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Abstract—Time synchronized measurements of voltage magni-
tudes or phasors are increasingly common in electrical networks.
Voltage measurement statistics are informative of the underlying
network structure or topology making them useful for grid mon-
itoring. However, this connection is poorly understood and many
proposed voltage analytics are purely heuristic. We use graph
theory to establish sound theoretical connections between voltage
measurements and the structure of the underlying network.
Our results are important for many applications, from topology
estimation to missing data recovery. Based on this new theory, we
discuss existing analytics, transforming them from heuristic to
theoretically justified approaches, and introduce new analytics.
We clarify all assumptions made, to indicate when analytics may
fail or perform poorly. Our work enables voltage measurement
streams to be transformed into physically meaningful, intuitive,
visualizable, actionable information through simple algorithms.

Index Terms—Smart grid, analytics, distribution monitoring,
data-driven, sensor measurements, PMUs, topology

I. INTRODUCTION

Time synchronized voltage measurements are increasingly
common in the electric grid. Phasor measurement units
(PMUs) which report time synchronized voltage phasors have
been widely deployed on transmission networks[1]. Recently,
specialized PMUs have been developed for distribution system
monitoring [2]. Time synchronization enables geographically
dispersed measurements to be aligned to generate a snapshot of
the system. Sensor deployments are motivated by a need for
better system monitoring and situational awareness. Sensors
promise, but don’t always deliver, greater system visibility be-
cause turning numerous, high resolution measurement streams
into compact, intuitive, visualizable system information is
nontrivial. Network structure or topology (the connectivity of
network nodes) is a compact, visualizable, and important piece
of system information that captures planned network changes,
unplanned network changes that may indicate cyberattacks of
switches, faults and other anomalies. Time synchronized volt-
age measurements from network nodes are intimately linked
to network topology, though the exact theoretical connections,
are poorly established. Instead, many heuristic approaches are
proposed for system monitoring with voltages. Heuristics are
defined as practical methods lacking theoretical justification.
The advantages of heuristics are simple implementations and
easy application to even a few measurement streams. However,
their lack of theoretical justification makes it difficult to link

their outputs to system physics, to understand the assumptions
they make and when they may fail, and therefore to trust
them. The approximate rank of voltage measurements [6],
[7], [8], the correlations between nodal voltages [17], [18],
and the principal components of nodal voltage measurements
[19], [20], [21], [22], [23], [6] are popular heuristics for
system monitoring. The work on these heuristics highlights
their usefulness in particular applications, but doesn’t establish
the physical principle behind them. Instead, they have been
experientially found insightful. Theoretically well founded an-
alytics also exist in the literature. [28] and [29] use power flow
linearizations to infer topology from voltage measurements.
In [26], Ohm’s Law and a known network model justify
monitoring a projection of voltage measurements for anomaly
detection. These works differ from ours as they are aimed at
solving specific applications rather than creating an overall
understanding of the measurements. Many generate results
that are difficult to visualize, reducing their suitability for real
application. Furthermore, they produce categorical rather than
continuous outputs. At utilities, analytics will be applied to
noisy data, in conditions where steady state assumptions do
not always hold and used by human grid operators interested
in changes in the grid state. Categorical outputs do not present
intuition for the magnitude of detected changes and must
always produce an absolutely correct answer.

In this work, we establish physics-based theory connecting
voltage measurements properties in general—including rank,
correlations, and clusters—to network topology allowing us to
theoretically justify existing heuristic approaches—clarifying
what they reveal of the system’s physics and the assumptions
they make—and propose novel analytics. The analytics we
propose are continuous in their outputs so a human users must
distinguish between changes indicative of real system changes
from those due just to noise. Therefore the proposed analytics
can be successful even if the assumptions underlying them
do not perfectly hold at all times. Beyond specific analytics,
our results lay the groundwork for better understanding and
using grid voltage measurements, and are fundamental to a
range of applications, including topology identification, phase
identification, anomaly detection, and missing data recovery.
They enable an otherwise overwhelming amount of voltage
data to be transformed into intuitive, visualizable system
information with relatively simple algorithms. This work is
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similar in spirit to [11], which also seeks to explain how simple
analytics reveal aspects of the underlying system, but does not
take a graph theoretic approach as we do.

A. Notation

• A ∈ Cn×m is an n-by-m complex-valued matrix.
• A ∈ Rn×m is an n-by-m real-valued matrix.
• A∗ and AT are the conjugate and transpose of A respec-

tively. AH = (A∗)T

• Aij is the (i, j) element, A−i is the ith column, and Ai−
is the ith row of matrix A.

• G = (N , E) is a graph with node set N and edge set E .
|N | = n and |E| = e is the number of nodes and edges
respectively.

B. Measurement Model

Consider an electrical network represented by a graph G
with n nodes. Let V ∈ Cn×t and I ∈ Cn×t denote nodal
voltage and current injection phasors over t time points. We
assume only V is measured. By Ohm’s Law:

I = YV↔ V = ZI (1)

Y is termed the network admittance matrix or the Laplacian
of G. It captures the complete network structure, consisting
of connections and impedances. Y is symmetric and can be
diagonalized as Y = UDλUT . U contains the eigenvectors of
Y as columns, while Dλ is a diagonal matrix of the eigenvalues
of Y, denoted (in increasing order) λ1 ≤ ... ≤ λN . By
definition, λ1 = 0. Z is the psuedoinverse of Y defined as:

Z , WD1/λWT , W , U∗ (2)

where D1/λ is a diagonal matrix containing the eigenvalues
of Z, denoted γ1 ≤ ... ≤ γN . The eigenvalue set of Z
contains the zero eigenvalues and the reciprocals of the non-
zero eigenvalues of Y. Therefore, Z preserves the null space
of Y. The rich field of graph theory has established many
properties of graph Laplacian matrices and their eigenvalues
and eigenvectors, some of which we will use. See [4] for
a summary. In this work we use complex-valued, phasor
measurements, but our results can be extended to magnitude
measurements through power flow linearizations.

C. Assumptions

To derive various properties of voltage measurements, we
make assumptions from the following set:

• (A1) Current injections are uncorrelated and have equal
variance across nodes. That is:

Ī , (I− 1

T
I11T ) =⇒ ĪĪH = σ2

I In (3)

where In is the identity matrix and σ2
I is the current

injection variance at every node. This is a reasonable as-
sumption since currents are driven primarily by power in-
jections which should be statistically independent across
nodes over short time scales.

Fig. 1. Voltage measurements and singular values on test networks. Greater
line thickness indicates lower admittance / higher impedance.

• (A2) D1/λ is approximately rank k− 1 with k− 1 equal
eigenvalues and n− k + 1 zero eigenvalues. That is:

γN−k+1 ≈ ... ≈ γN , γ (4)
0 = γ1 ≈ ... ≈ γN−k (5)

The rationale for this assumption is based on graph theory
and will be clarified in Section II.

Which results depend on which assumptions will be made
clear in the text.

II. VOLTAGE DATA RANK

It is widely known that grid voltage measurements are
approximately low rank: that is, V can be well approximated
by a low rank matrix. This property motivates approaches
to measurement compression, missing measurement recovery,
and event detection [6], [7], [8]. It motivates a new approach
to system identification and event localization in [10] and is
used to detect cyberattacks in [9]. However, to the best of
our knowledge, no prior work theoretically establishes the
reason and extent of this observed phenomenon. We show the
approximate rank of V can be connected to the structure of
G. Define V̄ , V−ZĪ to be the mean centered voltages with
singular value decomposition ADV BT where DV is a digonal
matrix containing the singular values of V̄. Then, under (A1):

V̄V̄H = AD2
V AH = σ2

I ZZH = σ2
I WD2

1/λW
T (6)

The singular values of V̄ are the scaled eigenvalues of Z,
which are the reciprocals of the eigenvalues of Y. The zero
eigenvalues of Laplacian Y equals the number of connected
components, or independent nodes clusters, in G. Furthermore,
a near zero eigenvalue of Y indicates a cluster or community
of nodes that are highly connected to each other but “easily”
separable (connected by low weight edges) from the rest of
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G [12]. By (2), it is the near zero eigenvalues of Y that are
the dominant eigenvalues of Z. Therefore, if G contains k
clusters or communities of nodes, V̄ will have k−1 dominant
eigenvalues, meaning it can be well approximated by a rank
k matrix.

This result is demonstrated in Fig. 1. The top row
shows 4 networks with different topologies and realistic line
impedances. Current injections are generated to statistically
abide by (A1). Voltage phasors are computed via (1). Notice
the first network has a single community consisting of all the
network nodes. Therefore V̄ has 0 dominant singular values.
In other words, most of the variation in V is captured in the
average voltage time series (indicated by the violet line in
the first row of plots), and V̄ is near 0. This is evident in
the tightness of the plot of V for this network. The other 3
networks have 2, 3, and 4 communities respectively. Inter-
community lines are higher impedance than intra-community
lines, indicated by line thickness in Fig. 1.

These results mean that the structure of G can inform
various applications that rely on the rank of V such as the
compressibility of V from G, or the appropriate rank choice
when recovering missing measurements in V through low
rank matrix recovery. Conversely, the rank of V indicates the
structure of the network and can alert us to changes in G.
Notice in Fig. 1 that the singular values of V̄ are more compact
and easily visualized than V. Now that we have given them
physical meaning, they are an intuitive, visualizable quantity
for system monitoring.

III. VOLTAGE CLUSTERING

Clustering voltage time series directly to monitor the struc-
ture of G is a known heuristic technique [13]. Yet, what it re-
veals about the structure of G in general, and why, has not been
established. We theoretically justify this heuristic approach
through the lens of spectral clustering: a popular technique
for clustering the nodes of a graph. In brief, the results of
spectral clustering say that given Laplacian Y = UDλUT
of G, the nodes of G can be separated into k clusters that
maximize inter-cluster edge weights and minimize intra-cluster
edge weights by applying k-means to the rows of matrix
U(k) ∈ Cn×k where the columns of U(k) are the first k
eigenvectors of Y (the first k columns of U)—that is the eigen-
vectors corresponding to λN−k, ..., λN . K-means clustering is
a standard clustering algorithm which partitions data into a
specified number of clusters, where each observation belongs
to the cluster with the closest mean. Spectral clustering is
derived through the relaxation of a non-convex optimization
function over G. See [14] for a more in-depth study. Here,
we show that, under some assumptions, directly clustering the
voltage time series V̄1−, ..., V̄n− produces the same result as
spectral clustering on Y. Suppose G contains k node clusters.
As discussed in Section II, it is then reasonable to assume
(A2), which means:

V̄ ≈ γ(U(k))∗(U(k))H Ī (7)

Fig. 2. Results of node clustering by clustering nodal voltage time series with
k-means. Node color indicates cluster membership. Plots show centroids of
mean centered voltages for each cluster.

The result of k-means clustering of U(k)
1− , ...,U

(k)
n− depends on

the pairwise distances between rows [15]. A common distance
metric is the Euclidean distance which is preserved when
taking the conjugate and under multiplication by an orthogonal
matrix. Under (A1), we have:

||U(k)
i− (U(k))H Ī− U(k)

j− (U(k))H Ī||2 = σI||U(k)
i− − U(k)

j− ||2 (8)

Together, (7) and (8) show that pairwise distances between
rows are preserved between V̄ and U(k), so applying k-
means clustering to the rows of V̄ (the voltage time series
V̄1−, ..., V̄n−) is equivalent to applying spectral clustering to
G. This result is demonstrated in Fig. 2, applied to the same
test cases of Fig. 1. K-means clustering is applied to V and
the resulting node cluster membership is indicated by node
color. We see that the results of voltage clustering match
those of spectral clustering. This result explains why voltage
clustering techniques for coherency identification, such as
[16], work at the transmission level, and extends the technique
to distribution, even in the absence of inertial generators.

IV. VOLTAGE CORRELATIONS

Using voltage correlations for system monitoring or topol-
ogy estimation is a common heuristic technique [17], [18].
We propose an extension: clustering the rows of the voltage
correlation matrix, denoted S(V). We show that, under some
assumptions, this is equivalent to spectral clustering on G.
Using assumption (A1), and Eqs. (1)-(2), S(V) is given by:

S(V) , V̄V̄H = σ2
I U∗D2

1/λU
T (9)

Incorporating (A2) gives:

S(V) ≈ σ2
I γ

2(U(k))∗(U(k))T (10)

Since (U(k))T (U(k))∗ = Ik, by the results of Section III, clus-
tering the rows of S(V) will is equivalent to applying spectral
clustering to G. This result is visualized in Fig. 3, which shows
the node cluster membership found by clustering the rows of
S(V), alongside S(V) for each network. We see the clusters over
S(V) match the physical clusters in G. At first, comparing the
results of Sections III-IV seem to suggest clustering pairwise
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Fig. 3. Results of node clustering by clustering voltage correlation matrix
S(V) = V̄V̄H with k-means. Node color indicates cluster membership. Plots
show Re(S(V)) for each network.

Fig. 4. Results of node clustering by clustering nodal voltage time series with
k-means. Node color indicates cluster membership. Plots show centroids of
mean centered voltages for each cluster. In this case, the current injections
are correlated across nodes with the correlation matrix shown at left, leading
to failure of the voltage clustering.

correlations from S(V) is equivalent to clustering the voltage
time series in V̄. However, notice that the assumption (A2)
is applied to D2

1/λ to derive approximation (10), while it is
directly applied to D1/λ to derive approximation (7). (A2)
will tend to be more realistic on D2

1/λ than D1/λ because
squaring will cause the largest k eigenvalues to dominate over
the smaller, making (4) more accurate. Therefore, clustering
over S(V) will tend to be more robust than clustering over V̄.

V. FAILURE CASES

By understanding the assumptions underlying the heuristic
analytic approaches, we can also understand when they will
fail. This is important for a safety-critical infrastructure such as
the electric grid, where operators will take rapid and impactful
decisions based on the results of analytics. Fig. 4 shows
how voltage time series clustering and voltage correlation
clustering produce incorrect results when assumption (A1)
does not hold. Current injections I are generated to have a
particular correlation structure, visualized in Fig. 4. This is
a pathological example, but current correlations can indeed
stray far from (A1). For example, the presence of distributed
generation (such as PV) at multiple nodes can produce high
correlations in current injections. Electric demand at different
households has been observed to be correlated through a range
of factors [30]. This will manifest in I injection correlations.

VI. VOLTAGE PCA

Principal component analysis (PCA) transforms data to
a new, lower dimensional subspace while maximizing the
preserved variance. See [19] for more details. Applying PCA
to voltage measurements is a widespread heuristic for grid
monitoring. In [20], PCA is used to project many PMU voltage
measurements onto a lower dimension subspace to reduce
the data quantity and detect system changes. Linear systems
theory is used to justify this approach, but no connection is
made with the underlying graph structure. In [21], PCA is
again used for event detection and localization, but without
theoretical justification. In [24], PCA is applied to voltage
angle measurements for fault detection. The advantages of
PCA for reducing unwieldy data sets into tractable, informa-
tive and visualize-able ones has motivated its use in other
grid measurement applications, such as bad data detection
[22], [23]. However, to the best of our knowledge, the theory
establishing the efficacy and physical meaning of PCA on
voltage measurements is absent from the literature. Here,
we connect PCA to spectral clustering. PCA allows us to
reduce V̄ ∈ Cn×t to the lower dimensional V̂ ∈ Cn×k.
By definition, the principal components, denoted P, are the
conjugate eigenvectors of V̄HV̄:

V̄HV̄ = ĪHUD2
1/λU

H Ī (11)

Assuming (A1), ĪHU has orthogonal columns. Therefore:

P = UHI (12)

where the rows of P are the principal components. To find V̂,
we project V̄H on the first k principal components. Assuming
(A2), this leads to:

V̂ = V̄∗(P(k))T = σ2
I γU(k) (13)

Therefore, the PCA transformed data is the scaled top k
eigenvectors of Y. Clearly from (13), clustering V̂1−, ..., V̂1−
is equivalent to clustering U(k)

1− , ...,U
(k)
n−, which is spectral

clustering. Therefore, PCA projects the measurements into a
subspace with measurement clusters corresponding to node
clusters in the graph G.

This result is illustrated in Fig. 5. For every network,
we choose k = 2. Notice that from a spectral clustering
perspective, the choice of k = 2 means we are only bisecting
G. However, when plotting V̂ ∈ Cn×2, we see that the top two
eigenvectors of Y—contained in U(2)—are actually effective
at separating the nodes into more defined, smaller clusters. In
fact, in the plots we see that the nodes are well separated in
terms of their true clusters in G. In other words, U(2) contains
more information on G than a crude graph bisection.

VII. CONCLUSION

In this paper we establish fundamental properties of time
synchronized voltage measurements from the electric grid
using two simplifying assumptions. We use graph theory to
show why phasor voltage measurements are low rank in
most networks, and also provide intuition for the approximate
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Fig. 5. PCA with k = 2 applied to nodal measurements in V̄. Notice how
the projected data is well separated into the underlying node clusters in G.

rank of the measurements in terms of the number of node
clusters in the underlying network. This motivates analytics
that use measurement rank to detect system changes, and also
enables sounder application of low rank based compression
and measurement recovery algorithms on voltage data. We also
establish why clustering of raw voltage time series and voltage
correlations reveals the underlying network structure. We show
a similar result for PCA on voltage measurements. These
results provide theoretical justification for existing heursitics
and motivate the development of new analytics. Further, by
giving physical meaning to simple, easily visualized computed
quantities, such as clusters and principal components, we make
them suitable for grid monitoring applications.
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