), the deflection of light by the
gravitational potential of cosmic structure, is one of the most
promising cosmological probes to discriminate between dark energy
models (Weinberg et al. 2013; Mandelbaum 2018). Tomographic
WL measurements, in which galaxy shapes are cross-correlated
within and across bins in redshift space (e.g. Hu & Jain 2004), are
directly sensitive to structure growth, with secondary dependence
on the relative distance ratios. In order to use tomographic WL

4http://www.lsst.org/lsst
5sci.esa.int/euclid/
6http://wfirst.gsfc.nasa.gov/
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measurements to constrain cosmological parameters, an accurate
model for matter density power spectrum, Pδ(k, z), is required. It
has been estimated that Pδ(k, z) must be predicted to approximately
1 per cent accuracy for k ≤ kmax ∼ 10 h−1 Mpc in order to avoid
biasing cosmological parameter constraints in the era of LSST
(Huterer & Takada 2005; Eifler 2011; Hearin, Zentner & Ma 2012).

In the linear and quasi-linear regimes, perturbation theory can
be used to calculate the matter power spectra for a set of given
cosmological parameters (Bernardeau et al. 2002). On smaller
scales, N-body simulations are needed in order to capture the
complicated non-linear evolution of structure growth. For example,
the HALOFIT method employs a functional form of Pδ(k, z) derived
from halo models, and calibrates the model parameters from N-body
simulations at various cosmological parameters (Smith et al. 2003;
Takahashi et al. 2012). Alternatively, the COSMIC EMU package
emulates Pδ(k, z) by directly interpolating the N-body simulation
results at a range of cosmological models (Heitmann et al. 2010,
2014; Lawrence et al. 2017). However, only gravitational physics
is included in these dark-matter-only (DMO) simulations, which
neglects any modification of the matter distribution due to baryonic
physics processes such as star formation, radiative cooling, and
feedback (e.g. Cui, Borgani & Murante 2014; Velliscig et al. 2014;
Mummery et al. 2017). These processes can modify Pδ(k, z) by
tens of per cent compared to the DMO power spectra from k ≈ 1
to 10 h−1 Mpc at z = 0 (van Daalen et al. 2011). The changes in
the matter power spectrum due to baryonic physics can affect our
inferences on dark energy (e.g. Copeland, Taylor & Hall 2018) and
neutrino mass parameters (e.g. Harnois-Déraps et al. 2015) as they
have similar effects on part of the power spectrum, but the different
scale and redshift dependences can help in breaking some of the
degeneracies.

There are several approaches to mitigating the impact of un-
certainty in how the baryonic physics modifies the matter power
spectrum. The simplest approach is to eliminate data points that
may be severely affected by this uncertainty, so that limitations
in small-scale modelling do not bias the inferred cosmology [e.g.
see Krause et al. (2017) for the determination of the redshift-
dependent angular scale cuts for the DES-Y1 analysis or see Taylor,
Bernardeau & Kitching (2018) for another method relating angular
scale cuts to physical (k) space]. This approach results in a loss
of cosmological constraining power, especially when the statistical
precision of the data increases in the future, resulting in the need
for even more conservative scale cuts. A more economical way
of discarding data is through peak clipping (Simpson et al. 2011;
Simpson, Heavens & Heymans 2013). By cutting the most extreme
peaks in the density fields of both observed and mock data sets,
the derived summary statistics become less sensitive to the poorly
modelled non-linear regime, while still allowing the use of a wider
range of scales to extract cosmological information (Giblin et al.
2018). Eifler et al. (2015) propose the principal component analysis
(PCA) framework (see also Kitching et al. 2016), which utilizes
suites of hydrodynamical simulations to build a set of principal
components (PCs) describing the modification of the observables by
baryonic physics. The first few PC modes point towards directions
in observable space where deviations from DMO power spectra
due to baryons are most dominant. One can then efficiently remove
the vast majority of baryonic uncertainties by discarding the first 3–
4 PC modes. Mohammed & Gnedin (2018) point out that the training
hydro simulations used to construct PCs have to be sufficiently broad
in order to offer flexible degrees of freedom to span the possible
baryonic scenarios for our Universe.

Other methods focus on modelling the ratio of power spectra
that includes baryons to those that do not, with the goal of
finding functional forms to describe the range of possible behaviour
of Pδ,bary(k, z)/Pδ,DMO(k, z). Harnois-Déraps et al. (2015) use a
parametric form with 15 parameters that is able to describe the
power spectrum ratio of several OWLS simulations (van Daalen
et al. 2011) to within 10 per cent precision up to k ≈ 20 h−1 Mpc
and z < 1.5. Chisari et al. (2018) show that the above parametric
form is sufficiently flexible to fit the power spectra ratio in the
Horizon-AGN (Dubois et al. 2014) simulation to within 3 per cent
across z � 4 up to k ≈ 30 h−1 Mpc, but with the downside of
involving too many free parameters. The authors propose a more
compact model with four parameters that is capable of providing a
fit to Horizon-AGN to within <5 per cent.

Based on the fact that baryonic physics mainly affects the matter
power spectrum by altering the structure of dark matter haloes,
another proposed approach is to model the deviations in the matter
power spectrum through the framework of the halo model (Pea-
cock & Smith 2000; Seljak 2000; Cooray & Sheth 2002). Zentner,
Rudd & Hu (2008) and Zentner et al. (2013) demonstrate that
incorporating the halo concentration–mass relation and its redshift
evolution into the halo model framework and marginalizing over
the associated free parameters can successfully mitigate baryonic
bias for Stage III surveys such as DES, but is insufficient for Stage
IV experiments. In addition to the degree of freedom that governs
halo concentration, Mead et al. (2015, 2016) consider a parameter
that characterizes the mass dependence of feedback, with publicly
available software available for this model in HMCODE.7 Copeland
et al. (2018) further extend HMCODE, introducing a core radius
parameter to characterize the inner halo structure that is believed
to be an outcome of baryonic effects (Martizzi et al. 2012). There
are also approaches that go beyond NFW (Navarro–Frenk–White,
Navarro, Frenk & White 1996) halo profiles, focusing on modelling
the radial density distributions of stellar, gas, and DM components of
haloes to capture the main features of baryonic feedback (Semboloni
et al. 2011; Semboloni, Hoekstra & Schaye 2013; Mohammed
et al. 2014; Schneider & Teyssier 2015; Schneider et al. 2019).
The improvement of the halo model approach is an active research
area, in particular on constraining the prior range. These halo model
approaches potentially enable us to jointly constrain halo structural
information and cosmological parameters from data.

Baryonic effects can be mitigated also via a joint analysis
through optimized combination of different cosmological probes,
as demonstrated in Osato, Shirasaki & Yoshida (2015). Finally,
a gradient-based method is proposed recently by Dai, Feng &
Seljak (2018). Dark matter particles in N-body simulations are
moved along the gradient of estimated thermal pressure to mimic
the effect of baryonic feedback. This method can be implemented
as a post-processing step on N-body simulations to produce fast
hydrodynamical-like simulations.

In this paper, we focus on studying two of the above baryonic
mitigation methods – the PCA method and HMCODE. We test the
effectiveness of these baryonic physics mitigation techniques on
a broad range of possible baryonic scenarios by applying them
to LSST-like mock observables constructed from hydrodynamical
simulations of MassiveBlack-II (Khandai et al. 2015), Illustris
(Vogelsberger et al. 2014), Eagle (Schaye et al. 2015), and Horizon-
AGN (Dubois et al. 2014), and comparing their cosmological pa-

7https://github.com/alexander-mead/HMcode
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rameter constraints. In addition, for the PCA method, we investigate
different ways of constructing the PCs, and provide a modification
to the original formalism to improve their efficiency.

This paper is organized as follows. In Section 2, we give an
overview on the hydrodynamical simulations used in this work for
the construction of our training and test sets. Section 3 describes
the set-up of our simulated LSST-like likelihood simulations. In
Section 4, we provide the detailed theoretical formalism for the
baryonic mitigation techniques from literature and our improved
PCA scheme applied in this work. Section 5 presents the main results
of the likelihood simulations under various baryonic scenarios and
compares the performances of different mitigation methods. We
summarize our findings in Section 6, and discuss the prospects of
PCA-based methods for future investigation.

2 BARYO NIC EFFECTS IN SIMULATIONS

In this section, we introduce the hydrodynamical simulations
involved in our analysis (summarized in Table 1), and compare
the impact of the baryonic physics considered on the matter
distributions.

2.1 OWLS simulation suite

The OWLS simulations are a large suite of cosmological hydro-
dynamical simulations with varying implementations of subgrid
physics to enable investigations of the effects of altering or adding
a single physical process on the total matter distribution (Schaye
et al. 2010). Here we adopt nine different baryonic simulations
from OWLS. We refer readers to van Daalen et al. (2011) for a
more detailed description.

(i) REF: The baseline simulation that contains many of the
physical processes known to be important for galaxy formation
except for the active galactic nucleus (AGN) feedback mechanism.
REF includes prescriptions of radiative cooling and heating for 11
different elements, star formation assuming the Chabrier (2003)
stellar initial mass function (IMF), stellar evolution, mass-loss,
chemical enrichment, and SN feedback in kinetic form (wind mass
loading factor η = 2 and initial wind velocity vw = 600 km s−1 ; all
together ηv2

w determines the energy injected into the winds per unit
stellar mass). The other eight hydro simulations are based on REF,
with modifications indicated below.

(ii) NOSN: Exclude SN feedback.
(iii) NOZCOOL: Exclude metal-line cooling. Only assume pri-

mordial abundances when computing cooling rates.
(iv) NOSN NOZCOOL: Exclude both SN feedback and metal-

line cooling.
(v) WML1V848: Adopt the same SN feedback energy per unit

stellar mass as for REF, but reduce the mass loading factor by a
factor of 2 (η = 1) and increase the wind velocity by a factor of

√
2

(vw = 848 km s−1).
(vi) WDENS: Adopt the same SN feedback energy per unit stellar

mass as that of REF, but let η and vw depend on gas density (vw ∝
n

1/6
H ; η ∝ n

−1/3
H ).

(vii) WML4: Double SN feedback per unit stellar mass by
increasing the mass loading factor by a factor of 2 (η = 4).

(viii) DBLIMFV1618: Once the gas reaches a certain pressure
threshold, 10 per cent of the star formation activity follows a top-
heavy IMF. In this case, more high-mass stars are produced, which
leads to higher SN energy feedback.

(ix) AGN: In addition to physics included in the REF model, add
a subgrid model for BH evolution and AGN feedback following the
prescription of Booth & Schaye (2009). BHs inject 1.5 per cent of
the rest-mass energy of the accreted gas into the surrounding matter
in the form of heat.

The simulation cube for OWLS is L = 100 h−1 Mpc in comov-
ing scale on a side. The OWLS-DMO simulation contains 5123

collisionless DM particles; the nine hydro simulations contain
an additional 5123 particles in the form of collisional gas or
collisionless stars to capture the baryonic processes. The DM
and (initial) gas particle masses are ≈ 4.06 × 108 and 8.66 ×
107 h−1 M�, respectively. The gravitational softening length is
ε ≈ 0.78 h−1 kpc in comoving scale, and is limited to a maximum
physical scale of 2 h−1 kpc. The cosmological parameters used
in the simulation are based on WMAP3 results (Spergel et al.
2007): {�m, �b, ��, σ 8, ns, h} = {0.238, 0.0418, 0.762, 0.74,
0.951, 0.73}.

The OWLS simulation sets are not specifically fine-tuned to
match with key observables. As indicated in McCarthy et al.
(2017), the original OWLS models underpredict the abundance of
M∗ < 1011 M� galaxies at the present day due to overly efficient
stellar feedback (see their fig. 1). The successor BAHAMAS
simulation lowers the wind velocity vw from 600 to 300 km s−1

in order to provide a better fit to the observed abundance of low-to-
intermediate-mass galaxies.8

2.2 Eagle simulation

The Eagle simulation (Schaye et al. 2015) is conducted in
a cubic periodic box of side length L = 67.77 h−1 Mpc (co-
moving). There are 15043 DM particles in both hydrodynami-
cal and DMO simulations, and an approximately equal number
of baryonic particles in the hydrodynamical run. The mass of
each DM particle is 6.57 × 106 h−1 M� and the initial baryonic
mass resolution is 1.23 × 106 h−1 M�. The gravitational softening
length is ε = 1.8 h−1 kpc in comoving units (The EAGLE team
2017). The cosmological parameters used in Eagle are consis-
tent with Planck 2013 results (Planck Collaboration XVI 2014):
{�m, �b, ��, σ 8, ns, h} = {0.307, 0.04825, 0.693, 0.8288, 0.9611,
0.6777}.

The subgrid physics used in Eagle is based on OWLS. The
physical models include radiative cooling and photoionization
heating; star formation associated with stellar mass-loss and energy
feedback; BH mergers, gas accretion, and AGN feedback. The
most important changes compared to OWLS are: star-forming
feedback energy changing in terms of thermal form rather than
kinetic; accounting for angular momentum during the accretion of
gas onto BHs; inclusion of a metallicity-dependence in the star
formation law. In contrast to many hydrodynamical simulations,
Eagle employs stellar and AGN feedback only in thermal form,
which captures the collective effects of mechanisms such as stellar
winds, radiation pressure, SN feedback, and radio- and quasar-mode
AGN feedback. One major improvement in the treatment of thermal
feedback is that it can be performed without turning off radiative
cooling and hydrodynamical forces.

The galaxy stellar mass function of Eagle matches extremely well
with observations at z = 0.1, because its stellar and AGN feedback

8Due to the low resolution of BAHAMAS, we are not able to include it
as one of the hydrodynamical scenarios in this work (see Appendix B2 for
details of our resolution requirement).
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Table 1. Basic information for the hydrodynamical simulations used in this work.

Simulation Box length Total DM particle Initial gas Force softening Cosmology
particle # mass particle mass length

OWLS 100 h−1 Mpc 2 × 5123 4.06 × 108 h−1 M� 8.66 × 107 h−1 M� 0.78 h−1 kpc WMAP3
MassiveBlack-II 100 h−1 Mpc 2 × 19723 1.1 × 107 h−1 M� 2.2 × 106 h−1 M� 1.85 h−1 kpc WMAP7
Illustris 75 h−1 Mpc 2 × 18203 4.41 × 106 h−1 M� 8.87 × 105 h−1 M� 1.4 h−1 kpc WMAP7
Eagle 67.77 h−1 Mpc 2 × 15043 6.57 × 106 h−1 M� 1.23 × 106 h−1 M� 1.8 h−1 kpc Planck2013
Horizon-AGN 100 h−1 Mpc 2 × 10243 1.1 × 107 h−1 M� 2.2 × 106 h−1 M� 1.85 h−1 kpc WMAP7

related parameters are specifically calibrated at each resolution to
reproduce this observable (see Crain et al. 2015; Schaye et al. 2015
for details of calibration philosophy).

2.3 MassiveBlack-II simulation

The MassiveBlack-II (hereafter MB2) simulation is a high-
resolution �CDM cosmological simulation (Khandai et al. 2015).
Both DMO (Tenneti et al. 2015) and hydrodynamical MB2 sim-
ulations are conducted in a cubic simulation box with sides of
length L = 100 h−1 Mpc in comoving scale. There are 19723 DM
particles in both the MB2-hydro and MB2-DMO simulations, with
an additional 19723 initial number of gas particles in the hydro run.
The mass of each DM particle is 1.1 × 107 h−1 M� and the initial
baryonic mass resolution is 2.2 × 106 h−1 M�. The gravitational
softening length is ε = 1.85 h−1 kpc in comoving units. The
cosmological parameters in MB2 are consistent with WMAP7
results (Komatsu et al. 2011): {�m, �b, ��, σ 8, ns, h} = {0.275,
0.046, 0.725, 0.816, 0.968, 0.701}.

The subgrid models of baryonic physics in MB2 include a
multiphase interstellar medium model with star formation and
associated feedback by SN and stellar winds (Springel & Hernquist
2003); BH accretion, merger, and associated AGN feedback in
quasar-mode (Di Matteo, Springel & Hernquist 2005; Springel,
Di Matteo & Hernquist 2005).

The AGN feedback efficiency of MB2 is relatively weak com-
pared with other hydrodynamical simulations that have AGN
subgrid physics involved in this work. One outcome of this is that
MB2 overpredicts the abundance of massive galaxies at low redshift
(Khandai et al. 2015).

2.4 Illustris simulation

The Illustris simulation (Vogelsberger et al. 2014) is carried out
in a cubic periodic box with sides of length L = 75 h−1 Mpc
(comoving). We download the highest resolution snapshot data
from the public release website (Nelson et al. 2015) to calculate
power spectra for both hydrodynamical and DMO runs. There are
18203 DM particles in both hydrodynamical and DMO simula-
tions, and an approximately equal number of baryonic particles
in the hydrodynamical run. The mass of each DM particle is
4.41 × 106 h−1 M� and the initial baryonic mass resolution is
8.87 × 105 h−1 M�. The gravitational softening length is ε =
1.4 h−1 kpc in comoving units. The cosmological parameters
adopted in Illustris are consistent with WMAP7 results (Komatsu
et al. 2011): {�m, �b, ��, σ 8, ns, h} = {0.2726, 0.0456, 0.7274,
0.809, 0.963, 0.704}.

Illustris incorporates a broad range of galaxy formation physics
(Vogelsberger et al. 2013): gas cooling in primordial and metal-
lines; stellar evolution associated with chemical enrichment and
stellar mass-loss; kinetic stellar feedback driven by SN; BH ac-

cretion, merging, and related AGN feedback in terms of quasar-
and radio-modes as well as associated radiative electromagnetic
feedback.

Illustris is run using the moving-mesh-based code AREPO

(Springel 2010), which is more efficient in cooling compared with
classical particle-based SPH codes (e.g. Springel 2005). The energy
input from feedback is designed to be strong to avoid efficient stellar
mass build-up. Even with this setting, Illustris still overshoots the
observed low-redshift stellar mass function on both high- and low-
mass ends. The radio-mode AGN feedback is also too violent for
the gas component, under predicting the baryon content in lower
redshift high-mass haloes where the radio-mode feedback is the
dominant heating channel (Genel et al. 2014; Haider et al. 2016).
The successor IllustrisTNG simulation replaces the intense thermal
energy dump of radio-mode feedback with kinematic kicks to heat
up affected gas particles (Weinberger et al. 2018).

2.5 Horizon-AGN simulation

The Horizon-AGN (Dubois et al. 2014) is carried out in a cubic
periodic box of side length L = 100 h−1 Mpc (comoving). There
are 10243 DM particles in both the DMO and hydrodynamical runs,
with the DM particle mass of 9.9 × 107 h−1 M� for the DMO run,
and 8.3 × 107 h−1 M� for the hydrodynamical run. The initial gas
particle mass is about 1 × 107 h−1 M�. The cosmological parame-
ters used in the simulation are compatible with WMAP7 cosmology
(Komatsu et al. 2011): {�m, �b, ��, σ 8, ns, h} = {0.272, 0.045,
0.728, 0.81, 0.967, 0.704}.

Subgrid physics models for a variety of baryonic physics effects
are implemented in Horizon-AGN. Gas is allowed to cool down to
104 K via transition lines of hydrogen and helium as well as metals
using the Sutherland & Dopita 1993 model. When the hydrogen
number density exceeds a threshold of 0.1 H cm−3, star formation
is triggered following a random Poisson process (Shandarin &
Zeldovich 1989; Rasera & Teyssier 2006). SN feedback is taken
into account assuming an IMF with a low-mass cut-off at 0.1 M�
and a high-mass cut-off at 100 M�. Chemical enrichment happens
along with SN explosions and stellar winds. The AGN feedback is
modelled in a combination of two different modes: the kinematic
radio mode when ṀBH/ṀEdd < 0.01 and the thermal quasar mode
otherwise (Dubois et al. 2012).

Although Horizon-AGN is not specifically tuned to reproduce
the galaxy stellar mass function at local Universe, it shows reason-
able consistency with observations, with slight overproduction of
galaxies at the low-mass end (Kaviraj et al. 2017).

2.6 Comparison of power spectra in hydrodynamical versus
DMO simulations

From the snapshot data release of Eagle, MB2, and Illustris, we
calculate the matter power spectra as detailed in Appendix A.
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Figure 1. The ratios of the matter power spectra in different hydrodynami-
cal simulations with respect to their counterpart DMO simulations at z = 0.
The thick lines show results for the Eagle, MB2, and Illustris simulations,
while the thin lines indicate the nine different baryonic scenarios in OWLS
simulation suite. The grey vertical line separates between regions where
the data points come from direct measurement (k � 30 h−1 Mpc) and from
extrapolation with a quadratic spline fit (k � 30 h−1 Mpc; see Appendix B
for further details).

For OWLS and Horizon-AGN simulations, we use the computed
results from van Daalen et al. (2011) and Chisari et al. (2018),
respectively. Power spectra from DMO simulations, with the same
initial condition as their paired hydrodynamical simulations, are also
computed in order to perform a fair comparison across simulations
with different cosmological parameters and with reduced cosmic
variance. For each paired simulation set, only a single realization
was available to construct the power spectrum ratio.

Fig. 1 shows the z = 0 ratio of power spectra from different
hydrodynamical simulations with respect to their counterpart DMO
simulations. The thin lines indicate the nine different baryonic
scenarios in the OWLS simulation suite. For the eight baryonic
scenarios without AGN feedback, the common feature is a rapid
increase in power on small scales. The power enhancement is due
to efficient cooling of gas which eventually leads to the formation of
galaxies within haloes, and further concentrates the DM distribution
(Blumenthal et al. 1986). Simulations without SN feedback (NOSN,
NOSN NOZCOOL) tend to have an even stronger increase in
power compared to the reference simulation REF due to the
enhanced cooling effect. When adding AGN feedback to REF,
the power is suppressed dramatically, with 1 per cent reduction
for k ≈ 0.3 h−1 Mpc and exceeding 10 per cent for k � 2 h−1 Mpc
(van Daalen et al. 2011). The suppression of power is due to baryons
being pushed outward by the energetic AGN feedback processes.

The thick lines represent power spectra ratio for Eagle, MB2,
Illustris, and Horizon-AGN simulations. Although they all involve
a broad range of astrophysical processes that are believed to be
relevant to galaxy formation, the resulting power spectra show
significant differences. The feedback mechanism in Illustris dras-
tically suppresses the power by 35 per cent at k ≈ 5 h−1 Mpc.
Eagle reaches its maximum suppression of power of 20 per cent
at k ≈ 20 h−1 Mpc. A similar trend is also observed in Horizon-

AGN, but it reaches its minimum amplitude reduction of 10 per cent
at k ≈ 10 h−1 Mpc. Going towards higher k, we start to see
that the ratio curves bend upward and keep increasing beyond
k of 30 h−1 Mpc. The MB2 power spectrum behaves relatively
similar to DMO, but still the baryonic prescription prevents the
power spectrum ratio from growing too quickly compared to the
OWLS scenarios without AGN feedback, which suffer from severe
overcooling effect (e.g. Tornatore et al. 2003; McCarthy et al. 2011).

The input cosmologies ( pco,sim) for the five simulation suites are
different. In order to predict matter power spectra with baryonic
effects for arbitrary cosmological parameters, we take the power
spectrum ratios shown Fig. 1 and apply the following equation:

P
hydro
δ (k, z | pco) = P

hydro,sim
δ (k, z | pco,sim)

P
DMO,sim
δ (k, z | pco,sim)

P
theory
δ (k, z | pco) , (1)

where P
hydro,sim
δ (k, z | pco,sim) denotes the hydrodynamical run from

a given simulation; P
DMO,sim
δ (k, z | pco,sim) is the corresponding

DMO run; P
theory
δ (k, z | pco) is the theoretical power spectrum

calculated from HALOFIT (Takahashi et al. 2012) or HMCODE (Mead
et al. 2015), which are calibrated by DMO simulations.

Equation (1) illustrates the most important assumption in this
work: we assume that baryonic effects on the power spectrum can
be represented as a fractional change in the power spectrum, and that
this fractional change is independent of cosmology. The cosmology
enters our analysis only through the theoretical power spectrum
P

theory
δ (k, z | pco). This is a reasonable assumption. According to

van Daalen, McCarthy & Schaye (2019), the power spectrum ratio
remains more or less the same when varying cosmologies (see their
fig. 6).

3 L I K E L I H O O D A NA LY S I S M E T H O D O L O G Y

Here we present our methodology in estimating the cosmological
constraining power for an LSST-like survey. We start by describing
the theoretical models used in the work, our mock observations,
the covariance matrix constructed for an LSST-like survey, and
finally the likelihood formalism used in estimating the posterior
distribution of cosmological parameters. The cosmological model
considered in our likelihood simulation is flat wCDM, with varying
cosmological parameters pco = {�m, σ8, �b, ns, w0, wa, h}.

3.1 Theoretical models

We rely on two main theoretical models to fit our mock observables
in this work. The first one is the Takahashi et al. (2012) version of
HALOFIT. It adopts empirically motivated functional forms to char-
acterize the variation of power spectra with cosmology. Having been
calibrated with high-resolution N-body simulations, it provides an
accurate prediction of the non-linear matter spectrum with 5 per cent
precision at k ≤ 1 h−1 Mpc and 10 per cent at 1 ≤ k ≤ 30 h−1 Mpc
within the redshift range of 0 ≤ z ≤ 10.

The second fitting routine is HMCODE, constructed by M15. It
utilizes the halo-model formalism to describe the cosmological
change of power spectra via physically motivated parameters.
HMCODE has prescriptions for capturing the impact of baryons on the
matter power spectrum via two free parameters: the amplitude of the
concentration–mass relation (A; see equation 14 in M15), and a halo
bloating parameter (η0; see equations 26 and 29 in M15) controlling
the change of dark matter halo profiles in a halo mass-dependent way
to account for different feedback energy levels. When allowing A
and η0 to vary, it can successfully fit the power spectra from various

MNRAS 488, 1652–1678 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/488/2/1652/5521911 by guest on 20 August 2020
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baryonic scenarios of OWLS (M15). When fixing A = 3.13 and
η0 = 0.6044, HMCODE functions as a regular DMO-based emulator,
which is calibrated with high-resolution N-body simulations to an
accuracy of ≈ 5 per cent at k ≤ 10 h−1 Mpc for z ≤ 2. We note that
the ≈ 5 per cent discrepancy between the DMO mode of HMCODE

and HALOFIT is non-negligible within LSST statistics. We therefore
construct two sets of mock observables based on each theoretical
model.

3.2 Mock observational data

We rely on four hydrodynamical simulations: Eagle, MB2, Illustris,
and Horizon-AGN to construct mock observables, and investigate
the performances of the PCA method (Eifler et al. 2015, hereafter
E15) and the halo model approach (Mead et al. 2015, hereafter M15)
on mitigating baryonic effects. These methods will be described in
more detail in Section 4. For simplicity, besides baryonic effects,
our mock data vectors do not include any other source of noise or
systematics.

We consider tomographic weak lensing shear power spectra as
the summary statistics. These are defined as

Cij (�) = 9H 4
0 �2

m

4c4

∫ χh

0
dχ

gi(χ )gj (χ )

a2(χ )
Pδ

(
�

fK (χ )
, χ

)
. (2)

Here Cij(l) is the convergence power spectrum for tomographic
bin combination {i, j} at angular wavenumber l, χ is the comoving
distance, χh is the comoving horizon distance, fK(χ ) is the comoving
angular diameter distance (set to χ since we assume a flat universe),
a(χ ) is the scale factor, and Pδ is the 3D matter power spectra. The
lens efficiency in the i-th tomographic interval is defined as

gi(χ ) =
∫ χh

χ

dχ ′ni(χ ′)
fK (χ ′ − χ )

fK (χ ′)
(3)

with ni(χ
′
(z)) being the redshift distribution of source galaxies

in tomographic bin i. The overall source redshift distribution is
parametrized in the form of

n(z) ∝ zα exp

[
−
(

z

z0

)β
]

, (4)

where α = 1.27, β = 1.02, and z0 = 0.5 following table 2 in Chang
et al. (2013), which mimics an LSST cosmic shear source galaxy
sample after deblending. The number density of source galaxies is
26 arcmin−2.

We perform a tomographic analysis by dividing the sources into
10 tomographic bins with equal total number of galaxies in each
bin. We also smooth the redshift distribution with a Gaussian kernel
to characterize potential photo-z uncertainties. Fig. 2 shows the
exact redshift distribution in each bin. This results in 55 unique
combinations of auto- and cross-correlation shear tomographic
power spectra. For each of the tomographic power spectra, we
consider 18 equally spaced logarithmic bins in angular wavenumber
� ranging from 23 to 2060. This results in a total of 55 × 18 = 990
data points in our data vector. For the main analysis of this paper,
we adopt an upper limit of �max ≈ 2000. This limit is driven by the
resolution of the hydrodynamical simulations used in this work. We
refer readers to Appendix B for further details on how we extrapolate
power spectra to perform the integration to derive Cij(�), and how
the decision on the �max ≈ 2000 cut is made.

The fiducial cosmology pco,fid of the data vectors is set to be
consistent with the Planck 2015 (TT+TE+EE+lowP and assuming

Figure 2. The normalized galaxy number density split into 10 Gaussian
tomographic photo-z bins as shaded regions from blue (low z) to green (high
z). For comparison, we show the true underlying redshift distribution as a
solid blue line.

Table 2. Fiducial cosmology, minimum and maximum
of the flat prior on the cosmological parameters, and halo-
structural parameters in HMCODE.

Parameter Fiducial Prior

�m 0.3156 Flat (0.05, 0.6)
σ 8 0.831 Flat (0.5, 1.1)
ns 0.9645 Flat (0.84, 1.06)
w0 − 1.0 Flat (−2.1, 0.0)
wa 0.0 Flat (−2.6, 2.6)
�b 0.0049 Flat (0.04, 0.055)
h0 0.6727 Flat (0.4, 0.9)

A – Flat (0.5, 10)
η0 – Flat (0.1, 1.2)

�CDM) results (Planck Collaboration XIII 2016) as summarized
in Table 2.

Our mock data vectors for various baryonic physics scenar-
ios are computed with the Pδ term in equation (2) generated
from equation (1). Since HALOFIT and HMCODE (in DMO mode)
agree at the level of � 5 per cent to k = 10 h−1 Mpc, and �
10 per cent out to k ≤ 100 h−1 Mpc (see fig. 4 of M15), we create
two sets of Eagle/MB2/Illustris/Horizon-AGN data vectors, with
P

theory
δ (k, z | pco,fid) generated from HALOFIT or HMCODE, and

incorporate the baryonic features through the power spectrum ratio.
Throughout our experiment, when relying on HALOFIT or HMCODE

as the theoretical model to perform fitting, we use the same fitting
function to generate the mock observational data vectors for the
fiducial cosmology. This way, when comparing the performance
of different baryonic mitigation schemes, if one of the methods
fails to recover the fiducial cosmological parameters, we can be
assured that this failure is purely because of that method’s inability
to mitigate the modification of the matter power spectrum due to
baryonic physics, not because of an inherent discrepancy between
the mock data and the DMO matter power spectrum model.

In Fig. 3 we show the ratio of baryonic to DMO C00(�, pco,fid)
shear power spectrum for various simulations. The thin lines
indicate the nine baryonic scenarios from the OWLS simulation
suite. The thick lines represent the Eagle/MB2/Illustris/Horizon-
AGN universes, which are the data vectors that we will use for the
LSST-like experiment. One can see that in this lowest tomographic
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1658 H.-J. Huang et al.

Figure 3. The ratio of tomographic shear power spectra of different hydro-
dynamical simulations with respect to their counterpart DMO simulations
for the lowest auto-correlation tomographic bin with the cosmology set
at the Planck 2015 result (Table 2). The thick lines represent the cases for
Eagle/MB2/Illustris/Horizon-AGN simulations, while the thin lines indicate
the nine different baryonic scenarios in OWLS simulation suite.

bin, even for large scales at �≈ 100, the baryonic scenario of Illustris
already causes a deviation from DMO at the 5 per cent level, with
even more severe suppressions at smaller angular scales. For higher
redshift tomographic bins, the deviations between hydrodynamical
and DMO simulations are less severe. Semboloni et al. (2011)
showed that a scale cut of �max ≈ 500 would be needed to
avoid w0 bias for a Euclid-like survey if the baryonic scenario of
our Universe is like OWLS-AGN. When applying the traditional
way of mitigating baryonic uncertainty by omitting small-scale
information, we would need to discard a considerable amount of
data before we can rely on DMO-based theoretical model to achieve
an unbiased cosmological inference.

One subtle feature shown in Fig. 3 is that there is a small
but noticeable large-scale excess of power (<0.4 per cent) in the
Horizon-AGN simulation. This is because the power spectrum
ratio between hydrodynamical and DMO runs of Horizon-AGN
has <0.1 per cent excess at large scales (see Fig. 1), even though
they share the same initial conditions. The true cause of this subtle
excess is not clear. After exploring, Chisari et al. (2018) concluded
that this may originate from the box being too small to reach the
linear regime at large scales. However, the other simulations studied
here are similar in size and do not exhibit this feature.

3.3 Covariance matrix

We generate the analytical covariance matrix of tomographic shear
power spectra using COSMOLIKE (Eifler et al. 2014; Krause &
Eifler 2017). Briefly, our covariance matrix contains both Gaussian
and non-Gaussian parts. The Gaussian covariance matrix contains
contributions from cosmic variance and shape noise, derived under
the assumption that the 4pt-function of the shear field can be
expressed in terms of 2pt-functions (Hu & Jain 2004; Takada &
Bridle 2007). The non-Gaussian part is given by the convergence
trispectrum derived using the halo model (Cooray & Sheth 2002),
which contains one-, two-, three-, and four-halo terms and a halo

sample variance term characterizing the scatter of halo number
density due to large-scale density fluctuations (Cooray & Hu 2001;
Sato et al. 2009; Takada & Jain 2009). The exact equations of our
implementation can be found in the appendix of Krause & Eifler
(2017).

We assume 18 000 deg2 as the survey area in our covariance
matrix and adopt the same redshift distribution and source galaxy
number density (26 arcmin−2) as depicted in Fig. 2. The shape noise
is set to be σ ε = 0.26 in each ellipticity component.

3.4 Likelihood formalism

Given a data vector D (at some fiducial cosmology and with bary-
onic effects from Eagle/MB2/Illustris/Horizon-AGN), one can infer
the corresponding posterior probability distribution of cosmological
parameters pco and potential nuisance parameters pnu via Bayes’
theorem:

P ( pco, pnu|D) ∝ L(D| pco, pnu)Pr ( pco, pnu), (5)

where Pr ( pco, pnu) denotes the prior probability distribution and
L(D| pco, pnu) is the likelihood. In this work, we assume a Gaussian
likelihood function for the observables,

L(D| pco, pnu) ∝ exp

⎛
⎜⎜⎝−1

2

[
(D − M)t C−1 (D − M)

]︸ ︷︷ ︸
χ2( pco, pnu)

⎞
⎟⎟⎠ . (6)

We further assume that the covariance C is constant in parameter
space for simplicity (but see Eifler, Schneider & Hartlap 2009;
Morrison & Schneider 2013 for likelihood analysis with cosmology-
dependent covariance matrix). As described in Section 3.1, the
model vector M may be derived based on HALOFIT which is a pure
function of cosmology M = M( pco), or it can be a function of some
nuisance parameters M = M( pco, pnu) as well, with factors that are
known to affect D absorbed in pnu. For example, in HMCODE, we
have A and η0 acting as nuisance parameters to account for the
baryonic effects (see Section 3.1 for details). The final posterior
distribution on cosmological parameters then can be derived by
marginalizing over all other nuisance parameters in the model

P ( pco|D) ∝
∫

d pnu P ( pco, pnu|D). (7)

We use the python EMCEE package (Foreman-Mackey et al. 2013),
which relies on the algorithm of Goodman et al. (2010) to sample the
parameter space spanned by pco ({�m, σ 8, �b, ns, w0, wa, h0}) as
well as pnu (if needed depending on the model). Altogether, we have
conducted ∼250 likelihood simulations to present the results for this
paper. The MCMC (Markov Chain Monte Carlo) chains contain
∼200 000 to 400 000 MCMC steps (after discarding 100 000 steps
as burn-in phase), depending on the dimension of the parameter
space that ranges from 7 to 16. For simplicity, we assume flat priors
for all of our parameters, with their minimum and maximum values
summarized in Table 2. For likelihood simulations with informative
priors based on Planck, we refer readers to E15. Informative priors
help to better constrain ns, �b, and h, to which cosmic shear is not
very sensitive.

We will present in Section 4 on how we implement various
baryonic mitigation schemes in the likelihood analysis. But before
that, in Fig. 4 we show the posterior distribution of cosmological
parameters derived from our LSST likelihood simulation, when
naively applying the HALOFIT model on fitting the data vectors
contaminated with baryonic effects from Eagle/MB2/Horizon-
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Baryonic physics mitigation for lensing 1659

Figure 4. Cosmological parameter constraints for an LSST-like weak lens-
ing survey with data vectors generated using various baryonic physics sce-
narios: pure DM (grey/solid) and the Eagle (blue/solid), MB2 (red/dashed),
Illustris (yellow/dot–dashed), and Horizon-AGN (black/dotted) hydrody-
namical simulations. In all cases, baryonic physics was ignored during the
likelihood analysis, hence providing a worst-case scenario for biases due to
baryonic physics. The analyses are carried out assuming non-informative
priors on the parameters. Here, and in all such 2D posterior plots below,
the contours depict the 68 per cent confidence levels. Depending on the
intensity of the baryonic feedback, the resulting posterior distributions can
be significantly away from the fiducial cosmology (marked in grey lines).

AGN/Illustris simulations. For ease of visualization, we only show
posteriors in the subspace of four cosmological parameters out of
seven in total. Depending on the intensity of baryonic feedback
as reflected in the ratio of hydrodynamical to DMO power spectra
shown in Fig. 1, the resulting cosmology constraints can be severely
biased in the case of Illustris (2σ–13σ depending on cosmological
parameters) or at 1σ–2σ level in the other three cases. We note that
the degree of bias depends on the �max used in the analysis. Fig. 4
presents the result when applying a cut at �max ≈ 2000 on D, which
is the default setting in the paper. In Section 5.4, we will show how
this result changes when extending data vectors to �max ≈ 5000.

4 ME T H O D S O F MI T I G AT I N G BA RYO N I C
EFFECTS

In this section, we describe the methods used to mitigate the
impact of baryonic physics on the cosmological parameter estimates
from weak lensing. The methods can be classified into two cate-
gories: PCA-based methods and the halo-model-based approach.
We discuss several PCA-based methods that are minor variants of
each other in Sections 4.1–4.3. The halo-model based approach
is described in Section 4.4. Throughout the work, we use the
nine OWLS simulations as our ‘training sample’ to construct PCs
for the PCA-based methods, and use the four mock data vectors
constructed from Eagle/MB2/Illustris/Horizon-AGN simulations as
‘test sample’ to test methods listed in Table 3.

4.1 PCA in difference matrix

4.1.1 Summary of the PCA framework (method A)

The original framework for using PCA to mitigate the impact of
baryonic physics for weak lensing is described in Eifler et al. (2015).
The essential idea is that even though hydrodynamical simulations
with different baryonic prescriptions predict a range of variations on
the matter power spectra (Fig. 1), we can still extract the common
features of those diversity using PCA, and build an empirical model
to mitigate baryonic uncertainty based on these hydrodynamical
simulations. Below we provide a step-by-step description of the
PCA framework.

First, we collect the tomographic shear power spectra constructed
from the nine OWLS simulations as our training sample, and label
these nine data vectors as B1, ..., B9. Next we build a difference
matrix �( pco) with dimension of Ndata × Nsim = 990 × 9. Each
column records the deviation between the baryonic data vector and
the DMO model vector M at any arbitrary cosmology (recomputed
for each MCMC step) in terms of their difference

�( pco) =

⎡
⎢⎢⎣B1 − M B2 − M . . . B9 − M

⎤
⎥⎥⎦

Ndata×Nsim

. (8)

The left-hand panel of Fig. 6 provides a visualization of the entries
of the difference vectors used to construct �. Here notice that both
Bx( pco) and M( pco) are functions of cosmology, and therefore so
is �. We refer readers to Appendix C for details of how we compute
the baryon-contaminated data vectors at different pco.

The second step is to perform the PCA on the difference matrix,
with the goal of identifying the few dominant PCs that signify the
directions of largest discrepancy between the baryonic and DMO
data vectors from the nine OWLS simulations. To find the PCs, we
apply the (full) singular value decomposition (SVD) on �,

� = U � Vt. (9)

As shown in Fig. 5, SVD decomposes � into the product of three
matrices. Both U and V are square unitary matrices with dimensions
of Ndata × Ndata (990 × 990) and Nsim × Nsim (9 × 9) respectively.
The upper Nsim × Nsim (9 × 9) block of � is a diagonal matrix
consisting of Nsim (9) positive real singular values σ 1...σ 9 arranged
in descending order, and the remaining Ndata − Nsim (981) rows
have only zeros (indicated by the dashed square). The Ndata (990)
columns of U are eigenvectors of ��t, with eigenvalues in the
diagonal entries of ��t.

The first nine eigenvectors constitute a set of orthogonal PCs in
order of decreasing importance according to the amount of variation
they capture in the different training vectors. The right-hand panel
of Fig. 6 shows these nine PC modes in projection on the C00

tomographic bin. The PC modes span a nine-dimensional subspace
within the 990 dimensional space which covers entirely the degrees
of freedom to explain baryonic uncertainties in the nine OWLS
hydro simulations. In other words, any given Bx( pco) − M( pco),
can be described with nine free parameters via

Bx( pco) − M( pco) =
9∑

n=1

Qn PCn( pco), (10)

with Qn being the amplitude of PCn. The remaining 981 columns
of U are silent orthogonal vectors which extends U into a unitary
matrix. With nine baryonic scenarios as our training sample, we
have at most nine independent PCs to describe modifications to the
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Table 3. Summary of baryonic physics mitigation techniques. The first column is the label of each method, which we refer to in the text and plots throughout
the work. The second column has simple descriptions that highlight the essential elements of each method. The third column presents the exact χ2 equations
that go into the likelihood analysis. Finally, the last column provides a section number where more information can be found for each method.

Method Brief description χ2 equation Section
reference

A PCA in difference matrix, with exclusion [(D − M)pc,cut]t C−1
pc,cut [(D − M)pc,cut] Section 4.1.1

B PCA in difference matrix, with marginalization [D − MB ( pco, Q)]t C−1 [D − MB ( pco, Q)] Section 4.1.2
C PCA in L−1 weighted difference matrix, with exclusion [UchPUt

chL−1(D − M)]t I [UchPUt
chL−1(D − M)] Section 4.2

D PCA in fractional difference matrix, with marginalization [D − MR( pco, Q)]t C−1 [D − MR( pco, Q)] Section 4.3
M Halo model parameter marginalization [D − MHMcode( pco, A, η0)]t C−1 [D − MHMcode( pco, A, η0)] Section 4.4

Nsim x NsimNdata x Ndata

=

U Vt

(990 x 990) (990 x 9) (9 x 9)

9

981 1

9

2

PC1 PC9…

Ndata x Nsim

(990 x 9)
Ndata x Nsim

Figure 5. We perform SVD on the difference matrix � built based on
the nine baryonic scenarios of OWLS (see equation 8). U is a unitary
matrix with columns that form an orthonormal basis set to span the 990-
dimensional space of our data vector. Among them, the first nine PCs of U
form a complete description of the modifications of the data vector due to
baryonic physics in the nine OWLS hydro simulations. We will test whether
these nine PCs can also describe the impact of baryonic physics in the
Eagle/MB2/Illustris/Horizon-AGN simulations.

observables due to baryonic physics. One of the goals of this work is
to understand how effectively the PCA basis can describe baryonic
physics scenarios in other more recent hydrodynamical simulations.

The third step is to transform everything to PC basis, and mitigate
baryonic uncertainty by excluding PC modes. In PC basis, our data
and model vectors are defined as

Dpc = Ut D (11a)

Mpc = Ut M, (11b)

and the covariance matrix is

Cpc = Ut C U. (12)

Viewing from PC coordinate, the majority of the baryonic uncertain-
ties between Dpc and Mpc would be absorbed in the first N elements.
We can then directly cut the data vector Dpc to obtain a shorter vector
Dpc,cut, and do the same to the model vector Mpc → Mpc,cut to avoid
modelling challenges on these data points.

When doing MCMC analysis, we modify the original equation (8)
from E15 to properly account for the change of covariance matrix
due to loss of information after PC mode removal. We cut the
corresponding rows and columns on Cpc, and use the corresponding
sub-matrix, Cpc,cut to calculate the inverse covariance C−1

pc,cut for
Dpc,cut. The χ2 equation can then be written as:

χ ′2( pco) = (D − M)t
pc,cut C−1

pc,cut (D − M)pc,cut, (13)

and the likelihood equation:

L(D| pco) ∝ exp

⎛
⎜⎜⎜⎝−1

2

[
(D − M)t

pc,cut C−1
pc,cut (D − M)pc,cut

]
︸ ︷︷ ︸

χ ′2( pco)

⎞
⎟⎟⎟⎠ .

(14)

4.1.2 The marginalization version of the PCA framework (method
B)

We refer to ‘PC marginalization’ as a method that includes (up to
nine) amplitudes of PCs as free parameters to parametrize the impact
of baryonic physics on the tomographic shear power spectra. As
shown in equation (10), the current nine PCs fully span the baryonic
degrees of freedom in the nine OWLS simulations. We can further
check whether they are also effective in describing the impact of
baryonic physics on the observables in our test set of hydrodynamic
simulations by building a new model with the following parametric
form:

MB ( pco, Q) = M( pco) +
m∑

n=1

Qn PCn( pco), (15)

where m � 9 and Q = {Q1, Q2, ..., Qm} are free parameters in
addition to the cosmological parameters. The likelihood function
for the cosmological parameters can be derived by marginalizing
over the amplitude parameters:

L(D| pco) ∝
∫

d Q × exp

(
−1

2

[
(D − MB ( pco, Q))t C−1

× (D − MB ( pco, Q))
])

. (16)

Theoretically, one can prove that the likelihood functions of
equation (14) (method A) and equation (16) return identical results if
the priors on the PC amplitudes are uninformative. We will provide
comparisons of the posterior distributions of pco in Section 5.1 and
further comment on both methods there.

4.2 Noise-weighted PCA – Cholesky decomposition (method
C)

As noted at the end of section 2.2 of E15, performing PCA on
the difference matrix � (equation 8) is not necessarily the most
optimal choice. They suggested an option of conducting the PCA
on the ‘noise’-weighted �. As a result of re-weighting, the derived
PCs would be more sensitive in accounting for deviations in data
vectors due to baryonic physics at well-measured data points,
where larger weighting factors are applied. Therefore, when doing
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Baryonic physics mitigation for lensing 1661

Figure 6. Left: The difference vectors, B − M, from the OWLS simulation set used to construct PCs as input in columns of equation (8). The thicker lines
indicate the difference vectors for Eagle/MB2/Horizon-AGN/Illustris simulations as our test set. Right: The PC modes constructed from the OWLS simulation
set in projection on the difference vector space for the tomographic bin C00. The goal of this work is to check whether these PC modes can flexibly describe
the baryonic physics scenarios in the test set hydrodynamical simulations.
pv

PC mode removal, we tend to more effectively remove baryonic
physics degrees of freedom that impact better-measured (lower
noise) scales, which may more effectively reduce cosmological
parameter biases.

To find the weights, we first decompose our covariance matrix
by applying a Cholesky decomposition

C = LLt, (17)

where L is a lower triangular matrix with real and positive diagonal
entries. We can then weight our D and M vectors as

Dch = L−1 D,

Mch = L−1 M. (18)

After this transformation, our new data vector Dch has an identity
covariance matrix 1, which can be easily proved as follows:

Cch = 〈
(Dch − Dch)(Dch − Dch)t〉 =

〈
L−1(D − D)(L−1(D − D))t

〉

= L−1 〈
(D − D)(D − D)t〉 (L−1)t = L−1C−1(L−1)t = 1. (19)

In other words, after applying equation (18), we not only re-weight
but also decorrelate the data vector.

Similar to equation (8), we build the new difference matrix as

�ch( pco) =

⎡
⎢⎢⎣B1,ch − Mch . . . B9,ch − Mch

⎤
⎥⎥⎦

Ndata×Nsim

= L−1�( pco) = Uch �ch Vt
ch . (20)

Here each of the OWLS training data vectors is weighted by L−1

as Bx,ch = L−1 Bx. The �ch matrix is equivalent to performing a
L−1 matrix transformation on � shown in equation (8). We can
then apply SVD to derive the PC basis set as stored in the Uch( pco)
matrix. The first nine PCs form natural bases to span the weighted

difference vector for various baryonic effects

Bch − Mch = L−1(B − M) =
9∑

n=1

Qn PCn. (21)

In Fig. 7, we show the Bch − Mch = L−1(B − M) vectors in our
lowest tomographic bin, at pco,fid. The thicker lines represent our
four test simulations; the thinner lines are for the nine baryonic
scenarios in OWLS, which compose the columns of �ch in equa-
tion (20). Comparing with the left-hand panel of Fig. 6, one can
see that after re-weighting by L−1, we more strongly emphasize
baryonic fluctuations at smaller scales, so the PCs should also be
more effective in accounting for small-scale baryonic features.9

Similar to Section 4.1.1, to perform the PC mode removal, we
transform everything to the PC basis:

Dch,pc = Ut
ch Dch (22a)

Mch,pc = Ut
ch Mch (22b)

Cch,pc = Ut
ch Cch Uch = 1, (22c)

and then cut all the elements from the data and model vectors and
the covariance matrix for the PC modes that are to be removed.
Here since Cch is an identity matrix, it and its inverse C−1

ch,pc in the
PC basis remain the same after coordinate transformation. The final

9Although we plot Dch − Mch versus � in Fig. 7, we note that actually the
new data points are not strictly functions of the original � because of the
non-zero off-diagonal terms in L−1. However, our take-away point from
Fig. 7 still holds due to the fact that our covariance matrix is dominated by
Gaussian noise, and thus the off-diagonal terms in L−1 are small.
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1662 H.-J. Huang et al.

Figure 7. The discrepancy between baryon-contaminated data vectors and
model in terms of Bch − Mch for various hydrodynamical simulations in
the lowest tomographic bin. This is similar to the left-hand panel of Fig. 6,
but here shows results for the case when applying Cholesky decomposition
on our B and M vectors. The nine OWLS baryonic scenarios (thinner lines)
compose columns of �ch, which are used to build PCs. These PCs are used
to span the variation of Eagle/MB2/Illustris/Horizon-AGN simulations in
Dch − Mch space. After Cholesky decomposition, the largest data-model
inconsistency shifts to smaller scales compared with the upper panel of
Fig. 6, indicating the PCs trained from �ch are more efficient at describing
small-scale variations in the matter power spectrum due to baryonic physics
compared with performing PCA on �.

PC mode removal χ2 equation becomes:

χ2
ch( pco) = (Dch − Mch)t

pc,cut C−1
ch,pc cut (Dch − Mch)pc,cut

= (Dch − Mch)t
pc,cut (Dch − Mch)pc,cut (23)

The marginalization version of method C can be viewed as the
following. By reorganizing equation (21), we can build a baryonic
model generator as

MC( pco, Q) = M( pco) + L
m∑

n=1

Qn PCn( pco), (24)

where m � 9. The cosmological parameter dependence comes in
through the DMO model vector, while the amplitudes of PCs are
used as higher order correction for baryonic effects.

4.3 PCA in fractional difference matrix (method D)

Instead of using the difference matrix � to perform PCA, Mo-
hammed & Gnedin (2018) identified PCs based on the fractional
difference matrix R defined as

R =

⎡
⎢⎢⎣ B1−M

M
B2−M

M . . .
B9−M

M

⎤
⎥⎥⎦

990×9

= UR �R Vt
R . (25)

One fundamental difference between the fractional difference ma-
trix R and the difference matrices � or �chy is that R does not

depend on cosmology, given our assumption of equation (C2). After
the UR is derived by SVD analysis, a model for the observables with
baryonic physics degrees of freedom spanned by OWLS can be built
as

MR( pco, Q) = M( pco)

[
1 +

m∑
n=1

Qn PCn

]
, (26)

where m � 9, and Q = {Q1, Q2, ..., Qm} are the free parameters
controlling the amplitudes of PCs, and PC1–PC9 are in the first nine
columns of UR. Similar to the methodology in Section 4.1.2, the
likelihood function for the cosmological parameters can be derived
by marginalizing over the amplitude parameters:

L(D| pco) ∝
∫

d Q × exp

(
−1

2

[
(D − MR( pco, Q))t C−1

× (D − MR( pco, Q))
])

. (27)

Similar to the concept mentioned in Section 4.2, performing PCs
on the matrix R can be viewed as putting the weight of 1/M into the
PCA analysis. Since M decreases with increasing �, and the overall
amplitude of M increases towards higher redshift, after taking its
inverse, we upweight data points at smaller scales and lower redshift.
The fractional difference vectors of OWLS that go into columns of
R are plotted in Fig. 3. The PCs derived from R are expected to
be more efficient in accounting for smaller scale and lower redshift
variation of the observables due to baryonic physics.

4.4 HMCODE (method M)

Finally, we compare the above PCA-based methods with the halo
model-based approach proposed by Mead et al. (2015), HMCODE.
HMCODE utilizes two halo profile-related parameters to capture
the impact of baryonic physics on the matter power spectrum:
the amplitude of the concentration–mass relation (A) and a halo
bloating parameter (η0) controlling the (mass-dependent) change
of halo profiles. We refer readers back to Section 3.1 for a brief
summary of this approach.

There exists some level of degeneracy between A and η0, as
shown in fig. 6 of M15. Thus, when implementing the likelihood
analysis, one can either vary both of the parameters, or change only
the single parameter A while fixing

η0 = 0.98 − 0.12A. (28)

For example, Joudaki et al. (2017) applied only varying A to
marginalize over baryonic physics in CFHTLenS cosmic shear,
while MacCrann et al. (2017) and Troxel et al. (2018) varied both
parameters to marginalize over baryonic physics in the DES.

Equation (28) is derived based on the OWLS simulation suite.
We will test whether it remains valid for the baryonic physics
scenarios in Eagle/MB2/Illustris/Horizon-AGN for our forecasted
scenario with LSST-like statistical power. Also, we will compare
the performances of HMCODE (marginalization over halo model
parameters) with the above PCA-based methods.

5 PE R F O R M A N C E S O F BA RYO N I C
MI TI GATI ON TECHNI QUES

In this section, we present our simulated likelihood analysis for
the different baryonic mitigation schemes listed in Table 3. We
refer readers back to Section 3 for a description of the simulated
likelihood analysis set-up.
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Baryonic physics mitigation for lensing 1663

Ideally, we need a baryonic physics mitigation strategy that can
reduce the biases in cosmological parameters due to inaccuracies in
theoretical modelling (as demonstrated in Fig. 4) to a level that is
much smaller than the statistical uncertainties. In addition, we hope
that the increase in statistical errors on cosmological parameters due
to the additional nuisance parameters will be as small as possible.
Throughout this section, we will use a criterion of bias <0.5σ

(where σ represents the marginalized statistical error) for individual
cosmological parameters to evaluate whether a method is effective
in mitigating the uncertainties due to baryonic physics under various
baryonic scenarios. We also compare their performance based on the
degradation of cosmological constraining power through the size of
the 1D marginalized uncertainties on cosmological parameters.

5.1 PC mode exclusion versus marginalizing over PC
amplitude

We start by presenting the results for methods A and B (see Table 3)
with their PCs described using the same difference matrix �. In
method A, we modify the data vector by excluding the first few
PC modes and modify the covariance self-consistently as well. In
method B, the data vector and covariance matrix are unmodified,
but we introduce free parameters describing the PC amplitudes to
marginalize over in the likelihood analysis.

Mathematically, methods A and B are equivalent if no priors
are set on the baryonic physics parameters. From an information
perspective, when removing data points (and the corresponding
covariance elements), we lose all of the information that can
constrain the amplitudes of the excluded PC modes. Thus, this
should be equivalent to marginalizing over PC amplitudes with
uninformative priors.

In Fig. 8, we use simulated likelihood analyses based on Horizon-
AGN (yellow dot–dashed & black dotted) and Illustris (blue
solid and red dashed) to demonstrate the excellent consistency
between PC mode exclusion and PC amplitude marginalization.
For the case of Illustris, large residual biases still exist after
performing the baryonic physics mitigation. We will discuss this
issue in Section 5.3. Although not shown, we have also confirmed
the consistency between methods A and B for Eagle and MB2.

In conclusion, we have demonstrated with examples that the PC
exclusion formula shown in equation (13) gives consistent results
as when marginalizing over PC amplitudes with an uninformative
prior. Method B can provide baryonic information through the
constrained PC amplitudes, which can be used as a standard to
quantify baryonic effects. So far, we allow the PC amplitudes to
vary from (−∞, ∞). Reducing the prior ranges on PC amplitudes
could potentially increase the constraining power on cosmology
if we can develop a consistent way of setting the priors on PC
amplitudes, given our knowledge of baryonic physics. The downside
of method B is that it requires running longer MCMC chains to
ensure convergence due to an increase in the dimensionality of
parameter space. Therefore if one does not care to learn about
baryonic physics, and would simply like to marginalize over it, we
recommend method A.

5.2 Comparison between various PC construction methods

Here we compare the performances of the PCA-based methods
listed Table 3. We have already shown in Section 5.1 that PC
mode exclusion (method A) is equivalent to marginalizing over
PC amplitudes (method B), so here we only compare methods A,
C, and D.

Figure 8. Comparison of the posterior distributions of cosmological pa-
rameters between baryonic physics mitigation techniques A and B listed in
Table 3. The yellow dot–dashed and black dotted contours indicate the 1σ

contours of the posterior probability distributions obtained from methods
A and B, respectively, for the Horizon-AGN simulation after excluding or
marginalizing over the first PC modes. Similarly, the blue solid and red
dashed contours indicate the case for Illustris after excluding or marginal-
izing over three PC modes. The excellent match between the posterior
probability distributions for cosmological parameters between methods A
and B confirms that the PC exclusion formula shown in equation (13) is
conceptually equivalent to marginalizing over PC amplitudes.

The fundamental difference between these PCA methods is the
way the PCs are constructed from the training simulations, which
affects their efficiency in describing how baryonic physics modifies
the data vectors on larger or smaller scales. We refer readers back to
Section 4 for more details about this formalism. Briefly, when PCs
are derived from � (method A; equation 8), they are most efficient
in describing the difference vector D − M. For PCs trained from
�chy (method C; equation 20), they are most efficient in describing
the noise-weighted difference, Dchy − Mchy = L−1(D − M), due
to baryonic physics. Finally, PCs trained from R (method D;
equation 25) are most efficient in describing variations in the
fractional difference D−M

M from baryonic effects.
Fig. 9 shows the median of the marginalized 1D posteriors of

cosmological parameters under different baryonic physics mit-
igation techniques for data vectors derived from our four test
simulations. The lower and upper error bars represent for the 16th
and 84th quantiles of the 1D marginalized posterior distribution.
The x-axes indicate numbers of PC modes excluded or numbers of
marginalization parameters used in the analysis. We select some
cases from Fig. 9 and present their 1D and 2D posteriors in Fig. 10.
The brown crosses in Fig. 9 indicate the case when no baryonic
physics mitigation scheme is applied. One can see that the deviation
from the fiducial cosmological parameters exceeds 1σ for all of
our test baryonic scenarios. This is also shown in Fig. 4 on the
2D posterior contours. The blue-circle, red-triangle, and yellow-
square markers indicate the results of performing baryonic physics
mitigation by PCA-based methods A, C, and D, respectively. When
the modifications of the data vectors due to baryonic physics
are relatively weak as in MB2/Eagle/Horizon-AGN, we find that
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1664 H.-J. Huang et al.

Figure 9. Marginalized 1D constraints on cosmological parameters when using different baryonic physics mitigation techniques from Table 3. Each panel is
for a different input data vector based on a different hydrodynamical simulation as explained in the plot title. The grey dashed horizontal lines indicate the
fiducial cosmological values. The marker position, the lower and upper error bars indicate the median, the 16th and the 84th percentiles of marginalized 1D
posteriors. The brown crosses indicate the results when fitting the data vectors with the DMO-based emulator (HALOFIT) without applying any baryonic physics
mitigation technique. The blue circles, red triangles and yellow squares show the results when applying PCA-based methods A, C, and D, respectively, with
their positions in the x-direction indicating how many PC modes are excluded or numbers of marginalization parameters used when doing the analysis. The
black pentagons located at x = 1 indicate the result when only marginalizing over A in HMCODE (with η0 fixed via equation 28). The black pentagons located
at x = 2 are the results when marginalizing over both A and η0 in HMCODE. For PCA-based methods, we find that the 1σ posteriors start to enclose the fiducial
cosmology after removing two PC modes for MB2/Eagle/Horizon-AGN, while excluding six PC modes is required for more extreme baryonic scenarios of
Illustris. When using HMCODE to perform marginalization, except for the Illustris simulation for which marginalizing over A alone is enough, generally it is
required to vary both A and η0 to mitigate baryonic effects to within 1σ .

removing up to two PC modes is sufficient to marginalize baryonic
bias to within 1σ 10 for the cosmological parameters presented here.
For the Illustris simulation, due to its strong baryonic feedback, we

10The 1σ criterion is a looser condition than the 0.5σ constraint we will later
use for defining acceptability; we use this looser condition here as we are just
trying to compare the basic behaviour of the different PCA methods here.
Once we are comparing the best-performing PCA methods with HMCODE,
we will consistently impose a 0.5σ constraint on both.

need to remove up to six PCs for the 1σ posteriors to include the
fiducial cosmological parameters.

5.2.1 Method C is superior to methods A and D

In Fig. 11 we plot the w0 bias (in colour-filled markers; defined
as |w0,best fit − w0,fid|, with w0,best fit being the median value of the
marginalized posterior distribution of w0) and the 0.5σ error of w0

(in open markers; with σ defined as the half difference between the
16th and 84th percentile of the 1D marginalized posterior of w0)
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Baryonic physics mitigation for lensing 1665

Figure 10. The 2D posterior distributions on cosmological parameters for some selected cases shown in Fig. 9. Each panel is for a different input data vector
based on a different baryonic physics scenario as labelled in the legend. The legend also describes which baryonic mitigation techniques are applied, and how
many PC modes are excluded or the HMCODE parameters marginalized over.

for various baryonic physics mitigation schemes. For a method to
be effective in mitigating baryonic-induced parameter biases, we
require that the bias be below the 0.5σ errors. For all baryonic
physics scenarios, we observe that at fixed number of excluded
PC modes, the biases of method C (red-filled triangles) are nearly
always smaller than methods A (blue-filled circles) and D (yellow-
filled squares). If focusing on the lower left panel of Fig. 10, using
Illustris when removing three PC modes as an examples, one can
see that the 2D 1σ posteriors of method C (red dot–dashed curves)
enclose the fiducial cosmology, while the posteriors of method A
(light blue solid curves) are several σ away. Based on these, we
conclude that PCs build from �chy are potentially more effective
than others to mitigate baryonic effects.

To understand why method C performs better, we can go back to
the χ2 equation when both D and M are set at pco,fid:

〈
χ2

bary

〉
+ 〈Noise〉 = 〈

[D − M( pco,fid)]t C−1 [D − M( pco,fid)]
〉

=
〈

[D − M]t L−1t
L−1 [D − M]

〉
= 〈

[Dch − Mch]t 1 [Dch − Mch]
〉
. (29)

〈
χ2

bary

〉
quantifies the amount of χ2 caused by baryonic uncer-

tainties. The noise term in our likelihood simulation is zero by
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1666 H.-J. Huang et al.

Figure 11. The w0 bias and statistical uncertainty under various baryonic physics mitigation techniques listed in Table 3. The darker coloured-filled markers
indicate the level of w0 bias, defined as |w0,best fit − w0,fid|. The fainter unfilled markers indicate the 0.5σ statistical uncertainty, with 1σ defined as the
half difference between the 16th and 84th quantiles of the marginalized 1D w0 posterior distribution. We adopt a criterion of residual bias <0.5σ error in
this work when determining how many PC modes are required to mitigate biases due to baryonic physics. The four main lessons from this plot are that:
(i) Of various PCA methods, at fixed number of excluded PC modes, the biases of method C are nearly always smaller than methods A and D, indicating
method C is the most efficient PCA method. (ii) For MB2/Eagle/Horizon-AGN simulations, removing ≥2 PC modes is enough to mitigate baryonic physics-
induced bias to 0.5σ . For the Illustris simulation, all PCA methods fail to pass the bias <0.5σ criteria even after nine PC modes are removed. (iii) No
matter which PCA method (A, C, or D) is applied, after removing ≥6 PC modes, the statistical errors on w0 converge to similar values. (iv) HMCODE

works particularity well for the Illustris simulation. For MB2/Eagle/Horizon-AGN, marginalizing over both A and η0 is required to safely mitigate baryons
to 0.5σ .

construction. Our goal is to reduce
〈
χ2

bary

〉
to avoid bias in cosmo-

logical parameters due to baryonic physics. From equation (29), one
can see that when doing PC mode exclusion in Dch − Mch (with
PCs constructed in �chy), there is a direct connection in reducing〈
χ2

bary

〉
, while when doing PC mode exclusion in D − M (with

PCs constructed in �), the covariance matrix in between makes the
reduction of baryonic uncertainties less direct.

5.2.2 Error bars converge for all PCA methods

Going back to Fig. 11, and focusing on the trend in the 0.5σ error
bars of w0 shown in open fainter coloured markers. Generally, error
bars grow as more PC modes are excluded (see also Fig. 10 for the
growth of error ellipse on 2D posteriors). The size of the error bars
varies among the different PCA methods when fewer PC modes
are excluded, but eventually converges/saturates to similar error
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Baryonic physics mitigation for lensing 1667

bar sizes when excluding �6 PC modes, independent of how PCs
are constructed. This means that the PCs fully absorb the range of
matter power spectrum modifications due to baryonic physics across
the nine OWLS simulation, characterizing them using six dominant
degrees of freedom; the last three PC modes are subjected to very
small singular values (σ as depicted in Fig. 5) such that only a
tiny amount of baryonic fluctuation would be projected on them. In
principle, including more training samples with different features
would enrich the PC pool, increasing the number of effective degrees
of freedom to characterize other possible baryonic scenarios.

5.3 PCA framework versus HMCODE

We now move to a more detailed comparison of the two main ways
to marginalize over baryonic uncertainties, namely the PCA-based
methods and the halo-model-based approach. Since we already
compared in Section 5.2 that of all PCA methods listed in Table 3,
method C is more efficient than the other two in mitigating biases in
cosmological parameters due to baryonic physics. In the following,
we will use method C as a representative for PCA-based methods,
and compare it with HMCODE (method M).

5.3.1 Comparison on the effectiveness (criterion: bias <0.5σ )

We begin by discussing the performance of HMCODE when using
only one (A) versus two (both A and η0) parameters to marginalize
over baryonic physics. When only the parameter A is used, HMCODE

sets the η0 value via equation (28). Going back to Fig. 11, with w0

as an example, the pentagons at an x-axis value of 1 indicate the
bias (black-filled) and 0.5σ error (grey-open) of only varying A in
HMCODE. Similarly, the pentagons at an x-axis value of 2 indicate
the option for HMCODE varying both A and η0. For the Illustris
simulation, both options can successfully mitigate the baryonic bias
on w0 to within our 0.5σ criterion. However, apart from Illustris,
for the baryonic scenarios of MB2, Eagle, and Horizon-AGN, we
find that varying only A while setting η0 following equation (28)
is not sufficient to mitigate baryonic bias. This implies that the
current empirical relation described in equation (28) may not
be precise enough for MB2/Eagle/Horizon-AGN-like data vectors
with LSST-like statistical power. We therefore recommend that the
extra freedom carried by η0 is needed for upcoming weak lensing
surveys to effectively mitigate the impact of baryonic physics on
cosmological weak lensing measurements. This is even more true
in light of recent findings that indicate that our Universe is not
like Illustris, for which the AGN feedback is known to be too
strong such that the baryon fractions in massive haloes are too low
compared with observations (Haider et al. 2016). In Fig. D1 of
Appendix D, we also provide similar bias and error plots for other
cosmological parameters: �m, σ 8, and wa. The same conclusion
holds for HMCODE on these cosmological parameters (as shown
in the filled and open pentagons), except for the wa constraint for
Illustris (Fig. D1 l), where varying only A is not enough to mitigate
wa bias to within 0.5σ .

For the PCA-based method C, as indicated in red triangles of
Fig. 11 for w0 and Fig. D1 for �m, σ 8, and wa, we find that removing
≥3 PC modes is sufficient to mitigate baryonic uncertainties to
within 0.5σ for all cosmological parameters considered here, if our
Universe has a baryonic physics scenarios like MB2/Eagle/Horizon-
AGN.

For the case of the Illustris simulation, we find that the PCA
method fails to mitigate baryonic biases to within 0.5σ for w0 and

Table 4. Summary of the effectiveness of baryonic physics mitigation
methods in reducing biases to within 0.5σ for various cosmological
parameters under different baryonic scenarios. A cosmological parameter is
struck out if a mitigation method fails to pass our criterion of bias <0.5σ ,
where σ represents the marginalized statistical error (see Section 5.3.1 for
detail).

MB2/Eagle/Horizon-AGN Illustris

HMCODE (A) All fail �m σ 8 w0��wa

HMCODE (A, η0) All pass All pass

PCA (trained by 9
sims)

All pass ���m σ8��w0 wa

�m (Fig. D1d), even after nine PC modes are removed, but just
passes the threshold for σ 8 (Fig. D1h) and wa (Fig. D1 l) after
removing seven PC modes. We note that this is likely not a major
concern as the baryonic effects of Illustris are unrealistically large,
and the next-generation IllustrisTNG hydrodynamical simulation
(Pillepich et al. 2018; Springel et al. 2018) will address the defects
of the old version.

We provide a summary of the results from the above discussion in
Table 4. In Appendix E, we further provide the χ2 values computed
at the best-fitted cosmological parameters from various baryon
mitigation models.

5.3.2 Comparison on the level of degradation on cosmology

We now compare the error bars on cosmological parameter con-
straints between PCA method C and HMCODE, on baryonic scenarios
of MB2/Eagle/Horizon-AGN, where both methods successfully
mitigate the baryonic biases to within 0.5σ . The pink open triangles
in Fig. 11 indicate the 0.5σ error of w0 under method C, and the grey
open pentagons indicate the same for HMCODE. Besides w0, other
cosmological parameters are also shown in Fig. D1. As discussed in
Section 5.2.2, one nice feature of the PCA method is that the error
bars converge to a certain level when excluding ≥6 PC modes.
We find that the converged error bars for method C generally are
smaller than those for HMCODE, even though HMCODE only utilizes
two parameters to marginalize over baryonic physics uncertainties
while the PCA method needs three parameters to mitigate baryonic
effects to 0.5σ in the case of MB2/Eagle/Horizon-AGN. A similar
result can be seen from the 1σ 2D posteriors shown in Fig. 10.

5.3.3 Baryonic feature constraint from HMCODE

In Fig. 12, we plot the 2D posterior distributions on A and η0

for various baryonic scenarios in coloured contours, along with
equation (28) shown in the black line. We can see that although
relying on this A–η0 relationship is not effective enough to mitigate
baryonic bias in most of baryonic recipes under LSST-like survey,
the suggested relationship is still good enough to pass the 68 per cent
contours in all cases. Therefore, instead of following a fixed
relationship like equation (28) or allowing both A and η0 to vary
unboundedly, setting an A-dependent prior on η0 may help recover
some cosmological constraining power while still reducing biases
in cosmological parameters when using HMCODE.

In Fig. 13, we compare the power spectra generated from HMCODE

at the best-fitted values of A, η0 (cross symbols in Fig. 12) to the
original power spectra derived directly from the hydrodynamical
simulations at redshift z = 0, 1, 2, 3. We note that this is not a
fair comparison because the underlying Pδ(k, z) is not constrainable
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1668 H.-J. Huang et al.

Figure 12. The 2D constraints on the HMCODE halo structure parameters
A and η0 from our simulated likelihood analysis for baryonic scenarios
of Eagle (blue/solid), MB2 (red/dotted), Illustris (green/dot–dashed), and
Horizon-AGN (yellow/dashed). The black line plots the relationship be-
tween A and η0 that is used to provide single-parameter fit in HMCODE. Both
68 per cent and 95 per cent confidence levels are shown.

from the projected tomographic power spectra, unless the tomo-
graphic bins are fine enough to recover the full 3D information.11

Here we simply use these plots to understand the effects of HMCODE

parameters on Pδ(k, z). First, HMCODE does not have degrees of
freedom for the cooling feature of hydro simulations, which leads
to a turn-over in the power spectrum ratio at k � 10 h−1 Mpc. This
is expected as according to M15, the halo-model power is accurate
to ≈5 per cent only for k ≤ 10 h−1 Mpc and z ≤ 2. Because of
this limitation, HMCODE tends to produce a shallower suppression
of power for a given k (when k ≤ 10 h−1 Mpc) compared with
MB2/Eagle/Horizon-AGN, in order to compensate for the lack of
cooling prescription at k > 10 h−1 Mpc. Secondly, the redshift evo-
lution of HMCODE power spectra is too monotonic, lacking freedom
to capture the complicated evolutionary pattern that generally exists
in hydrodynamical simulations. The redshift evolution patterns can
be very different for various baryonic scenarios. HMCODE’s inability
to model redshift evolution may be due to the fact that only two
nuisance parameters are involved in describing the complex scale
and redshift dependences of baryonic effects seen in the simulations.
One straightforward suggestions is to add redshift dependence
to A and η0. Further development of halo model approaches to
account for the modification of the matter power spectrum for
k > 10 h−1 Mpc is also needed. Although the current model does
not describe all the complexity of possible modifications of P(k)
due to baryonic physics, we can still use HMCODE to gain insight
into the strength of feedback from the constrained values of A and
η0. As shown in Fig. 12, the Illustris-like universe tends to have
small A and large η0.

11If using HMCODE to directly fit the 3D matter power spectrum including
baryonic effects at some specific redshift, according to M15, by adjusting
A(z), and η0(z), HMCODE has enough degrees of freedom to match the
baryonic power spectra from the OWLS simulations to k � 10 h−1 Mpc.

5.4 Pushing to even smaller angular scales: �max of 5000

Until now, all elements of our analysis have been based on mock
tomographic shear data vectors with �max ≈ 2000, which is a
conservative choice under the limitation that we lack accurate power
spectra at k > 30 h−1 Mpc. The �max ≈ 2000 cut assures that various
extrapolation curves on Pδ(k) ratio out to k > 30 h−1 Mpc would
not cause significant change on the resulting Cij(�) data vector (see
Appendix B for details on how the scale cut limit is determined).

To further test the limits of the proposed baryonic mitigation
techniques, we generate mock Cij(�) data vectors with �max ≈ 5000
(based on the quadratic extrapolation trends derived by fitting the
Pδ(k) ratio in k ∈ [10, 30] h−1 Mpc, see the red curve in Fig. B1 as
a demonstration), and then perform the same simulated likelihood
analyses with mitigation techniques described in Sections 3 and 4.
The only difference is that we append three extra data points that
with equal logarithmic spacing in � ∈ [2060, 5000] to the original
data vector D in each tomographic bin. The new length of D is thus
extended to 55 × (18 + 3) = 1155 data points (see Section 3.2 for
the original format of D). The covariance matrix is also updated
accordingly.

The dark grey contours in Fig. 14 indicate the 2D posterior
distributions of the cosmological parameters, when no baryonic
physics mitigation technique is applied. Compared with the similar
plot shown in Fig. 4, but for �max ≈ 2000, the biases on cosmological
parameters increases to 2σ–19σ for the various cosmological
parameters in an Illustris-like universe, and around 1.5σ–6σ for
the other cases. This amount of bias is consistent with fig. 5 of
E15, who showed the posterior distributions for �max ∼ 5000 for
the OWLS baryonic physics scenarios for an LSST-like likelihood
simulations.

Since we showed in Section 5.2 that method C is the most efficient
of the PCA-based methods, we only run simulated likelihood
analyses with PCA-based method C, compared with method M
using HMCODE for �max ≈ 5000. In Fig. 15, we plot the marginalized
w0 bias (colour-filled symbols) and 0.5σ w0 uncertainty (open
symbols) as a function of the number of excluded PC modes in
method C (blue diamonds) and HMCODE (yellow hexagons). (The
red triangles and black pentagons are simply copies of the data
points shown in Fig. 11, to enable easier comparison of results with
�max of 2000 versus 5000.) The bias and error plots for �m, σ 8, and
wa are also provided in Fig. D1.

Similar to Section 5.3, we rely on the bias <0.5σ criterion to
validate the effectiveness of baryonic physics mitigation methods,
with the results summarized in Table 5. First of all, for HMCODE,
varying only A is not sufficient to mitigate the bias to within 0.5σ

for the Illustris simulation, which HMCODE is particularly good at
describing. Both A and η0 must be varied to meet our criterion
for MB2 and Eagle. For Horizon-AGN and Illustris, HMCODE

works well for some cosmological parameters, while it fails for the
others. For the PCA method, it still works for baryonic scenarios
of MB2/Eagle/Horizon-AGN when pushing to �max ≈ 5000, but
continues to fail to meet our criterion for the Illustris scenario.

In terms of degradation on cosmological parameter constraints
after marginalization, for the cases of MB2 and Eagle, the sce-
narios in which both PCA and HMCODE succeed in mitigating
the bias to within 0.5σ , we see that PCA method yields smaller
converged error bars (light blue open diamonds) compared with
HMCODE using two parameters (yellow open hexagons) to do
marginalization.

Does extending the data vectors to �max ≈ 5000 help to better
constrain cosmological parameters compared with �max ≈ 2000? As
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Baryonic physics mitigation for lensing 1669

Figure 13. Comparisons of power spectra generated from HMCODE at the best-fitting A and η0 values (solid lines) and power spectra directly derived from
hydrodynamical simulations (dotted or dashed lines) at z = 0, 1, 2, 3. The discrepancy indicates that HMCODE lacks degrees of freedom to account for the
cooling effect at high k, and that it is too simplified to capture the complex redshift evolution patterns present in hydrodynamical simulations.

shown in Fig. 11, for the PCA method, we observe that the converged
w0 errors for the �max ≈ 5000 cases (light blue open diamonds) are
smaller by ∼ 20 per cent compared with the errors for �max ≈ 2000
(pink open triangles). For the cases of HMCODE when varying
both A and η0, the w0 errors reduce by ∼ 12 per cent for MB2,
∼ 18 per cent for Eagle, and ∼ 30 per cent for Horizon-AGN, after
extending data points to �max ≈ 5000 (yellow open hexagons) from
�max ≈ 2000 (grey open pentagons). This means that we do benefit
from additional constraining power when including more small-
scale data in the analysis, if the baryonic physics effect in our
Universe is near the physics implemented in Eagle/MB2/Horizon-
AGN.

5.5 Including more AGN prescriptions in the training set

The reason why the PCA method fails to mitigate the impact of
baryonic physics on the matter power spectrum in Illustris is that
the PCs built from the current training set do not capture the strong
variation with k to explain its intense feedback feature. As also
discussed in Mohammed & Gnedin (2018), it is better to have a
training set that comprises adequately exotic but reasonable models.
Of the nine training OWLS simulations, only the OWLS-AGN
contains an AGN feedback prescription, and we rely on this single
AGN model to explain Illustris. However, this shortcoming can
be fixed by incorporating more training simulations into the PCA,
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Figure 14. Similar to Fig. 4, but for the cases when pushing our mock
observables towards �max ≈ 5000.

so that the resulting PCs will include more degrees of freedom to
explain the broader range of outcomes due to baryonic physics.

We try to address the above Illustris problem by including the
baryonic scenarios of MB2/Eagle/Horizon-AGN in our training set,
and then build a �ch matrix with 12 columns to extend the capability
of the derived PCs. In the bottom left panel of Fig. 15, we plot the
marginalized w0 bias (brown filled stars) and error (light brown
open stars) for Illustris simulation with PCs trained from the 12
baryonic scenarios, and a scale cut at �max ≈ 5000. (The results for
other cosmological parameters can be found in the last column of
Fig. D1 as well.) With this expanded training set, the PCA method
now reduces the w0 bias from 1.5σ (blue filled diamonds) to 0.8σ

(brown filled stars), which is an improvement but still does not
enable us to meet our criterion of bias <0.5σ .

The error bars when using 12 simulations in the training set
converge after removing ≥6 PC modes. Notice that the converged
errors become bigger when the PCs are trained from 12 simulations
rather than just the 9 OWLS simulations. By including more
simulations to construct the PCs, we also enlarge the range of
baryonic uncertainties, which is a trade-off to ensure a more
effective removal of biases due to baryonic physics for a broad range
of baryonic physics scenarios. However, we can also imagine trying
to rely on external information from independent observations to
rule out baryonic scenarios that fail to describe our Universe. By
carefully controlling the uncertainty range of the training set, we
could potentially improve the cosmological constraining power after
mitigation.

6 SUM M A RY A ND DISCUSSION

We have explored the two major approaches to mitigate uncertain-
ties in cosmic shear tomographic power spectra due to baryonic
physics, with the goal of understanding their performance on
cosmological constraints for the upcoming LSST survey. The first
approach is the PCA-based analysis proposed by E15. Based on a
set of training hydrodynamical simulations with various baryonic

prescriptions (spanned by OWLS in this work), a difference matrix
(equation 8) is computed. Its columns are filled with difference
vectors between these hydro and DMO simulations. PCA is then
performed on the difference matrix to find dominant PC modes that
can be used to model baryonic effects in other hydro simulations.
The second approach is the halo model-based method coded in the
package of HMCODE by M15, which utilizes two halo structural
parameters (A and η0) related to the halo concentration–mass
relation to marginalize over baryonic uncertainties.

We examine the basics of the PCA formalism and provide a modi-
fication to properly account for the change of covariance matrix after
removal of PC modes. Under the new formalism, we demonstrate
that PC mode removal is equivalent to marginalization over PC
amplitudes (see Section 5.1). Instead of difference matrices, we also
investigate PCA on other kinds of matrix forms with their columns
filled with the fractional difference (equation 25) or noise-weighted
difference vectors (equation 20) to quantify deviations in the matter
power spectrum due to baryonic physics. The derived PC bases
from different matrices vary in their efficiency in explaining baryon
fluctuations at different angular scales. Difference matrix PCs
can more effectively account for large-scale baryonic fluctuations,
fractional difference matrix PCs are more effective at describing
the small-scale fluctuations, and noise-weighted difference matrix
PCs most effectively describe the scales at which the S/N is
maximal. We find that performing PCA on the noise-weighted
difference matrix, with the weighting factor derived via performing
Cholesky decomposition on the covariance matrix (Section 4.2), is
the most efficient way to mitigate the impact of baryonic physics
on inferred cosmological parameters (Section 5.2). Therefore, for
future application on real data, we recommend applying the noise-
weighted PCA technique. It should be noted that except for method
D, the current PCs are wiggling slightly in their directions at each
MCMC step, when cosmology changes. If we would like to quantify
baryon physics via PC amplitudes, we hope the constrained PC
amplitudes are subjected to a fixed set of PCs. A more complete
design of PCA algorithm therefore would be an iteration process. We
will first use the current setting to find the best-fitted cosmology, and
once the pco,best fit is determined, we will fix PC basis at pco,best fit,
and constrain the posteriors of PC amplitudes subjected to this PC
set.

We apply both the PCA and HMCODE techniques on mock shear
tomographic data vectors (Cij(�)) with baryonic physics scenarios
of MB2/Eagle/Illustris/Horizon-AGN. We test whether these miti-
gation techniques can reduce the bias in cosmological parameters
induced by neglecting baryonic effects to within 0.5σ . With a scale
cut at �max ≈ 2000, and for milder baryonic physics scenarios like
MB2/Eagle/Horizon-AGN, both methods succeed in mitigating the
impact of baryonic effects on the inferred cosmological parameters.
For the PCA method, we find that excluding 3 PC modes is
sufficient to mitigate the bias to within 0.5σ for �m, σ 8, w0,
and wa. For HMCODE, we find that it is safer to vary both A
and η0 when performing marginalization, rather than varying only
one of them and having the other follow the suggested relation
in M15, at least at the level of LSST statistical power. For the
Illustris scenario, only HMCODE is sufficient to mitigate the bias
to within 0.5σ . The PCA method fails to pass our criterion even
after removing nine PC modes. With a more aggressive �max of
5000, the PCA methods still work for MB2/Eagle/Horizon-AGN,
but fail for Illustris. HMCODE remains sufficient for MB2/Eagle after
marginalizing over two parameters but only works partially on some
of the cosmological parameters for Horizon-AGN and Illustris, as
summarized in Table 5.
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Baryonic physics mitigation for lensing 1671

Figure 15. The w0 bias and uncertainty for the baryonic physics mitigation methods C (as our representative for PCA-based method) and M (halo model-
based method/HMCODE) (see Table 3 for details). The darker coloured-filled markers indicate the level of w0 bias, defined as |w0,best fit − w0,fid|. The fainter
coloured-open markers indicate the 0.5σ w0 uncertainty, with 1σ defined as the half difference between the 16th and 84th percentile of the marginalized 1D w0

posterior distribution. The four key results on this plot are (i) the PCA method (blue diamonds) mitigates bias to within 0.5σ for the milder baryonic physics
scenarios – MB2, Eagle, and Horizon-AGN – after excluding more than three PC modes, but fails for the Illustris scenario. (ii) When marginalizing over both
A and η0, HMCODE (yellow hexagons) mitigates w0 to within 0.5σ for all baryonic scenarios. (iii) For baryonic scenarios of MB2 and Eagle, the cases for
which both methods work, the error bars for the PCA method (light blue open diamonds) converge to smaller values compared with HMCODE (yellow open
hexagons). (iv) Including more small-scale data in the analysis reduces the statistical error to ∼ 20 per cent for PCA method (light blue open diamonds versus
pink open triangles) and to about 12–30 per cent for HMCODE (yellow open hexagons versus grey open pentagons). (v) Including more training simulations
in PCA improves reducing the w0 bias induced by neglecting baryonic effects to ∼ 15 per cent for the case of Illustris (brown filled stars versus blue filled
diamonds), although the improvement on residual bias is not reaching our criterion of <0.5σ .

We found that HMCODE is most effective at mitigating the impact
of baryonic physics for a strong feedback scenario like Illustris,
because HMCODE is designed to describe the impact of baryonic
physics on the matter power spectrum for k ≤ 10 h Mpc−1, where the
main feature is the suppression of power due to feedback (Fig. 1).
HMCODE and halo model-based approaches in general have the
advantage over PCA that they have cosmology dependence built
in. Although the current version of HMCODE lacks the complexity
to fully describe various baryonic scenarios (Fig. 13), it provides

a good summary of the level of feedback strength through two
nuisance parameters (Fig. 12). Future improvements of the halo
model to smaller scales of k ≥ 10 h Mpc−1, as well as adding
parameters to allow additional freedom in the redshift evolution of
baryonic physics effects, may constrain halo structural parameters
and baryonic power spectra ratio curve together with cosmology.
Exploring the prior ranges on halo model parameters also help
to improve cosmological parameter constraint. For example, we
can use the posterior constraints from realistic hydrodynamical
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Table 5. Similar to Table 4, but now for the likelihood simulations with
mock observables pushing to �max ≈ 5000.

MB2/Eagle Horizon-AGN Illustris

HMCODE (A) All fail All fail All fail
HMCODE (A, η0) All pass �m σ 8w0��wa ���m�σ8 w0 wa

PCA (trained by 9 sims) All pass All pass All fail
PCA (trained by 12 sims) All fail

simulations as shown in Fig. 12 to narrow down the allowed ranges
of A and η0. Joint constraints from galaxy–galaxy lensing together
with cosmic shear may also provide additional information from
the data itself on the halo structure parameters (Zentner et al. 2008).

There are several advantages of the PCA method. First, it suc-
cessfully mitigates quite general baryonic fluctuations and complex
redshift evolution patterns, when collecting several representative
training hydrodynamical simulations to conduct PCA. The complex
baryonic behaviours as well as the redshift evolution would then be
naturally absorbed in only a few dominant PC modes, and we can use
the amplitudes of these PC modes to perform marginalization (or,
equivalently, PC mode exclusion). Secondly, the PCA method effi-
ciently accounts for baryonic uncertainties without losing too much
cosmological constraining power. As discussed in Section 5.3.2,
whenever both methods are successful in removing baryonic bias,
the error bars are generally smaller for PCA methods compared
with the errors of HMCODE. It is quite important to note that even
if we do not know in advance how many PC modes must be
excluded to safely remove baryonic bias in our Universe, excluding
all effective PC modes does not unacceptably increase the errors,
which saturate at a certain limit. The maximum number of effective
PC modes one can remove is equal to the total number of training
simulations used in the PCA (see Section 4.1.1 for detail). Finally,
the PCA method has significant flexibility to make adjustments
as our knowledge of baryonic physics improves. For example, in
Section 5.4 we tried to improve the bias mitigation of the Illustris
simulation by including more realistic baryonic scenarios with AGN
prescriptions in our training set, which enriches the space of possible
baryonic uncertainties that the PCs can describe. After the inclusion
of MB2/Eagle/Horizon-AGN as well as the original nine OWLS
scenarios in our training set, we can further decrease the residual
cosmological parameter bias compared with the results when only
using the nine OWLS simulations as training set. The cost is that we
lose some constraining power. The flexibility of the PCA framework
makes it easy to adjust the model based on changes in our knowledge
of baryonic physics, and allows us to regulate errors by controlling
the input training simulations in the PCA.

There are several aspects regarding the PCA framework that we
do not explore within this work. First, our training hydro simulations
are all run under the flat �CDM model, and we assume that the
baryonic fluctuations, as quantified in terms of power spectrum
ratios between hydrodynamical and DMO simulations, remain fixed
when cosmology changes. In reality, baryonic and cosmological
effects vary jointly. Currently, there is no easy way to investigate
this assumption, but future fast hydrodynamical simulations under
development would be an ideal tool to systematically study this
issue. Secondly, we adopted a power-law extrapolation scheme
for Pδ(k) ratio at k ≥ 30 h Mpc−1 (see Appendix B). The most
relevant physics that governs the high k behaviour is the cooling
and inner stellar density profile of galaxies. Current large-volume
cosmological hydrodynamical simulations lack the resolution to
resolve the physics of galaxy formation to galaxy centres. We rely

on subgrid models of feedback to avoid the overcooling of gas
and to mitigate the differences between the observed and simulated
galaxies, but discrepancies still exist (Stinson et al. 2010; Bottrell
et al. 2017; Furlong et al. 2017). This implies that Pδ(k) in the high
k regime is still highly uncertain. Does the Pδ(k) ratio continue the
trend of increasing monotonically? Or should it reach a saturation
point at some high k regime? How to properly propagate the
uncertainties of the poorly understood small-scale Pδ(k) ratio into
the errors of integrated Cij(�) which in turn affects the derived
PCs? These questions require higher resolution hydrodynamical
simulations to further address. Finally, we have briefly demonstrated
in Section 5.5 that depending on the training simulation set, the
derived PCs carry different abilities to mitigate baryonic effects,
and differ in the final constraining power. It would be worthwhile
to systematically investigate various possible combinations of the
training simulations, to find a most effective set of PCs that are able
to span a wide enough range of baryonic uncertainties but with less
degradation on constraining power.

In future extensions of this work, we will apply the PCA
framework to a configuration-space tomographic shear analysis on
real data to constrain the baryonic feature of our Universe and
compare it with hydrodynamical simulations. We aim to develop
a consistent way of quantifying priors of PC amplitudes, which
would provide us with more constraining power on cosmological
parameters by shrinking the allowed range of baryonic physics
modifications of the matter power spectrum. We will also develop
a PCA tool for joint analysis of galaxy–galaxy lensing and galaxy
clustering observables. The full 3 × 2-point analysis then can be
self-consistently analysed within the PCA framework to increase
the constraining power on cosmology while safely marginalizing
over baryonic physics.
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APPENDI X A : POW ER SPECTRUM
C O M P U TAT I O N

Here we describe the practical implementation of our power
spectrum computation from the simulation snapshots.

A1 The power spectrum estimator

The matter density field in the Universe can be quantified via the
overdensity δ(x), defined as δ(x) = ρ(x)−ρ̄

ρ̄
, where ρ(x) specifies the

density function at position x and ρ̄ is the global mean density. We
first estimate δ(x) on a uniform grid of 1024 cells across a side of
the simulation box with the particle deposition step carried out via
nearest grid point assignment. Our estimator is

δ̂(x) = δ(x)W (x) =
∫

Vbox

dx′δ(x′)W (x − x′). (A1)
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Here the mass assignment function can be described by
W(x) = ∏

iW(xi), with

W (xi) =
{

1/�L for |xi | < �L/2

0 else
, (A2)

where the grid cell side length �L = Lbox/1024, and the index
i is the axis label of the Cartesian coordinate system. We then
perform a discrete Fourier transform on δ̂(x) to derive its Fourier
transformation pair δ̂(k):

δ̂(k) = δ(k)W (k). (A3)

After the Fourier transform, the convolution operation in equa-
tion (A1) becomes a simple product, with W(k) being the Fourier
space mass assignment window function:

W (k) =
∏

i

W (ki) =
∏

i

sin ( ki�L

2 )

( ki�L

2 )
, (A4)

where ki (i = x, y, z) is the i-th component of k. The Fourier
transformation pair of δ(x) then can be computed by

δ(k) = δ̂(k)

W (k)
. (A5)

We choose the convention of Fourier transform as
δ(k) = ∫

dx δ(x)e−ik · x. Under this convention, the power
spectrum can be estimated by averaging over all modes k with a
length of k:

P̂δ(k) = 1

Vbox

〈|δ(k)|2〉
k=|k| , (A6)

with Vbox being the box size of simulation.
The raw estimation of P̂δ(k) above is known to be affected by

discreteness effects, which contributes into the power through a
constant amplitude called shot noise

Pshot = Vbox/Neff . (A7)

Here Neff is the effective number of particles, which accounts for
their difference in mass:

Neff = (�N
i mi)2

�N
i m2

i

, (A8)

where mi is the individual particle mass, and N is the total number of
particles. For DMO simulations where all tracer particles have equal
mass, Neff = N. The final power spectrum Pδ(k) used throughout
this work is derived after subtraction of the shot-noise term:

Pδ(k) = P̂δ(k) − Pshot. (A9)

A2 The accuracy of power spectrum

On large scales, due to the limited size of simulation boxes, the
statistical uncertainties of the estimated matter power spectra are
dominated by cosmic variance. The contribution of cosmic variance
on Pδ(k) can be estimated by (Takada & Hu 2013)

σ 2(k) = 2
P 2

δ (k)

Nmodes(k)
. (A10)

Nmodes is total number of modes available in the bin range [k −
�k/2, k + �k/2]:

Nmodes(k) = 1

(2π )3
Vbox

∫ k+�k/2

k−�k/2
4πk2 dk

≈ 1

2π2
Vboxk

2�k. (A11)

The small-scale error of power spectra is mostly caused by the
simulation resolution. For DMO simulations, Heitmann et al. (2010)
pointed out that the Pδ(k) values of different resolutions are within
1 per cent agreement for k < kNy/2, where the Nyquist wavenumber
is set by the inter-particle separation on the initial grid:

kNy = πNp

Lbox
, (A12)

with Np being the cube-root of the total number of particles used in
simulations. For smaller scales at k > kNy/2, we expect a suppression
of power for scales around k ∼ kNy followed by a steep rise of
power at even larger k (see fig. 8 of Heitmann et al. 2010 and
fig. A3 of van Daalen et al. 2011). According to Heitmann et al.
(2010), the suppression of power is due to discreteness effects in
sampling small-scale fluctuations. When fewer low-mass haloes are
resolved, Pδ(k) is suppressed at small scales. The steep rise of power
is believed to be caused by incorrect shot-noise subtraction. Shot
noise should be scale-dependent at small scales rather than a simple
constant as in equation (A7).

For hydrodynamical simulations, the convergence properties are
more difficult to systematically quantify due to the interplay be-
tween resolution effects and galaxy formation physics. For example,
as the resolution increases, more lower mass haloes are resolved,
leading to an increased power of SN feedback. Subgrid parameters
regulating SN feedback then must be modified to account for this
effect in order to match the observables like galaxy stellar mass
function. Typically subgrid prescriptions are designed to reach some
level of convergence with the variation of resolution. However,
the functionality of such self-regulation is rather limited. Eagle
is currently the only hydro simulation with its subgrid model
parameters re-calibrated to match observations when the resolution
is changed (see fig. 7 of Schaye et al. 2015). In the left-hand
panel of fig. A2 in van Daalen et al. (2011), they showed a
convergence comparison between the power spectra of OWLS-REF
hydro simulations with kNy of 16 (the current OWLS resolution used
in this work) and 32, respectively. The two baryonic power spectra
agree to within ∼ 10 per cent out to k ≈ 40 h Mpc−1. We note that
this statement only applies to OWLS-REF. There is no general rule
on the behaviour of convergence for hydro simulations, given that
the galaxy observations are not yet converged, and that the subgrid
prescriptions are all different.

APPENDI X B: POW ER SPECTRUM RATI O

The power spectrum ratio between hydrodynamical and DMO
simulations is an important quantity in this work. We rely on it
in equation (1) to derive mock observables at different cosmology,
as well as to build difference matrices to perform PCA. Here we
discuss the validity of our estimates of this ratio over the range of
scales used throughout this work, and describe how we perform
extrapolation to smaller scales than those that are well-described in
the simulation.

B1 Discussion on the convergence of the power spectrum ratio

The ratios of matter power spectra that we use in this work are
accurate to k � 30 h Mpc−1 for Eagle/MB2/Illustris/Horizon-AGN
and of k � 10 h Mpc−1 for OWLS. Below we will justify this claim.

We have discussed the statistical uncertainty of Pδ(k) due to
cosmic variance in Section A2. Based on the first-order error prop-

agation, Var[ X
Y

] = X
2

Y
2

(
σ 2
X

X
2 + σ 2

Y

Y
2 − 2 Cov[X,Y ]

X Y

)
, the cosmic variance
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contribution to the uncertainty in the power spectrum ratio is

Var

[
Pδ,hydro(k)

Pδ,DMO(k)

]
= 1

P 2
δ,DMO(k)

σ 2
hydro(k) + P 2

δ,hydro(k)

P 4
δ,DMO(k)

σ 2
DMO(k)

− 2
Pδ,hydro(k)

P 3
δ,DMO(k)

Cov
[
Pδ,hydro(k), Pδ,DMO(k)

]
,

(B1)

where the variance of the power spectrum σ 2
hydro/DMO(k) is expressed

in equation (A10).
The hydrodynamical and DMO runs are set at exactly the same

initial conditions, and baryonic effects are negligible on large scales.
When Pδ,hydro(k) ≈ Pδ,DMO(k) and Cov[Pδ,hydro(k), Pδ,DMO(k)] ≈ 1, as
is the case at small k, we expect the variance of the power spectrum
ratio in equation (B1) to approach zero.

On small scales, as discussed in Section A2, Pδ(k) would
achieve 1 per cent convergence out to k ≈ kNy/2. Hence, we
expect the uncertainty in the power spectrum ratio due to limited
simulation resolution to be < 2 per cent to k ≈ kNy/2, where
kNy/2 is ∼30 h Mpc−1 for Eagle/MB2/Illustris/Horizon-AGN and
∼10 h Mpc−1 for OWLS.

For the cosmic variance contribution on small scales, we can
derive an upper limit by setting Cov[Pδ,hydro(k), Pδ,DMO(k)] to
zero in equation (B1), and with the σ 2

hydro/DMO(k) estimated using
equations (A10) and (A11):

Var

[
Pδ,hydro(k)

Pδ,DMO(k)

]
upper

→ 8π2

Vboxk2�k

P 2
δ,hydro(k)

P 2
δ,DMO(k)

. (B2)

For k ≈ 10 h Mpc−1, Lbox = 100 h−1 Mpc, �k = 0.1, and Pδ,hydro

Pδ,DMO
≈

0.9, the estimated variance of the power spectrum ratio is ∼0.0005.
Thus the 1σ uncertainty in the power spectrum ratio due to cosmic
variance is expected be � 0.3 per cent.12

If we naively derive the power spectrum ratio by using the raw
data points of Pδ,DMO(k) and Pδ,hydro(k) at k > kNy/2, the derived ratio
will be overestimated due to the underestimation of the denominator
of Pδ,DMO(k) at scales of several times kNy, and underestimated
towards even higher k due to the overestimation of Pδ,DMO(k) (see
Section A2). We will introduce our extrapolation scheme below to
avoid the biases.

B2 Power spectrum ratio extrapolation scheme

For scales below k < 0.1 h Mpc−1, we simply let the ratio curve
asymptotically approach one, which is a justifiable assumption
since we know that baryons hardly modify the matter power
spectrum on large scales. For small scales, as shown in Fig. 1,
the power spectrum ratio between hydrodynamical and DMO
simulations tends to increase after k � 20 h Mpc−1. This increase
is caused by cooling effects in hydrodynamical simulation. In
order to capture this physical effect, we make use of data points
in k ∈ [10, 30] h Mpc−1, perform a smooth quadric spline fitting
in log(k) − log(Pδ,bary(k)/Pδ,DMO(k)) space, and extrapolating the

12Chisari et al. (2018) have estimated the effect of cosmic variance on the
power spectrum ratio (see their fig. 5) by subsampling the Horizon-AGN
simulation with a volume that is eight times smaller than our setting here.
So the expected 1σ error due to cosmic variance in their case should be on
the order of 1 per cent (

√
8 times larger than our setting). The total spread

of their subsampled power spectra ratios is consistent with our derivation
within 3σ .

Figure B1. Power spectrum ratio between OWLS-AGN and OWLS-DMO
at z = 0, assuming different extrapolation schemes above k > 10 h Mpc−1.
The black line shows the raw data calculated by simply taking ratio from
the raw OWLS power spectra from van Daalen et al. (2011). The red dashed
line indicates the extrapolation scheme by extending a quadric spline fitted
curve using the raw data points in k ∈ [10, 30] h Mpc−1. The yellow and
brown dot–dashed lines indicate the two possible upper and lower bounds
one may derive, if there is some uncertainty in the raw data points k ∈ [10,
30] h Mpc−1. The dark blue line plots a pure flat extrapolation. The light
blue dash–dot–dotted line indicates the case of extrapolation when using
data points in k ∈ [3, 10] h Mpc−1, which are believed to be well-measured.

fitted trend out to k > 30 h Mpc−1. Fig. 1 shows the extrapolation
curves for all baryonic scenarios.

The above extrapolation scheme holds for
Eagle/MB2/IIIustris/Horizon-AGN simulations, where we have
reliable power spectrum ratios in the range k ∈ [10, 30] h Mpc−1.
For the OWLS simulation set, as discussed above, the ratio data is
only well-determined to k < 10 h Mpc−1. The black line in Fig. B1
indicates the naively derived power spectrum ratio from the raw
data of OWLS-AGN and OWLS-DMO. In the case of OWLS-AGN,
we do need data points slightly beyond k of 10 h Mpc−1 to capture
the transition from suppression to enhancement of power. We
therefore still make use of the raw data points in the range of k ∈
[10, 30] h Mpc−1, where the uncertainties may > 2 per cent but
not that worse, to perform extrapolation spline line fitting, and the
resulting curve is indicated in the red-dashed curve of Fig. B1.
The raw data curve is slightly higher than the extrapolating curve
when k is large. This is resulting from the underestimation of the
DMO power spectrum as discussed in Section A2 and Section B.
The extrapolation based on fitting data at k ∈ [10, 30] h Mpc−1

may exhibit uncertainties in the final extrapolation slope at high k.
Therefore, we try to explore such uncertainties by setting slightly
different extrapolating parameters that are shown as upper (yellow
line) and lower (brown dot–dashed) bounds in Fig. B1. Finally, we
also check the simplest constant extrapolation scheme as shown
in the dark blue line. We will explore the effects of different
extrapolation schemes on the resulting tomographic shear power
spectra later.

If only using data points around k < 10 h Mpc−1 to perform
smooth extrapolation, one would fail to capture the cooling effect
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Figure B2. The ratio of tomographic shear power spectrum between
OWLS-AGN and OWLS-DMO simulations for our lowest tomographic
bin. Curves in different colours represent different Pδ(k) ratio extrapolation
schemes as coloured in Fig. B1. The vertical dashed line indicates the angular
scale of � = 2060, where the cut is made for all of tomographic bins in our
data vector. This cut is chosen such that the derived Cij(�) curve would not
be too sensitive on different Pδ(k) ratio extrapolation schemes.

that typically exists in hydrodynamical simulations at high k.
The light blue dash–dot–dotted line of Fig. B1 indicates such an
extrapolation based on the data points for k ∈ [3, 10] h Mpc−1.
This sets a very important requirement for our method. If we really
want to use the PCA framework to achieve better cosmological
parameter constraints by including more small scale information,
the simulations that are used to build the PC basis must also have
high enough resolution to construct a reasonable extrapolation down
to the scale that goes into cosmological analysis. This is the reason
why we avoid using the Rudd, Zentner & Kravtsov (2008) and
Gnedin, Kravtsov & Rudd (2011) simulations to build our PC basis
as in the previous work of E15. The half-Nyquist wavenumbers of
these two simulations are too low to capture the up-turn in the power
spectrum ratio, given the angular scales of � ≈ 2000 used in this
work.

We now justify how the choice of angular scale cut at � ≈ 2000
is made. In Fig. B2 we present the computed tomographic shear
power spectra in our lowest redshift bin, for various extrapolation
schemes on the power spectra ratio shown in Fig. B1. The vertical
grey line indicates the angular scale cut of � = 2060 we have
adopted. One can see that the Cij(�) ratio only differs mildly at this
scale. Therefore, although our current extrapolation scheme may
lead to a considerable error in the Pδ(k) ratio, after the integration
process, such error propagation in Cij(�) ratio is estimated to be
within 10 per cent when making an � cut at ≈2000. We make a
conservative choice of cutting in � such that the final result is not
too sensitive to our extrapolation scheme.

APP ENDIX C : C OMPUTING
BA RYO N - C O N TA M I NAT E D DATA V E C TO R S AT
VA RY I N G C O S M O L O G Y

In this appendix, we describe in detail how we compute baryon-
contaminated data vectors as a function of cosmology. This proce-

Figure C1. The ratio of tomographic power spectra ratio at bin C00

between hydrodynamical and DMO simulations evaluated at various pco

versus pco,fid, i.e. [
C00

hydro( pco)

C00
DMO( pco)

]/[
C00

hydro( pco,fid)

C00
DMO( pco,fid)

]. Here different curves indicate

changes of �m or σ 8 to values shown in the legend, while keeping the
remaining cosmological parameters the same as pco,fid. The fact that all
ratio curves are ≈1 to within 0.25 per cent indicates the validity of using
equation (C2) as our approximation.

dure is needed to build the difference matrix (equation 8), weighted
difference matrix (equation 20), or ratio matrix (equation 25) when
doing PCA.

To produce a baryon-contaminated vector Bx at cosmology pco,
in principle we should rely on equation (1) to generate the matter
power spectrum for that cosmology, and integrate it to derive the
tomographic shear data vector

C
ij

hydro,x(�| pco)

= 9H 4
0 �2

m

4c4

∫ χh

0
dχ

gi(χ )gj (χ )

a2(χ )
P

hydro,x

δ

(
�

fK (χ )
, χ | pco

)
.

(C1)

However, to increase the computational speed, we approximate this
step by

Bx( pco) = C
ij

hydro,x( pco) = C
ij

hydro,x( pco,fid)

C
ij

theory( pco,fid)
C

ij

theory( pco), (C2)

where C
ij

hydro,x( pco,fid) is pre-computed using equation (C1) setting

at pco,fid and stored. C
ij

theory( pco) is our model vector M( pco)
generated from HALOFIT. Approximating equation (C1) by equa-
tion (C2) avoids the need to integrate nine times when constructing
the nine columns of �( pco)/�chy( pco)/R( pco) at each MCMC
step. In using equation (C2), we basically assume the quantity

[
C00

hydro( pco)

C00
DMO( pco)

]/[
C00

hydro( pco,fid)

C00
DMO( pco,fid)

] ≈ 1 at various pco. To check the validity,

we compute all the elements in this quantity using equation (C1)
and plot it in Fig. C1, with pco set at different values of �m or σ 8,
while keeping the rest of the cosmological parameters the same as
pco,fid. As shown, the C00 ratio curves are within 0.25 per cent of 1
for various pco demonstrated here.
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APPEN D IX D : C ONSTRAINTS O N
C O S M O L O G I C A L PA R A M E T E R S O F �M , σ 8 ,
A N D wA

In this appendix, we provide constraints on cosmological parameters
of �m, σ 8, and wa after applying baryon mitigation techniques
using HMCODE or various PCA methods. The solid markers in-
dicate the amount of residual bias after mitigation, and the
open markers indicate the 0.5σ errors on the marginalized 1D
posteriors. We rely on this plot to check whether a mitigation
method can successfully reduce the baryonic physics-induced bias
to within 0.5σ for different cosmological parameters and baryonic
scenarios. The results are briefly summarized in Tables 4 and 5.
We refer readers back to discussions at Sections 5.3 and 5.4 for
details.

A P P E N D I X E: G O O D N E S S O F F I T FO R
BA RYO N MI T I G AT I O N MO D E L S

In this appendix, we summarize the fitting quality for various
baryon mitigation methods. In Table E1, we provide the χ2 values
computed at the best-fittng (fiducial) cosmology for HMCODE and
the PCA method C when applied on each baryonic scenario for the
�max ≈ 2000 likelihood simulations. Here we define our best-fitted
parameters to be the median value at the marginalized 1D posterior
distribution.

Notice that because our mock data vectors are noiseless, the
χ2 values cannot be used to make statements about overfitting
or underfitting based on the reduced χ2 criterion [i.e. we do not
expect χ2/(d.o.f.) ≈ 1]. However, using the information from the
relative χ2 values (�χ2) and the relative degrees of freedom (�
d.o.f.) between two models, we can determine the model complexity

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure D1. Similar to Fig. 15, but for cosmological parameters of �m (first row), σ 8 (second row), and wa (third row), for various baryonic scenarios
categorized in each different column.
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Table E1. Goodness of fit for various baryon mitigation models.

Eagle MB2 Horizon-AGN Illustris

No-mitigation at pco,bestfit ( pco,fid) 2.68 (30.92) 0.93 (5.71) 3.85 (103.2) 107.5 (3258)

HMCODE – A 2.09 0.74 2.34 4.84
HMCODE – A, η0 0.91 0.29 1.69 4.80

PCA ex1 at pco,bestfit ( pco,fid) 1.39 (3.25) 0.70 (5.11) 0.75 (6.75) 11.91 (40.0)
PCA ex2 0.41 (0.39) 0.37 (0.81) 0.45 (2.72) 9.68 (34.2)
PCA ex3 0.28 (0.24) 0.28 (0.32) 0.26 (2.65) 3.08 (12.0)
PCA ex4 0.15 (0.07) 0.18 (0.30) 0.20 (1.38) 2.06 (4.89)
PCA ex5 0.13 (0.04) 0.14 (0.07) 0.16 (0.64) 1.65 (2.55)
PCA ex6 0.09 (0.03) 0.11 (0.06) 0.20 (0.59) 1.58 (2.18)
PCA ex7 0.11 (0.03) 0.12 (0.06) 0.19 (0.54) 1.50 (2.00)
PCA ex8 0.09 (0.03) 0.08 (0.06) 0.15 (0.53) 1.44 (2.00)
PCA ex9 0.07 (0.03) 0.10 (0.05) 0.15 (0.43) 1.37 (2.00)

needed from the data by performing the Chi-square difference
test.13

For example, for the Illustris scenario, we see that when
comparing the PCA results between excluding one PC mode to
five PC modes, the �χ2 = 11.91 − 1.646 = 10.264, and the �

d.o.f. = 4. The corresponding p-value is 0.036, which means that
the improvement is marginally statistically significant (p-value <

0.05). Excluding six PC modes does not significantly improve the
goodness of fit compared with the result when excluding five PC
modes (�χ2 = 0.062, � d.o.f. =1, p-value =0.8).

After a few PC modes are excluded, we see that the χ2 values
computed at pco,bestfit is comparable to that computed at pco,fid for

all baryonic scenarios. This means that excluding PC modes does
not just reduce parameter bias in our simulated likelihood analysis,
but the resulting best-fitting model also provides a good fit to the
data.

13We refer readers to this link for more detail about Chi-square difference
test.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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