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Abstract

Skull registration plays a fundamental role in forensic
science and is crucial for craniofacial reconstruction. The
complicated topology, lack of anatomical features, and low
quality reconstructed mesh make skull registration chal-
lenging. In this work, we propose an automatic skull regis-
tration method based on the discrete uniformization theory,
which can handle complicated topologies and is robust to
low quality meshes. We apply dynamic Yamabe flow to real-
ize discrete uniformization, which modifies the mesh combi-
natorial structure during the flow and conformally maps the
multiply connected skull surface onto a planar disk with cir-
cular holes. The 3D surfaces can be registered by matching
their planar images using harmonic maps. This method is
rigorous with theoretic guarantee, automatic without user
intervention, and robust to low mesh quality. Our experi-
mental results demonstrate the efficiency and efficacy of the
method.

1. Introduction

The skull is an intrinsic biological feature of humans.
Wilkinson [39] shows that the shape of a skull determines
the person’s facial features, therefore the face can be recon-
structed from the skull, which is called craniofacial recon-
struction. With the rapid development of computer tech-
nology, computer-assisted craniofacial reconstruction plays
an important role in the unknown corpse identification of
criminal investigation, skull identification in forensic sci-
ence, understanding of human beings evolution in anthro-
pology, etc. Skull registration is a key pre-processing step
of craniofacial reconstruction.

Surface registration is a fundamental problem in com-

puter vision, which seeks an optimal mapping from the tar-
get data to the reference data to achieve one-to-one corre-
spondence between them. The three-dimensional(3D) skull
registration aims at finding a one-to-one correspondence be-
tween the dense points for different posed and sized 3D
skull models. Establishing accurate registration of cranio-
facial data is the foundation and premise of building cranio-
facial statistical models.

In general, skull registration is challenging, because
skull surfaces have very complicated topological structures,
different morphology, and non-rigid deformation. Further-
more, feature definition and extraction are difficult as well.
Hence conventional methods can hardly achieve automatic
registration. Meshes produced by 3D scanning or recon-
struction from CT images are with low qualities; this makes
the numerical computation highly unstable. Although many
researchers have made great efforts, automatic and robust
skull registration still remains a fundamental challenge.

In order to handle complex topologies and improve the
robustness for the registration, we propose a novel method
based on the recent theoretic break through : discrete uni-
formization theory, which can handle surfaces with arbi-
trary topologies and poor mesh qualities. Different from
the previous method, dynamic Yamabe flow is used to re-
alize discrete uniformization. So our method is rigorous
with theoretic guarantee to convergence on an arbitrary tri-
angular mesh and achieves global diffeomorphism and high
registration accuracy, which outperforms other methods.

Contributions This work proposes a novel method for
skull registration. The method has some merits:

1. Rigorous: the discrete uniformization theory guaran-
tees the existence and the uniqueness of the solution,
hence the algorithm has solid theoretic foundation;
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2. Automatic: the whole computational pipeline is auto-
matic, without any manual input or user intervention;

3. Robust: the uniformization theory holds for arbitrary
polygonal surfaces, therefore the algorithm is insensi-
tive to the mesh qualities;

4. Effective: the experimental results demonstrate the ef-
fectiveness, accuracy and robustness of our method;

5. General: the method is general enough to handle sur-
faces with complicated topologies.

2. Related Work

The literature for registration is vast, here we only briefly
review the most related 3D surface registration works.

2.1. Rigid Registration Method

The rigid registration methods use rigid transformations
to match shapes. The Iterative Closest Point (ICP) pro-
posed by Besl and McKay [2] is the most classical rigid
registration method. Due to local search, ICP often falls
into local optima and is sensitive to the initialization qual-
ity. There are various improved ICP methods [40, 1] pro-
posed. Rusinkiewicz and Levoy [33] summarized various
ICP variant algorithms, and improved the ICP algorithm
from the following aspects: control point selection, feature
metrics, spatial search, point pair weights and rigid body
transformation.Cheng et al.[8] proposed a 3d skull registra-
tion method based on clifford algebra pupil distance invari-
ability and built a corresponding visualization registration
platform. Accurate point-to-point correspondence between
skulls is difficult to establish by rigid registration.

2.2. Non-Rigid Registration Method

Non-rigid registration methods adopt non-rigid transfor-
mations, which can capture the deformation between differ-
ent samples. Thin Plate Splines (TPS) transformation meth-
ods are popular [11, 4, 5, 23, 3]. Chui and Rangarajan [11]
proposed the TPS-RPM registration method which aims to
add TPS into the framework of ICP. Schneider and Eisert
proposed an automatic registration method for 3D head data
[34] by combining ICP and TPS. Deng et al. [13] proposed
a skull registration method that combines global and local
deformation. Chen et al [7] proposed a non-rigid 3D cran-
iofacial registration method using TPS transformation and
cylindrical projection. Most of these methods depend on the
manually calibrated feature points which is time-consuming
and subjective. Although Hu et al. [22, 32] proposed iter-
ative TPS registration methods based on random sampling
control points, the registration results can not be guaranteed.

2.3. Conformal Parameterization Method

Conformal parameterization [16, 37, 45] is a power-
ful tool in delivering 2D representations from 3D surfaces

while preserving local features and constructing the corre-
spondence between them. The nature of conformal map-
ping makes it insensitive to surface deformation and is par-
ticularly suitable for 3D non-rigid surfaces registration.

Several conformal parameterization registration methods
are realized in 3D facial surface registration and show good
results [41, 25, 29, 50, 36]. Many computational approaches
have been introduced such as least-square conformal map-
ping [27, 26], holomorphic differentials based approaches
[46] and Ricci flow techniques [25, 24, 45]. Koebe’s iter-
ation was generalized to compute conformal parameteriza-
tion for genus zero surface with multiple boundary com-
ponents [47] and high genus surfaces with boundaries in
[49]. Wang [38]applied harmonic map for high resolution,
non-rigid dense 3D point tracking, and Shi [35]applied it to
study constrained human brain surface registration. Zeng et
al. [46] have applied Hyperbolic Ricci Flow into 3D face
matching and registration.

In order to handle complicated topology and large de-
formation, we select the conformal parameterization as the
main tool for skull registration because 3D shape registra-
tion through 2D conformal parameterization greatly reduces
the difficulty and improves the accuracy. Unfortunately
most existing conformal parameterization methods require
good mesh quality. Eventually, we choose the discrete uni-
formization method [17], because this method can handle
surfaces with arbitrary topology and low mesh quality.

3. Theoretic Background

This section briefly introduces the theoretic background,
for detailed treatments we refer readers to [30, 18, 12]. Es-
pecially, detailed proofs for discrete uniformization theo-
rem are avalable [17] and [14].

3.1. Smooth Surface Uniformization

Uniformization theorem is one of the most fundamental
theorems in differential geometry.

Theorem 1 (Poincaré-Koebe Uniformization 1907)
Suppose S is a closed surface with a Riemannian metric
g, there exists a function u : S — R, such that the metric
e2tg induces constant Gaussian curvature. The constant
is +1,0,—1 for surfaces with positive, zero and negative
Euler characteristic number respectively.

A modern proof is based on Hamilton’s Ricci flow.

Definition 1 (Normalized Hamilton’s Ricci flow) Given

a closed Riemannian surface (S, g), the flow equation is
defined as:

du(t) _9 (K(t) - 7T>zil((§))>
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Figure 1: Hyperbolic hull of a Euclidean triangle on the
plane at infinity.

where g(t) = e**()g(0), K (t) denotes the Gaussian curva-
ture, while x(S) and A(t) represent the Euler characteristic
and the total area of the surface S respectively.

The proof of convergence of Ricci flow equation [19, 20,
10] and the solution leads to the conformal uniformization
metric. For registration purposes, conformal mapping has
been broadly used.

Definition 2 (Conformal mapping) Given that (S1,g1)
and (S2,82) are Riemannian surfaces with Riemannian
metric g1 and go respectively, a smooth mapping ¢ : S1 —
So is conformal, if the pull-back metric induced by ¢ and the
original metric differ by a scalar function: ¢*gs = e* gy,
where \ : S1 — R is scalar function.

Conformal mappings preserve angles and thus map in-
finitesimal circles to infinitesimal circles [18]. Multiple
techniques [46, 45, 25, 6] have been introduced in the lit-
erature.

3.2. Discrete Uniformization

This work is based on discrete uniformization theory [17,
14]. The upper half space model for hyperbolic space H?
is assigned with a Riemannian metric ds? = (d2? + dy? +
dz?)/z%. The geodesics are vertical lines or circular arcs
orthogonal to the xy-plane. The hyperbolic planes are the
semi-spheres with equators on the xy-plane. The xy-plane
is the plane at infinity.

Suppose we put a Euclidean triangle A at the xy-plane,
the hemisphere through its circumcircle is a hyperplane H?
(As shown in Figure 1). Through each pair of vertices, there
is a hyperbolic geodesic. The three geodesics on H? form
a hyperbolic ideal triangle, which is the hyperbolic convex
hull of the three vertices.

Suppose M is a triangular polyhedral surface, a pair of
adjacent triangles A; and A, the intersection is an edge
A1NA5 = e. The two triangles are isometrically embedded
on the xy-plane, the two hyperbolic convex hull are glued
along the geodesic through the end vertices of e. In this
way, we can glue the hyperbolic convex hulls of all faces to
form a hyperbolic surface M with cusps at the vertices.

Definition 3 (Discrete Conformal Equivalence) Given
two triangular polyhedral surfaces My and Mo, if their
corresponding hyperbolic surfaces M, and My are isomet-
ric, then two polyhedral surfaces are discrete conformal
equivalent, denoted as My ~ M.

The Euclidean metric on a triangle mesh induces discrete
curvature. On each triangle [v;,v;,vy], the metric deter-

mines the corner angles. 9{ * is denoted the angle at the
vertex v;.

Definition 4 (Discrete Gaussian Curvature) Discrete
Gaussian curvature is defined as angle deficit on vertices,
K: V>R

2T — > . ij,
K(v) = { 2ol
™= ij i

It can be easily shown that the total discrete Gaussian
curvature satisfies the discrete Gauss-Bonnet condition [18]

> K(wi) = 2m(M). 2

v ¢ oM

veIM M

Our method is based on the following newly discovered
theorem by Yau et al.[17]

Theorem 2 (Discrete Uniformization) Given a triangular
polygonal surface M, given target curvature K : V —
R satisfying Gauss-Bonnet condition 2 and K(v;) €
(—00, 27|, then there exists another polyhedral surface M
discrete conformal to M, such that the discrete Gaussian
curvature of M equals to K.

3.3. Dynamic Yamabe Flow

The discrete uniformization can be obtained by dynamic
Yamabe flow. The metric g on discrete surface M is repre-
sented as edge length function, [ : E — R™T, with triangle
inequality satisfied.

Derived from finite element method, the cotangent edge
weight for an interior edge [v;,v;], adjacent to faces
[vi,v;, vg] and [v;, v;, vy], is defined as

w;; = cot 927 + cot 9}7

3)

Since a boundary edge [v;, v;] is only adjacent to one face
[vi, v, vk, the corresponding edge weight is defined as

“4)

We say a triangulation is Delaunay if all edge weights are
non-negative.

w;; = cot 0y

Definition 5 (Discrete Surface Dynamic Yamabe Flow)
Discrete surface dynamic Yamabe flow is defined as

dui (t) —
7 K; — K;(t)

®)
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where u; is the discrete conformal factor, denoted as u :
V — R, and K; is the target curvature at the vertex v;. The
length of an edge [v;, v;] in terms of u is given by

lij = exp(u;)lij exp(uy) (6)

where fij is the initial edge length. During the flow, we
update the triangulation to be Delaunay.

To accelerate the computation, we use Newton’s method by
solving the Hessian matrix of the discrete Yamabe energy,
which is defined as

£(u) = /u (R~ K,

Then the Hessian matrix can be solved as

OK; 0K

ou; 8u»j — Wi ™
i 7

OK;

S = D Wil ®)
’ [i.d]e B

where E represents the edge set of the triangulation and w;;;
is defined in Equations 3 and 4.

3.4. Koebe’s Iteration for Topological Poly-annulus

Even though rigorous proof and analysis of the tech-
niques mentioned above have been provided for simply
connected domains of arbitrary topology, conformal map-
ping for multiply connected domains, such as human skull
surface, requires additional procedure. Koebe’s iteration
method [47] provides an elegant approach for genus zero
multiply connected surfaces.

Theorem 3 (Koebe) Suppose (S,g) is a multiply con-
nected annulus with a Riemannian metric g, then there ex-
ists a conformal map ¢ : S — C, which maps S to the unit
disk with circular holes. Such kind of conformal mappings
are unique up to a Mobius transformation [43]. (The proof
can be found in [43]).

4. Computational Algorithms

The skull surface in our case is regarded as a multiply
connected region with zero genus and multiple boundaries.
Dynamic Yamabe flow is applied to compute the confor-
mal mapping to planar circle domains with Koebe’s iter-
ation framework. For registration purpose, we use con-
strained harmonic mapping to determine the matching be-
tween skulls.Figure 2 shows the flowchart of our method.

Harmonic ma p
F:04(51) > 02(S2)

Target skull 5

Conformal mapping
?y:5, - R

Compute the
conformal

{'\f}

~ mapping to
planar circle

Use
harmonic
mapping

o ¢

domains.

Reference skull S, | Akl
flow

)| Koebe’s
Il iteratiol

]
i
/v
Y framework

to
0,:5, - R? determine
the
matching
between
skulls

Figure 2: A general flowchart of our method

Algorithm 1: Conformal Mapping on Annulus

Input: The input topological annulus mesh M with
boundary OM = ~; — vo,target curvature K,
threshold e

Output: The resulting metric function /;;, and the

embedding to canonical annulus

1 Double cover M to construct M7, which is close with
genus of 1;

2 Compute the initial edge length ZW induced by the the
surface embedding in R3, initialize the conformal
factor w to be all zeros;

3 while true do

4 Compute the edge lengths with Eqn 6;

5 Compute corner angles and edge weight as in Eqn
3 and 4;

6 Update the triangulation to be Delaunay according
to the cotangent edge weight by edge swapping ;

7 Compute vertex curvature using Eqn 1;

8 if Vi, |K; — K;| < ¢ then

9 | break;

10 Compute the gradient of the Ricci flow;

11 Compute the Hessian of the Ricci energy with Eqn
7 and 8;

12 Solve the linear system Hess(u)du = VE(u);

13 u = u + ou;

end

14 Compute the edge length {l;;};

15 Cut the surface to remove the double covering to get
M;

16 Embed M on C equidistantly to make the length of
image ¢ (1) of 71 to be 2;

17 Map the surface ¢(M) into a planar annulus with
complex exponential map exp z;

18 return the metric {l;;} and the embedding of exp z

4.1. Dynamic Yamabe Flow on Poly-annulus

Dynamic Yamabe flow on topological disks has been dis-
cussed thoroughly [41]. Based on the theoretic correctness



(a) Original mesh with eight boundaries (b) Fill 6 holes

(e) Result after step 2 (f) Result after step 4

(h) Final result

(g) Result after step 6

Figure 3: Demonstration of Koebe’s iteration method. (a) is the original surface with eight boundaries. (b) illustrates the
hole-filling results. (c) shows the first conformal mapping result from (b) to canonical annulus. (d) closes the first hole and
opens the second. (e) is the second conformal mapping result after removing all fillings for better visualization. (f)(g) are
results after the step 4 and 6. (h) represents the final result, where all the boundaries are perfect circles.

for arbitrary topology[18], we will generalize the algorithm
to topological poly-annulus .

Hole filling and puncturing It is necessary to fill and
puncture the holes on skull models so that Koebe’s iteration
algorithm can be used, as well as that the poly-annulus can
be modified to annulus or vice versa. The quality of filling
has no effect on the algorithm result. So we will just find the
center point of each hole and connect the center point to the
vertices on the hole boundary edges to construct triangles.
When puncturing, we remove the center points and all the
triangles attached to those points.

Dynamic Yamabe flow on Annulus To compute the
conformal mapping from topological annulus to canonical
planar annulus, we first double cover the annulus [21] to
construct a closed surface with genus of 1. Then we can ap-
ply the euclidean Ricci flow process to compute the planar
metric. Finally, an exponential map on the complex plane
will be composed to the planar embedding to get the final
mapping to the canonical annulus. The details of the algo-
rithm are shown in Algorithm 1.

4.2. Koebe’s Iteration for Poly-annulus

In order to solve the multiply connected region skull
surface with boundary and 7 holes conformal mapping,
Koebe’s iterative framework is used. The basic idea is as
follows: first, fill the holes of a skull, open a hole each time
to generate a topological annulus with zero genus and two
boundaries. Then, calculate the conformal mapping of the
annulus to canonical annulus using dynamic Yamabe flow.
Repeat this step, each hole is mapped to a circle in turn until
all the inner boundaries converge to standard circles. After
completing the iterative process, the conformal mapping be-

Algorithm 2: Generalized Koebe’s Iteration for
Poly-annulus

Input: Multi-connected surface M with boundaries
Y05 Y1, V25 V3, V45 V5, V6, V7, threshold € -

Output: Conformal mapping ¢ : M — M, where M
is planar circle domain with (¥, r?)
representing the center and radius for each
boundary

1 Fill all boundaries ~;, with topological disks Dy,
oD, =y, k=1,..,7,

while 7 |l — ¢t 4[5t — rL| > e do

fork=1,...,7do
2 Remove one disk D, to construct an annulus
Sk
3 Solve for the conformal mapping ¢ : Sy — Sj
using Algorithm 1;
4 Fill the hole on S}, with Dy;
end
s | compute the centers and radii (ci™, i) for
disks Dy, Vk;
end
6 return ¢

tween multi-connected region with holes and the unit disk
with circular holes is obtained.The steps of Koebe’s itera-
tion algorithm are stated in Algorithm 2, demonstrated in
Figure 3 and the result is in Figure 4. The conformal map-
ping preserves intrinsic symmetry, hence the final results
are symmetric.



(a) Original skull surface

(b) Conformal mapping result (c) Textured with checker (d) Textured with checker
board on circle domain

board on original surface

Figure 4: The visualized result of conformal mapping on multiply connected surfaces. In column (b) and (c), we can verify
that all the inner circles are close to perfect circle. The conformal mapping result is unique up to a Mobius transformation.

4.3. Constrained Harmonic Mapping

In order to find the registration between two surfaces,
landmarks are always marked before deformation process
begins. Different from human face surfaces, skull surfaces
do not have obvious landmarks such as eyebrows, can-
thus, nose tip, or lips. In our registration process, we use
the boundaries of the skull surfaces as intrinsic landmarks.
The boundaries are mapped onto circles, and automatically
aligned. A constrained harmonic mapping in Algorithm 3
is then applied to the circle domains obtained from the Al-
gorithm 2. Figure 5 shows the mapping between skull sur-
faces. The resulting maps are conformal diffeomorphic and
unique up to a mobius map; the algorithm converges expo-
nentially fast in terms of iterations.

Algorithm 3: Constrained Harmonic Mapping for
Circle Domains
Input: Surfaces Sy and Sy with boundaries {~;} and
{4, }, along with the circle domain embedding
¢(S1) and ¢(S2).
Output: Harmonic mapping f : ¢(S1) — ¢(S2) with
boundaries matching
1 Set boundary conditions such that f(¢(7y;)) = ¢(6;);
2 Solve Poisson Equation with boundary conditions;
3 return the harmonic mapping f

5. Experimental Result and Evaluation

This research was carried out on a database of whole-
head CT scans of volunteers mostly belonging to the Han
ethnic group in the North of China. The CT scans were
obtained with a clinical multislice CT scanner system
(Siemens Sensation16). First, we extracted the craniofa-

cial borders from the original CT slice images and recon-
structed the 3D craniofacial meshes with a marching cubes
algorithm [28]. We cut away the back part of the cranio-
facial model because there were too many vertices in the
whole head, and the features are mainly concentrated on
the front part of the head. One model is randomly chosen as
the reference model, while other models are chosen as the
target models for registration. The algorithms are imple-
mented using generic C++ under Windows Visual Studio
and Matlab. All the experiments are conducted on a per-
sonal computer with Core i7-7700 CPU and 8GB Memory.

5.1. Automatic Registration

Figure. 5 shows the process of the registration. The
left column shows the source surface, and the right col-
umn shows the target surface. Both surfaces are confor-
mally mapped to planar circle domains on the top row, the
mappings are denoted as ¢y : Sy — R2. The two cir-
cle domains ¢, (S);) have different configurations, the inner
circle centers and radii are not identical. Then we com-
pose a harmonic map f : ¢1(S1) — ¢2(S2) which maps
the inner circles to the corresponding inner circles. The
registration result is shown by color encoded texture map-
ping (e,f), where the corresponding checkers share the same
color. The whole computational pipeline is completely au-
tomatic, without any manual input or user intervention.

5.2. Global Diffeomorphism

In our method, the multiply connected is conformally
mapped onto a planar circle domain with dynamic Yamabe
flow; the existence and the uniqueness of the solution are
theoretically guaranteed as Theorem 3 stated in paper. Our
method can easily achieve global optima and always find
the same unique best solution for near-isometric surface.

436



(d) Registration result from Koebe’s iter- (¢) Improved Registration result with
constrained harmonic mapping

ation method

(f) Target surface

Figure 5: Registration result. (a) and (c) are the same as in Figure 4. (b) illustrates the harmonic mapping result, constraining
the circle boundaries in (a) to match the circle boundaries in (c). (d) represents the initial registration result targeted at (f).
(e) improves the registration results especially in teeth, cheekbone and nose area.

Distribution of Beltrami C

Probability

005 o1
The norm of Beltrami coefficient |||

Figure 6: Distribution of Beltrami Coefficients induced by
our mapping

In order to verify whether the mapping is globally home-
omorphic (injective and surjective), we compute the Bel-
trami coefficient p for each face [44, 42]. The mapping is
piecewise linear, on each triangular face, the mapping can
be locally represented as w = az + fZ, a,f € C. The
Beltrami coefficient ;4 = [/c. It can be shown that the
mapping is homeomorphic if and only if ||u|| < 1; the map-
ping is conformal if and only if ||u|| = 0. We compute the
norm of x4 on each face, and show the histogram of the Bel-
trami coefficient norms as in Figure 6. It is obvious that
all the norms of the Beltrami coefficients are less than 1, so
the mapping is homeomorphic; the histogram highly con-
centrates near the 0, less than 1% of faces have Beltrami
coefficients ||u|| > 0.05, therefore the mapping is highly
conformal. This observation is consistent with the theoretic
claim of discrete uniformization.

5.3. Complicated Topology and Robustness

The algorithm to compute holomorphic differential [48],
used in Koebe’s iteration [47] can collapse for meshes with

low qualities, even though the solution does exist theoret-
ically. In contrast, the dynamic Yamabe flow method pro-
posed in this work converges to the unique solution guaran-
teed by the discrete uniformization theorems [17, 14] and
proved using hyperbolic geometry and variational approach
in [14]. While the holomorphic 1-form method is equivalent
to solve an elliptic partial differential equation on a discrete
surface based on Finite Element Method(FEM) [51]. If the
triangulation are with low qualities, then the convergence
can not be guaranteed to hold. The current method is robust
to meshes with low qualities. This theoretic advancement
greatly improves the stability and accuracy of the registra-
tion.

We design an experiment to demonstrate the capability
of the proposed method to handle complex topology. Fig-
ure 7 shows the mapping results obtained by the conven-
tional holomorphic differential method [48] (left) and the
current method (right). It is clear that holomorphic differ-
ential method introduces a large amount of flippings, and
fails to produce a parameterization; in contrast, the pro-
posed method can produce globally bijective mapping.

Figure 8 shows the robustness of the proposed method to
low quality meshes. Left frame shows a mesh with a large
amount of obtuse angles, which produces discrete Laplacian
matrix with high condition number; conventional methods
[20, 15] fails to produce sensible mapping. Whereas our
proposed method achieves global homeomorphic mapping,
shown in the right frame.

5.4. Registration Accuracy

Figure 5 and 9 show our registration results. The corre-
spondences of two registered skulls are shown by color en-
coding. Each checker on the source is mapped to a checker
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(a) Mapping Result using (b) Our mapping Result using
holomorphic 1-form [48] dynamic Yamabe flow

Figure 7: The comparison of using (a)holomorphic 1-form
and (b)dynamic Yamabe flow. The result from holomorphic
1-form has overwhelming number of face flips due to the
undesirable triangulation quality. The low quality triangu-
lation has minor effects on the dynamic Yamabe flow.

(a) An enlarged view of poor (b) Conformal mapping result
quality triangles of our method

Figure 8: Robustness. (a)Even dense models(50k vertices)
can have poor quality triangles. However, (b) shows that our
method is able to robustly construct good mapping results.

(a) Feature points (b) Corresponding points

Figure 9: Registration results visualized with feature points
correspondence. (a) shows the feature points labeled by
craniofacial experts. (b) presents the corresponding points
from our registration results.

on the target with the same color. In order to measure the
registration accuracy, we manually select 16 anatomic fea-
ture points on the source and target. Then we measure the
distance between the image of a feature point and the corre-
sponding feature point on the target, and normalized by the
diagonal of the bounding box of the skull surface.

We have conducted the experiments with our method
on 105 skulls in the database. Most non-rigid registration
methods require manually labelled feature points and can

Table 1: Average error comparison of our method and ICP

Skull Average Error | Average Er- | Registration
Numbers | of our method | ror of ICP improvement
105 2.2489% 2.5812% 0.3323%

- Registration error comparison of our method and ICP

0.035 —+— ICP Registration Error

ion Error
P

0.025 -

Registration Error

.02 | K\EH ¥ A
1 |

0.015

00051 e

Skull No.

Figure 10: Error comparison of our method and ICP

not be realized automatically; the previous conformal pa-
rameterization method may fail on some skulls whereas our
method can achieve high registration accuracy because it is
quite different from the existing conformal mapping meth-
ods [9, 31, 41, 47, 48](details can be found in supplemen-
tary materials). Here we compared our method only with
classic automatic ICP method, the registration error results
are showed in Table 1. and Figure 10. The results show that
our average error is less than ICP average error.

6. Conclusions

This work proposes a novel method for skull surface reg-
istration based on discrete uniformization theory, which can
handle surfaces with complicated topologies and low mesh
qualities. The multiply connected skull surface is confor-
mally mapped onto a planar circle domain, the existence
and the uniqueness of the solution are theoretically guaran-
teed. Our experimental results show that the method is fully
automatic without user intervention, robust to low quality
meshes, achieves global diffeomorphism and high registra-
tion accuracy. The proposed method can be directly gener-
alized to register different shapes with complicated topolo-
gies as well. In the future, we will explore further for partial
skull surface matching applying the similar method.

Acknowledgements

This work was supported by Natural Science Founda-
tion (Grant No. 176228, No. 141855, No.1737812) and the
National Natural Science Foundation of China (Grant No.
61702293, No.61772105, No.61720106005, No.61432003,
No.61572078) and China Postdoctoral Science Foundation
No. 2017M622137.

438



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

Nese Alyuz, Berk Gokberk, and Lale Akarun. Regional
registration for expression resistant 3-d face recognition.
IEEE Transactions on Information Forensics and Security,
5(3):425-440, 2010.

Paul J Besl and Neil D McKay. Method for registration of
3-d shapes. In Sensor Fusion IV: Control Paradigms and
Data Structures, volume 1611, pages 586—607. International
Society for Optics and Photonics, 1992.

Fred L. Bookstein. Principal warps: Thin-plate splines and
the decomposition of deformations. IEEE Transactions on
pattern analysis and machine intelligence, 11(6):567-585,
1989.

Benedict J Brown and Szymon Rusinkiewicz. Non-rigid
range-scan alignment using thin-plate splines. In 3D Data
Processing, Visualization and Transmission, 2004. 3SDPVT
2004. Proceedings. 2nd International Symposium on, pages
759-765. IEEE, 2004.

Benedict J] Brown and Szymon Rusinkiewicz. Global non-
rigid alignment of 3-d scans. In ACM Transactions on
Graphics (TOG), volume 26, page 21. ACM, 2007.

Francis E Burstall, Dirk Ferus, Katrin Leschke, Franz Pedit,
and Ulrich Pinkall. Conformal geometry of surfaces in S4
and quaternions. Springer, 2004.

Yucong Chen, Junli Zhao, Qinggiong Deng, and Fuqing
Duan. 3d craniofacial registration using thin-plate spline
transform and cylindrical surface projection. PloS one,
12(10):e0185567, 2017.

Tianyu Cheng, Juping Gu, Liang Hua, XinSong Zhang, Hui
Yang, Junhong Li, and Yiming Xu. Three-dimensional skull
registration based on clifford algebra pupil distance invari-
ability and visualization platform building. In 2017 Chinese
Automation Congress (CAC), pages 7871-7875. 1EEE, 2017.
Kiran Chilakamarri, Nathaniel Dean, and Michael Littman.
Three-dimensional tutte embedding. Congressus Numeran-
tium, pages 129-140, 1995.

Bennett Chow. The ricci flow on the 2-sphere. Journal of
Differential Geometry, 33(2):325-334, 1991.

Haili Chui and Anand Rangarajan. A new point matching
algorithm for non-rigid registration. Computer Vision and
Image Understanding, 89(2-3):114-141, 2003.

Junei Dai, Xianfeng David Gu, and Feng Luo. Variational
principles for discrete surfaces, volume 4. International
Pressof Boston Incorporated, 2008.

Qinggiong Deng, Mingquan Zhou, Wuyang Shui, Zhongke
Wu, Yuan Ji, and Ruyi Bai. A novel skull registration based
on global and local deformations for craniofacial reconstruc-
tion. Forensic science international, 208(1-3):95-102, 2011.
Xianfeng Gu, Ren Guo, Feng Luo, Jian Sun, Tianqi Wu, et al.
A discrete uniformization theorem for polyhedral surfaces ii.
Journal of Differential Geometry, 109(3):431-466, 2018.
Xianfeng Gu, Sen Wang, Junho Kim, Yun Zeng, Yang Wang,
Hong Qin, and Dimitris Samaras. Ricci flow for 3d shape
analysis. In Computer Vision, 2007. ICCV 2007. IEEE 11th
International Conference on, pages 1-8. IEEE, 2007.
Xianfeng Gu, Yalin Wang, Tony F Chan, Paul M Thomp-
son, and Shing-Tung Yau. Genus zero surface conformal

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

439

mapping and its application to brain surface mapping. /EEE
transactions on medical imaging, 23(8):949-958, 2004.
Xianfeng David Gu, Feng Luo, Jian Sun, Tianqi Wu, et al.
A discrete uniformization theorem for polyhedral surfaces.
Journal of Differential Geometry, 109(2):223-256, 2018.
Xianfeng David Gu and Shing-Tung Yau. Computational
conformal geometry. International Press Somerville, Mass,
USA, 2008.

Richard S Hamilton. Three-manifolds with positive ricci cur-
vature. Journal of Differential Geometry, 17(2):255-306,
1982.

Richard S Hamilton. The ricci flow on surfaces. In Mathe-
matics and general relativity, Proceedings of the AMS-IMS-
SIAM Joint Summer Research Conference in the Mathemat-
ical Sciences on Mathematics in General Relativity, Univ.
of California, Santa Cruz, California, 1986, pages 237-262.
Amer. Math. Soc., 1988.

Wei Hong, Xianfeng Gu, Feng Qiu, Miao Jin, and Arie Kauf-
man. Conformal virtual colon flattening. In Proceedings of
the 2006 ACM symposium on Solid and physical modeling,
pages 85-93. ACM, 2006.

Yongli Hu, Mingquan Zhou, and Zhongke Wu. A dense
point-to-point alignment method for realistic 3d face mor-
phing and animation. International Journal of Computer
Games Technology, 2009:3, 2009.

Tim J Hutton, Bernard F Buxton, and Peter Hammond. Au-
tomated registration of 3d faces using dense surface models.
In BMVC, pages 1-10. Citeseer, 2003.

Miao Jin, Junho Kim, and Xianfeng David Gu. Discrete sur-
face ricci flow: Theory and applications. In IMA Interna-
tional Conference on Mathematics of Surfaces, pages 209—
232. Springer, 2007.

Miao Jin, Junho Kim, Feng Luo, and Xianfeng Gu. Discrete
surface ricci flow. IEEE Transactions on Visualization and
Computer Graphics, 14(5):1030-1043, 2008.

Lili Ju, Josh Stern, Kelly Rehm, Kirt Schaper, Monica
Hurdal, and David Rottenberg. Cortical surface flattening us-
ing least square conformal mapping with minimal metric dis-
tortion. In Biomedical Imaging: Nano to Macro, 2004. IEEE
International Symposium on, pages 77-80. IEEE, 2004.
Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome
Maillot. Least squares conformal maps for automatic texture
atlas generation. In ACM transactions on graphics (TOG),
volume 21, pages 362-371. ACM, 2002.

William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. In ACM
siggraph computer graphics, volume 21, pages 163-169.
ACM, 1987.

Lok Ming Lui, Sheshadri Thiruvenkadam, Yalin Wang,
Paul M Thompson, and Tony F Chan. Optimized confor-
mal surface registration with shape-based landmark match-
ing. SIAM Journal on Imaging Sciences, 3(1):52-78, 2010.
Feng Luo. Rigidity of polyhedral surfaces. arXiv preprint
math/0612714, 2006.

TC Ng, Xianfeng Gu, and LM Lui. Teichmiiller extremal
map of multiply-connected domains using beltrami holomor-
phic flow. Journal of Scientific Computing, 60(2):249-275,
2014.



(32]

(33]

(34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

Wenyu Qin, Yongli Hu, Yanfeng Sun, and Baocai Yin. An
automatic multi-sample 3d face registration method based on
thin plate spline and deformable model. In Multimedia and
Expo Workshops (ICMEW), 2012 IEEE International Con-
ference on, pages 453—-458. 1EEE, 2012.

Szymon Rusinkiewicz and Marc Levoy. Efficient variants
of the icp algorithm. In 3D Digital Imaging and Model-
ing, 2001. Proceedings. Third International Conference on,
pages 145-152. IEEE, 2001.

David C Schneider and Peter Eisert. Algorithms for auto-
matic and robust registration of 3d head scans. JVRB-Journal
of Virtual Reality and Broadcasting, 7(7), 2010.

Rui Shi, Wei Zeng, Zhengyu Su, Hanna Damasio, Zhonglin
Lu, Yalin Wang, Shing-Tung Yau, and Xianfeng Gu. Hyper-
bolic harmonic mapping for constrained brain surface regis-
tration. In Proceedings of the IEEE Conference on computer
vision and pattern recognition, pages 2531-2538, 2013.

Kehua Su, Li Cui, Kun Qian, Na Lei, Junwei Zhang, Min
Zhang, and Xianfeng David Gu. Area-preserving mesh pa-
rameterization for poly-annulus surfaces based on optimal

mass transportation. Computer Aided Geometric Design,
46:76-91, 2016.

Sen Wang, Yang Wang, Miao Jin, Xianfeng David Gu, and
Dimitris Samaras. Conformal geometry and its applications
on 3d shape matching, recognition, and stitching. I[EEE
Transactions on Pattern Analysis & Machine Intelligence,
(7):1209-1220, 2007.

Yang Wang, Mohit Gupta, Song Zhang, Sen Wang, Xian-
feng Gu, Dimitris Samaras, and Peisen Huang. High resolu-
tion tracking of non-rigid motion of densely sampled 3d data
using harmonic maps. [International Journal of Computer
Vision, 76(3):283-300, 2008.

Caroline Wilkinson. Computerized forensic facial recon-
struction.  Forensic Science, Medicine, and Pathology,
1(3):173-177, 2005.

Jiaolong Yang, Hongdong Li, and Yunde Jia. Go-icp: Solv-
ing 3d registration efficiently and globally optimally. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 1457-1464, 2013.

Xiaokang Yu, Na Lei, Yalin Wang, and Xianfeng Gu. In-
trinsic 3d dynamic surface tracking based on dynamic ricci
flow and teichmiiller map. In Proceedings. IEEE Interna-
tional Conference on Computer Vision, volume 2017, pages
5400-5408. NIH Public Access, 2017.

Wei Zeng and Xianfeng David Gu. Registration for 3d sur-
faces with large deformations using quasi-conformal cur-
vature flow. In Computer Vision and Pattern Recogni-
tion (CVPR), 2011 IEEE Conference on, pages 2457-2464.
IEEE, 2011.

Wei Zeng, Lok Ming Lui, Xianfeng Gu, and Shing-Tung
Yau. Shape analysis by conformal modules. Methods and
Applications of Analysis, 15(4):539-556, 2008.

Wei Zeng, Joseph Marino, Krishna Chaitanya Gurijala, Xi-
anfeng Gu, and Arie Kaufman. Supine and prone colon reg-
istration using quasi-conformal mapping. IEEE Transactions
on Visualization and Computer Graphics, 16(6):1348, 2010.

[45]

[46]

(47]

(48]

(49]

(501

(51]

440

Wei Zeng, Dimitris Samaras, and David Gu. Ricci flow for
3d shape analysis. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 32(4):662-677, 2010.

Wei Zeng, Xiaotian Yin, Yun Zeng, Yukun Lai, Xianfeng
Gu, and Dimitris Samaras. 3d face matching and registration
based on hyperbolic ricci flow. In Computer Vision and Pat-
tern Recognition Workshops, 2008. CVPRW’08. IEEE Com-
puter Society Conference on, pages 1-8. IEEE, 2008.

Wei Zeng, Xiaotian Yin, Min Zhang, Feng Luo, and Xian-
feng Gu. Generalized koebe’s method for conformal map-
ping multiply connected domains. In 2009 SIAM/ACM Joint
Conference on Geometric and Physical Modeling, pages 89—
100. ACM, 2009.

Wei Zeng, Yun Zeng, Yang Wang, Xiaotian Yin, Xianfeng
Gu, and Dimitris Samaras. 3d non-rigid surface matching
and registration based on holomorphic differentials. In Euro-
pean Conference on Computer Vision, pages 1-14. Springer,
2008.

Min Zhang, Yinghua Li, Wei Zeng, and Xianfeng Gu.
Canonical conformal mapping for high genus surfaces with
boundaries. Computers & Graphics, 36(5):417-426, 2012.
Xiaopeng Zheng, Chengfeng Wen, Na Lei, Ming Ma, and
Xianfeng Gu. Surface registration via foliation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pa ern
Recognition, pages 938-947, 2017.

Olgierd Cecil Zienkiewicz, Robert Leroy Taylor, Perumal
Nithiarasu, and JZ Zhu. The finite element method, volume 3.
McGraw-hill London, 1977.



