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ABSTRACT
We study a practical problem of predicting the upcoming events

in data streams using a novel approach. Treating event time or-

ders as relationship types between event entities, we build a dy-

namic knowledge graph and use it to predict future event tim-

ing. A unique aspect of this knowledge graph embedding ap-

proach for prediction is that we enhance conventional knowledge

graphs with the notion of “states”—in what we call the ephemeral

state nodes—to characterize the state of a data stream over time.

We devise a complete set of methods for learning relevant events,

for building the event-order graph stream from the original data

stream, for embedding and prediction, and for theoretically bound-

ing the complexity. We evaluate our approachwith four real world

stream datasets and �nd that our method results in high precision

and recall values for event timing prediction, ranging between

0.7 and nearly 1, signi�cantly outperforming baseline approaches.

Moreover, due to our choice of e�cient translation-based embed-

ding, the overall throughput that the stream system can handle,

including continuous graph building, training, and event predic-

tions, is over one thousand to sixty thousand tuples per second

even on a personal computer—which is especially important in

resource constrained environments, including edge computing.
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1. INTRODUCTION
Event matching, as part of complex event processing (CEP), is

one of the most important topics in data streams [13]. Many com-

mercial systems (e.g., [12, 1]) have implemented event matching

and CEP. However, li�le work has been done on predicting the tim-

ing of an interesting event, which we call a target event—whether

it will happen soon or long a�er the current time.

Example 1. Outpatient monitoring and management of Type 1 di-

abetes (T1D) is a critical issue [23]. It relies principally on three
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interventions: diet, exercise, and exogenous insulin. Diabetes pa-

tient information is obtained from an automatic electronic record-

ing device. �e automatic device has an internal clock to timestamp

events. We consider signals from a short period of time as a tuple,

and there are multiple a�ributes in a tuple, such as regular insulin

dose, NPH insulin dose, blood glucose measurement at a pre-meal or

post-meal, hypoglycemic symptoms, typical or more/less-than-usual

meal ingestion, and typical or more/less-than-usual exercise activity.

�e continuous monitoring data forms amulti-a�ribute data stream.

Doctors may match interesting event pa�erns; they may also want

to predict some events of interest, such as hypoglycemic conditions

in the near future, or a blood glucose measurement that will increase

signi�cantly. Doctors and/or outpatients may be noti�ed when such

predictions occur, and critical interventions can be performed to pre-

vent undesirable events.

�ere aremany other examples. Prediction of undesirable events

in oil and gas wells can help prevent production losses, environ-

mental accidents, and human casualties, and help reduce mainte-

nance costs [43]. �e stream tuples contain various measurement

events in oil wells, as well as a number of undesirable events such

as abrupt increase of Basic Sediment and Water (BSW), spurious

closure of Downhole Safety Valve (DHSV), and severe slugging.

�e measurement events include pressure events at Permanent

Downhole Gauge (PDG), temperature events at Temperature and

Pressure Transducer (TPT), pressure events at TPT, among many

others. �is stream can be very fast, and we are managing many

wells. �e prediction must be quick and early for actions.

Yet another example, as used in our experiments (Section 6), is

in the transportation domain [16]. In a metropolitan area, aver-

age delay scores of taxi trips, de�ned as the ratio between trip time

and trip distance, are expensive to obtain as they require detailed

information of all trips. �e target events, such as delay score be-

ing very high in several locations of interest, can be predicted in

advance based on a combination of basic events at a few locations

that have cameras or sensors to only record simple statistics such

as the frequency of incoming and outgoing taxis.

In addition to early actions to cope with a predicted event, event

timing prediction is also useful in predictive complex event pro-

cessing and best-e�ort complex event matching under resource con-

straints [22, 20, 31]. While there is much previous work on time

series forecasting [18], li�le has been done on multi-a�ribute data

stream discrete-event timing prediction—whether a target event

will happen soon, or whether an event will happen much later,

using limited training data to promptly build a model and predict.

�ere is previous work on sequential association rules [40]. How-

ever, our experiments show that our proposed approach provides

much be�er prediction accuracy in terms of precision and recall.
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1.1 Requirements and Our Approach
Consistent with other data stream applications and methods,

the training of the predictive model should be fast and possibly

performed in real time. Alongwith this, the training should ideally

only use a small amount of most recent data, so that the learning

and training of models can be continuous, adaptive to any changes

in data streams. For instance, deep layers of neural networks [24],

which require a large amount of training data and heavy resources

including GPUs and long training time, are un�t for fast real-time

adaptive stream computing, which is sometimes even pushed to

less powerful devices in edge computing [21]. Consider, for ex-

ample, the oil wells application above. Each of the many wells

produces a lot of sensory data very fast, and the wells may be

geographically very dispersed. At each distant location near the

well where the data is produced, it would be ideal to have a laptop

or even a less powerful device to perform the undesirable-event

model learning and prediction in place, rather than communicat-

ing all the data from each well to a central server for processing,

which can be too slow and overwhelm the network. If needed,

only detected critical events can be communicated to the central

server for records and actions. Likewise, the same situation hap-

pens with the metropolitan tra�c example above or self-driving

cars and smart cities. Instead of communicating large amounts of

streaming data to a central server, each light device can perform

critical event prediction in place.

We propose an approach that is based on some state-of-the-art

result in machine learning called graph embedding [10]. �ere are

several novel aspects of our approach that are signi�cantly di�er-

ent from prior work using graph embedding.

• First and foremost, we create a knowledge graph [25] that

characterizes the timing relationships between two events,

where the relationships include “happening soon a�er” and

“happening long a�er”.

• Unlike conventional knowledge graphs, we introduce the

notion of “active state” that characterizes the events that

hold true at the current timestamp, or at a particular times-

tamp of interest. From a di�erent perspective, our model

may also be considered as a knowledge enhanced state ma-

chine.

• For embedding, we introduce “ephemeral nodes” associated

with each active set of the timing knowledge graph, whose

embedding vectors are derived from the nodes in the active

set through ephemeral edges and a�ention parameters (de-

tails in Section 3).

To build the timing knowledge graph, we study the problem of

what set of relevant events to use as the nodes, in order to predict

a given set of target events. Intuitively, a relevant event appears

o�en in the vicinity (or context) of a target event, but appears sig-

ni�cantly less o�en in the general data stream. For instance, in

Example 1, for a target event “blood glucose measurement higher

than the previous one”, a relevant event may be “more-than-usual

meal ingestion”. We adopt the notion of tf-idf (term frequency –

inverse document frequency) [34] from information retrieval as a

metric to get the top-k relevant events with the highest tf-idf. All

these events are the conjunction of one or more basic events, each

of which is a primitive predicate over a tuple.

However, the search is very expensive andmay involvemultiple

rounds of parsing the stream training data. We devise an e�cient

one-pass algorithm that uses fast bitmap operations and A* search

(pruning and bounding). Finally, we provide a novel analysis of the

error bound of prediction result using the Rademacher complexity

theory.

Our experiments over four real-world datasets show that our

proposed algorithms are very e�cient. We can see the fast de-

crease and convergence of the loss function value for our a�ention-

based ephemeral node embedding a�er around 50 epochs. Due to

our choice of e�cient translation-based embedding, the overall

throughput that the stream system can handle, including contin-

uous graph building, continuous training, and event predictions,

is over one thousand to sixty thousand tuples per second even on

a personal computer—which is especially important in resource

constrained environments, including edge computing [21]. While

the system throughput is high, the trained model also achieves

high precision and recall values for event timing predictions, rang-

ing from around 0.7 to nearly 1, much higher than the baseline

approaches.

In summary, our contributions are as follows:

• We propose to build timing knowledge graphs for events in

data streams to predict the timing of target events (Sec. 3).
• We devise a novel graph embedding algorithm that incorpo-

rates the notions of active states, ephemeral nodes, and the

a�ention mechanism (Sec. 3).
• We design an e�cient one-pass algorithm to learn the top

relevant events as nodes of the graph, using tf-idf from in-

formation retrieval and an A* search (Sec. 4).
• We analyze the data-dependent error bounds of the predic-

tion using Rademacher complexity theory (Sec. 5).
• We perform a systematic empirical study that demonstrates

the high accuracy of our predictions, and the high e�ciency

of the graph-building and training algorithms (Sec. 6).

2. PROBLEM STATEMENT

2.1 Problem Formulation
We are given a data stream S that consists of a sequence of

records (r1, t1), (r2, t2), ... where t1 < t2 < · · · . An event at

time ti is a Boolean predicate over the record ri, involving one or
more a�ributes of ri.

Let the time of record r∗ be t∗. We say that event e will occur
soon a�er r∗ (or t∗) if it is true in record (ri, ti) and 0 < ti −
t∗ < δ1, for a (small) constant value δ1. On the other hand, if e
is false in each record (ri, ti) for ti ≤ t∗ + δ2 (where δ2 > δ1
is a constant), we say that e happens long a�er r∗ (or t∗). Note
that the semantics on the event timing gaps δ1 and δ2 can either

be count-based (i.e., number of records) or time-based. Without

loss of generality, we assume the time-based semantics (the count-

based one is essentially integer timestamps).

Given a set of interesting events e1, e2, ..., ek , and the current

record (r∗, t∗), and a window of most recent data before r∗, the
problem is to predict whether each event ej (1 ≤ j ≤ k) will
happen soon a�er r∗, or whether ej will happen long a�er r∗.

Note that we focus on point-based events in this paper. Time re-

lationship between interval-based events aremore complicated [3],

which could be a topic of future work. Nonetheless, even with in-

terval events, it is o�en su�cient to be able to predict the critical

time points within them, such as the start of an event, the end of

an event, or other major time points.

2.2 Preliminaries
We �rst survey some background knowledge necessary for the

rest of the paper. �e terms graph and network are used inter-

changeably.
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back in time up to length δ2. In addition, we also maintain a set

of eventsEold that has not appeared for at least δ2 time, shown as

the green oval in Figure 3. �en, as soon as an active set inQa is δ2
old, we remove it fromQa and create r2 edges, one to each event

inEold. Furthermore, when the current tuple at time t (now) joins
Qa, we also create r1 edges from each active set within δ1 back

in time to each event in the current tuple. We present the graph

building algorithm in BuildEventOrderGraph.

Algorithm 1:
BuildEventOrderGraph (S, e1, ..., ek, ..., en)
Input: S : data stream;

e1, ..., ek, ..., en: relevant events, �rst k are target

events

Output: event order dynamic graph GS
1 initialize t1, ..., tn as last occurrence times of e1, ..., en
2 Eold ← ∅ //set of events that are at

least δ2 old
3 for each tuple s[t] ∈ current window of S do
4 Ea[t]← s[t] ∩ {e1, ..., en} //get active

events
5 for each ei ∈ Ea[t] do
6 ti ← t //update last-occurrence time
7 Eold ← Eold \ {ei}//remove from old

tuple set
8 Qa ← Qa ∪ {Ea[t]} //add Ea[t] into Qa
9 for each ei ∈ {e1, ..., en} \ Ea[t] do

//check if it is now old
10 if ei /∈ Eold and t− ti > δ2 then
11 Eold ← Eold ∪ {ei}

12 for each Ea[t′] ∈ Qa s.t. t− t′ > δ2 do
13 Qa ← Qa \ {Ea[t′]}
14 AddR2Edges(GS , Ea[t′], Eold)
15 for each Ea[t′] ∈ Qa s.t. 0 < t− t′ < δ1 do
16 AddR1Edges(GS , Ea[t′], Ea[t])

17 GS is continuously used for embedding

Line 1 of the algorithm initializes, for each of the n events, the

last time that it occurs. We will use this information to determine

when an event is too old (i.e., it has not appeared in the past δ2
window), and we will add an r2 edge from an old active set (δ2
earlier) to this old event. Line 2 initializes a set that stores such

old events. �e main loop in lines 3-16 does continuous and incre-

mental parsing of the stream over sliding windows and deposits r1
and r2 edge information to the edge pool as illustrated in Figure 3.

Line 17 indicates that such a graph (edge pool) is continuously

used by the embedding algorithm in the next stage of the pipeline.

In line 4, we get the set of active events that are true in the

current tuple. �en lines 5-7 update each of these active events’

last occurrence time and remove it from the old set if it is there.

In line 8, we add the active set to a queue Qa. We trim the queue

when an event is over δ2 old. Qa is needed for adding an r2 edge

from an old active set (δ2 earlier) to an old event (that has not

appeared for long). Lines 12-14 trim an active set from Qa if it is

over δ2 old, and add the corresponding r2 edges to each old event

in Eold, as discussed earlier. On the other hand, lines 15-16 add

the r1 edges from each recent active set (within δ1) to each event

in the current tuple.

We next look at the AddR1Edges algorithm (AddR2Edges is

similar). Each r1 edge essentially records a relationship from an

Algorithm 2: AddR1Edges (GS , Ea, Eto)
Input: GS : dynamic event order graph stream;

Ea: the active set at “from” end of r1 edge;

Eto: set of event nodes at “to” end of r1 edge

Output: updated GS
1 for each ei ∈ Eto do
2 if i ≤ k then

//to a target event
3 GS .tarE ← GS .tarE ∪ {(Ea, ei, r1)} //target

edges
4 else
5 if count ≤ cap then

//count is total non-target r1
6 GS .ntarR1[count]← (Ea, ei, r1)

7 else
8 j ← random(1, count)
9 if j ≤ cap then

10 GS .ntarR1[j]← (Ea, ei, r1)

11 return GS

active set Ea to an event node ei. Note that the embedding algo-

rithm presented later will temporally add the ephemeral node vaei
betweenEa and ei, as well as the ephemeral edges rxei from each

event node x in Ea to vaei (as shown in Figure 2). But for now,

if the to-event is a target event (lines 2-3), we only add the triple

to the set tarE (target edges); others in lines 5-10 we perform the

reservoir sampling [45] so the triple will be put in a �xed-size (cap)
bu�er ntarR1 (non-target r1 edges) uniformly at random. �us,

essentially the graph building algorithm only creates hyperedges

from an active set (multiple nodes) to a single event node.

It is not hard to see that the BuildEventOrderGraph algo-

rithm has a per-tuple time complexity ofO(λδ1c+n), where λ is

the average stream rate (tuples/second), c is the average number of

events per tuple, andn is the number of relevant events as input. In

particular, the utility algorithm AddR1Edges has a complexity of

O(|Eto|). Moreover, the space complexity of BuildEventOrder-

Graph is O(λδ2). �e time complexity of BuildEventOrder-

Graph is because we need to add an r1 edge from each tuple’s

active set to each of the c events in the λδ1 tuples that follow, and
because for each tuple we need to add one r2 edge to each of the

old events (and there are no more than n of them). �e space com-

plexity is due to the fact that we need to maintain a window of size

O(λδ2) to be able to determine the r2 edges.

3.3 Training Embedding Vectors and Atten-
tion Parameters

3.3.1 The Embedding Algorithm
Having built the event-timing knowledge graph, we now use

the data stream data to obtain the graph embedding vectors. Due

to the requirement of data stream algorithms (Section 1.1), we ex-

tend the e�cient TransE [7] knowledge graph embedding algo-

rithm and add ephemeral nodes (with derived embedding vectors),

as well as the a�ention parameters.

�e basic idea of this algorithm is quite simple. Recall that the

r1 and r2 edges we build in the graph are triples (Ea, e, r), from
an active set Ea to an event e with relationship r (r1 or r2). We

iteratively sample such a triple from our triple pool. Recall from

Figure 2 that a triple actually consists of two sets of edges—from

1783



each event in Ea to the ephemeral node and from the ephemeral

node to e. Our objective (loss) function used for stochastic gra-

dient descent will combine the constraint relationship from these

two sets of edges, as well as a negative triple by corrupting ei-

ther end of the positive triple. We present the algorithm in State-

BasedEmbedding.

Algorithm 3: StateBasedEmbedding (GS )
Input: GS : dynamic event order graph stream

Output: embedding vectors for nodes and relationship

types of GS
1 loop
2 pool← GS .tarE //first only use target

edges
3 Sbatch ← sample(pool, b) //draw a

mini-batch of size b
4 for (Ea, e, r) ∈ Sbatch do

//loop over the original Sbatch
5 (E′a, e

′, r)← sample(S′(Ea,e,r)) //sample a
corrupted triple

6 Sbatch ← Sbatch ∪ {(E′a, e′, r)}
7 let f =

∑
(Ea,e,r)∈Sbatch

σ((Ea, e, r)) ·
∑d
i=1[ei −

ri − 1
n

∑
x∈Ea axe(xi + rxei)]

2

8 update embeddings and a�ention a w.r.t. gradient of f

9 while time remains do
10 pool← GS .tarE ∪ GS .ntarR1 ∪ GS .ntarR2
11 do lines 3-8

In the loop of lines 1-8, we �rst perform the iterative training

over target edges, which, as discussed earlier, have a higher prior-

ity as they directly lead to the target nodes to be predicted. Lines

9-11 are essentially the same, but work on all edges. Line 3 samples

amini-batch of triples (formini-batch stochastic gradient descent).

Similar to TransE (andmost other translational distance based em-

bedding), line 5 does negative sampling [32] by corrupting either

the head or tail of a positive triple in the sample set, and line 6

includes the negative sample in the batch too.

Line 7 has the key loss function of the embedding, where the

σ(·) function is the sign function that is +1 for a positive sample

and −1 for a negative sample, and d is the dimensionality of the

embedding vectors. �is is similar to the L2-distance version of

TransE [7] minimizing ‖t - r - h‖2, except that t is the event node
e, and the head h is replaced by the embedding of the ephemeral

node vae in Figure 2. In turn, vae is the tails of the triples from

the ephemeral edges such as rie in Figure 2. Again using the con-

straint t = h + r we derive the embedding of vae from x + rxe, and
does a weighted sum of them from each event node of the active

set, where the weight is the a�ention parameter axe.
In line 8, the algorithm does stochastic gradient descent opti-

mization over each parameter value in each embedding vectors,

including those of the event nodes, r1, r2, and all ephemeral edges’

relationship types rie (as in Figure 2), as well as all the a�en-

tion parameters axe. Like TransE, we normalize each embedding

vector to length 1, and normalize the a�ention parameters such

that

∑
x∈Ea axe = n (where n is the total number of events).

We organize the training algorithm iterations into epochs, where

each epoch has the number of random samples equal to the total

number of training records used. Our experiments show that the

convergence of the loss function value is quite fast, the details of

which are in Section 6.

It is easy to see that the complexity of StateBasedEmbedding

is O(Idc), where I is the number of iterations to reach conver-

gence, d is the dimensionality of embedding vectors, and c is the
average number of events per tuple. Note that, as we continuously

train embedding vectors from one sliding window to the next, the

number of iterations I to reach converge of course depends on

data—data that changes signi�cantly over time tends to require a

greater I , while a more stable stream needs a smaller I for incre-
mental embedding.

3.3.2 Making Prediction
Once we have all the embedding vectors and a�ention param-

eter values, making predictions is again based on the same loss

function as in line 7, except that we do not need to use a negative

sample, and there is only one triple in the sample set Sbatch. �at

is, we use the loss function f =
∑d
i=1[ei−ri−

1
n

∑
x∈Ea axe(xi+

rxei)]
2
. For example, if the current record has active set Ea, and

we want to predict whether a target event e will be more likely to

occur soon or to occur much later, we use the loss function above,

and the relationship that results in a smaller loss function value

wins.

4. LEARNING RELEVANT EVENTS
In the previous section, we assume that we are given the events

to use for building the activation graph and for event predictive

queries. In this section, we will study how to select the relevant

events to use with respect to a set of possible target events to be

queried (predicted). �ese top relevant events are used for contin-

uous dynamic graph building, as well as continuous embedding

learning and predictive queries as presented in the previous sec-

tion.

4.1 Preliminaries on tf-idf
In information retrieval, tf-idf is a numerical statistic that is in-

tended to re�ect how important a word is to a document in a col-

lection or corpus [34]. �e tf-idf value increases proportionally to

the number of times a word appears in the document and is o�set

by the number of documents in the corpus that contain the word,

which helps to adjust for the fact that some words appear more

frequently in general. �e tf-idf is the product of two statistics,

term frequency and inverse document frequency. A simple way to

de�ne tf is: tf(t, d) = 1 if t occurs in d and 0 otherwise. A com-

mon way to de�ne idf is: idf(t,D) = log |D|
|{d∈D|t∈d}| , where |D|

is the number of documents in the corpus D, and |d ∈ D|t ∈ d|
is the number of documents that contain the term t. �us, a more

common term has a smaller idf.

4.2 Learning Algorithm
Basic Ideas and Intuitions. In this subsection, we discuss how

to identify “signi�cant” events that help predict target events. �e

basic idea is that we aim to �nd characteristic events that tend to

precede target events (i.e., within time δ1, the threshold used to

determine relationship r1), but not so much for other events. We

resort to a metric in information retrieval called tf-idf (short for

term frequency-inverse document frequency) [34]. For our prob-

lem, each event candidate is analogous to the “term”, while con-

text (tuples prior to the target event) before a target event occurs

is analogous to the document we are interested in, and the general

context of the whole stream is analogous to the text corpus.

�en there is the computation issue—how do we e�ciently �nd

the top events with the highest tf-idf with respect to each target?

We �rst partition the set of values or value range of each a�ribute
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into basic events. Intuitively, they are the elementary events in a

general event. For instance, a basic event in Example 1 may be

“less-than-usual meal ingestion”. However, just the basic events

themselves may not be discriminative enough, as each basic event

alone may be very common in the general stream context. �us,

we also explore the combination of two or more basic events to-

gether as a composite event. A possible composite event from Ex-

ample 1 is “less-than-usual meal ingestion” and “blood glucose

lower than previous one”. A composite event will have lower (or

the same) tf (term frequency) in the context of target events than

the individual basic events within it, but it will also have higher

(or the same) idf (inverse document frequency).

�erefore, we aim to �nd the top-n events (either basic or com-

posite) that have the highest tf-idf for each target event. While the

number of basic events ismanageable (typically a constant number

of partitions times the number of a�ributes), there are an exponen-

tial number of composite events—it is computationally challeng-

ing to compute the tf-idf of all of them by checking the tuples prior

to each target event and those prior to each tuple in the stream.

We devise a novel algorithm by using e�cient bitmap oper-

ations, sampling, and A*-style pruning and bounding [37]. �e

main ideas are as follows. We build a bitmap B1 for each basic

event ewhere each bit of B1 corresponds to one occurrence of the
target event (say, at time t), and the bit is 1 if e occurs within time

[t− δ1, t), i.e., within δ1 interval prior to the target event, and is 0
otherwise. �is will be used to compute the tf part of tf-idf. In the

same vein, we build a bitmap B2 for each basic event e for its oc-
currence in the general stream context (i.e., every tuple). However,

the problem is that there might be too many tuples in the stream,

which makes B2 too large. �us, we use random sampling which

provides a provably accurate estimate of the idf part of tf-idf. We

sample the stream tuples and each bit of B2 corresponds to a tuple
that is chosen in the sample. Like B1, if the chosen tuple arrives

at time t, the bit of B2 is 1 if e occurs within time [t − δ1, t), and
is 0 otherwise.

�e next idea is that we use A*-style aggressive pruning and

bounding to e�ciently search the space for top-n events in tf-idf.

We maintain a priority queue Q, where each element in Q is an

event (basic or composite) along with a weight, which is an opti-

mistic upper bound of its tf-idf value (proven in�eorem 1 below).

Each time, we pop out an event with the highest weight from Q,
and expand it with another basic event unless it is marked �nal-

ized. A �nalized event e has its weight exactly the same as its tf-idf,

and since this value is higher than the upper bounds of the tf-idf

of all other events inQ, it should be returned as a top event.

�e Algorithm. We now show the algorithm GetTopRelevan-

tEvents. In line 1, we assign an arbitrary but �xed order to all

basic events. Lines 4-5 build the two bitmaps as discussed above.

Lines 6-29 perform the A* search of top-n events with highest tf-

idf. Speci�cally, the loop in lines 7-12 �rst add each basic event

into the priority queueQ. �e weights set in lines 9 or 11 are used

to order the items in Q, with the root of Q (to be popped next)

having the greatest w. �eorem 1 below shows the reason for the

w value, which is an upper bound of the tf-idf value of all events

that can be derived from ej .
Line 15 pops the root of Q each time for the event with the

greatest w. In general, w is an upper bound of tf-idf. �e �nalized

�ag in line 16 marks that w is actually the exact tf-idf of the cor-

responding event ei. �us, if the condition in line 16 is true, event

ei’s tf-idf is higher than every other event’s tf-idf upper bound—

which means that ei must have the highest tf-idf among all the

events not already in Er . �en line 17 adds ei into the set to be

returned.

Lines 19-27 expand the current event ei by onemore basic event

ej , where ej is a�er all the basic events in ei according to the order
in line 1. Lines 23-26 set the upper bound valuew in the same way

as lines 8-11. Line 28 updates the w of the already popped out ei
to its exact tf-idf value, and marks it as �nalized before pu�ing it

back intoQ. Note that the worse case complexity of GetTopRele-

vantEvents is stillO(2bn), where b is the number of basic events

and n is the number of top events to be extracted. Of course, as

any A* algorithms, it has aggressive pruning and is much faster in

practice. �eorem 1 below shows the correctness of the algorithm.

Algorithm 4: GetTopRelevantEvents (S, ex, n)
Input: S : data stream;

ex: a target event;
n: number of events to retrieve

Output: top n events with the highest tf-idf

1 Eb ← a �xed order of basic events in a tuple of S
2 while one pass of S do
3 for ej ∈ Eb do
4 build bitmap B1(ej), bit i indicates if ej occurs in

[t− δ1, t), where t is the i-th occurrence time of ex
5 build bitmap B2(ej), bit i indicates if ej occurs in

[t− δ1, t), where t is occurrence time of i-th tuple

in sample of S

6 initialize priority queueQ of events

7 for ej ∈ Eb do
8 if |B1(ej)| < |S|

e
then

9 w ← |B1(ej)| · log |S|
|B1(ej)|

10 else
11 w ← |S|

e
· log e

12 add ej intoQ with weight w

13 Er ← ∅ //result to be returned
14 while |Er| < n do
15 pop (ei, w) fromQ
16 if ei is marked �nalized then
17 Er ← Er ∪ ei
18 continue
19 for each ej ∈ Eb a�er all basic events in ei do
20 e′i ← ei ∩ ej
21 if |B1(e′i)| = 0 then
22 continue

23 if |B1(e
′
i)| < |S|

e
then

24 w ← |B1(e
′
i)| · log |S|

|B1(e′i)|

25 else
26 w ← |S|

e
· log e

27 add e′i intoQ with weight w

28 w ← |B1(ei)| · log N
|B2(ei)|

//N is number of
bits in B2(ei)

29 mark ei �nalized and add ei intoQ with weight w

30 return Er

�eorem 1. �e GetTopRelevantEvents algorithm returns the

correct top-n events with the highest tf-idf. In particular, the w
bound calculated in lines 23-26 of the algorithm for event e′i is an
upper bound of the tf-idf of all the events that can be derived from

e′i by adding basic events into it.

1785



Proof. Let the tf value of an event ei be c, i.e., ei appears in c places
where the target event appears. To ensure the correctness of the

A* pruning in the algorithm, its w value must be an upper bound

of the tf-idf of all events that can be obtained by extending ei—we
call such events the descendants of ei. Let 1 ≤ x ≤ c be the tf of
such a descendant (whose tf can only be smaller than or equal to

ei’s). �en f = x log N
x
, where N is the total size of the stream,

is an upper bound of the tf-idf of this descendant. To get an upper

bound among all such descendants, we need to �nd the maximum

value of f = x log N
x

for an integer 1 ≤ x ≤ c. By taking the

derivative of f over x, we get that if c < N
e
, the upper bound is

just c log N
c
; otherwise the upper bound is

N
e
· log e, where e is

the the base of the natural logarithm. �is exactly corresponds to

the w assignment in lines 23-26.

Discussions and Remarks. Our model training (Section 3) uses

the top relevant events. A natural question is what happens if

new events become more relevant a�er training. �is concern is

addressed from several aspects. First of all, our learning-events,

building graph, and embedding pipeline is continuous and incre-

mental. �e top events, graph, and embedding vectors are con-

tinuously updated. Secondly, previously unseen events have rela-

tions with our identi�ed events. �us, we do not need to explicitly

list every event. In other words, the relational machine learning

approach [33] is robust to new events, as a new event has relation-

ships with the old ones (e.g., co-occurrence) and the learned latent

features in embedding vectors (of other events) intuitively capture

the essence of all events. Finally, there are more expensive deep

learning approaches such as graph neural networks [44] that have

more generalizability by estimating the embedding of new nodes

based on its neighborhood. However, typically such an approach is

more computationally expensive and requires signi�cantly larger

amounts of training data unsuitable for the requirements of real-

time streams (Section 1.1). Further exploration of this problem is

beyond the scope of this paper, and we leave it to future work.

5. ANALYSIS OF COMPLEXITY AND
BOUNDS

5.1 Preliminaries on Rademacher Complexity
Rademacher complexity [29] is a fundamental concept to study

the rate of convergence of a set of sample averages to their ex-

pectations. It is at the core of statistical learning theory [41], but

its usefulness extends way beyond the learning framework. �e

Rademacher bounds depend on the training set distribution (un-

like VC-dimension based bounds [42] which are data indepen-

dent), and hence can o�en give be�er bounds for speci�c input

distributions. Moreover, it is estimated from the training set, al-

lowing for strong bounds derived from a sample itself.

We consider a �nite domain D. Let F be a family of functions

from D to [0, 1], and let S = {s1, ..., sn} be a set of n inde-

pendent samples from D. For each f ∈ F , de�ne mD(f) =
1
|D|

∑
c∈D f(c) and mS(f) = 1

n

∑n
i=1 f(si). Some results of

Rademacher complexity theory are bounding the maximum devi-

ation ofmS(f) frommD(f), i.e., sup
f∈F
|mS(f)−mD(f)|. Specif-

ically, Rademacher variables are de�ned as n independent random

variables σ = (σ1, ..., σn) with Pr(σi = −1) = Pr(σi = 1) =
1/2. �en the (empirical) Rademacher complexity is de�ned as

RF (S) = Eσ[supf∈F
1
n

∑n
i=1 σif(si)]. A key property of the

Rademacher complexity of a set of functions F is that it bounds

the expected maximum error in estimating the mean of any func-

tion f ∈ F using a sample, as we use in �eorem 2 below.

5.2 Analysis
In this section, we perform some analysis on our prediction al-

gorithm. Our embedding training algorithm and timing prediction

use L2 distance as the loss function. Sincewe always normalize the

vectors that we obtain to unit length, it is easy to see that using L2

distance as the objective function is equivalent to using cosine dis-

tance/similarity. �is is because

∑n
i=1(xi − yi)

2 =
∑n
i=1(x

2
i +

y2i−2xiyi) =
∑n
i=1 x

2
i+

∑n
i=1 y

2
i−2

∑n
i=1 xi·yi = 1+1−2x·y.

�erefore, the predicted event probability of target event e can be

wri�en as:

p(e) =
[ 1
n

∑
x∈Ea axe(x+ rxe) + r] · e

Z

=

∑d
i=1[

1
n

∑
x∈Ea axe(xi + rxei) + ri] · ei

Z

=
1

n

∑
x∈Ea

∑d
i=1[axe(xi + rxei) + ri] · ei

Z

(1)

where Z is a normalization constant (e.g., so that the probabilities

to all target events add up to 1). �e second equality is to expand

the dot product, while the third equality is to swap the two sum-

mations.

�e basic idea of using Rademacher complexity for our approach

is as follows. �e ideal scenario is if we had used all the events D
to build the event order knowledge graph GS , and then use the

embedding vectors to predict event probability following our al-

gorithm. But clearly that would be infeasible. Instead, our BuildE-

ventOrderGraph algorithm uses n � |D| events. It is reason-
able to assume that the top relevant events that we pick in Section

4 based on tf-idf are at least as good as uniform random samples.

We use Rademacher complexity theory [29] to analyze the accu-

racy guarantee provided by the n event sample. Let

f(x) =

∑d
i=1[axe(xi + rxei) + ri] · ei

Z
(2)

From Equations (1) and (2), p(e) = 1
n

∑
x∈Ea f(x), and we

consider this as the result from a sample S of n points, and name it

mS(f), while the ideal value ismD(f) =
1
|D|

∑
x∈D f(x), where

D is the set of all events as discussed earlier. Let F be the family

of f functions over all target events. �en we use the Rademacher

complexity to bound the error ofmS(f) frommD(f). �erefore,

we have the following main result, where the bounds themselves

are from [36].

�eorem 2. With probability at least 1 − ε, supf∈F |mS(f) −

mD(f)| ≤ 2RF (S)+
ln 3
ε
+
√

(ln 3
ε
+4nRF (S)) ln 3

ε
n

+

√
ln 3
ε

2n
, where

ε ∈ (0, 1) andRF (S) is the Rademacher complexity of F on S sat-

isfying RF (S) ≤ min
r∈R+

w(r), w(r) = 1
r
ln(

∑
v∈VS

exp[
r2‖v‖22
2n2 ]),

VS = {vfS , f ∈ F}, and vfS = (f(e1), ..., f(en)).

Here, the function w is convex and continuous in R+
, and has

�rst and second derivatives everywhere in its domain. Hence it

is possible to minimize it e�ciently using standard convex opti-

mization methods [8]. In our experiments, we simply implement

gradient descent to get minr∈R+ w(r). �e f(ei), for 1 ≤ i ≤ n,
in�eorem 2 is from Equation (2), where e1, ..., en are the n event

nodes. �e function familyF is for predicting each of the k target
entities. A �nal remark is that this is a data dependent bound—the

f(ei) values are based on the actual data and prediction results.

We will further examine the bounds, as well as the time taken to

obtain them, using real-world datasets in the experiment section

next.
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6. EXPERIMENTAL EVALUATION

6.1 Datasets and Setup
We use the following real world datasets in four di�erent do-

mains, namely biomedicine, mobile systems, the petroleum indus-

try, and transportation: (1) Diabetes data. �is is the AIM-94

dataset provided by Michael Kahn, MD, PhD, Washington Univer-

sity in St. Louis [15]. It records diabetes patients’ event logs (multi-

a�ribute streams) for about 5 to 9 months including insulin dose

(regular, NPH, and UltraLente), blood glucose at various times, hy-

poglycemic symptoms, meal ingestion amount, and exercise ac-

tivity amount. (2) Mobile system data. �is dataset is collected

and used by Banerjee et al. in an ACM UbiComp paper [5]. �e

data contains traces of ba�ery usage data for laptops. In addition

to ba�ery usage, the multi-a�ribute streams also contain data on

CPU utilization, disk space, on-AC status, Internet connectivity,

and idle time (based on keyboard events) for the laptop users. (3)
Oil well data. �is dataset from Brazil [17, 43] is as introduced

in Section 1. Prediction of undesirable events in oil wells is criti-

cal. It records various measurement events in oil wells, as well as

a number of undesirable real events. �e measurement events in-

clude pressure events at Permanent Downhole Gauge (PDG), tem-

perature events at Temperature and Pressure Transducer (TPT),

pressure events at TPT, among many others. �e dataset is over

5 GB and has about 1 tuple per second. (4) NY taxi data. �e

trip data of this dataset is about 30 GB, containing the informa-

tion of all taxi trips in the New York City in 2013 [16]. It has 14

a�ributes, including medallion, hack license, vendor ID, pick-up

date/time, drop-o� date/time, pick-up longitude/latitude, drop-o�

longitude/latitude, trip time, and trip distance.

We implement all the algorithms presented in this paper in Java.

In particular, we extend the code of TransE [7] to handle active

states, ephemeral nodes, and the a�ention mechanism. In addi-

tion, we have also implemented threemost relevant baselinemeth-

ods for comparisons: (1) sequential association rule mining, the

Generalized Sequential Pa�ern (GSP) algorithm [40], (2) event pre-

diction with Bayesian and Bloom �lters in ICPE’13 [46], and (3)

kernel-SVM [11], marked as SAR, ICPE, and KSVM in our upcom-

ing �gures, respectively. �e experiments are performed on a

MacBook Pro machine with OS X version 10.11.4, a 2.5 GHz Intel

Core i7 processor, a 16 GB 1600 MHz DDR3 memory, and a Mac-

intosh hard disk.

6.2 Experimental Results

6.2.1 Learning Top Relevant Events
Based on the a�ributes of each of the two datasets, we de�ne

a set of basic events, as well as a set of target events. For the dia-

betes data, there are 16 basic events, each of which is out of a sin-

gle a�ribute, including the second (or more) insulin injection of

the day, a signi�cantly increased blood glucose measurement, hy-

poglycemic symptoms, more-than-usual meal ingestion, and less-

than-usual exercise activity. Out of the basic events, we de�ne the

target events that a user may be interested in, such as a blood glu-

cose measurement signi�cantly higher (or lower) than the most

recent measurements, and the hypoglycemic symptoms.

Likewise, for themobile system dataset, there are 16 basic events

on individual a�ributes, including ba�ery being near-empty, be-

ing connected to the Internet, and so on. We also de�ne target

events such as CPU usage of 95% or more, and idle time of at least

20 seconds. For the diabetes data, we set δ1 to be 6 hours and δ2
to be 80 hours, while for the mobile system application, these two

time intervals should be much shorter to be useful, and we set δ1
to be 10 minutes and δ2 to be 1 hour.

For the oil well data, we de�ne the increases and decreases of

each measurement a�ribute as basic events, and each type of un-

desirable events as target events. For the NY taxi data, we parti-

tion the latitude and longitude ranges of NYC into 8-by-8 grids. As

mentioned earlier, we de�ne the ratio between trip time and trip

distance as the trip’s delay score. We then de�ne the target events

as the average delay score of all trips within 5 minutes at a grid

area that we are interested in is above (or below) a threshold—top

(or bo�om) 1/4 of the whole history at that area. However, de-

lays scores are expensive to obtain, as they require the statistics

of all trips going into or coming out of an area. �e idea is to use

easy-to-observe simple statistics of some grid areas (other than the

target areas), such as the incoming/outgoing taxi counts within 5

minutes. �ese events will help us predict he target events. For

both oil well and NY taxi datasets, we set the δ1 of 1/3 of the tar-

get events to be 5 minutes, 1/3 to be 10 minutes, and 1/3 to be 15

minutes. Furthermore, we set the δ2 of the oil well data to be 3

hours, and the δ2 of the NY taxi data to be 1 hour. In this section,

unless otherwise speci�ed, we set the default number of relevant

events n to be 150 for the diabetes and mobile system data, 300 for

the oil well data, and 400 for the NY taxi data.

In the �rst set of experiments, we evaluate the GetTopRelevan-

tEvents algorithm that retrieves the most relevant events (w.r.t.

the target events) which are any possible combinations of the ba-

sic events. Since our algorithm is a one-pass stream algorithm,

to evaluate the processing speed, we adopt the conventional ap-

proach of measuring the throughput of the algorithm, i.e., how

many stream tuples it can handle per second.

We �rst run the GetTopRelevantEvents algorithm using the

diabetes dataset and varying the number of target events. �e re-

sults are shown in Figure 4 for the mobile system dataset, and in

Figure 5 for the oil well dataset (the results of other two datasets

show similar trends and are omi�ed). In order to understand the

impact of the A* search to performance, we also run a version of

the algorithm skipping the A* search part only. We can see that

A* search slightly decreases the throughput by a small percentage,

for both datasets. Moreover, the throughput slightly decreases as

the number of target events increases. �is is because the algo-

rithm needs to proportionally handle more events and candidate

intermediate events.

�en we examine the distribution of the discovered top rele-

vant events, in what we call the cardinality, which is the number

of basic events that a discovered relevant event comprises. �e

cardinality distribution of the top events is shown in Figure 6 for

the diabetes dataset, and in Figure 7 for the mobile system dataset.

We can see that, for the diabetes data, the top relevant events have

the highest fraction of cardinality 2 (the next one is 3), while car-

dinality 4 has the highest fraction for the mobile system data.

�e above result re�ects a tradeo� in the cardinality of a rele-

vant event. Having too few basic events gives a higher “tf” part of

the tf-idf, since individual basic events are more likely to appear

in the context of target events; however, that would also result in

a lower idf as it also appears frequently in the general stream con-

text. In the other extreme, a very-high-cardinality event will have

a greater idf but a very low tf.

6.2.2 Continuous Building of Event-Order Graphs
In the next set of experiments, we examine the performance of

building event-order graphs. Our algorithm BuildEventOrder-

Graph is again a one-pass stream algorithm, and we use through-

put to uniformly measure the performance. �e results are shown
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in Figure 8 for the diabetes data and Figure 9 for the NY taxi data.

Recall that BuildEventOrderGraph does not include all edges

that lead to non-target nodes, but keeps a reservoir sample of them.

We compare the performance with a variant of the algorithm that

includes in the graph all edges to the non-target nodes as well.

Figures 8 and 9 show that the performance slightly decreases as

the number of relevant events increases. However, since we are

dealing with the top events that are relevant to the target events,

the number of such events does not need to be high to achieve

an equivalent prediction accuracy, as found in our subsequent ex-

periments. Including all edges to non-target nodes also slightly

decreases the performance for building the graph, compared to

discarding many such edges but only keep a uniformly random

sample as in the reservoir sampling. Another interesting fact is

that the throughput with the NY taxi data is in general higher than

the diabetes data. �is is because we aggregate the tuples of every

�ve minutes to obtain the events of the NY taxi data, and hence

the overall throughput is higher.

6.2.3 Embedding Training and Overall System
Throughput

Our next set of experiments is concerned with a key step, which

is to train the embedding vectors and the a�ention parameters of

our event-order graph. We �rst show the throughput performance

of the training, as shown in Figure 10 for the oil well data and Fig-

ure 11 for the NY taxi data. Recall that our pipeline of building

dynamic graph and learning embedding is dynamic and incremen-

tal over each sliding window of size w. For training, this means

that we keep sampling (active set, r1 or r2, target event) triples
(and the associated negative samples) from the current window

and performing stochastic gradient descent (SGD) until conver-

gence. �us, we measure the throughput of training with varying

window sizes, ranging from 1M tuples to 3M tuples per window

for the oil well dataset and 1M to 7M tuples for the NY taxi dataset.

Later on we will also examine the impact of window size on pre-

diction accuracy.

In addition, we also examine the training speed of the three

baseline methods, SAR, ICPE, and KSVM. Note that, unlike our

method which incrementally updates the embedding over sliding

windows, the training methods of baseline ones are not contin-

uous but work in batch—but we still report them in the form of

throughputs for comparison.

Figures 10 and 11 show that the training throughput slightly

decreases as we increase window size w (but still remains high).

�is is because, as mentioned above, our incremental embedding

samples the triples in the current window and performs SGD un-

til convergence. Increasing w may slightly decrease convergence

speed because more tuples will likely exhibit more variable latent

features; however, this variability tends to be less as we further

increase the window size as it approaches more global stability. In

fact, as shown in the experiments later, a larger window size does

not necessarily translate to be�er prediction accuracy a�er some

point.

Among the three baseline methods, sequential association rule

mining (SAR) is slower than our method, while ICPE is faster and

KSVM is the slowest in training. ICPE is faster due to its sim-

plistic data structures and algorithms; however, as shown later, its

prediction accuracy is the worst. Furthermore, o�-the-shelf clas-

si�cation methods such as ICPE and KSVM are not designed for

predicting the timing of future events in a future tuple—instead,

they are designed for predicting the unknown class a�ribute in

the current tuple. To use ICPE or KSVM, we have to couple the

current tuple with the r1 or r2 relationship to a target event in a

future tuple.

Note that, as shown in Figure 18 later, the actual prediction us-

ing the learned embedding vectors only incurs simple calculation

and has a negligible cost—less than 10 microseconds per predic-

tion. Since continuous training is the bo�leneck of the stream
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processing pipeline, we �nd that the overall system throughput

for graph building, embedding training, and event prediction is

about the same as that from embedding training, which ranges

from over one thousand to sixty thousand tuples per second for

the four datasets. Such high e�ciency makes possible preventive

and predictive interventions, as well as predictive complex event

processing (e.g., under resource constraints) [22, 20, 31], as dis-

cussed in Section 1.

We then look into the loss function values (i.e., the f function val-

ues in line 7 of StateBasedEmbedding) a�er each epoch, which

is de�ned as a uniform random sample of edges of the same size

as the total number of edges in the graph, combined with an equal

number of negative sample edges, following the terminology in

the TransE algorithm [7] that we adopt and extend. We show the

results in Figure 12 for the diabetes data and Figure 13 for the mo-

bile system data (the other two datasets show a similar conver-

gence).

From Figures 12 and 13, we can see that, interestingly, the loss

function value sharply decreases a�er each of the initial epochs

of the embedding, where we perform stochastic gradient descent

optimization over each value in the embedding vectors and the

a�ention values for each ephemeral edge between an event node

in the active set and a target event node. A�er 40 to 50 epochs,

the loss function values in both �gures level o�, and converge at

the lowest by around 80 to 90 epochs. �e convergence is slightly

faster with the mobile system dataset.

6.2.4 Predictive Query Accuracy
A�er observing the training process, we next examine the event

prediction accuracy. �e prediction tests are run over the period

a�er the current window. We predict both the r1 relationship

(“happening soon”) and the r2 relationship (“happening long af-

ter”). We show the results in Figures 14 and 15 (for r1 and r2,
respectively) for the mobile dataset, and in Figures 16 and 17 for

the oil well dataset.

As our work is to predict discrete events over multiple-a�ribute

data streams in real time, the closest previous work is mining se-

quential association rules [40] and using the rules to predict. We

�rst mine all the rules that have the target events (to be predicted)

on the right hand side, for both r1 and r2. �en for a target event

e to be predicted using an active set A of events, we identify all

the rules that have e on the right hand side, and compute the sim-

ilarity between its le� hand side and the active set A—combining

this and the con�dence of the rules gives us the prediction of r1
or r2. As discussed earlier, ICPE and KSVM are not designed for

predicting the timing of future events (in a future tuple), but for

predicting the unknown class a�ribute in the current tuple. To use

ICPE and KSVM, we have to extend the current stream tuple with

its r1 or r2 relationship with a target event in a future tuple, treat-

ing it as the class a�ribute. We need to add one class a�ribute for

each target-event and r1 or r2 combination.

For accuracy, we measure both precision and recall [40]. We

�rst parse the test data (a window of stream a�er the training pe-

riod) and for each distinct active set of events, we record the set

of target events that have r1 or r2 relationships with it. Using this

as the ground truth, we calculate the precision and recall values

when using our trained embedding vectors and a�ention values

for prediction. First, Figures 14 and 15 over the mobile dataset

show that our method is much more accurate than the three base-

line methods for this problem, achieving good precision and recall

values ranging from around 0.8 to nearly 1. ICPE and KSVM are

not designed for this future event timing prediction problem, and

they do not capture very well the timing relationships of event co-

occurrence, following by a short interval, and following by a large

interval. �e accuracy of ICPE is the worst due to its simplistic

data structures and algorithms.

In Figures 16 and 17 with the oil well dataset, we further show

the impact of sliding window size on prediction accuracy. We �nd
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that, while initial increase of window size can improve precision

and recall accuracy, further increase beyond a certain point actu-

ally decreases the accuracy. �is is because the more recent data

is more accurate for training the current model; data more ancient

in the history may distract the training process in learning the

current latent features.

Last but not least, we observe that, interestingly, the recall accu-

racy values are in general slightly higher than the precision val-

ues, for both r1 and r2 relationships. �e reason is as follows.

Just as knowledge graphs are generally incomplete [33], what we

observe in the test window as “ground truth” data is generally in-

complete (i.e., the “fact” just has not happened yet). �erefore, our

method’s recall value is relatively higher, since we (almost always)

correctly tell that those relationships in the ground truth should

be there. But since the “ground truth” (test data window) may

miss some real targets for a relationship, while those targets may

be correctly returned by our model, the precision of our method

using the “ground truth” slightly su�ers.

6.2.5 Training Data Dependent Complexity Bounds
Finally, we implement the computation of the data-dependent

accuracy bounds using Rademacher complexity as in �eorem 2

(which we call Rademacher bounds here), where we set the ε pa-
rameter to be 0.05. �is involves solving a convex optimization

problem to get min
r∈R+

w(r). We implement gradient descent for

that purpose. In Figure 18, we show the overhead of making a

prediction (as done for Figures 14–17) and that of computing the

Rademacher bound side by side for diabetes and mobile system

data (the other two datasets have very similar results). We can

see that making a prediction is very fast (as the model of embed-

ding is already trained), in a few microseconds, while computing

the Rademacher bound is longer (mostly due to the gradient de-

scent optimization)—but it is still only a few milliseconds. In Fig-

ure 19, we show the computed average Rademacher bounds as a

function of the number of event nodes used. �e error bound de-

creases as the sample size increases, and the average bounds from

the two datasets are close. Note that these bounds are theoretical

guarantees and tend to be more conservative. As shown earlier, in

practice, we o�en get be�er accuracy. Moreover, the bound here

is the error in predicting the exact probability. In practice, it of-

ten su�ces to make relative judgements, e.g., which target event

between the two is more likely to happen soon, or will this event

more likely happen soon or long a�er now, which can be based on

exact probabilities but are more robust to exact-probability errors.

6.3 Summary of Results
�e experimental results in this section show that learning the

top relevant events for a set of target events using A* search is

quite e�cient, and the cardinality (number of basic events) of the

top events typically ranges from 2 to 5. We have also evaluated

the e�ciency of building the event-order graphs and of training

the embedding vectors and a�ention values. We have clearly ob-

served the fast convergence of the loss function value a�er around

50 epochs during the training. �e overall system throughput for

graph building, embedding training, and event prediction ranges

from over one thousand to sixty thousand tuples per second for

the four datasets. Using our trained model for event timing rela-

tionship (r1 or r2) prediction is generally accurate, with precision

and recall values ranging from around 0.7 to nearly 1, much higher

than those of the three baseline methods, some of which are o�-

the-shelf classi�cation methods not speci�cally designed for our

future event timing prediction problem. We have also computed

the Rademacher bounds with real data.

7. OTHER RELATED WORK
Most closely related work has been discussed inline above. We

survey other related work here.

Time series forecasting. Our work bears some similarity with

time series forecasting. [18] is a comprehensive review of this re-

search over the past years. [9] and [19] present additional work.

We, however, are not dealing with single numerical a�ribute time

series forecasting. We focus on discrete events over multiple at-

tributes in data streams, and their timing relationship modeling

and predictions.

Data streams and event processing. Event matching and com-

plex event processing have been well studied in both research and

the industry, and is used by practitioners (e.g., [1, 2, 47]). �ey

typically extend the regular expression syntax to de�ne a com-

plex event that is a sequence of simple events. However, this line

of work does not deal with predicting future events or predicting

the timing relationships among events.

Classi�cationmethods. �ere are a number of o�-the-shelf clas-

si�cation methods, such as kernel machines and SVM [11, 27, 38],

succinct data structures for stream classi�cation [46], and deep

learning [24]. We have compared with some of them in detail in

the experiments. O�-the-shelf classi�cation methods are not de-

signed for our problem. �eir model is to predict the class a�ribute

of a stream tuple given its other a�ributes that are observed. As

discussed in Section 6, we could use it to solve our problem by ex-

tending each tuple with one class a�ribute for each target event–

r1/r2 combination. However, this does not perform as well as our

relational machine learning approach (knowledge graph embed-

ding) [33]. �is is because relational machine learning creates and

models new relationships r1 and r2 that weave the intricate con-

nections among the selected events, as well as their co-occurrence

relationship in tuples. �e embedding training learns latent fea-

tures based on this network of entities and relationships that are

not only e�cient but also powerful. As discussed in Section 1.1,

deep layers of neural networks [24] require a large amount of

training data and heavy resources including GPUs and long train-

ing time, un�t for fast real-time adaptive stream computing.

Complexity analysis for learningmodels. VC dimensions and

Rademacher complexity have been applied to study the complex-

ity and accuracy guarantees of machine learning algorithms [6].

For instance, Riondato and Upfal [35] apply Rademacher complex-

ity to analyze a sampling based algorithm to compute and approx-

imate node centralities in a very large graph.

8. CONCLUSION
In this paper, we propose a novel approach to predict event tim-

ing information in multi-a�ribute data streams. We represent the

event timing knowledge in training data using a knowledge graph

where nodes are events, and edges encode timing relationships

such as “happening soon a�er” and “happening long a�er”. On top

of this knowledge graph, we need the notion of “active state” to

characterize the state information, as well as ephemeral nodes and

edges along with a�ention parameters for learning the embedding

vectors containing latent features. With this novel embedding, we

are able to achieve high precision and recall values in predicting

event timing, ranging from about 0.7 to nearly 1, signi�cantly out-

performing baseline approaches.
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