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Abstract

Wasserstein GANs are increasingly used in Computer

Vision applications as they are easier to train. Previous

WGAN variants mainly use the l1 transport cost to compute

the Wasserstein distance between the real and synthetic data

distributions. The l1 transport cost restricts the discrimi-

nator to be 1-Lipschitz. However, WGANs with l1 trans-

port cost were recently shown to not always converge. In

this paper, we propose WGAN-QC, a WGAN with quadratic

transport cost. Based on the quadratic transport cost, we

propose an Optimal Transport Regularizer (OTR) to stabi-

lize the training process of WGAN-QC. We prove that the

objective of the discriminator during each generator update

computes the exact quadratic Wasserstein distance between

real and synthetic data distributions. We also prove that

WGAN-QC converges to a local equilibrium point with fi-

nite discriminator updates per generator update. We show

experimentally on a Dirac distribution that WGAN-QC con-

verges, when many of the l1 cost WGANs fail to [22]. Qual-

itative and quantitative results on the CelebA, CelebA-HQ,

LSUN and the ImageNet dog datasets show that WGAN-QC

is better than state-of-art GAN methods. WGAN-QC has

much faster runtime than other WGAN variants.

1. Introduction

Generative Adversarial Networks (GANs) [11] success-

fully model data distributions, and have been used in many

vision applications such as image synthesis [20, 34, 28], im-

age inpainting [39, 40], semantic segmentation [15, 26], etc.

While widely used, GANs are known to be hard to train.

GANs need to solve a min-max saddle point optimization

problem [1]. Due to the competition between the discrim-

inator and the generator, it is difficult to train a GAN to

consistently produce meaningful images. Hence, a num-

ber of authors have attempted to stabilize GAN training

[3, 29, 12, 24, 14]. The Boundary Equilibrium GAN (BE-

GAN) [3] adopts Proportional Control Theory to balance

the training between generator and discriminator. [29] pro-

Figure 1. Faces of size 256 × 256 randomly generated by WGAN-

QC on CelebA-HQ. (Best seen in color)

poses strategies to regularize the gradient of the discrimina-

tor, leading to more stable GAN training. The Wasserstein

GAN family [2, 12, 19, 24, 13, 10, 9] employs the Wasser-

stein distance to measure the distance between the distribu-

tions of real and synthetic data. The Wasserstein distance

guarantees that even if there is no support between the real

and generated data distributions, the discriminator still pro-

vides gradients to the generator, unlike the Jensen-Shannon

(JS) divergence used in the original GAN objective [2].

It is still unclear whether GANs converge. Recent work

[25, 23, 22] has shown that analyzing the Jacobian of the

gradient field of the GAN parameters near the equilibrium
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point provides insights into the convergence properties of

GAN training. Specifically, for gradient descent algorithms,

if all the eigenvalues of the Jacobian have positive real part

near the equilibrium point, then the GAN training algorithm

will converge given a small enough learning rate. Previ-

ous Wasserstein GAN variants mainly use the l1 transport

cost, because the discriminator can be restricted to be 1-

Lipschitz [2, 12, 24] so that it can be used to approximate

the Wasserstein distance between real and synthetic data

distributions. The Sliced WGAN (SWGAN) [8] used the

quadratic transport cost and computed the sliced Wasser-

stein distance [5] between real and synthetic data distribu-

tions. The 0-centered gradient penalty methods [22, 35] are

proposed to stabilize GAN training, and are shown to be lo-

cal convergent. However, a large-scale study [7] concluded

that the regularization term in [22] actually leads to signifi-

cant drop of Inception Scores (IS) [31] using the suggested

regularization parameter. The regularization term trades off

training stability with generated image quality.

In this paper, we improve the stability of GAN train-

ing, and, at the same time, optimize the discriminator such

that the optimal discriminator can be used to compute the

exact quadratic Wasserstein distance [33, 8], by using the

quadratic transport cost in WGANs. WGANs with l1 trans-

port cost can be solved by a Two-Step method [19]. How-

ever, generalizing from l1 to quadratic transport cost is non-

trivial, because the quadratic transport cost does not sat-

isfy the triangle inequality condition [19]. Note that the

quadratic transport cost is also used in SWGAN [8], but 1)

convergence is not guaranteed in [8], 2) the sliced Wasser-

stein Distance is a different metric from the Wasserstein

distance [5], 3) SWGAN computes the generator from the

primal form of Optimal Transport (OT) [36], whereas our

proposed method computes the discriminator from the dual

form of OT.

In summary, our main contributions are:

- We propose WGAN-QC, a new Wasserstein GAN with

quadratic transport cost. In WGAN-QC, we propose a mod-

ified two-step computation to optimize the discriminator

during each generator update.

- We propose the novel Optimal Transport Regularizer

(OTR), based on the quadratic transport cost, to stabilize the

training process of WGAN-QC. We prove that the objective

of the discriminator computes the exact quadratic Wasser-

stein distance during each generator update.

- We prove that WGAN-QC can converge to a local equi-

librium point given a small enough learning rate.

- We show that, contrary to many l1 cost WGANs,

WGAN-QC converges to the real data distribution in the

1-d Dirac distribution example. Qualitative and quantitative

results on the CelebA [21], CelebA-HQ [17], LSUN bed-

room [38], and the ImageNet dog [30] datasets show that

WGAN-QC is better than state-of-the-art GAN methods.

- We show that WGAN-QC is 3.5x and 1.8x faster than

WGAN-div which is faster than WGAN-GP on the CelebA

and LSUN bedroom datasets, respectively.

We show some randomly generated face images in Fig.

1. These images look very realistic.

2. Optimal Transport

Since our framework is based on the Optimal Transport

(OT), we shall briefly review the definition of OT in the

Monge-Kantorovich dual formulation [36, 27].

The Monge-Kantorovich dual problem is given below:

Problem 1. Given two bounded domains X and Y and

their probability measures ν ∈ P(X), µ ∈ P(Y ), respec-

tively, find functions φ and ψ to solve

C(µ, ν) = sup
φ−ψ≤c

{∫

φ(y)dµ(y)−
∫

ψ(x)dν(x)

}

(1)

where c : X × Y 7→ [0,+∞] is the transport cost.

In practice, given empirical distributions, we write Prob-

lem 1 in the discrete case. Suppose X̂ = {xj}j∈J sampled

from ν containing n samples and Ŷ = {yi}i∈I sampled

from µ containing m samples, where I and J are disjoint

index sets. Therefore, each element xj has a Dirac measure

of 1/n, and yi has a Dirac measure of 1/m. Hence, the

discrete Monge-Kantorovich dual problem is:

max
φ,ψ

1

m

∑

i∈I

φ(yi)−
1

n

∑

j∈J

ψ(xj)

s.t. φ(yi)− ψ(xj) ≤ c(xj , yi),

∀i ∈ I, ∀j ∈ J

(2)

Kantarovich showed [16] that if the transport cost c(·, ·)
satisfies the triangle inequality, then φ and ψ can be uni-

fied into just one function. In WGAN [2], WGAN-GP [12],

WGAN-TS [19] etc., the l1 transport cost is used so that φ
and ψ are unified in one function and used as the discrimina-

tor. However, φ and ψ cannot be unified when the quadratic

transport cost is applied. The quadratic transport cost is:

c(xj , yi) =
K

2
||xj − yi||22 (3)

where K is any constant positive real number. When Eq. (3)

is applied, the optimal objective in Eq. (2) equals to K
2 ·W 2

2 ,

which is the quadratic Wasserstein distance [33, 8].

3. WGAN with Quadratic Transport Cost

It has been recently shown [22] that WGANs with l1
transport cost do not always converge. In this section, we

propose WGAN-QC, a Wasserstein GAN with quadratic

transport cost. We show in the next section that WGAN-

QC always converges to a local equilibrium point.
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3.1. Learning the Discriminator From the Kan­
torovich Potential

Let Dw be the discriminator and Gθ the generator pa-

rameterized by w and θ, respectively. Pr is the real data

distribution and Pz is a simple distribution (e.g. Gaussian

or Uniform). When the discriminator loss in WGAN-QC is

optimized, we want the discriminator to compute the exact

quadratic Wasserstein distance. We also use the quadratic

transport cost of Eq. (3), since it contributes to local con-

vergence of WGAN-QC. In WGAN-QC, K in Eq. (3) is set

to 1/d, where d is the dimensionality of data xj . We regard

{yi}i∈I as real data and {xj}j∈J as synthetic data.

When the quadratic transport cost is used, φ and ψ in (3)

cannot be unified into one function. We need to select ei-

ther φ or ψ as the discriminator in WGAN-QC such that the

optimal discriminator can be used to compute the quadratic

Wasserstein distance. In fact, we care more about the dis-

criminator’s value and gradients on the synthetic samples,

because the generator is updated according to their gradi-

ents. So, we select ψ to be the discriminator as it is de-

fined on synthetic samples. In fact, Eq. (2) can be solved

by linear programming. In this equation, if we substitute

φ(yi) by Hi and ψ(xj) by Hj , we denote H∗
i and H∗

j to

be the optimal solutions for Hi and Hj , respectively. So,

we can regress each Dw(xj) in the discriminator, to H∗
j .

We regress 1
m

∑

i∈I Dw(yi) to 1
m

∑

i∈I H∗
i such that the

optimal discriminator computes the quadratic Wasserstein

distance. Thus, the discriminator provides an ascent direc-

tion for generator updates. We regress the discriminator as:

min
w

1

2

(

1

m

∑

i∈I

Dw(yi)−
1

m

∑

i∈I

H∗
i

)2

+
1

2





1

n

∑

j∈J

(

Dw(xj)−H∗
j

)2





(4)

The generator loss is:

min
θ

L(θ) = − 1

n

∑

j∈J

Dw(Gθ(zj)) (5)

3.2. Optimal Transport Regularization

There could be infinite solutions to Eq. (4). We need

to regularize the discriminator. Hence, we introduce the

Optimal Transport Regularizer (OTR) to stabilize the train-

ing process of WGAN-QC. The empirical optimal transport

mapping is computed after the linear programming step:

σ(j) = argmin
i∈I

K

2
||xj − yi||22 +H∗

j −H∗
i (6)

Essentially, Eq. (6) tries to find H∗
σ(j)−H∗

j = c(xj , yσ(j)),
and Lemma 3.1 in [19] guarantees that for each xj we can

always find a yσ(j) such that H∗
σ(j) −H∗

j = c(xj , yσ(j))
1.

Therefore, xj minimizes

H∗
σ(j) = inf

j∈J
{H∗

j + c(xj , yσ(j))} (7)

We use the Dw(xj) to regress H∗
j and xj minimizes Eq.

(7), thus xj is a local minimum and the first order derivative

of Eq. (7) should be 0 in the continuous case, i.e.

∇xDw(xj) +K(xj − yσ(j)) = 0 (8)

Therefore, we propose the following Optimal Transport

Regularizer (OTR) for WGAN-QC:

1

2 · n
∑

j∈J

(

||∇xDw(xj)|| −K||yσ(j) − xj ||
)2

(9)

where || · || is the l2 norm. Eq. (8) holds only when Eq. (3),

the quadratic transport cost, is applied in OT. Thus, OTR

is specific to WGAN-QC. Eq. (8) has another explanation.

According to Brenier’s theorem [6, 18], for an optimal dis-

criminator, if xj is transformed to yσ(j), then Eq. (8) holds2.

3.3. The Discriminator Loss of WGAN­QC

The complete discriminator loss of WGAN-QC (Algo-

rithm 1) in each generator update step is:

min
w

L(w)

=
1

2

(

1

m

∑

i∈I

Dw(yi)−
1

m

∑

i∈I

H∗
i

)2

+
1

2





1

n

∑

j∈J

(

Dw(xj)−H∗
j

)2





+
γ√
Kn

∑

j∈J

(

||∇xDw(xj)|| −K||yσ(j) − xj ||
)2

(10)

The coefficient γ in OTR balances the regression and reg-

ularization terms. The regularization term is obtained by

multiplying (9) by 2γ/
√
K. We found it is easier to set dif-

ferent values of γ for different image sizes.

Next we show in Theorem 1 that the optimal discrimina-

tor D∗
w during each generator update can be used to com-

pute the exact quadratic Wasserstein distance between the

real and synthetic data distributions for any γ > 0.

Theorem 1. If the discriminator in Eq.(10) has sufficient

capacity such that the optimal objective of Eq.(10) is 0, then

for any γ > 0, and any optimal solution D∗
w to Eq.(10),

1

m

∑

i∈I

D∗
w(yi)−

1

n

∑

j∈J

D∗
w(xj) (11)

is the quadratic Wasserstein distance between X̂ and Ŷ . 3

1See the complete proof in the supplementary material
2Please see supplementary material for complete proof
3Please refer to supplementary material for the proof.
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Algorithm 1 WGAN-QC

1: Input: Real data Y , batch size m, kD and γ. Adam

parameters, α, β1, β2

2: Output: Gθ, Dw

3: while θ has not converged do

4: Sample {yi}i∈I ∼ Pr from real data.

5: Sample {zj}j∈J ∼ Pz random noise.

6: Let xj = Gθ(zj), ∀j ∈ J .

7: Solve the Linear Programming problem in Eq. (2),

and obtain H∗.

8: H∗
t ← H∗

t − (
∑

k∈I∪J H∗
k)/(m+ n), ∀t ∈ I ∪ J .

9: for t = 0 to kD do

10: gw ← the gradient of (10).
11: w ← Adam(gw, w, α, β1, β2)

12: end for

13: gθ ←∇θ − 1
n

∑

j∈J Dw(Gθ(zj))
14: θ ← Adam(gθ, θ, α, β1, β2)

15: end while

4. Convergence Analysis

WGAN with l1 transport cost cannot always converge

[22]. In this section, we analyze the convergence proper-

ties of WGAN-QC under finite discriminator iterations per

generator iteration. First, we write the loss functions of the

discriminator and generator under continuous distributions.

Let Hr(y) and Hs(x) be the outputs of the linear program-

ming part. T : X 7→ Y denotes that x is transported to y
using Eq. (6). The loss of the discriminator is then:

min
w

LD(w, θ)

=
1

2

(

EPr(y)[Dw(y)]− EPr(y)[Hr(y)]
)2

+
1

2
EPs(x)[(Dw(x)−Hs(x))

2]

+
λ

2
EPs(x)[

(

||∇xDw(x)|| −K||yT (x) − x||
)2
]

(12)

where λ = 2γ/
√
K, Ps(x) denotes the probability of syn-

thetic data, Pr(y) denotes the probability of real data, and

E·[·] denote expectation. The loss of the generator is

min
θ

LG(w, θ) = −EPz(z)[Dw(Gθ(z))] (13)

In order to analyze the local convergence of WGAN-QC,

we analyze the Jacobian of the gradient field of WGAN-

QC. For simultaneous gradient descent the gradient field is

g(w, θ) =

(

∇wLD(w, θ)
∇θLG(w, θ)

)

(14)

The gradient update operator is expressed as:

U(w, θ) =

(

w − α∇wLD(w, θ)
θ − α∇θLG(w, θ)

)

(15)

where α is the learning rate. The Jacobian of the gradient

field is expressed as:

g′(w, θ) =

( ∇2
wLD(w, θ) ∇2

w,θLG(w, θ)

∇2
θ,wLD(w, θ) ∇2

θLG(w, θ)

)

(16)

We define MG and MD as the solution spaces for G and

D respectively:

MG := {θ|Ps(Gθ(z)) = Pr(y)},
MD := {w|LD(w, θ∗) = 0, θ∗ ∈ MG}

(17)

(w∗, θ∗) is an equilibrium point if w∗ ∈ MD and θ∗ ∈
MG. We define:

r(w) = EPr(y)[|Dw(y)|2 + ||∇yDw(y)||22] (18)

From Eq. (12), we have Dw∗(y) = 0 and ∇yDw∗(y) = 0,

and thus r(w∗) = 0.

In order to analyze the convergence of our algorithm, we

need two assumptions.

Assumption 1. We assume that the generator G has suffi-

cient expressive power that Ps(Gθ∗(z)) = Pr(y).

Assumption 2. If (w, θ) is not the equilibrium point, then

∂2
wr(w

∗) 6= 0.

Assumption 1 is the feasibility assumption. Assumption

2 means that near the equilibrium point, the discriminator

geometry is described by the second order derivative of r 4.

The second order derivative of OTR in WGAN-QC is:5.

Lemma 1. The second order derivative of the regulariza-

tion term

λ

2
EPs(x)[

(

||∇xDw(x)|| −K||yT (x) − x||
)2
] (19)

with respect to (w, θ) at the equilibrium point is given by:

MR = λ · EPs(x)[∇w,xDw∗(x)∇w,xDw∗(x)T ] (20)

Next, we give the Jacobian of the gradient field g(w, θ).

Lemma 2. The Jacobian of the gradient field g(w, θ) at the

equilibrium point (w∗, θ∗ ) is given by:

g′(w∗, θ∗) =

(

MDD +MR MGD

0 0

)

(21)

where MR is defined in Lemma 1,

MDD =

+ EPr(y)[∇wDw∗(y)] · EPr(y)[∇wDw∗(y)⊺]

+ EPr(y)[∇wDw∗(y)∇wDw∗(y)⊺],

(22)

MGD = −EPs(x)[∇2
w,xDw∗(x)∇θGθ∗(z)⊺] (23)

and MDD +MR is positive definite.

4The second assumption is the same as Assumption III (i) in [22]
5Please refer to supplementary for proofs of Lemmas 1-3
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Figure 2. The generator output curve. The true distribution is a

Dirac distribution at 0. WGAN-QC and CRGAN generate the true

distribution whereas WGAN-div oscillates in this experiment.

Since MDD + MR is positive definite, we know that it

has the same eigenvalues as g′(w∗, θ∗). As the Jacobian of

the gradient field of the discriminator is positive definite,

the discriminator can converge to w∗ [4]. Furthermore,

Lemma 3. For simultaneous gradient updates of (w, θ) in

WGAN-QC using Eq. (15), if w = w∗, then θ = θ∗.

Lemma 3 shows that for simultaneous gradient descent,

if the discriminator converges, then the generator converges.

However, in WGAN-QC, we employ an alternating gradient

descent algorithm. Therefore, we show in Theorem 2 that

WGAN-QC converges to a local equilibrium point.

Theorem 2. Suppose Assumptions 1 and 2 are satisfied,

then for small enough learning rate α, there exists λ such

that WGAN-QC converges to a local equilibrium point. 6

5. Experiments

We first study the convergence of WGAN-QC, Critic

Regularization GAN (CRGAN) [22] and WGAN-div [37]

on a Dirac distribution. Then, we also compare WGAN-

QC with state-of-the-art GANs, PGGAN [17], WGAN-GP

[12], SWGAN [8], OT-GAN [32], and BigGAN [7] on the

CelebA, CelebA-HQ, LSUN bedroom and the ImageNet

dog datasets. We use the default published parameters for

each method. Architecture details and other experimental

settings are in supplementary material.

Hyperparameter Study WGAN-QC has a hyperparam-

eter γ. We investigate the FID scores on the CelebA dataset

w.r.t. γ in Table 1. When γ = 0.1 and γ = 1, WGAN-

QC achieves the best performance. Therefore, we suggest

tuning γ in [0.01, 1.0] for WGAN-QC.

6Please refer to supplementary material for proof of Theorem 2.

γ 10−4 10−3 10−2 10−1 100 101

FID 23.4 20.2 14.4 12.9 11.5 15.7

Table 1. WGAN-QC achieves the lowest FIDs at γ = 0.1 and 1.

So, we suggest tuning γ in [0.01, 1] on other datasets.

Method CelebA CelebA-HQ LSUN

DCGAN 52.0 - 61.1

PGGAN 16.3 14.1 17.8

SWGAN 23.2 - 52.9

WGAN-GP 18.4 - 26.8

WGAN-div 15.2 13.5 15.9

WGAN-QC 12.9 7.7 13.9

Table 2. FID scores of different methods.

Results on a Dirac distribution We test WGAN-QC on a

Dirac distribution which is concentrated at 0, with noise z =
−1 with probability of 1. The generator is Gθ(z) = θ · z.

The discriminator is Dw(x) = w · x. (w, θ) is initialized as

(0.01, 1.0). [22] showed that for this simple problem, the

original GAN, WGAN and WGAN-GP do not converge,

but CRGAN converges.

Results are in Fig. 2. The x-axis is the number of gen-

erator iterations and the y-axis is the output of the genera-

tor. Since the real data distribution is a Dirac distribution

concentrated at 0, the generator output should converge to

0. WGAN-QC and CRGAN generate the true distribution,

i.e., the output of the generator is 0. WGAN-div is oscillat-

ing around 0, mainly because the regularization term is very

small near 0 according to the suggested parameter p = 6.

Results on the CelebA dataset Fig. 3 shows randomly

generated images by each method. Many faces generated

by WGAN-GP and WGAN-div have artifacts and some are

incompletely generated. See faces marked with red boxes

in Fig. 3 (a) and (b). CRGAN generates much better faces

than WGAN-GP and WGAN-div. However, it tends to gen-

erate very similar faces (See faces marked with red and yel-

low boxes in Fig. 3 (c)). This suggests that CRGAN has a

mode collapse problem. Fig. 3 (d) shows faces generated

by WGAN-QC. All the faces generated by WGAN-QC are

complete, smooth and distinct from each other. Almost all

appear realistic.

FID scores of different methods on this dataset are in Ta-

ble 2. WGAN-QC has the best performance of 12.9, which

is 15.2% less than the second best method WGAN-div.

Results on the CelebA-HQ dataset We resize the face

images in CelebA-HQ to 256×256 and train WGAN-QC

on them. We can see that most of the randomly generated

images by WGAN-QC in Figs. 1 and 4 look realistic. Even

without progressive training, WGAN-QC can still generate
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(a) WGAN-GP (b) WGAN-div

(c) CRGAN (d) WGAN-QC

Figure 3. Randomly generated faces by a) WGAN-GP, b) WGAN-div c) CRGAN and d) WGAN-QC. Obvious failure cases are marked

with red boxes in (a) and (b). Red and yellow boxes in (c) suggest the mode collapse problem of CRGAN. All images generated by

WGAN-QC are complete, natural and distinct from each other. (Best seen in color)

highly realistic 256×256 face images. We measure the per-

formance of WGAN-QC following the strategy of [37] to

compute the FID for WGAN-QC. We compare PGGAN,

WGAN-div and WGAN-QC in Table 2. WGAN-QC’s FID

of 7.7 considerably reduces the FID of WGAN-div by 43%.

In order to verify the smoothness of the face manifold

learned by WGAN-QC, we interpolate between two faces

randomly generated by WGAN-QC. Fig. 5 shows that the

face transitions appear to be smooth. This suggests WGAN-

QC captures the face manifold well.

Results on the LSUN dataset WGAN-QC has the small-

est FID score of 13.9 in Table 2, 12% less than that of

WGAN-div. Fig. 6 shows images generated by these meth-

ods. Some images generated by WGAN-GP and CRGAN

are hard to recognize as bedrooms. Many images generated

by WGAN-div are distorted. Almost all images produced

by WGAN-QC are smooth and look like bedrooms.
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Figure 4. Faces of size 256 × 256 randomly generated by WGAN-QC on CelebA-HQ. (Best seen in color)

Figure 5. Face interpolation by WGAN-QC. Transitions between faces appear good. (Best seen in color)

SWGAN OT-GAN BigGAN WGAN-QC

5.39 8.97 10.39 10.48

Table 3. Inception Scores on the ImageNet dog dataset.

Results on the ImageNet dog subset The Inception

Scores (IS) achieved by state-of-the-art GAN methods are

shown in Table 3. WGAN-QC is much better than SWGAN

and OT-GAN on this dataset. WGAN-QC gives slightly

higher IS than BigGAN, even though current version of

WGAN-QC is unsupervised learning while BigGAN is su-

pervised learning.

Run Time Comparison We run all comparisons on the

same NVIDIA TITAN Xp under the same batch size of 64

on the CelebA and LSUN datasets. In Table 4 we show

runtimes for WGAN-GP, WGAN-div and WGAN-QC. On

Method CelebA (i / o) LSUN (i / o)

WGAN-GP 36.2ms / 5.0 days 47.8ms / 6.6 days

WGAN-div 30.6ms / 2.1 days 41.0ms / 2.4 days

WGAN-QC 14.0ms / 0.6 days 18.6ms / 1.3 days

Table 4. Running time comparison. i / o means running time per

generator iteration / overall training time.

both datasets WGAN-QC is the fastest one per iteration.

Also, WGAN-QC requires the least overall training time

on both datasets. WGAN-QC is 3.5x and 1.8x faster than

WGAN-div on the CelebA and LSUN bedroom datasets,

respectively.

6. Conclusions and Future Work

In this paper, we proposed WGAN-QC, a WGAN with

quadratic transport cost whose discriminator is regularized
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(a) WGAN-GP (b) WGAN-div

(c) CRGAN (d) WGAN-QC

Figure 6. Images randomly generated by a) WGAN-GP, b) WGAN-div, c) CRGAN and d) WGAN-QC on the LSUN bedroom dataset.

Obvious failure cases are marked with red boxes. (Best seen in color)

by optimal transport. We showed that the objective of the

discriminator during each generator update computes the

exact quadratic Wasserstein distance. We also proved that

for small enough learning rates, WGAN-QC converges to

a local equilibrium point. Consequently, we improved the

state-of-the-art on four datasets while executing much faster

than other WGAN variants.

In future work, we will extend WGAN-QC to the con-

ditional version accepting image labels and investigate the

performance of WGAN-QC on other large-scale datasets

and higher-resolution images.
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