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ABSTRACT

We study a practical problem of predicting the upcoming events
in data streams using a novel approach. Treating event time or-
ders as relationship types between event entities, we build a dy-
namic knowledge graph and use it to predict future event tim-
ing. A unique aspect of this knowledge graph embedding ap-
proach for prediction is that we enhance conventional knowledge
graphs with the notion of “states”—in what we call the ephemeral
state nodes—to characterize the state of a data stream over time.
We devise a complete set of methods for learning relevant events,
for building the event-order graph stream from the original data
stream, for embedding and prediction, and for theoretically bound-
ing the complexity. We evaluate our approach with four real world
stream datasets and find that our method results in high precision
and recall values for event timing prediction, ranging between
0.7 and nearly 1, significantly outperforming baseline approaches.
Moreover, due to our choice of efficient translation-based embed-
ding, the overall throughput that the stream system can handle,
including continuous graph building, training, and event predic-
tions, is over one thousand to sixty thousand tuples per second
even on a personal computer—which is especially important in
resource constrained environments, including edge computing.
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1. INTRODUCTION

Event matching, as part of complex event processing (CEP), is
one of the most important topics in data streams [13]. Many com-
mercial systems (e.g., [12, 1]) have implemented event matching
and CEP. However, little work has been done on predicting the tim-
ing of an interesting event, which we call a target event—whether
it will happen soon or long after the current time.

Example 1. Outpatient monitoring and management of Type 1 di-
abetes (T1D) is a critical issue [23]. It relies principally on three
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interventions: diet, exercise, and exogenous insulin. Diabetes pa-
tient information is obtained from an automatic electronic record-
ing device. The automatic device has an internal clock to timestamp
events. We consider signals from a short period of time as a tuple,
and there are multiple attributes in a tuple, such as regular insulin
dose, NPH insulin dose, blood glucose measurement at a pre-meal or
post-meal, hypoglycemic symptoms, typical or more/less-than-usual
meal ingestion, and typical or more/less-than-usual exercise activity.
The continuous monitoring data forms a multi-attribute data stream.
Doctors may match interesting event patterns; they may also want
to predict some events of interest, such as hypoglycemic conditions
in the near future, or a blood glucose measurement that will increase
significantly. Doctors and/or outpatients may be notified when such
predictions occur, and critical interventions can be performed to pre-
vent undesirable events.

There are many other examples. Prediction of undesirable events
in oil and gas wells can help prevent production losses, environ-
mental accidents, and human casualties, and help reduce mainte-
nance costs [43]. The stream tuples contain various measurement
events in oil wells, as well as a number of undesirable events such
as abrupt increase of Basic Sediment and Water (BSW), spurious
closure of Downhole Safety Valve (DHSV), and severe slugging.
The measurement events include pressure events at Permanent
Downhole Gauge (PDG), temperature events at Temperature and
Pressure Transducer (TPT), pressure events at TPT, among many
others. This stream can be very fast, and we are managing many
wells. The prediction must be quick and early for actions.

Yet another example, as used in our experiments (Section 6), is
in the transportation domain [16]. In a metropolitan area, aver-
age delay scores of taxi trips, defined as the ratio between trip time
and trip distance, are expensive to obtain as they require detailed
information of all trips. The target events, such as delay score be-
ing very high in several locations of interest, can be predicted in
advance based on a combination of basic events at a few locations
that have cameras or sensors to only record simple statistics such
as the frequency of incoming and outgoing taxis.

In addition to early actions to cope with a predicted event, event
timing prediction is also useful in predictive complex event pro-
cessing and best-effort complex event matching under resource con-
straints [22, 20, 31]. While there is much previous work on time
series forecasting [18], little has been done on multi-attribute data
stream discrete-event timing prediction—whether a target event
will happen soon, or whether an event will happen much later,
using limited training data to promptly build a model and predict.
There is previous work on sequential association rules [40]. How-
ever, our experiments show that our proposed approach provides
much better prediction accuracy in terms of precision and recall.
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1.1 Requirements and Our Approach

Consistent with other data stream applications and methods,
the training of the predictive model should be fast and possibly
performed in real time. Along with this, the training should ideally
only use a small amount of most recent data, so that the learning
and training of models can be continuous, adaptive to any changes
in data streams. For instance, deep layers of neural networks [24],
which require a large amount of training data and heavy resources
including GPUs and long training time, are unfit for fast real-time
adaptive stream computing, which is sometimes even pushed to
less powerful devices in edge computing [21]. Consider, for ex-
ample, the oil wells application above. Each of the many wells
produces a lot of sensory data very fast, and the wells may be
geographically very dispersed. At each distant location near the
well where the data is produced, it would be ideal to have a laptop
or even a less powerful device to perform the undesirable-event
model learning and prediction in place, rather than communicat-
ing all the data from each well to a central server for processing,
which can be too slow and overwhelm the network. If needed,
only detected critical events can be communicated to the central
server for records and actions. Likewise, the same situation hap-
pens with the metropolitan traffic example above or self-driving
cars and smart cities. Instead of communicating large amounts of
streaming data to a central server, each light device can perform
critical event prediction in place.

We propose an approach that is based on some state-of-the-art
result in machine learning called graph embedding [10]. There are
several novel aspects of our approach that are significantly differ-
ent from prior work using graph embedding.

e First and foremost, we create a knowledge graph [25] that
characterizes the timing relationships between two events,
where the relationships include “happening soon after” and
“happening long after”.

e Unlike conventional knowledge graphs, we introduce the
notion of “active state” that characterizes the events that
hold true at the current timestamp, or at a particular times-
tamp of interest. From a different perspective, our model
may also be considered as a knowledge enhanced state ma-
chine.

e For embedding, we introduce “ephemeral nodes” associated
with each active set of the timing knowledge graph, whose
embedding vectors are derived from the nodes in the active
set through ephemeral edges and attention parameters (de-
tails in Section 3).

To build the timing knowledge graph, we study the problem of
what set of relevant events to use as the nodes, in order to predict
a given set of target events. Intuitively, a relevant event appears
often in the vicinity (or context) of a target event, but appears sig-
nificantly less often in the general data stream. For instance, in
Example 1, for a target event “blood glucose measurement higher
than the previous one”, a relevant event may be “more-than-usual
meal ingestion”. We adopt the notion of tf-idf (term frequency —
inverse document frequency) [34] from information retrieval as a
metric to get the top-k relevant events with the highest tf-idf. All
these events are the conjunction of one or more basic events, each
of which is a primitive predicate over a tuple.

However, the search is very expensive and may involve multiple
rounds of parsing the stream training data. We devise an efficient
one-pass algorithm that uses fast bitmap operations and A* search
(pruning and bounding). Finally, we provide a novel analysis of the

error bound of prediction result using the Rademacher complexity
theory.

Our experiments over four real-world datasets show that our
proposed algorithms are very efficient. We can see the fast de-
crease and convergence of the loss function value for our attention-
based ephemeral node embedding after around 50 epochs. Due to
our choice of efficient translation-based embedding, the overall
throughput that the stream system can handle, including contin-
uous graph building, continuous training, and event predictions,
is over one thousand to sixty thousand tuples per second even on
a personal computer—which is especially important in resource
constrained environments, including edge computing [21]. While
the system throughput is high, the trained model also achieves
high precision and recall values for event timing predictions, rang-
ing from around 0.7 to nearly 1, much higher than the baseline
approaches.

In summary, our contributions are as follows:

e We propose to build timing knowledge graphs for events in
data streams to predict the timing of target events (Sec. 3).

e We devise a novel graph embedding algorithm that incorpo-
rates the notions of active states, ephemeral nodes, and the
attention mechanism (Sec. 3).

e We design an efficient one-pass algorithm to learn the top
relevant events as nodes of the graph, using tf-idf from in-
formation retrieval and an A" search (Sec. 4).

e We analyze the data-dependent error bounds of the predic-
tion using Rademacher complexity theory (Sec. 5).

e We perform a systematic empirical study that demonstrates
the high accuracy of our predictions, and the high efficiency
of the graph-building and training algorithms (Sec. 6).

2. PROBLEM STATEMENT

2.1 Problem Formulation

We are given a data stream S that consists of a sequence of
records (71,t1), (r2,t2), ... where t1 < t2 < ---. An event at
time ¢; is a Boolean predicate over the record r;, involving one or
more attributes of r;.

Let the time of record r* be t*. We say that event e will occur
soon after r* (or t*) if it is true in record (r;,t;) and 0 < ¢; —
t* < 41, for a (small) constant value d;. On the other hand, if e
is false in each record (r;, t;) for t; < t* + J2 (where d2 > 1
is a constant), we say that e happens long after r* (or ¢t*). Note
that the semantics on the event timing gaps d, and d2 can either
be count-based (i.e., number of records) or time-based. Without
loss of generality, we assume the time-based semantics (the count-
based one is essentially integer timestamps).

Given a set of interesting events e, ea, ..., ek, and the current
record (r”,t"), and a window of most recent data before r*, the
problem is to predict whether each event e; (1 < j < k) will
happen soon after 7", or whether e; will happen long after .

Note that we focus on point-based events in this paper. Time re-
lationship between interval-based events are more complicated [3],
which could be a topic of future work. Nonetheless, even with in-
terval events, it is often sufficient to be able to predict the critical
time points within them, such as the start of an event, the end of
an event, or other major time points.

2.2 Preliminaries

We first survey some background knowledge necessary for the
rest of the paper. The terms graph and network are used inter-
changeably.
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Figure 1: Illustrating the concepts of (a) a knowledge graph and (b) network embedding [14].

Knowledge Graphs. The Knowledge Graph is a knowledge base
invented and first used by Google to enhance its search engine [39],
asillustrated in Figure 1(a). It is basically a graph of interconnected
entities. In Figure 1(a), various types of entities (e.g., people, coun-
tries, states/cities) as vertices are depicted, along with diverse types
of relationships between entities shown as edges, such as “isMar-
riedTo” and “wasBornln”. Essentially each fact is represented as
a triple (subject, relationship, object), where subject and object are
also called head and tail nodes, respectively.

Knowledge Graph Embedding. Network/graph embedding in
general [26] is used to map each node (and relationship type) in
a network to a vector (point) in another multidimensional space.
The basic goal is that if two nodes are “similar” or “close” in the
graph, then the two points that they map to should also be close
in the projected space, based on a certain distance metric. This
is illustrated in Figure 1(b), where the adjacency matrix and the
original graph on the left hand side have complicated structural
correlations (hence high dimensionality), and the nodes are em-
bedded as vectors in a low dimensional space (three dimensions
for visualization) on the right hand side [14]. Within each of the
three clusters in different colors, the nodes are “similar” or “close”
in the original graph, however the notion of similarity is defined
and used in the embedding training process.

A common type of knowledge graph embedding is translational
distance models, which exploit distance-based scoring functions
and measure the plausibility of a fact as the distance between the
two entities, usually after a translation carried out by the relation.
For example, a simple and efficient one is TransE [7], where the
training tries to enforce the vectors satisfying h+r = t, where h,
t, and r are the embedding vectors of the head and tail entities,
and the relationship type between them. The same soft constraint
is used to predict the relationship between two entities.

In essence, graph embedding is automatic latent feature extrac-
tion and dimensionality reduction, as each value in the vectors as-
sociated with the nodes and relationship types is a latent/hidden
feature, which is hard to be extracted by conventional feature en-
gineering.

3. EVENT-TIMING GRAPHS AND STATE-
BASED EMBEDDING

We first describe the core of our approach, which is to efficiently
build a event-timing knowledge graph from one pass of the train-
ing data, and to efficiently perform embedding over this graph

Network "mh‘ﬂ'dl Low dimensional space
0 01 1 1
0 01 0 1
1 10 1 0
1 01 0 0
1 10 0 0
Adjacency matrix Vector based representation |
(b)

1781

based on the new notions of active sets, ephemeral nodes, and at-
tentions on ephemeral edges.

Note that, in this section, we assume that we are given the events
to be used for building our data structure (the event graph). In Sec-
tion 4, we still study the selection of relevant events to use for the
algorithms in this section. Let us start with some intuitions in Sec-
tion 3.1, followed by the details of the algorithms in Section 3.2.

3.1 Intuition and Basic Idea

The basic idea is that we represent a number of key relevant
events (with respect to the given target events) as vertices V' in
a knowledge graph G. The set of edges E in G indicates timing
relationships. A directed edge (u, v) from event u to event v may
have one of the two types of relationships: 7 indicating that event
v happens soon after event u, and r2 indicating that event v hap-
pens long after event u.

On top of the basic graph elements described above, we define
the notion of an activation graph formally below.

Definition 1. (Activation Graph, Active Set, and Ephemeral
Node). An activation graph Gs of a data stream S is a dynamic
graph where each vertex is an event. Gs has states: at any moment,
there is a subset of vertices V,, that are active, called the active set,
which are the events that are true for the current tuple (r;,t;) in S.
The lifetime of Vg is [ti, tiy1), Le., before the next tuple arrives.

In addition, a pair (Vy, ve) is associated with an ephemeral node
Vae that has the same lifetime as V,, where v, is the target event
after V,, with either vy or r relationship, indicating that the event
ve happens soon after V, or much later than V,, respectively. The
edges of Gs are of two categories, which are both ephemeral and
incident to an ephemeral node at one end. The first category of edge
is from each vertex vy, in Vg to vqe, with a relationship type rye
(corresponding to event nodes v,, and ve), while the second category
is from vqe to an event vertex v. with a relationship type either r1
orra.

Example 2. Figure 2 shows an example, where each solid vertex is
an event node while the two hollow vertices are ephemeral nodes. The
four event vertices inside the green solid circle are the active set V,
at some time instant t; V,, is associated with an ephemeral node vqe,
for a target event v, that follows with relationship r1 (soon after).
For instance, continuing Example 1, the four event nodes may be
“less-than-usual meal ingestion”, “blood glucose lower than previous
one’, “regular insulin dose”, and “less-than-usual exercise activity”,
respectively, corresponding to the state at time instantt. Each of these



Figure 2: Ilustrating an activation graph, where each solid vertex is an
event, and each hollow vertex is an ephemeral node. A set of events in
the current tuple is called an active set, such as Vj, circled in green, which

contains 4 events, “less-than-usual meal ingestion”, “blood glucose lower
» «

than previous one”, “regular insulin dose”, and “less-than-usual exercise
activity”. For V; and target event ve (“hypoglycemic symptoms”), there is
an ephemeral node vge. Vge links to ve with relationship r1, as ve happens
soon after V. Moreover, an edge such as the one labeled with relationship
Tie indicates that event v follows v;.

four nodes links to the ephemeral node vae. In turn, va. links to a
target event node in the query, v., which is the event “hypoglycemic
symptoms” (known to be an event soon after time t in the stream).

Similarly, the three vertices inside the red dashed circle are another
active set V,: at a different time instant t’, with the corresponding
ephemeral node v,.1, for a target event v, that follows. Note that
the two active sets may have vertices in common (one vertex in com-
mon here). All edges are incident to ephemeral nodes. Take vqe as
an example. There is an edge of relationship type r1 from vge to
event vertex v. (hypoglycemic symptoms) indicating that event v,
happens soon after the four events in V.

In addition, there are four edges from each event node of Vg to Vge.
The relationship type of such edges is based on the two events in the
time precedence relationship. For instance, the relationship type of
the edge from event v; (less-than-usual meal ingestion) to ephemeral
node vqe isTie in Figure 2, since one end is event v; and the other end
is event v, (i.e., event v follows event v;). Likewise, the edge from
v; (blood glucose lower than previous one) to Vg is of relationship

type 1je.

For ease of reference, Table 1 summarizes the common nota-
tions and terms we will be using throughout the paper.

At time ¢ when a tuple (7, t) of the stream arrives, it activates a
set of event nodes V; in G. This is the major difference between our
graph model and previous graphs or dynamic graphs. Our goal is
to predict whether each of the target event nodes will be active
soon or much later.

The basic idea of our solution is to perform customized knowl-
edge graph embedding over Gs. We perform embedding over the
nodes and dynamic edges with attention [44, 30, 4]. Informally, at-
tentions are weights that can be learned through optimization in
training, letting the optimization focus on the most relevant parts
of the input to make decisions. For us, the intuition is that ev-
ery event in an active set attends to a tuple’s state behavior over a
target event. Different events in an active set may have different
weights (or importance) in predicting the subsequent target event.
Such weights are the attention parameters, and can be learned dur-
ing back-propagation, such as the stochastic gradient descent [28]
of the training process. An ephemeral node serves as an intermedi-
ate node to aggregate the active events in the corresponding active
set.

Table 1: Notations and terms used in the paper.

[ Notation [Meaning ]

S data stream
s dynamic activation graph (events) of stream
€1, ..., €k target events whose timing may be queried
€k+1,---,€n | other events not in the target list
1 relationship for occurring soon after (gap < d1)
T2 relationship for occurring long after (gap > d2)
active set | a set of events happening in the current tuple
ephemeral | atemporary node created between an active set
node and a target event
Tre relationship from event v, in an active set to
the ephemeral node leading to target event v,
Aze attention weight of relationship 7.
tarE set of triples (active set, target event, 1 or r2)
ntarR1 set of triples (active set, non-target event, 1)
ntar R2 set of triples (active set, non-target event, r2)

3.2 Graph Building Algorithm

We first introduce the graph building algorithm. Suppose we
have identified n events e1, ea, ..., e, to follow, where the first k
(k < n)eventsey, ..., e are the target events that we predict. The
main idea is to parse the training data window of stream S only
once and construct Gs. We show that the algorithm only needs
to keep a constant portion of S in memory while parsing it. The
r1 and 73 relationship-type edges to target events eq, ..., ej are
added to Gs first—while the active set may contain any events in
€1, ..., en. We say that these edges are target edges.

Knowledge graph embedding is performed over such edges first.
If the algorithm is performed in real time and there is still time re-
maining, the real-time embedding is performed over non-target
edges. The intuition is that target edges are directly related to pre-
dicting target events, and are hence more relevant for learning the
embedding.

Example 3. Let us go back to the example in Figure 2. Suppose ve
is one of the k target events, then all the five edges incident to the
ephemeral node v, are target edges (e.g., the ones shown of rela-
tionship types Tic, je, and r1 in Figure 2). Our embedding will be
performed over such edges first under time constraints. Now suppose
v, is not a target event. Then the four red dashed edges incident to the
ephemeral node v,/ in Figure 2 are non-target edges, which have
lower priority in the online embedding.

In order to get non-target edges on demand for embedding after
the one pass over the stream, we perform reservoir sampling [45]
over the r1 and r2 non-target edges, respectively, to get a uni-
formly random pool of such edges for selection as needed.

now (t)

active set
A time

Figure 3: Illustrating the flow of BUILDEVENTORDERGRAPH.

Figure 3 illustrates the flow of our algorithm that builds the
graph. Our goal is to create 71 and r2 edges from an active set (tu-
ple) to an event, shown as the red edges in the figure. We maintain
a queue of active sets Q, from “now” (time ¢, the current tuple)
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back in time up to length §2. In addition, we also maintain a set
of events F,;4 that has not appeared for at least d2 time, shown as
the green oval in Figure 3. Then, as soon as an active set in Qg is 2
old, we remove it from Q, and create 2 edges, one to each event
in Eyq. Furthermore, when the current tuple at time ¢ (now) joins
Q,, we also create 1 edges from each active set within §; back
in time to each event in the current tuple. We present the graph
building algorithm in BUILDEVENTORDERGRAPH.

Algorithm 1:
BUILDEVENTORDERGRAPH (S, €1, ..., €k, ..., €n)

Input: S: data stream;
€1, ..., €k, ..., €n: relevant events, first k are target
events
Output: event order dynamic graph Gs
1 initialize ¢4, ..., t,, as last occurrence times of ey, ..., en,
2 Eqq <+ (0 //set of events that are at
least §, old
3 for each tuple s[t] € current window of S do
4 E,[t] < s[t]n{e1,...,en} //get active

events
5 for each e; € E,[t] do
6 t; <t //update last-occurrence time
7 Eoiqa < Eoa \ {€:}//remove from old
tuple set

8 Qq +— Qa U {Ea[ﬂ} //add Ea[t] into Q,
9 for eache; € {e1,...,en} \ Eq[t] do
//check if it is now old

10 if e; ¢ Egq andt — t; > 02 then
1 L Eoia < Eqa U {e;}

12 for each E,[t'] € Q, st.t —t' > 2 do
13 Qu + Qa \ {Eal[t']}

14 | ADDR2EDGES(Gs, Eo [t'], Eota)

15 for each E,[t'] € Qo st. 0 <t —1t' < 61 do
16 | ADDRIEDGES(Gs, Ea[t'], Ealt])

7 Gs is continuously used for embedding

-

Line 1 of the algorithm initializes, for each of the n events, the
last time that it occurs. We will use this information to determine
when an event is too old (i.e., it has not appeared in the past d2
window), and we will add an r2 edge from an old active set (02
earlier) to this old event. Line 2 initializes a set that stores such
old events. The main loop in lines 3-16 does continuous and incre-
mental parsing of the stream over sliding windows and deposits 71
and ro edge information to the edge pool as illustrated in Figure 3.
Line 17 indicates that such a graph (edge pool) is continuously
used by the embedding algorithm in the next stage of the pipeline.

In line 4, we get the set of active events that are true in the
current tuple. Then lines 5-7 update each of these active events’
last occurrence time and remove it from the old set if it is there.
In line 8, we add the active set to a queue Q,. We trim the queue
when an event is over J2 old. Q, is needed for adding an 7 edge
from an old active set (2 earlier) to an old event (that has not
appeared for long). Lines 12-14 trim an active set from Q, if it is
over d2 old, and add the corresponding 72 edges to each old event
in Fyq4, as discussed earlier. On the other hand, lines 15-16 add
the r1 edges from each recent active set (within J;) to each event
in the current tuple.

We next look at the ADDRIEDGES algorithm (ADDR2EDGEs is
similar). Each r; edge essentially records a relationship from an

Algorithm 2: ADDRIEDGES (Gs, Fa, Fto)

Input: Gs: dynamic event order graph stream;
E,: the active set at “from” end of 1 edge;
E;o: set of event nodes at “to” end of r1 edge
Output: updated Gs
1 for eache; € Ey, do
2 if i < k then
//to a target event

3 Gs.tarE < Gs.tarEU{(FEq4,e;,m)} //target
edges

4 else

5 if count < cap then

//count is total non-target r
Gs.ntarR1[count] < (Eq,€;,71)

7 else

8 j < random(1, count)

9 if j < cap then

10 L Gs.ntarR1[j] < (Ea,ei,r1)

11 return Gs

active set I, to an event node e;. Note that the embedding algo-
rithm presented later will temporally add the ephemeral node vqe;
between E, and e;, as well as the ephemeral edges e, from each
event node = in Ej to vae; (as shown in Figure 2). But for now,
if the to-event is a target event (lines 2-3), we only add the triple
to the set tar E (target edges); others in lines 5-10 we perform the
reservoir sampling [45] so the triple will be put in a fixed-size (cap)
buffer ntar R1 (non-target r1 edges) uniformly at random. Thus,
essentially the graph building algorithm only creates hyperedges
from an active set (multiple nodes) to a single event node.

It is not hard to see that the BUILDEVENTORDERGRAPH algo-
rithm has a per-tuple time complexity of O(Adic+n), where \ is
the average stream rate (tuples/second), c is the average number of
events per tuple, and n is the number of relevant events as input. In
particular, the utility algorithm ADDRIEDGES has a complexity of
O(|Etol). Moreover, the space complexity of BUILDEVENTORDER-
GRaPH is O(Ad2). The time complexity of BUILDEVENTORDER-
GRAPH is because we need to add an r; edge from each tuple’s
active set to each of the c events in the Ad; tuples that follow, and
because for each tuple we need to add one r, edge to each of the
old events (and there are no more than n of them). The space com-
plexity is due to the fact that we need to maintain a window of size
O(Ad2) to be able to determine the 72 edges.

3.3 Training Embedding Vectors and Atten-
tion Parameters

3.3.1 The Embedding Algorithm

Having built the event-timing knowledge graph, we now use
the data stream data to obtain the graph embedding vectors. Due
to the requirement of data stream algorithms (Section 1.1), we ex-
tend the efficient TransE [7] knowledge graph embedding algo-
rithm and add ephemeral nodes (with derived embedding vectors),
as well as the attention parameters.

The basic idea of this algorithm is quite simple. Recall that the
r1 and 72 edges we build in the graph are triples (Eq, €, 1), from
an active set E, to an event e with relationship r (r1 or r2). We
iteratively sample such a triple from our triple pool. Recall from
Figure 2 that a triple actually consists of two sets of edges—from
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each event in F, to the ephemeral node and from the ephemeral
node to e. Our objective (loss) function used for stochastic gra-
dient descent will combine the constraint relationship from these
two sets of edges, as well as a negative triple by corrupting ei-
ther end of the positive triple. We present the algorithm in STATE-
BASEDEMBEDDING.

Algorithm 3: STATEBASEDEMBEDDING (Gs)

Input: Gs: dynamic event order graph stream
Output: embedding vectors for nodes and relationship

types of Gs
1 loop
2 pool + Gs.tarE //first only use target
edges
3 Shateh < sample(pool,b) //draw a

mini-batch of size b
4 for (Eq,e,r) € Spatch do
//loop over the original Sygich

5 (Eq,€',r) < sample(S(p, . .)) //sample a
corrupted triple
6 Sbatch <~ Sbatch U {(Ezlm 6/3 T)}

d
7 let f = Z(anevr)esbatch o((Ea,e,1)) 35 lei —
ri— ) ep, Ane(Xi + Txe;)]?

8 update embeddings and attention a w.r.t. gradient of f
9 while time remains do

10 pool < Gs.tarE U Gs.ntar R1 U Gs.ntar R2
un | do lines 3-8

In the loop of lines 1-8, we first perform the iterative training
over target edges, which, as discussed earlier, have a higher prior-
ity as they directly lead to the target nodes to be predicted. Lines
9-11 are essentially the same, but work on all edges. Line 3 samples
amini-batch of triples (for mini-batch stochastic gradient descent).
Similar to TransE (and most other translational distance based em-
bedding), line 5 does negative sampling [32] by corrupting either
the head or tail of a positive triple in the sample set, and line 6
includes the negative sample in the batch too.

Line 7 has the key loss function of the embedding, where the
o(-) function is the sign function that is +1 for a positive sample
and —1 for a negative sample, and d is the dimensionality of the
embedding vectors. This is similar to the L2-distance version of
TransE [7] minimizing ||t - r - h]|2, except that t is the event node
e, and the head h is replaced by the embedding of the ephemeral
node v in Figure 2. In turn, vee is the tails of the triples from
the ephemeral edges such as ;. in Figure 2. Again using the con-
straint t = h + r we derive the embedding of v4e from X + rye, and
does a weighted sum of them from each event node of the active
set, where the weight is the attention parameter a..

In line 8, the algorithm does stochastic gradient descent opti-
mization over each parameter value in each embedding vectors,
including those of the event nodes, r1, 72, and all ephemeral edges’
relationship types ;. (as in Figure 2), as well as all the atten-
tion parameters ag.. Like TransE, we normalize each embedding
vector to length 1, and normalize the attention parameters such
that > vcEB, dze = T (where n is the total number of events).
We organize the training algorithm iterations into epochs, where
each epoch has the number of random samples equal to the total
number of training records used. Our experiments show that the
convergence of the loss function value is quite fast, the details of
which are in Section 6.

It is easy to see that the complexity of STATEBASEDEMBEDDING
is O(Idc), where I is the number of iterations to reach conver-
gence, d is the dimensionality of embedding vectors, and c is the
average number of events per tuple. Note that, as we continuously
train embedding vectors from one sliding window to the next, the
number of iterations I to reach converge of course depends on
data—data that changes significantly over time tends to require a
greater I, while a more stable stream needs a smaller I for incre-
mental embedding.

3.3.2  Making Prediction

Once we have all the embedding vectors and attention param-
eter values, making predictions is again based on the same loss
function as in line 7, except that we do not need to use a negative
sample, and there is only one triple in the sample set Spqtcn. That
is, we use the loss function f = 2?21 [e;—r; —% erEa age(x;+
I'xe; )]2 For example, if the current record has active set E,, and
we want to predict whether a target event e will be more likely to
occur soon or to occur much later, we use the loss function above,
and the relationship that results in a smaller loss function value
wins.

4. LEARNING RELEVANT EVENTS

In the previous section, we assume that we are given the events
to use for building the activation graph and for event predictive
queries. In this section, we will study how to select the relevant
events to use with respect to a set of possible target events to be
queried (predicted). These top relevant events are used for contin-
uous dynamic graph building, as well as continuous embedding
learning and predictive queries as presented in the previous sec-
tion.

4.1 Preliminaries on tf-idf

In information retrieval, tf-idf is a numerical statistic that is in-
tended to reflect how important a word is to a document in a col-
lection or corpus [34]. The tf-idf value increases proportionally to
the number of times a word appears in the document and is offset
by the number of documents in the corpus that contain the word,
which helps to adjust for the fact that some words appear more
frequently in general. The tf-idf is the product of two statistics,
term frequency and inverse document frequency. A simple way to
define tf is: tf(¢,d) = 1if ¢t occurs in d and 0 otherwise. A com-
mon way to define idf is: idf(¢, D) = log %, where |D|
is the number of documents in the corpus D, and |d € D|t € d|
is the number of documents that contain the term ¢. Thus, a more
common term has a smaller idf.

4.2 Learning Algorithm

Basic Ideas and Intuitions. In this subsection, we discuss how
to identify “significant” events that help predict target events. The
basic idea is that we aim to find characteristic events that tend to
precede target events (i.e., within time 41, the threshold used to
determine relationship 71), but not so much for other events. We
resort to a metric in information retrieval called tf-idf (short for
term frequency-inverse document frequency) [34]. For our prob-
lem, each event candidate is analogous to the “term”, while con-
text (tuples prior to the target event) before a target event occurs
is analogous to the document we are interested in, and the general
context of the whole stream is analogous to the text corpus.

Then there is the computation issue—how do we efficiently find
the top events with the highest tf-idf with respect to each target?
We first partition the set of values or value range of each attribute
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into basic events. Intuitively, they are the elementary events in a
general event. For instance, a basic event in Example 1 may be
“less-than-usual meal ingestion”. However, just the basic events
themselves may not be discriminative enough, as each basic event
alone may be very common in the general stream context. Thus,
we also explore the combination of two or more basic events to-
gether as a composite event. A possible composite event from Ex-
ample 1 is “less-than-usual meal ingestion” and “blood glucose
lower than previous one”. A composite event will have lower (or
the same) ¢ f (term frequency) in the context of target events than
the individual basic events within it, but it will also have higher
(or the same) idf (inverse document frequency).

Therefore, we aim to find the top-n events (either basic or com-
posite) that have the highest tf-idf for each target event. While the
number of basic events is manageable (typically a constant number
of partitions times the number of attributes), there are an exponen-
tial number of composite events—it is computationally challeng-
ing to compute the tf-idf of all of them by checking the tuples prior
to each target event and those prior to each tuple in the stream.

We devise a novel algorithm by using efficient bitmap oper-
ations, sampling, and A*-style pruning and bounding [37]. The
main ideas are as follows. We build a bitmap B; for each basic
event e where each bit of 31 corresponds to one occurrence of the
target event (say, at time t), and the bit is 1 if e occurs within time
[t — d1,1), ie., within 1 interval prior to the target event, and is 0
otherwise. This will be used to compute the tf part of tf-idf. In the
same vein, we build a bitmap B> for each basic event e for its oc-
currence in the general stream context (i.e., every tuple). However,
the problem is that there might be too many tuples in the stream,
which makes B> too large. Thus, we use random sampling which
provides a provably accurate estimate of the idf part of tf-idf. We
sample the stream tuples and each bit of B2 corresponds to a tuple
that is chosen in the sample. Like 31, if the chosen tuple arrives
at time ¢, the bit of Bs is 1 if e occurs within time [t — d1,t), and
is 0 otherwise.

The next idea is that we use A*-style aggressive pruning and
bounding to efficiently search the space for top-n events in tf-idf.
We maintain a priority queue Q, where each element in Q is an
event (basic or composite) along with a weight, which is an opti-
mistic upper bound of its tf-idf value (proven in Theorem 1 below).
Each time, we pop out an event with the highest weight from Q,
and expand it with another basic event unless it is marked final-
ized. A finalized event e has its weight exactly the same as its tf-idf,
and since this value is higher than the upper bounds of the tf-idf
of all other events in O, it should be returned as a top event.

The Algorithm. We now show the algorithm GETTOPRELEVAN-
TEVENTS. In line 1, we assign an arbitrary but fixed order to all
basic events. Lines 4-5 build the two bitmaps as discussed above.
Lines 6-29 perform the A" search of top-n events with highest tf-
idf. Specifically, the loop in lines 7-12 first add each basic event
into the priority queue Q. The weights set in lines 9 or 11 are used
to order the items in Q, with the root of Q (to be popped next)
having the greatest w. Theorem 1 below shows the reason for the
w value, which is an upper bound of the tf-idf value of all events
that can be derived from e;.

Line 15 pops the root of Q each time for the event with the
greatest w. In general, w is an upper bound of tf-idf. The finalized
flag in line 16 marks that w is actually the exact tf-idf of the cor-
responding event e;. Thus, if the condition in line 16 is true, event
e;’s tf-idf is higher than every other event’s tf-idf upper bound—
which means that e; must have the highest tf-idf among all the
events not already in E,. Then line 17 adds e; into the set to be
returned.

1785

Lines 19-27 expand the current event e; by one more basic event
e;, where e; is after all the basic events in e; according to the order
in line 1. Lines 23-26 set the upper bound value w in the same way
as lines 8-11. Line 28 updates the w of the already popped out e;
to its exact tf-idf value, and marks it as finalized before putting it
back into Q. Note that the worse case complexity of GETTOPRELE-
VANTEVENTS is still O(2°n), where b is the number of basic events
and n is the number of top events to be extracted. Of course, as
any A* algorithms, it has aggressive pruning and is much faster in
practice. Theorem 1 below shows the correctness of the algorithm.

Algorithm 4: GETTOoPRELEVANTEVENTS (S, €4, n)

Input: S: data stream;
e,: a target event;
n: number of events to retrieve
Output: top n events with the highest tf-idf
E} < a fixed order of basic events in a tuple of S
while one pass of S do
fore; € £} do
build bitmap B1 (e, ), bit 7 indicates if e; occurs in
[t — 61,t), where t is the i-th occurrence time of e,
build bitmap Bz (e;), bit 7 indicates if e; occurs in
[t — d1,1), where t is occurrence time of i-th tuple
in sample of S

W N =

nitialize priority queue Q of events
fore; € Ep do
if |B1(€j)| < l%‘ then
s
L w < |Bi(ej)] - lOgmll(ﬁ

®© N o
-

else
L w 4— % -loge

10
11

12 | adde; into Q with weight w

E,. + (0 //result to be returned
while |E,| < n do
pop (e;, w) from Q
if e; is marked finalized then
FE, <+ E.Ue;
continue

13
14
15
16
17
18

19
20
21
22

for each e; € Ey after all basic events in e; do
/
e, < e nej
if |Bi(e;)| = 0 then
L continue
if [Bi(e})| < 2! then
s
L w < |Bi(e})| - log |Bll(e|§)|
else
L w 4— ‘%I -loge

23
24

25
26

27 | add e} into Q with weight w

28 | w ¢ |Bi(e:)|-log g0y //N is number of
bits in Bg(ei)

29 | mark e; finalized and add e; into Q with weight w

30 return FE,

Theorem 1. The GETTOPRELEVANTEVENTS algorithm returns the
correct top-n events with the highest tf-idf. In particular, the w
bound calculated in lines 23-26 of the algorithm for event € is an
upper bound of the tf-idf of all the events that can be derived from
e; by adding basic events into it.



Proof. Let the tf value of an event e; be ¢, i.e., e; appears in ¢ places
where the target event appears. To ensure the correctness of the
A* pruning in the algorithm, its w value must be an upper bound
of the tf-idf of all events that can be obtained by extending e;—we
call such events the descendants of ¢;. Let 1 < x < ¢ be the tf of
such a descendant (whose tf can only be smaller than or equal to
ei’s). Then f = xlog % where N is the total size of the stream,
is an upper bound of the tf-idf of this descendant. To get an upper
bound among all such descendants, we need to find the maximum
value of f = xlog % for an integer 1 < x < c. By taking the
derivative of f over x, we get that if ¢ < % the upper bound is
just clog %; otherwise the upper bound is % - log e, where e is
the the base of the natural logarithm. This exactly corresponds to
the w assignment in lines 23-26. O

Discussions and Remarks. Our model training (Section 3) uses
the top relevant events. A natural question is what happens if
new events become more relevant after training. This concern is
addressed from several aspects. First of all, our learning-events,
building graph, and embedding pipeline is continuous and incre-
mental. The top events, graph, and embedding vectors are con-
tinuously updated. Secondly, previously unseen events have rela-
tions with our identified events. Thus, we do not need to explicitly
list every event. In other words, the relational machine learning
approach [33] is robust to new events, as a new event has relation-
ships with the old ones (e.g., co-occurrence) and the learned latent
features in embedding vectors (of other events) intuitively capture
the essence of all events. Finally, there are more expensive deep
learning approaches such as graph neural networks [44] that have
more generalizability by estimating the embedding of new nodes
based on its neighborhood. However, typically such an approach is
more computationally expensive and requires significantly larger
amounts of training data unsuitable for the requirements of real-
time streams (Section 1.1). Further exploration of this problem is
beyond the scope of this paper, and we leave it to future work.

S. ANALYSIS OF COMPLEXITY AND
BOUNDS

5.1 Preliminaries on Rademacher Complexity

Rademacher complexity [29] is a fundamental concept to study
the rate of convergence of a set of sample averages to their ex-
pectations. It is at the core of statistical learning theory [41], but
its usefulness extends way beyond the learning framework. The
Rademacher bounds depend on the training set distribution (un-
like VC-dimension based bounds [42] which are data indepen-
dent), and hence can often give better bounds for specific input
distributions. Moreover, it is estimated from the training set, al-
lowing for strong bounds derived from a sample itself.

We consider a finite domain D. Let F be a family of functions
from D to [0,1], and let S = {s1,...,5n} be a set of n inde-
pendent samples from D. For each f € F, define mp(f) =
ﬁ >eep f(c) and ms(f) = £3°7 | f(si). Some results of
Rademacher complexity theory are bounding the maximum devi-
ation of mg(f) from mp(f), ie., sup |ms(f) — mp(f)|. Specif-

fer

ically, Rademacher variables are defined as n independent random
variables o = (01, ...,0p) with Pr(o; = —1) = Pr(o; = 1) =
1/2. Then the (empirical) Rademacher complexity is defined as
Rr(S) = Eolsupser = Y1, 0if(s:)]. A key property of the
Rademacher complexity of a set of functions F is that it bounds
the expected maximum error in estimating the mean of any func-
tion f € F using a sample, as we use in Theorem 2 below.

5.2 Analysis

In this section, we perform some analysis on our prediction al-
gorithm. Our embedding training algorithm and timing prediction
use L2 distance as the loss function. Since we always normalize the
vectors that we obtain to unit length, it is easy to see that using L2
distance as the objective function is equivalent to using cosine dis-
tance/similarity. This is because 1" (z; — y;)® = Y1, (z7 +
Yi —2wiy) = 30wl Y2 ), Ty = 1+ 1-2xy.
Therefore, the predicted event probability of target event e can be
written as:

[% erEa aze(x + rxe) + I'] - e

ple) = 7
YR ep, Ane(Xi +xe,) +14] - € )
_ l Z Z;-i:l[aze(xi + rxe,;) + ri] * €5
n zeE Z

where Z is a normalization constant (e.g., so that the probabilities
to all target events add up to 1). The second equality is to expand
the dot product, while the third equality is to swap the two sum-
mations.

The basic idea of using Rademacher complexity for our approach
is as follows. The ideal scenario is if we had used all the events D
to build the event order knowledge graph Gs, and then use the
embedding vectors to predict event probability following our al-
gorithm. But clearly that would be infeasible. Instead, our BUILDE-
VENTORDERGRAPH algorithm uses n < |D| events. It is reason-
able to assume that the top relevant events that we pick in Section
4 based on tf-idf are at least as good as uniform random samples.
We use Rademacher complexity theory [29] to analyze the accu-
racy guarantee provided by the n event sample. Let

d
e aze(Xi + Ine;) + 1] - €
fla) = Lzt | @)
From Equations (1) and (2), p(e) = %Z%Ea f(x), and we
consider this as the result from a sample S of n points, and name it
ms(f), while the ideal value is mp (f) = \%I > wep f(x), where
D is the set of all events as discussed earlier. Let F be the family
of f functions over all target events. Then we use the Rademacher
complexity to bound the error of mg(f) from mp(f). Therefore,
we have the following main result, where the bounds themselves
are from [36].

Theorem 2. With probability at least 1 — ¢, sup;c » [ms(f) —

n3 n3 n3 n2
mo(f)] < 2RF(S)+1 cVa €+:"RF(S))1 < +1/ ;—n‘,where
€ € (0,1) and R (S) is the Rademacher complexity of F on S sat-

2 2
r vz

isfying Rr(S) < Trgzri w(r), w(r) = %ln(zvevs expl522]),
Vs ={vys, f € F},andvis = (f(e1), ..., f(en)).

Here, the function w is convex and continuous in R™, and has
first and second derivatives everywhere in its domain. Hence it
is possible to minimize it efficiently using standard convex opti-
mization methods [8]. In our experiments, we simply implement
gradient descent to get min, . p+ w(r). The f(e;), for 1 <i <m,
in Theorem 2 is from Equation (2), where e1, ..., e, are the n event
nodes. The function family F is for predicting each of the k target
entities. A final remark is that this is a data dependent bound—the
f(e;) values are based on the actual data and prediction results.
We will further examine the bounds, as well as the time taken to
obtain them, using real-world datasets in the experiment section
next.
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6. EXPERIMENTAL EVALUATION

6.1 Datasets and Setup

We use the following real world datasets in four different do-
mains, namely biomedicine, mobile systems, the petroleum indus-
try, and transportation: (1) Diabetes data. This is the AIM-94
dataset provided by Michael Kahn, MD, PhD, Washington Univer-
sity in St. Louis [15]. It records diabetes patients’ event logs (multi-
attribute streams) for about 5 to 9 months including insulin dose
(regular, NPH, and UltraLente), blood glucose at various times, hy-
poglycemic symptoms, meal ingestion amount, and exercise ac-
tivity amount. (2) Mobile system data. This dataset is collected
and used by Banerjee et al. in an ACM UbiComp paper [5]. The
data contains traces of battery usage data for laptops. In addition
to battery usage, the multi-attribute streams also contain data on
CPU utilization, disk space, on-AC status, Internet connectivity,
and idle time (based on keyboard events) for the laptop users. (3)
Oil well data. This dataset from Brazil [17, 43] is as introduced
in Section 1. Prediction of undesirable events in oil wells is criti-
cal. It records various measurement events in oil wells, as well as
a number of undesirable real events. The measurement events in-
clude pressure events at Permanent Downhole Gauge (PDG), tem-
perature events at Temperature and Pressure Transducer (TPT),
pressure events at TPT, among many others. The dataset is over
5 GB and has about 1 tuple per second. (4) NY taxi data. The
trip data of this dataset is about 30 GB, containing the informa-
tion of all taxi trips in the New York City in 2013 [16]. It has 14
attributes, including medallion, hack license, vendor ID, pick-up
date/time, drop-off date/time, pick-up longitude/latitude, drop-off
longitude/latitude, trip time, and trip distance.

We implement all the algorithms presented in this paper in Java.
In particular, we extend the code of TransE [7] to handle active
states, ephemeral nodes, and the attention mechanism. In addi-
tion, we have also implemented three most relevant baseline meth-
ods for comparisons: (1) sequential association rule mining, the
Generalized Sequential Pattern (GSP) algorithm [40], (2) event pre-
diction with Bayesian and Bloom filters in ICPE’13 [46], and (3)
kernel-SVM [11], marked as SAR, ICPE, and KSVM in our upcom-
ing figures, respectively. The experiments are performed on a
MacBook Pro machine with OS X version 10.11.4, a 2.5 GHz Intel
Core i7 processor, a 16 GB 1600 MHz DDR3 memory, and a Mac-
intosh hard disk.

6.2 Experimental Results

6.2.1 Learning Top Relevant Events

Based on the attributes of each of the two datasets, we define
a set of basic events, as well as a set of target events. For the dia-
betes data, there are 16 basic events, each of which is out of a sin-
gle attribute, including the second (or more) insulin injection of
the day, a significantly increased blood glucose measurement, hy-
poglycemic symptoms, more-than-usual meal ingestion, and less-
than-usual exercise activity. Out of the basic events, we define the
target events that a user may be interested in, such as a blood glu-
cose measurement significantly higher (or lower) than the most
recent measurements, and the hypoglycemic symptoms.

Likewise, for the mobile system dataset, there are 16 basic events
on individual attributes, including battery being near-empty, be-
ing connected to the Internet, and so on. We also define target
events such as CPU usage of 95% or more, and idle time of at least
20 seconds. For the diabetes data, we set 1 to be 6 hours and 2
to be 80 hours, while for the mobile system application, these two
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time intervals should be much shorter to be useful, and we set
to be 10 minutes and 2 to be 1 hour.

For the oil well data, we define the increases and decreases of
each measurement attribute as basic events, and each type of un-
desirable events as target events. For the NY taxi data, we parti-
tion the latitude and longitude ranges of NYC into 8-by-8 grids. As
mentioned earlier, we define the ratio between trip time and trip
distance as the trip’s delay score. We then define the target events
as the average delay score of all trips within 5 minutes at a grid
area that we are interested in is above (or below) a threshold—top
(or bottom) 1/4 of the whole history at that area. However, de-
lays scores are expensive to obtain, as they require the statistics
of all trips going into or coming out of an area. The idea is to use
easy-to-observe simple statistics of some grid areas (other than the
target areas), such as the incoming/outgoing taxi counts within 5
minutes. These events will help us predict he target events. For
both oil well and NY taxi datasets, we set the d; of 1/3 of the tar-
get events to be 5 minutes, 1/3 to be 10 minutes, and 1/3 to be 15
minutes. Furthermore, we set the d2 of the oil well data to be 3
hours, and the d> of the NY taxi data to be 1 hour. In this section,
unless otherwise specified, we set the default number of relevant
events n to be 150 for the diabetes and mobile system data, 300 for
the oil well data, and 400 for the NY taxi data.

In the first set of experiments, we evaluate the GETTOPRELEVAN-
TEVENTS algorithm that retrieves the most relevant events (w.r.t.
the target events) which are any possible combinations of the ba-
sic events. Since our algorithm is a one-pass stream algorithm,
to evaluate the processing speed, we adopt the conventional ap-
proach of measuring the throughput of the algorithm, i.e., how
many stream tuples it can handle per second.

We first run the GETTOPRELEVANTEVENTS algorithm using the
diabetes dataset and varying the number of target events. The re-
sults are shown in Figure 4 for the mobile system dataset, and in
Figure 5 for the oil well dataset (the results of other two datasets
show similar trends and are omitted). In order to understand the
impact of the A* search to performance, we also run a version of
the algorithm skipping the A" search part only. We can see that
A* search slightly decreases the throughput by a small percentage,
for both datasets. Moreover, the throughput slightly decreases as
the number of target events increases. This is because the algo-
rithm needs to proportionally handle more events and candidate
intermediate events.

Then we examine the distribution of the discovered top rele-
vant events, in what we call the cardinality, which is the number
of basic events that a discovered relevant event comprises. The
cardinality distribution of the top events is shown in Figure 6 for
the diabetes dataset, and in Figure 7 for the mobile system dataset.
We can see that, for the diabetes data, the top relevant events have
the highest fraction of cardinality 2 (the next one is 3), while car-
dinality 4 has the highest fraction for the mobile system data.

The above result reflects a tradeoff in the cardinality of a rele-
vant event. Having too few basic events gives a higher “tf” part of
the tf-idf, since individual basic events are more likely to appear
in the context of target events; however, that would also result in
a lower idf as it also appears frequently in the general stream con-
text. In the other extreme, a very-high-cardinality event will have
a greater idf but a very low tf.

6.2.2 Continuous Building of Event-Order Graphs

In the next set of experiments, we examine the performance of
building event-order graphs. Our algorithm BulLDEVENTORDER-
GRAPH is again a one-pass stream algorithm, and we use through-
put to uniformly measure the performance. The results are shown
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in Figure 8 for the diabetes data and Figure 9 for the NY taxi data.
Recall that BuILDEVENTORDERGRAPH does not include all edges
that lead to non-target nodes, but keeps a reservoir sample of them.
We compare the performance with a variant of the algorithm that
includes in the graph all edges to the non-target nodes as well.

Figures 8 and 9 show that the performance slightly decreases as
the number of relevant events increases. However, since we are
dealing with the top events that are relevant to the target events,
the number of such events does not need to be high to achieve
an equivalent prediction accuracy, as found in our subsequent ex-
periments. Including all edges to non-target nodes also slightly
decreases the performance for building the graph, compared to
discarding many such edges but only keep a uniformly random
sample as in the reservoir sampling. Another interesting fact is
that the throughput with the NY taxi data is in general higher than
the diabetes data. This is because we aggregate the tuples of every
five minutes to obtain the events of the NY taxi data, and hence
the overall throughput is higher.

6.2.3 Embedding Training and Overall System
Throughput

Our next set of experiments is concerned with a key step, which
is to train the embedding vectors and the attention parameters of
our event-order graph. We first show the throughput performance
of the training, as shown in Figure 10 for the oil well data and Fig-
ure 11 for the NY taxi data. Recall that our pipeline of building
dynamic graph and learning embedding is dynamic and incremen-
tal over each sliding window of size w. For training, this means
that we keep sampling (active set, 1 or ra, target event) triples
(and the associated negative samples) from the current window
and performing stochastic gradient descent (SGD) until conver-
gence. Thus, we measure the throughput of training with varying
window sizes, ranging from 1M tuples to 3M tuples per window
for the oil well dataset and 1M to 7M tuples for the NY taxi dataset.

<

Fig 10 Training model (oil well)
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Fig 11 Training model (NY taxi)

Later on we will also examine the impact of window size on pre-
diction accuracy.

In addition, we also examine the training speed of the three
baseline methods, SAR, ICPE, and KSVM. Note that, unlike our
method which incrementally updates the embedding over sliding
windows, the training methods of baseline ones are not contin-
uous but work in batch—but we still report them in the form of
throughputs for comparison.

Figures 10 and 11 show that the training throughput slightly
decreases as we increase window size w (but still remains high).
This is because, as mentioned above, our incremental embedding
samples the triples in the current window and performs SGD un-
til convergence. Increasing w may slightly decrease convergence
speed because more tuples will likely exhibit more variable latent
features; however, this variability tends to be less as we further
increase the window size as it approaches more global stability. In
fact, as shown in the experiments later, a larger window size does
not necessarily translate to better prediction accuracy after some
point.

Among the three baseline methods, sequential association rule
mining (SAR) is slower than our method, while ICPE is faster and
KSVM is the slowest in training. ICPE is faster due to its sim-
plistic data structures and algorithms; however, as shown later, its
prediction accuracy is the worst. Furthermore, off-the-shelf clas-
sification methods such as ICPE and KSVM are not designed for
predicting the timing of future events in a future tuple—instead,
they are designed for predicting the unknown class attribute in
the current tuple. To use ICPE or KSVM, we have to couple the
current tuple with the r1 or r2 relationship to a target event in a
future tuple.

Note that, as shown in Figure 18 later, the actual prediction us-
ing the learned embedding vectors only incurs simple calculation
and has a negligible cost—less than 10 microseconds per predic-
tion. Since continuous training is the bottleneck of the stream
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processing pipeline, we find that the overall system throughput
for graph building, embedding training, and event prediction is
about the same as that from embedding training, which ranges
from over one thousand to sixty thousand tuples per second for
the four datasets. Such high efficiency makes possible preventive
and predictive interventions, as well as predictive complex event
processing (e.g., under resource constraints) [22, 20, 31], as dis-
cussed in Section 1.

We then look into the loss function values (i.e., the f function val-
ues in line 7 of STATEBASEDEMBEDDING) after each epoch, which
is defined as a uniform random sample of edges of the same size
as the total number of edges in the graph, combined with an equal
number of negative sample edges, following the terminology in
the TransE algorithm [7] that we adopt and extend. We show the
results in Figure 12 for the diabetes data and Figure 13 for the mo-
bile system data (the other two datasets show a similar conver-
gence).

From Figures 12 and 13, we can see that, interestingly, the loss
function value sharply decreases after each of the initial epochs
of the embedding, where we perform stochastic gradient descent
optimization over each value in the embedding vectors and the
attention values for each ephemeral edge between an event node
in the active set and a target event node. After 40 to 50 epochs,
the loss function values in both figures level off, and converge at
the lowest by around 80 to 90 epochs. The convergence is slightly
faster with the mobile system dataset.

6.2.4 Predictive Query Accuracy

After observing the training process, we next examine the event
prediction accuracy. The prediction tests are run over the period
after the current window. We predict both the 7 relationship
(“happening soon”) and the r; relationship (“happening long af-
ter”). We show the results in Figures 14 and 15 (for 1 and 72,
respectively) for the mobile dataset, and in Figures 16 and 17 for
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the oil well dataset.

As our work is to predict discrete events over multiple-attribute
data streams in real time, the closest previous work is mining se-
quential association rules [40] and using the rules to predict. We
first mine all the rules that have the target events (to be predicted)
on the right hand side, for both 71 and r3. Then for a target event
e to be predicted using an active set A of events, we identify all
the rules that have e on the right hand side, and compute the sim-
ilarity between its left hand side and the active set A—combining
this and the confidence of the rules gives us the prediction of 71
or r2. As discussed earlier, ICPE and KSVM are not designed for
predicting the timing of future events (in a future tuple), but for
predicting the unknown class attribute in the current tuple. To use
ICPE and KSVM, we have to extend the current stream tuple with
its 71 or r relationship with a target event in a future tuple, treat-
ing it as the class attribute. We need to add one class attribute for
each target-event and r1 or r2 combination.

For accuracy, we measure both precision and recall [40]. We
first parse the test data (a window of stream after the training pe-
riod) and for each distinct active set of events, we record the set
of target events that have r1 or 3 relationships with it. Using this
as the ground truth, we calculate the precision and recall values
when using our trained embedding vectors and attention values
for prediction. First, Figures 14 and 15 over the mobile dataset
show that our method is much more accurate than the three base-
line methods for this problem, achieving good precision and recall
values ranging from around 0.8 to nearly 1. ICPE and KSVM are
not designed for this future event timing prediction problem, and
they do not capture very well the timing relationships of event co-
occurrence, following by a short interval, and following by a large
interval. The accuracy of ICPE is the worst due to its simplistic
data structures and algorithms.

In Figures 16 and 17 with the oil well dataset, we further show
the impact of sliding window size on prediction accuracy. We find
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that, while initial increase of window size can improve precision
and recall accuracy, further increase beyond a certain point actu-
ally decreases the accuracy. This is because the more recent data
is more accurate for training the current model; data more ancient
in the history may distract the training process in learning the
current latent features.

Last but not least, we observe that, interestingly, the recall accu-
racy values are in general slightly higher than the precision val-
ues, for both 71 and 7, relationships. The reason is as follows.
Just as knowledge graphs are generally incomplete [33], what we
observe in the test window as “ground truth” data is generally in-
complete (i.e., the “fact” just has not happened yet). Therefore, our
method’s recall value is relatively higher, since we (almost always)
correctly tell that those relationships in the ground truth should
be there. But since the “ground truth” (test data window) may
miss some real targets for a relationship, while those targets may
be correctly returned by our model, the precision of our method
using the “ground truth” slightly suffers.

6.2.5 Training Data Dependent Complexity Bounds

Finally, we implement the computation of the data-dependent
accuracy bounds using Rademacher complexity as in Theorem 2
(which we call Rademacher bounds here), where we set the € pa-
rameter to be 0.05. This involves solving a convex optimization
problem to get Iél]l%l}r w(r). We implement gradient descent for

™

that purpose. In Figure 18, we show the overhead of making a
prediction (as done for Figures 14-17) and that of computing the
Rademacher bound side by side for diabetes and mobile system
data (the other two datasets have very similar results). We can
see that making a prediction is very fast (as the model of embed-
ding is already trained), in a few microseconds, while computing
the Rademacher bound is longer (mostly due to the gradient de-
scent optimization)—but it is still only a few milliseconds. In Fig-
ure 19, we show the computed average Rademacher bounds as a
function of the number of event nodes used. The error bound de-
creases as the sample size increases, and the average bounds from
the two datasets are close. Note that these bounds are theoretical
guarantees and tend to be more conservative. As shown earlier, in
practice, we often get better accuracy. Moreover, the bound here
is the error in predicting the exact probability. In practice, it of-
ten suffices to make relative judgements, e.g., which target event
between the two is more likely to happen soon, or will this event
more likely happen soon or long after now, which can be based on
exact probabilities but are more robust to exact-probability errors.

6.3 Summary of Results

The experimental results in this section show that learning the
top relevant events for a set of target events using A* search is
quite efficient, and the cardinality (number of basic events) of the
top events typically ranges from 2 to 5. We have also evaluated
the efficiency of building the event-order graphs and of training
the embedding vectors and attention values. We have clearly ob-
served the fast convergence of the loss function value after around
50 epochs during the training. The overall system throughput for
graph building, embedding training, and event prediction ranges
from over one thousand to sixty thousand tuples per second for
the four datasets. Using our trained model for event timing rela-
tionship (1 or r2) prediction is generally accurate, with precision
and recall values ranging from around 0.7 to nearly 1, much higher
than those of the three baseline methods, some of which are off-
the-shelf classification methods not specifically designed for our
future event timing prediction problem. We have also computed
the Rademacher bounds with real data.

7. OTHER RELATED WORK

Most closely related work has been discussed inline above. We
survey other related work here.

Time series forecasting. Our work bears some similarity with
time series forecasting. [18] is a comprehensive review of this re-
search over the past years. [9] and [19] present additional work.
We, however, are not dealing with single numerical attribute time
series forecasting. We focus on discrete events over multiple at-
tributes in data streams, and their timing relationship modeling
and predictions.

Data streams and event processing. Event matching and com-
plex event processing have been well studied in both research and
the industry, and is used by practitioners (e.g., [1, 2, 47]). They
typically extend the regular expression syntax to define a com-
plex event that is a sequence of simple events. However, this line
of work does not deal with predicting future events or predicting
the timing relationships among events.

Classification methods. There are a number of off-the-shelf clas-
sification methods, such as kernel machines and SVM [11, 27, 38],
succinct data structures for stream classification [46], and deep
learning [24]. We have compared with some of them in detail in
the experiments. Off-the-shelf classification methods are not de-
signed for our problem. Their model is to predict the class attribute
of a stream tuple given its other attributes that are observed. As
discussed in Section 6, we could use it to solve our problem by ex-
tending each tuple with one class attribute for each target event—
r1/72 combination. However, this does not perform as well as our
relational machine learning approach (knowledge graph embed-
ding) [33]. This is because relational machine learning creates and
models new relationships 71 and 7 that weave the intricate con-
nections among the selected events, as well as their co-occurrence
relationship in tuples. The embedding training learns latent fea-
tures based on this network of entities and relationships that are
not only efficient but also powerful. As discussed in Section 1.1,
deep layers of neural networks [24] require a large amount of
training data and heavy resources including GPUs and long train-
ing time, unfit for fast real-time adaptive stream computing.

Complexity analysis for learning models. VC dimensions and
Rademacher complexity have been applied to study the complex-
ity and accuracy guarantees of machine learning algorithms [6].
For instance, Riondato and Upfal [35] apply Rademacher complex-
ity to analyze a sampling based algorithm to compute and approx-
imate node centralities in a very large graph.

8. CONCLUSION

In this paper, we propose a novel approach to predict event tim-
ing information in multi-attribute data streams. We represent the
event timing knowledge in training data using a knowledge graph
where nodes are events, and edges encode timing relationships
such as “happening soon after” and “happening long after”. On top
of this knowledge graph, we need the notion of “active state” to
characterize the state information, as well as ephemeral nodes and
edges along with attention parameters for learning the embedding
vectors containing latent features. With this novel embedding, we
are able to achieve high precision and recall values in predicting
event timing, ranging from about 0.7 to nearly 1, significantly out-
performing baseline approaches.
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